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TOPOLOGICAL DEFORMATION RIGIDITY

OF HIGHER RANK LATTICE ACTIONS

Nantian Qian

A bstract . We prove that the linear actions of irreducible higher rank
lattices on tori or nilmanifolds are topologically deformation rigid provided
that the actions do not have compact part.

1. Introduction and Statement of Results

The rigidity of lattice group actions with hyperbolic behavior was in-
vestigated by a number of authors ([H1,2], [KL1,2], [KLZ], [Q1,2]). They
assume that the actions under their consideration are Anosov actions (i.e.,
there exists an Anosov element in the group) and this plays an important
role in their works.

We are interested in the partially hyperbolic group actions (i.e., there
exists a partially hyperbolic element in the groups). A relatively easy case
to study is the deformation rigidity of the higher rank lattice group actions
on tori or nilmanifolds. In [H1], S. Hurder proved that the Anosov actions of
irreducible higher rank lattice Γ on a compact manifold with dense periodic
points are topologically deformation rigid. As a corollary, the linear Anosov
actions of such lattices on tori (see definition before Corollary 1.2) are
always topologically deformation rigid since the periodic points are all the
rational points and hence are dense.

Let G be a connected semisimple Lie group with finite center. Let
G = KAN be an Iwasawa decomposition, where K is a maximal com-
pact subgroup of G, A is isomorphic to the additive group R

s, and N is a
simply connected nilpotent Lie group. Then R-rank(G) = s. Let Γ be a
lattice in G. We say that Γ is a higher rank lattice if R-rank(G) ≥ 2. Let
Γ be an irreducible lattice in G (i.e., for every normal subgroup of positive
dimension G1 of G, the projection of Γ to G/G1 is dense in G/G1). In the
rest this paper, we will assume that Γ is a higher rank lattice in a connected
semisimple Lie group with finite center and without compact factor.
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It is well-known that a lattice in a connected Lie group is finitely gen-
erated (see [R], 6.18). Fix (once and for all) a set of generators λ1, . . . , λk

of Γ. Let M be a compact manifold. Denote by R(Γ,Diff1(M)) the set
of all homomorphisms from Γ to Diff1(M) with the topology of point-
wise convergence. The topology can also be described as follows (see
[R], 6.2). Identify R(Γ,Diff1(M)) with a closed subset of (Diff1(M))k via
ρ �→ (ρ(λ1), . . . , ρ(λk)); then the topology on R(Γ,Diff1(M)) is simply the
subspace topology inherited from (Diff1(M))k. By an ε-deformation of ρ0

we mean a continuous path ρt (t ∈ [0, 1]) in the space R(Γ,Diff1(M)) such
that dC1(ρt(λi), ρ0(λi)) < ε for all i = 1, . . . , k and t ∈ [0, 1]. It is clear that
if ε0 > ε1, then an ε1-deformation is an ε0-deformation. We say the action
ρ0 is topologically deformation rigid if there exists ε > 0 such that for any
ε-deformation ρt of ρ0, there exists a continuous path φt ∈ Homeo(M) such
that ρt(γ) = φ−1

t ρ0(γ)φt for all γ ∈ Γ, t ∈ [0, 1].
Recall that a continuous foliation L with C1-leaves is a C1-lamination if

the tangent bundle TL is continuous (§7, p. 115 of [HPS]); a C1-diffeo-
morphism f : M → M is r-normally hyperbolic to a C1-lamination L
(r = 0, 1) iff f preserves L and Tf is r-normally hyperbolic over TL (i.e.,
there exist a tangent bundle splitting TM = Nu ⊕ TL ⊕ Ns, a tangent
map splitting Tf = Nuf ⊕ Lf ⊕Nsf , and a riemannian metric 〈·, ·〉, such
that infp∈M m(Nuf) > 1, supp∈M ‖Ns

pf‖ < 1, infp∈M m(Nuf)‖Lpf‖−r >

1, supp∈M ‖Ns
pf‖m(Lpf)−r < 1; where for a linear map A, m(A) =

inf{ ‖A(v)‖; ‖v‖ = 1 }. See §7, p. 116 of [HPS]). To state our result,
we need the concept of “plaque expansiveness” (see §7, p. 116 of [HPS])
for a lamination. We will give the definition before Lemma 2.7. We point
out a fact that will be used in Corollary 1.2: if f is a C1 diffeomorphism of
M which is 0-normally hyperbolic at the C1 foliation C then f is plaque
expansive (Theorem 7.2 of [HPS]).

Recall that a point p is a periodic point for an action ρ if ρ(Γ)p is a
finite set (or, equivalently, if there exists a normal subgroup Γp of finite
index such that ρ(Γp)p = p, see Lemma 2.1). Now we are able to state the
following result.

Theorem 1.1. Let Γ be an irreducible higher rank lattice subgroup in a
connected semisimple Lie group with finite center and without compact fac-
tor. Let ρ0 be a C1 action of Γ on a compact smooth manifold M . Assume
that there exist finitely many elements γ1, γ2, . . . , γs ∈ Γ such that

(1) for each i = 1, . . . , s, there exists a ρ0(γi)-invariant, plaque expan-
sive C1-lamination C(ρ0(γi)) such that ρ0(γi) is 1-normally hyper-
bolic at C(ρ0(γi)) in the sense of Hirsch, Pugh and Shub;

(2) ∩s
i=0TxC(ρ0(γi)) = {0} for all x ∈ M ;
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(3) the set of periodic points is dense in M .
Then ρ0 is topologically deformation rigid.

One corollary of the theorem is the topological deformation rigidity of
linear actions. By a linear action ρ0 of Γ on torus T

n or nilmanifold N with
dimension n, we mean an action induced by a homomorphism π0 : Γ →
SL(n, Z) (see [Q1] for a discussion of linear actions on nilmanifolds). Recall
a homomorphism π0 : Γ → SL(n, Z) determines a representation of Γ on
R

n. We say that π0 has compact part if there exists an invariant vector
subspace V ⊂ R

n, such that the spectrum of γ Spect(π0(γ)|V ) ⊂ S1 for
all γ ∈ Γ. The following result asserts that if the action is linear with
hyperbolicity in every direction in the tangent bundle (i.e., every nonzero
vector in the tangent bundle is stretched by some element in Γ), then the
action is rigid.

Corollary 1.2. Let Γ be as in the Theorem 1.1. Assume that ρ0 is an ac-
tion of Γ on a torus or a nilmanifold induced by a homomorphism π0 : Γ →
SL(n, Z) without compact part. Then ρ0 is topologically deformation rigid.

Proof. Let γ(0) ∈ Γ such that Spect(π0(γ(0))) �⊂ S1. For any γ ∈ Γ let
E1(γ) = { v ∈ R

n : v = 0 or limk→±∞
1
k ln(‖π0(γk)v‖) = 0 }. Let V0 =

∩γ∈ΓE1(γ−1γ(0)γ). It is easy to show that V0 is π0 invariant.
Indeed, if 0 �= v ∈ V0, limk→±∞

1
k ln(‖π0(γ−1(γ(0))kγ)v‖) = 0. This im-

plies that limk→±∞
1
k ln(‖π0((γ(0))k)(π0(γ)v)‖) = 0. Or, π0(γ)v ∈ E1(γ(0))

for all γ ∈ Γ. A similar argument shows that π0(γ)v ∈ E1(δ−1γ(0)δ) for all
γ, δ ∈ Γ. Hence V0 is π0 invariant.

Since π0 has no compact part, either V0 = {0} or there exists γ(1) ∈ Γ
such that Spect(π0(γ(1))|V0) �⊂ S1. In the latter case, let V1 = V0 ∩
(∩γ∈ΓE1(γ−1γ(1)γ)). Then either V1 = {0} or there exists γ(2) ∈ Γ
such that Spect(π0(γ(1))|V1) �⊂ S1. In the latter case, let V2 = V1 ∩
(∩γ∈ΓE1(γ−1γ(2)γ)). We repeat the argument and notice that Vi is a
strictly decreasing sequence, we know that there exists positive integer h,
such that Vh = {0}, or equivalently, ∩h

i=1(∩γ∈ΓE1(γ−1γ(i)γ)) = {0}. Now
it is easy to see that we may find finitely many elements γ1, . . . , γs ∈ Γ,
such that ∩s

i=1E1(γi) = {0}.
For each i, E1(γi) corresponds to a ρ0(γi)-invariant distribution (again

denoted by E1(γi)) that is characterized by that v ∈ E1(γi) iff v has 0 Lya-
punov exponent. We claim that E1(γi) is integrable. Indeed, let X, Y be
two vector fields in E1(γi), then (ρ0(γi))∗[X, Y ] = [(ρ0(γi))∗X, (ρ0(γi))∗Y ].
It is then not hard to see that if [X, Y ] �= 0, then [X, Y ] has 0 Lyapunov
exponent. Hence [X, Y ] ∈ E1(γi), and E1(γi) is integrable. Now the re-
sulting smooth foliation C(ρ0(γi)) is easily seen to be a plaque expansive
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C1-lamination at which ρ0(γi) is 1-normally hyperbolic, (1) in Theorem 1.1
is satisfied. (2) is clearly satisfied. Notice that all the rational points in
the torus (or the nilmanifold) are periodic points, so the set of periodic
points is dense in the manifold. Thus (3) is also satisfied. Therefore, ρ0 is
topologically deformation rigid. �

For some special higher rank lattice groups, for instance any subgroup
of finite index Γ in SL(n, Z) (n ≥ 3) or Sp(2n, Z) (n ≥ 2), Corollary 1.2
has the following simple form.

Corollary 1.3. Let Γ be a subgroup of finite index in SL(n, Z) (n ≥ 3) or
Sp(2n, Z) (n ≥ 2) and let ρ0 be an action of Γ on a torus or a nilmanifold
induced by a finite dimensional continuous representation of SL(n, R) (n ≥
3) or Sp(2n, R) (n ≥ 2) that does not contain the trivial representation.
Then ρ0 is topologically deformation rigid. �

The main idea of the proof of Theorem 1.1 is to show that if the de-
formation is small enough, the periodic points persist for t ∈ [0, 1], and
that the correspondence between periodic points extends to a continuous
conjugacy. The proof will be completed after Lemma 3.7. We point out
that our proof is a refinement of the argument in [H1].

2. Analysis of periodic points

The proof of the theorem relies on the fact that periodic points for ρ0

are dense and persist under small perturbations. In the rest of the paper,
we assume that all the conditions in Theorem 1.1 are satisfied. We first
give an equivalent description for the periodic points.

Lemma 2.1. For any action ρ of Γ on M , p ∈ M is a periodic point for
ρ iff there exists a normal subgroup of finite index Γp ⊂ Γ such that p is a
fixed point for ρ(Γp).

Proof. Let Orb(p) be the orbit of p under ρ. The action of Γ on Orb(p)
defines a homomorphism of Γ into the permutation group on the finite set
Orb(p). The kernel is therefore a normal subgroup of finite index I and
fixes p. It is easy to see that I ≤ |Perm(Orb(p))| = (Card(Orb(p)))!.

The other direction is clear. �
The second condition in Theorem 1.1 may be viewed as a transversality

condition. It turns out that it is an open condition (see Lemma 2.4). Let
ε0 > 0 be small and ρt an ε0-deformation. For each element γj (j = 1, . . . , s)
as in the theorem, we know by Theorem 7.1 of [HPS] that there exists a
C1-lamination C(ρt(γi)) such that (ρ0(γi), C(ρ0(γi))) is leaf conjugate to
(ρt(γi), C(ρt(γi))); i.e., there exists a homeomorphism h

(i)
t mapping the
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leaf L in C(ρ0(γi)) to the leaf L
(i)
t in C(ρt(γi)), such that h

(i)
t ρ0(γi)(L) =

ρt(γi)h
(i)
t (L). The homeomorphism h

(i)
t obtained in [HPS] depends on the

choice of a smooth normal vector bundle ηi complement to TC(ρ0(γi)).
From now on we fix one such normal bundle, and then it is easy to see
that h

(i)
t depends continuously on t. Moreover, h

(i)
t → IdM uniformly; i.e.,

for any K > 0, there exists ε(K) > 0, such that if ε < ε(K) and ρt is any
ε-deformation, then d(h(i)

t (x), x) < 1/K for all x ∈ M . In the rest of the
paper, we assume that ρt is an ε0-deformation. We also adopt the notation
introduced above.

In the next lemma, we show that set of the non-periodic points of each
of the diffeomorphisms ρ0(γi) in Theorem 1.1 is dense. The density of non-
periodic points is assumed in the development of the Mather Theory that
is described later.

Lemma 2.2. Let the diffeomorphism f : M → M be 0-normally hyperbolic
at a C1-lamination C with C1 leaves in the sense of Hirsh, Pugh and Shub.
Then the set of the non-periodic points of f is dense.

Proof. Let Pn denote the set of points x ∈ M such that fn(x) = x. Since
Pn is a closed set, by the Baire Category Theorem it is enough to show
that Pn has no interior points (since ∪nPn is of the first category). Suppose
the contrary and let p0 be an interior point of Pn, and U be an open set
such that x ∈ U ⊂ Pn. Since fn|U = IdU , we have Dfn

p0
= Id: Tp0 → Tp0 ,

contrary to the normal hyperbolicity of f . �
For a C1 diffeomorphism f : M → M on a compact smooth manifold

with Riemannian metric d given by inner product 〈·, ·〉, we may define an
operator f∗ on the space Vec0(TM) of C0 vector fields by the formula
f∗v(x) = Dfv(f−1(x)). According to Mather ([Mat], [P]), the operator L
obtained by complexification of f∗ possesses a spectrum consisting of all
the points between full circles, provided that the non-periodic points of f
are dense in M . Each of the connected components is thus a [λi, µi]-ring
(λi, µi are the inner radius, outer radius respectively, of the ring), and
corresponding to each [λi, µi]-ring there is a continuous subbundle Ei in
TM such that for each δ > 0, qi(λi − δ)n‖vi‖ ≤ ‖Dfnvi‖ ≤ q′i(µi + δ)n‖vi‖
for some qi, q

′
i > 0, all vi ∈ Ei(x), x ∈ M , n > 0 ([P], [BP]). It is easy to see

that if f is 0-normally hyperbolic at a continuous foliation C with C1 leaves
then it is partially hyperbolic in the sense that the spectrum consists of at
least two nontrivial rings. It is also easy to see that the tangent bundle
TC is the union of some E′

is. In the case that f is 1-normally hyperbolic
at C in the sense of Hirsch, Pugh and Shub, the foliation C persists (let C′

denote the new foliation for the perturbation f ′), and the distance between
the tangent bundles d(TC, TC′) → 0 if f ′ → f (Theorem 1, [P]).
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We summarize the above discussion together with Theorem 7.1 of [HPS]
as following.

Lemma 2.3. Let f be a diffeomorphism 1-normally hyperbolic at C in
the sense of Hirsch, Pugh and Shub, where C is an f-invariant, plaque
expansive C1-lamination. Then for any C1 nearby diffeomorphism f ′ there
exists an f ′-invariant, plaque expansive C1-lamination C(f ′), such that f ′

is 1-normally hyperbolic at C(f ′) and TC(f ′) → TC when f ′ C1 approaches
to f . �

We remark that Theorem 6.8 of [HPS] also gives that TC(f ′) → TC
when f ′ C1 approaches to f . But we feel that Lemma 2.2 (that is needed
to apply the Mather Theory) has its own interest although it is simple.

Lemma 2.4. There exists ε1 > 0 (ε1 < ε0), such that for any ε1-deforma-
tion ρt, ∩s

i=0TC(ρt(γi)) = 0.

Proof. Otherwise, there exist a sequence 0 < εn → 0, for each n an εn-
deformation ρn

t , tn ∈ [0, 1], pn ∈ M and vn ∈ ∩k
i=0Tpn

C(ρn
tn

(γi)) with
‖vn‖ = 1. Without loss of generality, we assume that pn → p0 and vn →
v0 ∈ Tp0M . Now we apply Lemma 2.3 to obtain that v0 ∈ Tp0C(ρ0(γi)) for
all i = 1, 2, . . . , s. This violates condition (2) in Theorem 1.1. �

Lemma 2.5. There exists ε′1 > 0 (ε′1 < ε0), such that for any ε′1-deforma-
tion ρt and any normal subgroup of finite index Γ∗ ⊂ Γ, ρt(Γ∗) has finitely
many fixed points.

Proof. Suppose that the statement is not true. Then there exist a sequence
0 < εn → 0, for each n an εn-deformation ρn

t , tn ∈ [0, 1] and a normal
subgroup Γn ⊂ Γ of finite index, such that ρn

tn
(Γn) has infinitely many fixed

points. Fix a positive integer n and let ni > 0 be positive integers such that
γni

i ∈ Γn, i = 1, . . . , s. Choose a sequence { pk : k = 1, 2, . . . } of fixed points

for ρn
tn

(Γn), hence common fixed points for fj
def
= ρn

tn
(γnj

j ). Without loss of

generality we assume that pk → p0
def
= p0(n) and it is clear that p0 is also a

common fixed point for fj . Let m = dim(M). With the help of a coordinate
chart, we may assume further that fj : R

m → R
m, p0 = 0. Near the origin,

fj(x) = Ajx + o(‖x‖), where Aj is an m × m-matrix. Since fj(pk) = pk,

we have Ajpk + o(‖pk‖) = pk and hence Aj
pk

‖pk‖ + o(‖pk‖)
‖pk‖ = pk

‖pk‖ . Without
loss of generality we may assume that pk

‖pk‖ → vn, and hence we have
Ajvn = vn. In other words, we obtain a vector vn ∈ Tp0(n)M fixed by
all Tfj . Therefore vn is a unit vector in the center distribution for every
fj and hence in the center distribution for every ρn

0 (γj), j = 1, 2, . . . , s,
contrary to Lemma 2.4. �
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We introduce the following notation. We denote by C(p, ρt(γi)) the leaf of
C(ρt(γi)) passing through p, by C(p, δ, ρt(γi)) the closed δ-ball in C(p, ρt(γi))
centered at p (using the submanifold metric di,t).

Lemma 2.6. There exist an ε2 > 0 (ε2 < min{ε1, ε′1}, ε1, ε′1 as in Lemmas
2.4, 2.5), and a δ0 > 0, such that for any ε2-deformation ρt, any p ∈ M ,
∩s

i=1C(p, δ0, ρt(γi)) = {p}.

Proof. Otherwise there exist a sequence δn → 0, a sequence of 1/n-
deformations ρn

t , pn, qn ∈ M , tn ∈ [0, 1], such that pn �= qn, and qn ∈
∩s

i=1C(pn, δn, ρn
tn

(γi)). Without loss of generality, we assume that pn → p0,
qn → q0. Since di,t(pn, qn) ≤ δn, p0 = q0. Let m = dim(M). With the
help of a coordinate chart at p0, we may assume also that a neighborhood
of p0 is an open set in R

m and p0 = 0. Since TC(ρn
tn

(γi)) is a continu-
ous bundle, converges uniformly to TC(ρ0(γi)) (Lemma 2.3), we may as-
sume that (locally) C(ρn

tn
(γi)) is the graphs of the 3-parameter family of

maps z = f(x, y, t, n) : R
m1 → R

m, x → f(x, y, t, n), y ∈ R
m2 , t ∈ [0, 1],

m1 + m2 = m and C(ρ0(γi)) is the graphs of the 1-parameter family of
maps z = f0(x, y), where m1 is the dimension of foliation C(ρn

tn
(γi)). The

continuity of the tangent bundles of the foliations and the continuous de-
pendence on the parameters permit us to assume that Dxf(x, y, t, n) is
continuous in (x, y, t), and when n → ∞, Dxf(x, y, t, n) → Dxf0(x, y) uni-
formly in t. Let pn = f(xn, yn, tn, n), qn = f(x′

n, y′
n, tn, n). Since pn, qn

are in the same (local) leaf, we have yn = y′
n. Observe that qn − pn =

f(xn, yn, tn, n) − f(x′
n, yn, tn, n) =

∫ 1

0
d
dsf(x′

n + s(xn − x′
n), yn, tn, n)ds =

(
∫ 1

0
Dxf(x′

n + s(xn − x′
n), yn, tn, n)ds)(x′

n − xn), we obtain qn−pn

‖qn−pn‖ =

(
∫ 1

0
Dxf(x′

n + s(xn − x′
n), yn, tn, n)ds) (x′

n−xn)
‖qn−pn‖ . Without loss of generality,

we assume that qn−pn

‖qn−pn‖ → v, (x′
n−xn)

‖qn−pn‖ → w, xn, x′
n → x0, yn → y0.

Now let n → ∞, we have 0 �= v = (
∫ 1

0
Dxf0(x0, y0)ds)w. In other words,

0 �= v ∈ TC(p0, ρ0(γi)) for all i = 1, . . . , s, contrary to Lemma 2.4. �

Now we give the definition of “plaque expansiveness” and other related
concepts following [HPS]. We say that P is a C1-plaque in an n1-dimensional
immersed submanifold X ⊂ M if P is the image of a C1 embedding τ
from a unit ball Bn1 ⊂ R

n1 to X. We say that a family of such pairs
P = {(Pα, τα)}α∈A plaquates an n1-dimensional C1-lamination C if Pα is
a plaque in a leaf Cα of C for each α, M = ∪ατα(Int(Bn1)) and {τα}α∈A

is precompact in Emb1(Bn1 , M). For each C1-lamination C of M , there
exists a family P = {(Pα, τα)}α∈A that plaquates C, and the diameters of
the plaques can be chosen to be arbitrarily small (Theorem 6.2 of [HPS]
and its proof). By a β-pseudo orbit of f : M → M we mean a bi-infinite
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sequence {pi} such that d(f(pn), pn+1) ≤ β for all n ∈ Z. If f : M → M
preserves C, then we say that a pseudo orbit {pn} respects P if f(pn), pn+1

lie in a common plaque of P. We say that f is plaque expansive if there
exists a β > 0 with the following property: there exists a family P of
plaques, such that if {pn}, {qn} are β-pseudo orbits which respect P and
if d(pn, qn) ≤ β for all n ∈ Z then for each n, pn and qn lie in a common
plaque.

The definition of “plaque expansiveness” is independent of d and P with
small plaques (Remark 1, p.116 of [HPS]). From now on, we fix β as above,
choose a plaquation P, such that for each plaque P ∈ P and each i ∈
{1, . . . , s}, there exists pi such that P ⊂ C(pi, δ0/2, ρ0(γi)).

Lemma 2.7. Let ε1 be as in Lemma 2.4, δ be as in Lemma 2.6, β be as
above. There exits a β0 with the following properties.

Let i0 ∈ {1, . . . , s} and p0 be a periodic point of ρ0(γi0) with orbit {p(0) =
p0, p

(1), . . . , p(r−1)} with ρ0(γi0)(p
(i)) = p(i+1) mod (r). Assume that ρt is

an ε1-deformation and p
(i)
t is a continuous path of periodic points for ρt(γi0)

such that p
(i)
0 = p(i) and ρt(γi0)p

(i)
t = p

(i+1)
t mod (r) (i = 0, . . . , r − 1). If

d(p(i)
0 , p

(i)
t ) ≤ β0 for all i = 0, . . . , r−1, then p

(i)
t ∈ h

(i0)
t C(p(i)

0 , δ0/2, ρ0(γi0))
for i = 0, . . . , r − 1. Therefore in this case, we have h

(i0)
t C(p(i)

0 , ρ0(γi0)) ⊂
C(p(i)

t , ρt(γi0)).

Proof. This follows from the construction of the leaf-conjugacy in [HPS]
(see Theorem 6.8 and the comment immediately before Theorem 7.1 of
[HPS]). For instance, the ρt(γi0)-orbit of pt = p

(0)
t is β-shadowed by the

ρ0(γi0)-orbit of p0, so the leaf conjugacy is forced to carry a local leaf of
C(ρ0(γi0)) containing p0 to a local leaf of C(ρt(γi0)) containing pt provided
that p

(0)
t is in the image of exp: (ηi0)p′(β) → M for some p′ (p′ and p0

in the same local leaf), where (ηi0)p′(β) is the β-ball of (ηi0)p′ centered at
0. �
Lemma 2.8. Let δ0 be as in Lemma 2.6, β0 be as in Lemma 2.7. For
any a > 0, there exists ε3 > 0 (ε3 < ε2, ε2 as in Lemma 2.6) such that if
ρt is an ε3-deformation and h

(i)
t C(x, δ0/2, ρ0(γi)) ⊂ C(p, δ0, ρt(γi)) for all

i = 1, . . . , s, then d(x, p) < a. In particular, we may choose ε3 to be such
that d(x, p) < δ0/8, β0/2.

Proof. Otherwise, there exist a0 > 0, 1/n-deformation ρn
t , tn ∈ [0, 1], and

pn, xn ∈ M , such that h
(i)
tn
C(xn, δ0/2, ρ0(γi)) ⊂ C(pn, δ0, ρ

n
tn

(γi)) for all
i = 1, . . . , s, and d(pn, xn) ≥ a0. Without loss of generality, we assume that
pn → p and xn → x. Since ρn

t → ρ0 and h
(i)
tn

→ IdM when n → ∞, we have
C(pn, δ0, ρ

n
tn

(γi)) → C(p, δ0, ρ0(γi)) and C(x, δ0/2, ρ0(γi)) ⊂ C(p, δ0, ρ0(γi))
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for all i = 1, . . . , s. Since p �= x, we have that the set ∩iC(p, δ0, ρ0(γi)) has
more than 2 points, contrary to Lemma 2.6. The last statement in the
lemma is clear. �

Lemma 2.9. For any a > 0, there exists ε4 > 0 (ε4 < ε3, ε3 as in
Lemma 2.7), such that if ρt is an ε4-deformation and pt, t ∈ [0, c] is a
continuous path of periodic points for ρt, then d(pt, p0) < a. In particular,
we may choose ε4 such that d(pt, p0) < β0 (β0 as in Lemma 2.7).

Proof. To avoid unnecessary complication, we assume that p0 is a fixed
point. We take ε4 to be less than ε3 and also be small enough that
d(h(i)

t (x), x) < δ0/8 for all i = 1, . . . , s, t ∈ [0, 1] and x ∈ M . By
Lemma 2.7, it is easy to see that there exists 0 < t0 ≤ 1 such that for
all t ∈ [0, t0], h

(i)
t C(p0, δ0/2, ρ0(γi)) ⊂ C(pt, δ0, ρt(γi)). Let T = sup{ t0 :

h
(i)
t C(p0, δ0/2, ρ0(γi)) ⊂ C(pt, δ0, ρt(γi)), t ∈ [0, t0], i = 1, . . . , s }. By Lem-

ma 2.8, d(p0, pt) < β0/2, δ0/8 for all t ∈ [0, T ), and hence d(p0, pT ) ≤
β0/2, δ0/8. By Lemma 2.7, pT ∈ h

(i)
T C(p0, δ0/2, ρ0(γi)) for i = 1, . . . , s.

Observe that

d(h(i)
T (x), pT ) ≤ d(h(i)

T (x), x) + d(x, p0) + d(p0, pT )

≤ d(h(i)
T (x), x) + di,0(x, p0) + d(p0, pT )

≤ δ0/8 + δ0/2 + δ0/8 = 3δ0/4 < δ0,

so h
(i)
T C(p0, δ0/2, ρ0(γi)) is in the interior of C(pT , δ0, ρT (γi)). We claim

that T = c. Otherwise, there exists b > 0 such that d(pt, p0) < β0 (since
d(pT , p0) ≤ β0/2) for t ∈ [0, T + b]. Hence pt ∈ h

(i)
t C(p0, δ0/2, ρ0(γi)) for

t ∈ [0, T + b] and i = 1, . . . , s by Lemma 2.7. Notice that d(pt, p0) < δ0/8
by Lemma 2.8, we obtain that d(h(i)

t (x), pt) ≤ d(h(i)
t (x), x) + d(x, p0) +

d(p0, pt) ≤ d(h(i)
t (x), x) + di,0(x, p0) + d(p0, pt) ≤ δ0/8 + δ0/2 + δ0/8 =

3δ0/4 < δ0 for all t ∈ [0, T + b], so h
(i)
t C(p0, δ0/2, ρ0(γi)) is in the interior

of C(pt, δ0, ρt(γi)) for all t ∈ [0, T + b]. Contrary to the maximality of T .
Hence d(pt, p0) ≤ a, β0/2 by Lemma 2.8. Last statement is obvious. �

We remark that this lemma has the following corollary. That is, when
ε → 0, any continuous path pt of any ε-deformation ρt shrinks to a point
p0.

Lemma 2.10. There exists ε5 > 0 (ε5 < ε4, ε4 as in Lemma 2.9), such that
if ρt is an ε5-deformation and pt, t ∈ [0, c] is a continuous path of periodic
points for ρt, then pt = ∩ih

(i)
t C(p0, δ0/2, ρ0(γi)) (δ0 as in Lemma 2.6).
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Therefore, such continuous path of periodic points for ρt starting from p0

is unique.

Proof. It suffices to show that there exists ε5, such that for any ε5-defor-
mation ρt and a continuous path of periodic points pt for ρt (t ∈ [0, c]),
h

(i)
t C(p0, δ0/2, ρ0(γi)) ⊂ C(pt, δ0, ρt(γi)) and pt ∈ h

(i)
t C(p0, δ0/2, ρ0(γi)) for

all i = 1, . . . , s.

The fact that pt ∈ h
(i)
t C(p0, δ0/2, ρ0(γi)) follows from Lemmas 2.7, 2.9.

To show that there exists ε5 such that

h
(i)
t C(p0, δ0/2, ρ0(γi)) ⊂ C(pt, δ0, ρt(γi)),

we assume otherwise. Then there exist a 1
n -deformation ρn

t , in ∈ {1, . . . , s},
a continuous path of periodic points pn

t for ρn
t (t ∈ [0, cn]), a sequence

tn ∈ [0, cn], and qn ∈ C(pn
0 , δ0/2, ρ0(γin

)), such that

h
(i)
tn

(qn) /∈ C(pn
tn

, δ0, ρ
n
tn

(γin)).

Without loss of generality, we assume that in = 1, pn
tn

→ p, pn
0 → p′, qn →

q0. Lemma 2.9 asserts that p = p′. Then we obtain after taking limit q0 /∈
C(p, δ0, ρ0(γ1)). At the same time we also have qn ∈ C(pn

0 , δ0/2, ρ0(γ1)). Af-
ter taking the limit we obtain q0 ∈ C(p′, δ0/2, ρ0(γ1)) = C(p, δ0/2, ρ0(γ1)),
a contradiction. �

In the next lemma, we prove that there exists a sequence of normal
subgroups Γj ⊂ Γ of finite index, such that ρ0(Γj) has finitely many fixed
points, Γj ⊂ Γj−1, and each periodic point of Γ is a fixed point for Γj0 for
some j0 (and hence for all j ≥ j0).

Lemma 2.11. Let Pj (1 ≤ j ∈ Z) be the set of periodic points with period
j, i.e., #(ρ0(Γ)(p)) = j iff p ∈ Pj. Let Λj be the union of P1, . . . , Pj. Let
Γj = { γ ∈ Γ : ρ0(γ)x = x for all x ∈ Λj }. Then Γj is a normal subgroup
of Γ of finite index (j = 1, 2, . . . ). Each periodic point of Γ is a fixed point
for Γj0 for some j0 (and hence for all j ≥ j0).

Proof. We first show that Pj is finite for all j = 1, 2, . . . . Otherwise, there
exists a sequence qn ∈ Pj such that qj �= qk for j �= k and qn → q0 for
a q0 ∈ M. Since for any p ∈ Pj , and any γ ∈ Γ, the orbit of p under
γ Orb(p, γ) = { ρ0(γl)p : l ∈ Z } is a finite set with h ≤ j elements,
there exists r ≤ h such that ρ0(γr)p = p. Therefore, ρ0(γj!)p = p for
any p ∈ Pj , γ ∈ Γ. Let fi denote ρ0(γ

j!
i ); we have fi(pn) = pn for all

n ∈ Z. Let n → ∞; we obtain fi(p0) = p0. Without loss of generality, we
assume that an open set containing q0 is an open set in R

n and q0 = 0.
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Observe that fi(x) = Ax + o(‖x‖), we have qn = Aqn + o(‖qn‖), and hence
qn

‖qn‖ = A qn

‖qn‖ + o(1). Let a subsequence of qn

‖qn‖ converge to v. Then it is
easy to see that v is in the center distribution TC(ρo(γi)), contrary to the
condition (2) of Theorem 1.1.

Now we established that the set Λj is a finite set, and clearly it is ρ0(Γ)-
invariant. Notice that the action of Γ on Λj defines a representation Γ →
Perm(Λj) into the permutation group on the set Λj ; we denote the kernel
of it by Γj . So Γj is normal and has finite index less than |Perm(Λj)| =
(Card(Λj))!.

It is clear that every periodic point is in Λj0 for some integer j0 > 0.
Therefore it is a fixed point for Γj0 (and hence for all j ≥ j0). �

3. Construction of the conjugacy

To construct the conjugacy, we first prove the persistence of the periodic
points. Then we construct a conjugacy between periodic points. Finally we
will show that it extends to a homeomorphism and thus gives a topological
conjugacy. We need the results by D. Stowe (Theorem A, [S]) and by G.
A. Margulis (a special case of Theorem 3′(iii), Introduction [Mar]).

Proposition 3.1 (Stowe). Let Γ0 be a finitely-generated discrete group
acting C1 on a smooth manifolds M and let p be a fixed point of the action.
Assume that the group cohomology H1(Γ0, TpM) of Γ0 with coefficients in
the isotropy linear representation on TpM vanishes. Then p is stable under
perturbations of the action.

Proposition 3.2 (Margulis). Let Γ0 ⊂ G be an irreducible lattice in
a connected semisimple Lie group with finite center, and no non-trivial
compact factor groups. Then H1(Γ0, π) vanishes for every representation
π of the group Γ0 on a finitely-dimensional real vector space.

Since for each j ≥ 1, Γj as in Lemma 2.11 is a subgroup of finite index
of irreducible lattice Γ, Γj is itself a irreducible lattice in G. The above
results assert that for any fixed point p0 of ρ0(Γj), it persists under small
perturbation ρ. I.e., for a small perturbation ρ, there exists a fixed point p
in a neighborhood of p0 and p depends continuously on the perturbation.
For a deformation, we actually have more. From now on, we assume that
ρt is an ε5-deformation (ε5 as in Lemma 2.10).

Lemma 3.3. Fix a positive integer j. Let p be a fixed point for ρ0(Γj).
Then there exists a continuous path pt of fixed points for ρt(Γj), t ∈ [0, 1],
with p0 = p.

Proof. Using the remark above we conclude that there exists t0 > 0 such
that ρt has a continuous path of fixed points pt, t ∈ [0, t0), p0 = p.
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Let T = sup{ t1 : there exists a continuous path pt with t ∈ [0, t1), p0 =
p }. Then pt = ∩ih

(i)
t C(p0, δ0/2, ρ0(γi)) by Lemma 2.10. It is clear that

limt→T pt exists and is a fixed point for ρT (Γi) (denoted by pT ).
We claim that T = 1. Otherwise, by the remark above for the fixed point

pT for ρT (Γj), we may extend further the continuous path of fixed points
pt and violate the maximality of T . �

Now we construct a conjugacy between the set Λ0 of periodic points of
ρ0(Γ) and the set Λt of periodic points of ρt(Γ). For any p ∈ Λ0, p is a
fixed point for some Γj by Lemma 2.11. We define a map ht : Λ0 → Λt by
p �→ pt. We need to verify that this map is well defined, that it can be
extended to a continuous map ht : M → M , one-to-one, onto and that it is
actually a conjugacy.

Lemma 3.4. The map p �→ pt is well-defined.

Proof. If Γj ⊂ Γk and there exist two continuous paths pt, p′t such that
pt is a continuous path of fixed points pt for ρt(Γj) and p′t is a continuous
path of fixed points for ρt(Γk) with p0 = p′0 = p, by the uniqueness of
such continuous paths (Lemma 2.10), pt = p′t. Therefore the map is well-
defined. �
Lemma 3.5. The map p �→ pt can be extended to a one-to-one continuous
map ht : M → M .

Proof. Let x ∈ M and pn be a sequence of periodic points in M converg-
ing to x. Then C(pn, δ0/2, ρ0(γi)) → C(x, δ0/2, ρ0(γi)). Therefore for any
limit point z of the sequence {(pn)t}∞1 = {∩ih

(i)
t C(pn, δ0/2, ρ0(γi))}∞1 , z ∈

h
(i)
t C(x, δ0/2, ρ0(γi)) and hence z ∈ ∩ih

(i)
t C(x, δ0/2, ρ0(γi)). Therefore the

set of limit point(s) of the sequence {∩ih
(i)
t C(pn, δ0/2, ρ0(γi))} is non-empty

and contained in ∩ih
(i)
t C(x, δ0/2, ρ0(γi)). Since h

(i)
t C(pn, δ0/2, ρ0(γi)) ⊂

C((pn)t, δ0, ρt(γi)) (see the proof of Lemma 2.10), we have

h
(i)
t C(x, δ0/2, ρ0(γi)) ⊂ C(z, δ0, ρt(γi)).

Therefore, ∩ih
(i)
t C(x, δ0/2, ρ0(γi)) is a set of one point z (by Lemma 2.6).

We define ht(x) = ∩ih
(i)
t C(x, δ0/2, ρ0(γi)). Our two assertions (one-to-one

and continuous) are then clear. �
Lemma 3.6. ht is onto, and hence a homeomorphism.

Proof. We will apply the degree theory for continuous maps. Without loss
of generality we assume that M is an oriented manifold. Observe that for
fixed t, ht is homotopic to h0 = Id, therefore deg(ht) = deg(Id) = 1. On
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the other hand, if ht is not onto, there exists an open set that is contained
in the complement of the image of ht (since the image of ht is compact).
So, we may C0-approximate ht by a smooth map h′

t such that h′
t is not

onto either and deg(ht) = deg(h′
t). Choose a point x that is not in the

image of h′
t. We know that the point x is a regular point of h′

t and hence
1 = deg(ht) = deg(h′

t) = degx(h′
t) =

∑
y∈h′

t
−1x εy = 0 where εy = ±1

according to whether Dyh′
t preserves or reverses orientation. (See Ch. 8 of

[HK] for the theory involved.) This contradiction implies that the map ht

is onto. �

Lemma 3.7. The continuous map ht is a conjugacy between ρ0(γ) and
ρt(γ).

Proof. For any periodic point p ∈ M there exists an integer j such that
ρ0(Γj)p = p (Lemma 2.11). For any γ ∈ Γ, the continuous path ρt(γ)ht(p)
is a path of fixed points for ρt(Γj) starting from ρ0(γ)p. (Indeed, for
any γ′ ∈ Γj , γ−1γ′γ ∈ Γj and so ρt(γ−1γ′γ)ht(p) = ht(p) because ht(p)
is a path of fixed points for ρt(Γj), or equivalently, ρt(γ′)ρt(γ)ht(p) =
ρt(γ)ht(p).) But ρ0(γ)p is a fixed point for ρ0(Γj), hence that htρ0(γ)(p)
is a continuous path of the fixed points for ρt(Γj). By the uniqueness of
such path (Lemma 2.10), we obtain ρt(γ)ht(p) = htρ0(γ)(p).

Since ht is the conjugacy in a dense set, ht is also the conjugacy between
ρ0(γ) and ρt(γ). �

Theorem 1.1 is proved.

4. Some remarks

We remark that the only place we need Γ to be a higher rank lattice
is in Proposition 3.2. Hence we may replace “higher rank lattice” in The-
orem 1.1 by “group with vanishing cohomology in any finite dimensional
representation on R

n,” and Theorem 1.1 is still true.
We feel that any higher rank linear action on torus (or nilmanifold) is

topologically deformation rigid. We will investigate this problem in the
future.

The regularity of the conjugacy is another interesting problem worth
investigating. Hurder [H1] obtained the smoothness of the conjugacy for a
special class of irreducible higher rank lattice Anosov actions (Cartan ac-
tions), Katok and Lewis [KL1] proved that for a special class of Z

n Anosov
actions, any topological conjugacy is actually smooth. Their arguments do
not apply to our situation (at least not directly).

The proof of local rigidity using the argument of the persistence of the
periodic points seems to be impossible because of the difficulty in the proof
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of the persistence of periodic points as observed by other authors [KL1].
Some progress has been made for the local rigidity and even global rigidity
for Anosov actions (see [KL1,2], [KLZ], [Q1,2]).

In addition to the works we mentioned, we also want to point out that A.
Katok and R. Spatzier [KS] proved the rigidity of a class of Anosov abelian
group actions; R. Feres [F] proved the rigidity of lattice group actions that
have certain hyperbolic behavior and preserve some geometric structures.
All evidence indicates the rigidity of lattice group actions and other large
group actions with hyperbolic behavior.
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