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THE CENTER OF A QUANTUM AFFINE

ALGEBRA AT THE CRITICAL LEVEL

Jintai Ding and Pavel Etingof

Dedicated to the memory of Ansgar Schnizer, our
friend and colleague who died tragically in Japan.

A bstract . We construct central elements in a completion of the quantum
affine algebra Uq(ĝ) at the critical level c = −g from the universal R-
matrix (g being the dual Coxeter number of the simple Lie algebra g),
using the method of Reshetikhin and Semenov-Tian-Shansky [RS]. This
construction defines an action of the Grothendieck algebra of the category
of finite-dimensional representations of Uq(ĝ) on any Uq(ĝ)-module from
category O with c = −g. We explain the connection between the central
elements from [RS] and transfer matrices in statistical mechanics. In the
quasiclassical approximation this connection was explained in [FFR], and
it was mentioned that one could generalize it to the quantum case to get
Bethe vectors for transfer matrices. Using this connection, we prove that
the central elements from [RS] (for all finite dimensional representations)
applied to the highest weight vector of a generic Verma module at the
critical level generate the whole space of singular vectors in this module.
We also compute the first term of the quasiclassical expansion of the central
elements near q = 1, and show that it always gives the Sugawara current
with a certain coefficient.

1. Central elements and singular vectors

Let g be a simple Lie algebra over C of rank r. Let h be the Cartan
subalgebra in g. Let α1, . . . , αr be the simple roots of g.

Let Uq(ĝ) be the quantum affine algebra corresponding to g, and let
Uq(g̃) be its extension by the scaling element d (see [Dr1]; however, our
notations will be as in [FR]). We assume that q is a formal parameter but
sometimes we will use the specialization q = 1. Let Uq(ñ±) be subalgebras
of Uq(g̃) generated by the positive and negative root elements, respectively.
Let {ai, i ≥ 0} be a homogeneous basis of Uq(ñ+) (a0 = 1), and let {ai}
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be the dual basis of Uq(ñ−) (with respect to the Drinfeld pairing, [Dr1]).
Then the universal R-matrix of Uq(g̃) is (see [Dr1]):

(1.1) R̃ = qc⊗d+d⊗cR = qc⊗d+d⊗c+
∑ r

j=1 Xj⊗Xj (1 +
∑
i>0

ai ⊗ ai),

where c is the central element, and Xj is an orthonormal basis of the
Cartan subalgebra in g with respect to the invariant form 〈 , 〉 normalized
by 〈θ, θ〉 = 2 (θ is the maximal root of g).

Let V be a finite-dimensional representation of Uq(ĝ). Let πV : Uq(ĝ) →
End(V ) be the corresponding homomorphism. For z ∈ C

∗, let V (z) be the
representation of Uq(ĝ) defined by πV (z)(a) = πV (zdaz−d).

Consider the following quantum currents (cf. [FRT],[RS],[FR],[DF]):

(1.2) L+
V (z) = (Id⊗πV (z))(R′), L−

V (z) = (Id⊗πV (z))(R−1),

where R′ is obtained from R by permutation of factors. They are series in
z with coefficients in some completion of Uq(ĝ) ⊗ End(V ).

Now, following [RS], introduce the L-matrix

(1.3) LV (z) = (q−cd ⊗ 1)L+
V (z)(qcd ⊗ 1)L−

V (z)−1,

and consider the current

(1.4) lV (z) = Tr |V
(
(1 ⊗ q2ρ)LV (z)

)
,

where ρ ∈ h∗ is the half-sum of the positive roots of g. This is a formal series
in z infinite in both directions, and its components belong to a completion
of the quantum affine algebra. However:

Lemma 1.1. Let U be any highest weight module over Uq(ĝ). Then for
any u ∈ U , lV (z)u ∈ U((z)) (i.e. it is a series in z finite in the negative
direction and its coefficients belong to U).

This lemma follows from the definition of the universal R-matrix.
It turns out that at the critical level lV (z) becomes central. This con-

struction of central elements is due to Reshetikhin and Semenov-Tian-
Shansky [RS], and is analogous to the construction of the center for Uq(g)
due to Drinfeld [Dr2] and Reshetikhin [R].

Theorem 1.2. ([RS]) Let U be any highest weight module over Uq(ĝ) with
central charge c = −g, where g is the dual Coxeter number of g. Then
lV (z)a = alV (z) on U for any a ∈ Uq(ĝ).

Proof. It follows from the definition of L± that PL−
V (z)−1 is an inter-

twining operator between completions of U ⊗ V (z) and V (q−kz) ⊗ U , and
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L+
V (q−kz)P is an intertwining operator between completions of V (q−kz)⊗U

and U⊗V (q−2kz), where k is the central charge of U , and P is permutation
of factors. Thus, LV (z) is an intertwiner between completions of U ⊗ V (z)
and U ⊗ V (q−2kz). In particular, if k = −g, crossing symmetry (cf.[FR])
implies that (1 ⊗ q2ρ)LV (z) is a homomorphism between completions of
U ⊗ V (z) and U ⊗ V (z)∗∗. Therefore, the theorem follows from the fact
that whenever Φ : U ⊗ X → U ⊗ X∗∗ is an intertwiner, Tr |X(Φ) : U → U
is also an intertwiner. �

Let l0V be the central element of Uq(g) defined by l0V = Tr |V ((Id⊗πV )(1⊗
q2ρ)(R21R)), where R is the universal R-matrix for Uq(g) ([Dr2],[R]). If U
is a Uq(g)-module of highest weight λ then l0V is a scalar in U : l0V |U =
χV (q2(λ+ρ)), where χV is the character of V as a Uq(g)-module.

Proposition 1.3. (Properties of lV ) Let U be as in Theorem 1.2. Then
in U :

(i) lV (z) is regular at z = 0 and lV (0) = l0V ;
(ii) for any exact sequence 0 → V1 → V2 → V3 → 0 of finite-dimension-

al representations of Uq(ĝ) one has lV2(z) = lV1(z) + lV3(z);
(iii)

(1.5) lV (z1)(z2) = lV (z1z2);

(iv)

(1.6) lV1(z1)lV2(z2) = lV1(z1/z2)⊗V2(z2);

Proof. (i) Let u0 ∈ U be the highest weight vector. Let lV [n] denote the
coefficient to zn in lV (z). Then lV (z)u0 = l0V u0 +

∑
n>0 znlV [n]u0. Let

u ∈ U . Pick a ∈ Uq(ñ−) such that u = au0. Then by Theorem 1.2
lV (z)u = l0V u +

∑
n>0 znlV [n]u.

(ii) The matrix (1 ⊗ q2ρ)LV (z) is block-triangular, and its trace is the
sum of the traces of its diagonal blocks.

(iii) Straightforward.
(iv) Using Theorem 1.2 and property (iii), we get

lV1(z1)lV2(z2)
(1.7)

= Tr |V2((1 ⊗ q2ρ)L+
V2

(qgz)lV1(z1/z2)(z2)L−
V2

(z)−1)

= Tr |V1(z1/z2) Tr |V2

(
(1 ⊗ q2ρ ⊗ q2ρ)L+

V2
(qgz)L+

V1(z1/z2)
(qgz)

· L−
V1(z1/z2)

(z)−1L−
V2

(z)−1
)

= Tr |V1(z1/z2)⊗V2((1 ⊗ q2ρ)L+
V1(z1/z2)⊗V2

(qgz)L−
V1(z1/z2)⊗V2

(z)−1)

= lV1(z1/z2)⊗V2(z2). �
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Remark. If U is a module from category O but not necessarily highest
weight then property (i) no longer holds, and all Fourier components of
lV (z) could be nontrivial operators.

Properties (ii)–(iv) imply:

Corollary 1.4. The map V → lV (1) defines an action of the Grothendieck
algebra Gr of finite dimensional representations of the quantum affine alge-
bra Uq(ĝ) on any completed highest weight module U over this algebra with
c = −g.

Remark. By definition, finite-dimensional representations with the same
components of the Jordan-Hölder series correspond to the same element in
the Grothendieck algebra.

Let now U be as in Theorem 2, and let u0 be the highest weight vector
in U . Let lV [n] denote the coefficient to zn in lV (z). Then for every V and
n, lV [n]u0 is a singular vector in U . A natural question is: do such vectors
span the space of singular vectors in U if the highest weight is generic? We
will prove that answer is positive.

More precisely, let ω1, . . . , ωr be the fundamental weights of g. Let
V1, . . . , Vr be deformations of the fundamental representations, i.e. irre-
ducible finite-dimensional representations of Uq(ĝ) such that the restrictions
of Vj to Uq(g) are Vj = Lωj ⊕

∑
ω<ωj

cωLω, where Lω is the irreducible
Uq(g) module with highest weight ω (cf. [Dr3],[Dr4],[CP]). These represen-
tations are the simplest in the case g = slr+1: in this case Vi = Λi

qC
r+1 are

just the quantum exterior powers pulled back from Uq(g) to Uq(ĝ) by the
evaluation homomorphism p : Uq(ĝ) → Uq(g) defined in [J].

Let yjn = lVj [n]. Let A be the free polynomial algebra in yjn, j =
1, . . . , r, n > 0. Let U0 be the space of singular vectors in U . Then U0 is
an A-module, via (y, u) → yu.

Let λ be generic. This means that we regard S = q2(λ+ρ) as an indeter-
minate taking values in the Cartan subgroup of the Lie group correspond-
ing to g. Let U be the Verma module with highest weight λ and central
charge −g.

Theorem 1.5. (Main result) For q �= 1 the space U0 is a free A-module
of rank 1 generated by u0.

The proof of this theorem will be given in Section 3.

Remark. This result is a quantum analogue of the theorem of Feigin and
Frenkel [FF] who showed that certain central elements in the completion of
U(ĝ)/(c + g) applied to a highest weight vector in a generic Verma module
generate the space of all singular vectors in this module.

Corollary 1.6. The space U0 is a cyclic Gr-module generated by u0.
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2. Central elements, Bethe vectors, and transfer matrices

In Section 1 we defined a representation of the Grothendieck algebra Gr
of finite-dimensional Uq(ĝ)-modules on a critical level module. Representa-
tions of this algebra also occur in statistical mechanics as transfer matrices.
In this section we will connect these two representations.

Let W be a Uq(ĝ)-module with central charge 0. Fix β ∈ h∗. Define
transfer matrices to be the following operators in W with coefficients in
the ring of formal power series in z:

(2.1) TV (z) = Tr |V (RV W (z)(qβ ⊗ 1)),

where RV W (z) is the projection of the universal R-matrix R to V (z)⊗W ,
and V is a finite-dimensional representation of Uq(ĝ). Obviously, transfer
matrices preserve weight, i.e. commute with the Cartan subalgebra in Uq(g).
So we can restrict their action to a weight subspace in W , say W [µ], µ ∈ h∗.

It follows from the definition of the R-matrix that the transfer matrices
are pairwise commutative and satisfy properties (ii)–(iv) of Proposition 1.3.
Hence, similarly to lV (z), they define a representation of Gr. Therefore, it
is natural to ask if there is any relation between lV and TV . It turns out
there is a close connection between them. To explain this connection, we
need to introduce intertwiners.

Let λ = (β + µ − 2ρ)/2, ν = λ − µ. Let Mλ,−g denote the Verma
module over Uq(ĝ) with highest weight λ and central charge −g. Consider
intertwining operators

(2.2) Φ : Mλ,−g → M c
ν,−g ⊗ W,

where M c denotes the (complete) dual module to M twisted by the Cartan
involution (the contragredient module). Such operators were defined and
studied in [FR]. The following fact is known about them:

Lemma 2.1. The space of intertwiners (2.2) is isomorphic to the weight
space W [λ − ν]; the isomorphism is given by Φ → 〈Φ〉, where 〈Φ〉 =
〈vν ,Φvλ〉 ∈ W (here 〈 , 〉 is the Shapovalov form, and vλ, vν are the vacuum
vectors of Mλ,−g, M c

ν,−g).

Lemma 2.1 allows us to connect the elements lV and TV .

Proposition 2.2.

(2.3) 〈ΦlV (z)〉 = TV (z) 〈Φ〉 .

Proof. For the proof we need the commutation relation

(2.4) ΦL+
V (zq−g) = RV W (z)L+

V (zq−g)Φ,
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which is a special case of (4.47) in [FR]. Applying this relation, we get

ΦLV (z) = RV W (z)L+
V (zq−g)ΦL−

V (z)−1,

or

〈ΦLV (z)〉 = RV W (z)
〈
L+

V (zq−g)ΦL−
V (z)−1

〉
= RV W (z)

〈
q

∑
Xi⊗XiΦq

∑
Xi⊗Xi

〉
= RV W (z)(qλ+ν ⊗ 1) 〈Φ〉
= RV W (z)(qβ−2ρ ⊗ 1) 〈Φ〉 .(2.5)

Now, multiplying the V -components of both sides of (2.5) by q2ρ and taking
the trace, and using the definitions of lV and TV , we get (2.3). �

In statistical mechanics one is interested in finding Bethe vectors—
common eigenvectors of transfer matrices. Let us characterize Bethe vec-
tors in the language of intertwiners.

Let β be generic. Then any singular vector in Mλ,−g is of weight λ with
respect to h, so the submodule generated by this vector is isomorphic to
the module Mλ,−g. This makes legitimate the following definition:

Definition. We say that an intertwiner Φ is a Bethe operator if its restric-
tion to every Verma submodule in Mλ,−g is proportional to Φ.

Then we have an obvious proposition.

Proposition 2.3. If Φ is a Bethe operator then 〈Φ〉 is a Bethe vector.

3. Proof of Theorem 1.5

We will work with the Drinfeld (loop) realization of quantum affine al-
gebras. In this realization the algebra Uq(ĝ) is described as an algebra
generated by elements xij , ξ±ij , and c (central element), where 1 ≤ i ≤ r,
and j ∈ Z, satisfying the relations listed in [Dr4],[KhT]. These elements are
quantum analogues of hi ⊗ tj , ei ⊗ tj , fi ⊗ tj , c, in the affine Lie algebra ĝ.
We need to use only the quotient of Uq(ĝ) by the relation c = 0, which we
denote by Uq(Lg) (quantum loop algebra). In this algebra, we define three
subalgebras: U+, H, U−, generated by ξ+

ij , xij , ξ−ij , respectively. About
these algebras we only need to know that H is abelian, and [H, U+] ⊂ U+,
[H, U−] ⊂ U−.

By a Drinfeld weight we mean an infinite set of numbers D = {dij},
i = 1, . . . , r, j ∈ Z. We will only use weights with dij = 0, j < 0.



THE CENTER OF A QUANTUM AFFINE ALGEBRA 475

To every Drinfeld weight D one can associate a one-dimensional module
over HU+ in which xij acts by dij and U+ acts trivially. We will denote
this module also by D. Set W (D) = IndUq(Lg)

HU+ D. The module W has
the following property: its weights with respect to the Cartan subalgebra
h are D0 = (d10, . . . , dr0) and lower, and the D0-weight subspace is one-
dimensional. Let w0 be the generator of this subspace. Then for any
λ, ν ∈ h∗ such that λ = ν + D0 there exists a unique intertwining operator
Φ of the form (2.2) with 〈Φ〉 = w0, where W = W (D).

Since the transfer matrices defined in Section 3 preserve weight, we have
TV (z)w0 = tV (z, D)w0, where tV (z, D) is some series with scalar coeffi-
cients.

Lemma 3.1. Let φij, i = 1, . . . , r, j ≥ 1, be arbitrary numbers. Let
φi(z) =

∑∞
n=1 φinzn. Then the Drinfeld highest weight D can be chosen in

such a way that
(i) β + D0 = 2(λ + ρ),

(ii) tVi
(z, D) = tVi

(0, D) + φi(z), i = 1, . . . , r, and
(iii) the components of D are rational functions in the variables q and

S = q2(λ+ρ).

Proof. For the proof we need an explicit realization of the universal R-
matrix (1.1). Such a realization was provided by Khoroshkin and Tolstoy
[KhT]:

Proposition. ([KhT], Eq. (42)) The universal R-matrix can be repre-
sented in the form

(3.1) R = R+R0R−q
∑ r

j=1 Xj⊗Xj ,

where R± ∈ U± ⊗ U∓ are of total degree 0, and

(3.2) R0 = exp
( ∑

n>0

r∑
i,j=1

cn
ijxi,n ⊗ xj,−n

)
,

and for every n the matrix (cn
ij) is inverse to the matrix (An

ij), where

(3.3) An
ij =

qn〈αi,αj〉 − q−n〈αi,αj〉

n(q〈αi,αi〉 − q−〈αi,αi〉)(q〈αj ,αj〉 − q−〈αj ,αj〉)
.

Fix β ∈ h∗. Set D0 = 2(λ+ ρ)−β. Using definition (2.1) of the transfer
matrix and the above proposition, we compute tV (z, D):

tV (z, D) = Tr |V (z)(R0q
∑ r

j=1 Xj⊗Xj (qβ ⊗ 1))|Cw0

= Tr |V (z)

(
exp

( ∑
n>0

r∑
i,j=1

cn
ijdj,−nxin

)
S

)
.(3.4)



476 JINTAI DING AND PAVEL ETINGOF

Note that the terms R+ and R− drop out: R− disappears since we are com-
puting its action on the Drinfeld highest weight vector, and R+ disappears
because of taking the trace, since U− acts nilpotently on V .

Let bin =
∑r

j=1 cn
ijdj,−n. Since dj,−n can be chosen arbitrarily, and the

matrices cn
ij are invertible by the definition, the numbers bin can also be

arbitrary. In terms of them, equation (3.4) takes the form

(3.5) tV (z, D) = Tr |V (z)

(
exp

( ∑
n>0

r∑
i=1

binxin

)
S

)
.

We must show that tVi
(z, D) can be made an arbitrary Taylor series.

By a deformation argument, it is enough to show this when q = 1. Thus
we must consider the quasiclassical limit of Vi. This limit has the form
Vi|q=1 = Lωi(1)⊕

∑
j Mij , where Mij are irreducible modules over ĝ: Mij =

⊗mNijm(tm), where Nijm are irreducible g-modules, and Nijm(tm) are
the corresponding evaluation modules with some parameters tm. Also,
limq→1 xin = hi ⊗ tn, hi = hαi . This information allows us to compute the
right hand side of (3.5).

Let χi denote the characters of Lωi . Let ψi(z) =
∑

n>0 binzn. Note that
ψi can be an arbitrary Taylor series with zero free term if the weight D is
suitably chosen. We have

(3.6) tVi
(z, D)|q=1 = χi(e

∑
l ψl(z)hlS) +

∑
j

∏
m

ChNijm
(e

∑
l ψl(ztm)hlS),

where ChV denotes the character of V as a g-module.

Remark. If g = slr+1 then only the first term occurs on the right hand side
of (3.6).

Now, using (3.6), we can compute the coefficients bjn recursively for any
given series tVi(z, D). At each step we will have to solve a system of linear
equations whose matrix is

(3.7) an
il = Tr |Lωi

(hlS) +
∑
j,m

tnm Tr |Nijm
(hlS) ChNijm

(S)−1 ChMij
(S),

1 ≤ i, l ≤ n.

So we must show that the determinant of this matrix is not identically zero
for any n > 0.

Using the fact that the highest weights of Nijm are lower than ωi, and
the formula Tr |V (hiS) = ∂

∂hi
TrV (S), we find that only the first term

in (3.7) contributes to the determinant, and therefore this determinant is
equal to the Jacobian of the fundamental characters, i.e. the Weyl denom-
inator: det(an

il) = ∂(χ1,...,χr)
∂(h1,...,hr) , which is not identically zero. This proves the

lemma. �
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Lemma 3.2. For any n > 0, the operators lVi [j] in U are algebraically
independent for i = 1, . . . , r, j = 1, . . . , n.

Proof. Let tV (z, D) =
∑

n≥0 tV (D)[n]zn. Then Proposition 2.2 implies
that 〈ΦlV [n]〉 = tV (D)[n] 〈Φ〉. Therefore, if there were a nontrivial polyno-
mial relation between the elements lVi [j] in U = Mλ,−g, say P ({lVi [j]}) = 0,
the same polynomial relation would have to hold for the numbers tVi(D)[j]
for any D. But this is impossible since by Lemma 3.1 these numbers can
be arbitrary. �

Now we can finish the proof of the theorem. Lemma 3.2 implies that the
action of the algebra A on the vacuum vector u0 defines an embedding of
A into U0 as a graded vector space. On the other hand, it is known that
the character of U0 at q = 1 is equal to the character of A (see e.g. [FF]).
This implies that for q �= 1 the dimension of the homogeneous subspace in
U0 of degree d is at most that for A. This means that the embedding of A
into U0 is an isomorphism, i.e. that U0 is a free module of rank 1 over A.
The theorem is proved. �

4. Quasiclassical limit

In this section we compute the first term of the quasiclassical expansion
of the central elements introduced in Section 1.

Let the number CV be defined by Tr |V (ab) = CV 〈a, b〉, a, b ∈ g (here
we abuse the notation by using the same symbol V for the quasiclassical
limit of V at q → 1 regarded as a g-module).

Theorem 4.1. In any Uq(ĝ)-module U from the category O with c = −g

(4.1) lim
q→1

lV (z) − dimV

(q − q−1)2
= CV

( ∑
j∈Z

z−jTj +
1
2
〈ρ, ρ〉

)
,

where Tj are the Sugawara elements:

(4.2) Tj =
1
2

∑
a∈B

∑
n∈Z

: a[n]a[j − n] :,

B is an orthonormal basis of g with respect to 〈 , 〉, a[n] = a ⊗ tn ∈ ĝ,
: a[n]a[m] : equals a[n]a[m] when m > n and a[m]a[n] otherwise.

Proof. It is known (cf. [FR], Eq. (4.42)) that near the point q = 1 the
quantum currents have the expansion

(4.3) L±
V (z) = 1 ⊗ 1 + (q − q−1)

∑
a∈B

J±
a (z) ⊗ πV (a) + O((q − q−1)2),
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where J±
a (z) are classical currents:

(4.4) J±
a (z) = ±

(
1
2
a0 + a∓ +

∑
n>0

a[∓n]z±n

)
,

a = a0 + a+ + a−, a0 ∈ h, a± ∈ n±.

This implies that

(4.5) (1 ⊗ q2ρ)LV (z) = 1 ⊗ 1 + (q − q−1)
( ∑

a∈B

Ja(z) ⊗ πV (a) + 1 ⊗ ρ
)

− (q − q−1)2
( ∑

a,b∈B

J+
a (z)J−

b (z) ⊗ πV (ab) + Q+
V (z) + Q−

V (z)
)

+ O((q − q−1)3),

where Ja = J+
a − J−

a , and Q±
V are quadratic terms.

Let us compute the expansion of lV (z) using (4.5). Since Tr |V (a) = 0,
a ∈ g, we have (near q = 1):

(4.6) lV (z) = dimV − (q−q−1)2
(
CV

∑
a∈B

J+
a (z)J−

a (z)+K+
V (z)+K−

V (z)
)
,

where K±
V (z) = Tr |V (Q±

V (z)) are quadratic terms lying in the Borel sub-
algebras U(b̂∓).

From formula (4.6) we see that the limit (4.1) exists and equals CV T̃ (z),
where
(4.7) T̃ (z) =

∑
a∈B

J+
a (z)J−

a (z) + K+
V (z) + K−

V (z).

Our purpose is to prove that T̃ (z) = T (z). This is the same as to show
that their Fourier components are the same: T̃ [n] = T [n].

Combining (4.2), (4.6), we see that T [n] − T̃ [n] is in U(b̂+) if n > 0, in
U(b̂−) if n < 0, and in both if n = 0. On the other hand, both T [n] and
T̃ [n] are central and of degree n, which implies that so is their difference.
These two facts immediately imply that this difference is zero for n �= 0
and a constant independent of the module U if n = 0.

To find this constant, let us assume that U is a Verma module with
highest weight λ. Then T0 = 1

2 〈λ, λ + 2ρ〉. Thus we get

lim
q→1

l0V − dimV

(q − q−1)2
=

1
2
d2 ChV (x)|x=1(λ + ρ, λ + ρ) =

1
2
CV 〈λ + ρ, λ + ρ〉

= CV

(
T0 +

〈ρ, ρ〉
2

)
. �(4.8)

So far the highest weight λ has been a formal parameter. Now we spe-
cialize λ.
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Corollary 4.2. Let g = sl2. Then Lemma 3.2 holds for arbitrary special
value of λ; Theorem 1.5 holds for any λ such that 〈λ + ρ, α∨〉 is not a
positive integer for any root α of g (positive or negative).

Proof. The statement follows by deformation argument from Theorem 4.1
and the fact that Ti are algebraically independent in any Verma mod-
ule. �

Remark. Probably, Corollary 4.2 is true for any g. However, the method
we used to prove Theorem 1.5 does not seem to be powerful enough to show
it: for example, Lemma 3.1 is false for λ = −ρ even for g = sl2.
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