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SYMMETRIC ENVELOPING ALGEBRAS,

AMENABILITY AND AFD

PROPERTIES FOR SUBFACTORS

Sorin Popa

Introduction

The problems and results that relate directly combinatorial aspects with
analytical ones appear to play a central place in the theory of subfactors
of finite Jones index.

Along these lines, a rather puzzling phenomenon that needs to be clari-
fied is the existence of hyperfinite subfactors that can be approximated by
finite dimensional commuting squares, i.e., which are AFD, but not in a
standard way, i.e. not by commuting squares that are locally isomorphic
to algebras of higher relative commutants.

Approximation by higher relative commutants (standard AFD) turns
out to be equivalent to the amenability of the inclusion N ⊂ M , a func-
tional analytical property which requires existence of hypertraces for all
(smooth) representations of N ⊂ M and which is also equivalent to M
being hyperfinite and ‖ΓN,M‖2 = [M : N ] (see 2.1 in this paper and [Po1]).
As amenability can also be characterized by merely requiring existence of
hypertraces for the standard representation of N ⊂ M (see 2.1), we may
conclude that standard AFD can be “encoded in a hypertrace”.

Also, (3.1.3 in [Po1]) shows that the AFD (not necessarily standard)
property for an inclusion implies the existence of atomic representations
with hypertraces for N ⊂M .

The purpose of this paper is to introduce a complementary approach
to finite dimensional approximation of subfactors, which was partly hinted
in ([Po3]). This approach is based on the notion of symmetric envelop-
ing algebras and symmetric Markov traces (and hypertraces) associated to
N ⊂M . Thus, we consider the universal C∗-algebra U = C∗

bin(M, eN , Mop)
generated by a “normal” copy of M , an antisymmetric copy of it Mop that
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commutes with M and a projection eN that implements both the condi-
tional expectation of M onto N and of Mop onto Nop. This algebra has a
natural irreducible representation C∗(M, eN , JMJ) as left-right multipli-
cation by M on L2(M) and eN = projL2(N). We prove that U has a unique
maximal ideal and a unique trace, called symmetric Markov trace. The
resulting type II1 factor M �

eN

Mop is called the symmetric enveloping type

II1 factor associated to N ⊂ M . If M is hyperfinite then the enveloping
type II1 factors are “thin”, i.e., they are generated linearly by a product of
two of its hyperfinite subfactors R1, R2, as (span(R1R2))−. Thin type II1
factors need not be hyperfinite.

In fact, we show that M �
eN

Mop is hyperfinite iff N ⊂ M is amenable,

so iff N ⊂ M is standard AFD (or, equivalently, if ‖ΓN,M‖2 = [M : N ]).
We use this to prove that the amenability for inclusions is a hereditary
property i.e., if Q ⊂ P is an extremal inclusion of type II1 factors which
is embeddable in an amenable N ⊂ M (without necessarily having Q and
P with finite index in N , resp. M) then Q ⊂ P is amenable. We then
introduce the notion of symmetric Markov hypertraces for representations
of U on B(H), as states on B(H) that have M, eN , Mop in their centralizer,
and prove that N ⊂ M is amenable iff there exist symmetric Markov
hypertraces on any representation of U and also iff U is simple.

Also, we show that in order for N ⊂ M to be AFD it is sufficient to
exist subfactors Q ⊂ N with Q′ ∩ N ⊂ Q′ ∩ M finite dimensional and
having inclusion matrix of square norm close to [M : N ]. If in addition
Q can be taken so that [N : Q] < ∞ then N ⊂ M follows amenable. Fi-
nally, we show that if N ⊂ M is AFD (not necessarily standard) then
C∗(M, eN , JMJ) ⊂ B(L2(M)) has symmetric Markov hypertraces and
prove the later condition equivalent to a Connes-Folner type condition. We
use this to construct examples of inclusions of hyperfinite type II1 factors
that do not have symmetric Markov hypertraces and thus are not AFD. In
fact, most of our considerations are accompanied by motivating examples.

1. Symmetric enveloping algebras

Let N ⊂M be a subfactor of finite Jones index, [M : N ] <∞, which we
will always assume to be extremal, i.e., [pMp : Np] = (tr p)2[M : N ] for any
projection p ∈ N ′ ∩M , or equivalently EN ′∩M (e0) ∈ C, e0 being a Jones
projection for N ⊂M . If N ⊂M

e1⊂M1

e2⊂ · · · is the Jones’ tower of factors
associated to the inclusion then its closure M∞

def= ∪
n≥1

Mn with respect

to the unique normalized trace tr on ∪
n

Mn is a type II1 factor, called the
enveloping algebra associated to N ⊂ M . M∞ is clearly hyperfinite if and
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only if M (or N) is hyperfinite.
In the case N ⊂ M is strongly amenable, i.e., M is hyperfinite and the

standard graph of N ⊂ M , ΓN,M , is ergodic and satisfies ‖ΓN,M‖2 = [M :
N ], then N ⊂M is antiisomorphic to M ′

1 ∩M∞ ⊂M ′ ∩M∞ (cf [Po1]). So
in this case M∞ is generated by M , by a copy of Mop that commutes with
M and by a projection eN which implements both the expectation of M
onto N and of Mop onto Nop. Equivalently, M∞ has an (anti)symmetry,
denoted x 
→ xop, such that (xop)op = x, [M, Mop] = 0, (eN )op = eN and
M∞ = M ∨ {eN} ∨Mop.

For an arbitrary inclusion of type II1 factors of finite index one has a
similar symmetric enveloping algebra.

Definition 1.1. Let Q
EQ⊂ P be a Markov inclusion of finite von Neumann

algebras with EQ the trace preserving expectation (thus, there exists an
orthonormal basis of P over Q, {mj}j , such that Σmjm

∗
j is a scalar multiple

of the identity (see [Po1])). Let Q ⊂ P
eQ⊂ 〈P, eQ〉 be the Jones basic

construction for Q ⊂ P ([J]). We let C∗
max(P, eQ, P op) be the universal

C∗-algebra containing a copy of 〈P, eQ〉 and having an antiautomorphism
x 
→ xop, satisfying the conditions

(a) (xop)op = x
(b) [P, P op] = 0, (eQ)op = eQ

(c) P, P op, eQ generate U as a C∗-algebra.
We then denote by U = C∗

bin(P, eQ, P op) = C∗
max(P, eQ, P op)/ ∩ kerπ,

where the intersection is over all representations π of C∗
max(P, eQ, P op) for

which π(P ), π(P op) are von Neumann algebras. We call U the universal
symmetric enveloping C∗-algebra associated to Q ⊂ P .

Theorem 1.2. Let N ⊂ M be an extremal inclusion of type II1 factors
of finite index. Then there exists a unique positive normalized trace on
C∗

bin(M, eN , Mop) and its associated ideal is the unique maximal ideal of
C∗

bin(M, eN , Mop). Equivalently, any C∗-algebra U0 which contains a copy
of 〈M, eN 〉 and has an antisymmetry op satisfying the axioms 1.1 a), b),
c) and which acts on a Hilbert space so that M , Mop are weakly closed,
has a unique trace.

To prove this theorem, one uses the following:

Lemma 1.3. Let M
e0⊃ N

e−1⊃ N1 ⊃ · · · be a choice of the tunnel for
N ⊂ M . If e1 = eN , e2 = (e0)op, e3 = (e−1)op, . . . in C∗

max(M, eN , Mop),
and M1 = 〈M , e1〉, M2 = 〈M1, e2〉, . . . , then N ⊂ M ⊂ M1 ⊂ · · · is iso-
morphic to the Jones tower for N ⊂ M and one has C∗

max(M, eN , Mop) =
spnMop(∪

k
Mk)Mop.
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With this observation at hand one can check that

xop
1 Y xop

2 
→ xop
1 EM ′∩Mk

(Y )xop
2 , x1,2 ∈M, Y ∈Mk

defines an expectation of U onto Mop that factors through any representa-
tion of U. Then one gets that τ(xop

1 Y xop
2 ) = τ(xop

1 EM ′∩Mk
(Y )xop

2 ) defines
a trace on any representation of U.

We denote by C∗
min(M, eN , Mop) the quotient of U by its trace ideal.

Note that, by using 1.3 and a similar argument as in the above proof, one
can show that there exits a unique conditional expectation of U onto the
C∗-algebra C∗(M, Mop) generated by M and Mop in U. The Stinespring
dilation of this expectation then shows that the subalgebra C∗(M, Mop) of
U coincides with C∗

bin(M, Mop) as defined in ([EL]). In particular, if N = M
then U � C∗

bin(M, Mop).
By taking the GNS representation corresponding to the trace given by

the above theorem we then get:

Corollary 1.4. There exists a unique (up to conjugacy) type II1 factor U ,
with a copy of 〈M, eN 〉 ⊂ U and with an antiautomorphism x 
→ xop, such
that

(a) (xop)op = x,∀x ∈ U
(b) [M, Mop] = 0, eop

N = eN

(c) M , Mop, eN generate U as a von Neumann algebra.

Moreover, if M
e0⊃ N

e−1⊃ N1 ⊃ · · · is a choice of a tunnel for N ⊂ M

and e1 = eN , e2 = (e0)op, e3 = (e−1)op, · · · ∈ U , then N ⊂ M
e1⊂ M1 ⊂ · · ·

is isomorphic to the Jones tower, M∞ = ∪
n

Mw
n to the usual enveloping

algebra of N ⊂ M and one has U = spwM∞Mop, M ′
n ∩ U = (Nn−1)op,

∀n ∈ Z, in particular (M ′
n ∩ U)′ ∩ U = Mn, ∀n ∈ Z.

Definition 1.5. The type II1 factor U in the above Corollary is called the
symmetric enveloping type II1 factor associated to N ⊂ M . We denote it
by M �

eN

Mop.

Thus, as the above comments show, M �
eN

Mop coincides with M∞ in

the case N ⊂ M is extremal and strongly amenable, with N �= M . Note
also that it coincides with M⊗̄Mop when N = M .

For arbitrary (e.g., finite dimensional) Markov inclusions Q ⊂ P one
should first determine what traces on C∗

bin(P, eQ, P op) are of interest for
us.

Definition 1.6. A trace on the universal symmetric enveloping C∗-algebra
C∗

bin(P, eQ, P op) which extends the Markov trace on 〈P, eQ〉 and is invariant
to op is called a symmetric Markov trace.
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In some situations we can prove existence of such traces by using 1.2.

Proposition 1.7. Let Q−1 ⊂ P−1 be a Markov inclusion. Assume there
exists an extremal inclusion of type II1 factors N ⊂ M and an embed-
ding of Q−1 ⊂ P−1 into N ⊂ M as a nondegenerate commuting square.
Then C∗

bin(P−1, eQ−1 , P
op
−1) has a symmetric Markov trace. In particular,

if Q−1 ⊂ P−1 is finite dimensional and

P−1 ⊂ P0

∪ ∪
Q−1 ⊂ Q0

is an extremal commuting square with Z(P−1) ∩ Z(P0) = C,
then C∗

bin(P−1, eQ−1 , P
op
−1) has a symmetric Markov trace.

One should note that for general Q ⊂ P the symmetric Markov trace
on C∗

bin(P, eQ, P op) (if it exists) is not necessarily unique. For instance
if Q = C ⊂ C

n = P then one has a symmetric Markov trace τ0 on
U = C∗

bin(P, eQ, P op) by simply taking P, P op, act on L2(P ) by left and
respectively right multiplication, eQ to act as the projection onto L2(Q)
and τ0 = 1

dim P TrB(L2(P )). The image of U under πτ0 is then B(L2(P )) =
Mn×n(C). But if we take Q ⊂ P to be the inclusion Q−1 ⊂ P−1 in a com-
muting square like in 1.7, with P0 = Mn×n(C) and Q0 an exotic Jones-de
la Harpe orthogonal maximal abelian subalgebra in Mn×n(C), with n a
prime number, then the trace τ1 produced by the proof of 1.7 is different
from τ0. In fact πτ1(U) �= Mn×n(C).

There is no a priori reason for an arbitrary finite dimensional inclu-
sion Q ⊂ P to have an associated Markov trace on C∗

bin(P, eQ, P op)(=
C∗

max(P, eQ, P op) in this case). It is not hard to see though that if C∗
bin(P,

eQ, P op) does have one then C∗
bin(pPp, epQp, (pPp)op) and C∗

bin(P ⊗Mn×n

(C), eQ⊗Mn×n(C), (P ⊗Mn×n(C))op) have one. So, the existence of such a
trace really depends only on the bipartite inclusion graph of Q ⊂ P, TQ⊂P .
We can thus call such traces symmetric Markov traces associated to TQ⊂P .

Problem 1.8. Do all bipartite graphs have symmetric Markov traces?
Note that by 1.7 the failure for some bipartite graph T to have such a

trace would imply that the commuting square problem has no solution for
T . We do not however have any example of such a graph.

The representation of C∗
bin(P, eQ, P op) on L2(P ) works in fact for arbi-

trary inclusions.

Corollary 1.9. Let U0 = C∗(P, eQ, JPJ) be the C∗-algebra generated in

B(L2(M)) by P , JP PJP = P op and eQ = projL2(Q) and denote xop def=
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Jx∗J , x ∈ U0. Then U0, with 〈P, eQ〉 ⊂ U0 and the above op is a rep-
resentation of C∗

bin(P, eQ, P op). Moreover, if Z(Q) ∩ Z(P ) = C than this
representation is irreducible. Also, if Q ⊂ P is an inclusion of type II1
factors then there exists a unique trace on C∗(P, eQ, JPJ).

In the case M is the hyperfinite type II1 factor the above results justify
considering the following property for type II1 factors.

Definition 1.10. A type II1 factor U is called thin if there exist two copies
of the hyperfinite factor R1, R2 ⊂ U such that U = spwR1R2.

Thus, to each extremal inclusion of hyperfinite type II1 factors N ⊂ M
one associates a thin type II1 factor whose isomorphism class only depends
on the isomorphism class of N ⊂ M . Note that we have a natural group
morphism from Aut(N ⊂M) into the automorphism of M �

eN

M that com-

mute with op, leave eN fixed and M , N invariant, by associating to σ in
Aut(N ⊂M) the automorphism of M �

eN

M that sends x1y
op
1 eNx2y

op
2 eN ...

into σ(x1)σ(y1)opeNσ(x2)σ(y2)opeN .... This morphism implements an in-
jective morphism from Aut(N ⊂ M)/Int(N (N)) into Out(M �

eN

Mop),

where N (N) is the normalizer of N in M .

2. Amenability and standard AFD

A first motivation for studying the symmetric enveloping algebras and
their Markov traces comes from the following:

Theorem 2.1. Let N ⊂M be an extremal inclusion of type II1 factors of
finite index. The following conditions are equivalent:

(i) N ⊂M is amenable ([Po1]).
(ii) N ⊂M has the standard AFD property, i.e., it can be approximated

by finite dimensional commuting squares which are locally isomor-
phic to reduced algebras of higher relative commutants (in the sense
of 4.4.1 in [Po1]).

(iii) ∀ x1, . . . , xn ∈ M, ∀ε > 0, ∃ a subfactor P ⊂ N of finite index
such that xi ∈

ε
P ′ ∩M .

(iv) M �
eN

Mop is hyperfinite.

(v) The standard representation N st ⊂Mst of N ⊂M has a (N ⊂M)-
hypertrace.

(vi) M is hyperfinite and ‖ΓN,M‖2 = [M : N ].
(vii) M is hyperfinite and ΓN,M satisfies the Folner condition ([Po2]).
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Note that in the case N = M the equivalence (i) ⇔ (ii) simply states
that M is amenable (or injective) iff M ⊗Mop is hyperfinite, which is an
equivalent form of Connes’ fundamental theorem.

(i) ⇒ (ii) is proved in [Po1]. Then (ii) ⇒ (iii) is straightforward, by
(4.4.1 in [Po1]) and by defining the subfactor P as { ⊕

j∈I0

θi0j(x) | x ∈

N i0
ki0

si0}, where θij : N i
ki

si → N j
kj

sj are isomorphisms and the rest of
the notations are from (4.4.1 in [Po1]). To prove (iii) ⇒ (iv) one uses
that if P ⊂ N ⊂ M is so that [M : P ] < ∞ then P ′ ∩ (P op)′ is finite
dimensional in M �

eN

Mop (since [P op′ ∩M �
eN

Mop : P ] < ∞). Then (iv)

⇒ (v) as follows: let U = M �
eN

Mop be represented by left multiplication

on L2(U) and define Mst = M ∨ JUMJU , N st = N ∨ JUMJU . It is easy
to see that the embedding of N ⊂M into N st ⊂Mst is isomorphic to the
standard representation of N ⊂ M as defined in [Po1], taken with infinite
multiplicity. Thus, if Φ : B(L2(U)) → U is a conditional expectation onto
U then Φ(Mst) ⊂ U commutes with Mop, so Φ(Mst) = (Mop)′ ∩ U = M ,
and Φ(N st) commutes with 〈Mop, eN 〉, so Φ(N st) = 〈M, eN 〉′ ∩ U = N .
Thus τ ◦ Φ is a (N ⊂M)-hypertrace for N st ⊂Mst.

Further on, (v) ⇒ (vi) (by 2.4 and 4.4.1 in [Po1]) and (vii) ⇒ (i) is
proved in [Po2]. Finally, (vi) ⇒ (vii) by using that N ′

k ∩ N ⊂ N ′
k ∩ M

has inclusion graph Tk with ‖Tk‖2 ≥ [M : N ] − ε = τ(e0)−1 − ε, where
e0xe0 = EN ′

k∩N1(x)e0 for x ∈ N ′
k ∩N , and that sp(N ′

k ∩N)e0(N ′
k ∩N) is

“almost equal” to N ′
k ∩M .

The above condition (iv) enables us to prove the hereditarity properties
for the amenability of inclusions that were missing until now from this
theory.

Corollary 2.2. Let M be a hyperfinite type II1 factor and N ⊂ M an
amenable subfactor (i.e. with ‖ΓN,M‖2 = [M : N ]).

(a) If Q ⊂ P is an inclusion of type II1 factors embedded in N ⊂ M
as a commuting square such that spPN is an algebra (equivalently,
spPN = spNP ) then ‖ΓQ,P ‖2 = [P : Q]. In particular, if Q ⊂ P is
embedded in N ⊂M as a commuting square and [P : Q] = [M : N ]
then ‖ΓQ,P ‖2 = [P : Q] = [M : N ] = ‖ΓN,M‖2.

(b) If N ⊂ M ⊂ M1 · · · is the Jones’ tower and p ∈ M ′
i ∩ Mj then

‖ΓMip,pMjp‖2 = [pMjp : Mip].

Note that in the previous Corollary, we do not require [M : P ] to be
finite! By taking Q = N in the above we get:

Corollary 2.3. If N ⊂ P ⊂ M are inclusions of hyperfinite type II1
factors and ‖ΓN,M‖2 = [M : N ] then ‖ΓN,P ‖2 = [P : N ] and ‖ΓP,M‖2 =
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[M : P ].

In the case N ⊂ M has finite depth (respectively has subexponential
growth [Po1]), the similar implication on the finite depth (resp. subexpo-
nential growth) of the intermediate subfactors, as well as the analogue of
2.2(b), are proved in [Bi2] (resp. [Hi]), for arbitrary (not necessarily hy-
perfinite) subfactors.

The proof of 2.2 follows from Theorem 2.1, Connes’ hereditarity for
hyperfiniteness and the following:

Lemma 2.4. Assume Q ⊂ P is an inclusion of type II1 factors embedded
in N ⊂M as a commuting square.

(a) If spPN = spNP then P �
eQ

P op is naturally embedded as the weakly

closed ∗-subalgebra in M �
eN

Mop generated by P , P op and eN . More-

over, this embedding is unital iff [M : N ] = [P : Q], in which case
spPN = spNP is redundant.

(b) If p ∈ N ′ ∩M and (Np ⊂ pMp) notation= (S ⊂ R) then R �
eS

Rop is

naturally embedded as the weakly closed ∗-subalgebra of M �
eN

Mop

generated by ppop(M ⊗Mop)ppop and by (trp)−1ppopeNppop.
(c) If [M : Q] <∞ then M �

eN

Mop is naturally embedded as a unital von

Neumann subalgebra of M �
eQ

Mop by taking eN = λΣmjeQm∗
j =

λΣmop
j eQmop∗

j , where {mj}j is an orthonormal basis of N over Q

and λ = [N : Q]−1. In particular, (Q′ ∩M)∨ {eN} ∨ (Q′ ∩M)op ⊂
Q′ ∩ 〈M, eQ〉 = Q′ ∩Qop′

.

The following shows that the finite depth condition has no chance of
satisfying similar hereditarity properties.

Example 2.5. Let P0 be a copy of the hyperfinite type II1 factor and G
a finitely generated amenable group with nonergodic Cayley graph with
respect to some set of generators g0 = id, g1, . . . , gn (cf. Kaimanovitch-
Vershik, [Po1]). Let σ0 be a properly outer action of G on P0 and P =
P0 �σ0 G. Let σ be the inner action Adug, g ∈ G, of G on P . Let (Nσ ⊂
Mσ) � (P ⊂ P⊗M(n+1)×(u+1)(C)) be the diagonal locally trivial subfactor
associated to σ, P and g0, g1, . . . , gn, like in [Po1]. Let Nσ0 ⊂Mσ0 be the
subfactor associated in a similar way to σ0, P0 and g0, . . . , gn. Note that
one has an obvious commuting square

Nσ ⊂ Mσ

∪ ∪
Nσ0 ⊂ Mσ0 .
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Yet Nσ ⊂ Mσ has finite depth while Nσ0 ⊂ Mσ0 has infinite depth and
nonergodic graph. In particular its graph is not strongly amenable.

Note that if [M : P ] < ∞ in 2.2 then indeed if N ⊂ M has finite depth
then Q ⊂ P has finite depth as well, regardless of M being hyperfinite
or not (see 2.7 below). However, we cannot weaken the condition on the
hyperfiniteness of M in 2.2 if we allow [M : P ] =∞.

Example 2.6. If in 2.5 we take G to be nonamenable and otherwise pro-
ceed with the same construction as in 2.5, then Nσ ⊂Mσ has finite depth
and Nσ0 ⊂ Mσ0 has nonamenable graph. But this time Mσ is nonhy-
perfinite. Moreover, since ΓNσ0 ,Mσ0 is nonamenable, Mσ0 �

eN

Mσ0 is a

nonhyperfinite, yet thin, type II1 factor (cf. 2.1).

We can however prove some equivalent characterizations of the amenabil-
ity of an inclusion which have “finite depth” versions as well. To state
them recall from ([Po1]) that a representation N ⊂M of N ⊂ M is exact
if M = M ∨ P , where P = M ′ ∩ N . If M is also atomic then each of its
direct summands B(H) is an irreducible M − P correspondence (bimod-
ule). Also, in ([Po1]) we denoted by ⊕B(K) = N uf ⊂Muf = ⊕B(H) the
direct sum of all exact atomic representations for which dimMH dimPH is
finite and by Au = Auf

N,M its inclusion matrix. Note that N st ⊂ Mst is a
direct summand of this representation, so that ΓN,M is a direct summand
(or connected component) of Au and ‖ΓN,M‖ ≤ ‖Au‖. We’ve seen in 2.1
that if M is hyperfinite then the amenability of N ⊂ M is equivalent to
‖ΓN,M‖2 = [M : N ]. We will show that ‖Au‖2 = [M : N ] is in fact suf-
ficient for N ⊂ M to be amenable, which in turn implies that any direct
summand of Au has square norm equal to [M : N ]. Also, we will consider
atomic representations for which only the weaker condition dimPH <∞ is
satisfied.

Proposition 2.7. Let N ⊂M be an extremal inclusion of hyperfinite type
II1 factors. The following conditions are equivalent:

(i) N ⊂M is amenable.
(ii) N ⊂M has an exact atomic representation N ⊂M, with dimPH <

∞ for all direct summands B(H) of M, such that ‖TN⊂M‖2 = [M :
N ].

(iii) There exists a matricial inclusion (see [PiPo2] for the definition)

of hyperfinite type II1 von Neumann algebras Q
E⊂ P , with discrete

centers, trace preserving expectation E and ‖TQ⊂P ‖2 = [M : N ],
and a nondegenerate commuting square embedding of N ⊂ M into
Q ⊂ P .
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Proposition 2.8. Let N ⊂ M be an extremal inclusion of arbitrary type
II1 factors. The following conditions are equivalent:

(i) ΓN,M is finite (respectively is amenable, respectively is strongly
amenable).

(ii) N uf ⊂Muf has an irreducible direct summand N ⊂M with finite
inclusion matrix (respectively of square norm equal to the index,
respectively ergodic and of square norm equal to the index ).

(iii) All irreducible direct summands of N uf ⊂ Muf have finite inclu-
sion matrix (respectively of square norm equal to the index, respec-
tively ergodic and of square norm equal to the index ).

Note that condition (iii) in 2.7 doesn’t require M to have finite index in
the direct summands of P . Also, the trace on P in (iii) may be infinite, but
it will be automatically finite if P has finite center. Note that since Q ⊂ P is
matricial and has an orthonormal basis {mj}j satisfying Σ

j
mjm

∗
j = IndE =

[M : N ] (since it contains N ⊂M), it follows like in [J] that the trace on P
is given by weights (ak)k on the minimal central projections of P , satisfying
TT t(a1/2

k )k = [M : N ](a1/2
k )k (see also [PiPo2]). The trace is infinite when

Σ
k
ak = ∞. The proof of (ii) and (iii) in 2.7 is easier to explain in the case

TN⊂M respectively TQ⊂P are finite. By taking the embedding of N ⊂ M
into (M ′ ∩ N )′ ∩ N = Q ⊂ P = (M ′ ∩ N )′ ∩ M we see that to prove
(ii) it is sufficient to prove (iii). But if dimZ(P ) < ∞ then we see that
(Q ⊂ P )op � (〈P, eP

Q〉′ ∩ P∞ ⊂ P ′ ∩ P∞) so that if N ⊂ M is embedded
in Q ⊂ P then M �

eN

Mop is embedded in P∞ which is hyperfinite, thus

M �
eN

Mop is hyperfinite and 2.1 applies.

The proof of 2.8 can be best understood by first noting a simple fact
which relates the growth properties of the inclusions in a commuting square
of finite index. In this statement, by “standard graph” of a Markov inclu-
sion of type II1 von Neumann algebras with finite dimensional centers we
simply mean the bipartite graph that describes the inclusions of the higher
relative commutants in the Jones tower.

Lemma 2.9. Let S ⊂ R be embedded in Q ⊂ P as a nondegenerate
commuting square of Markov inclusions of finite ([PiPo1]) index, where
P, Q, R, S are type II1 von Neumann algebras with finite dimensional cen-
ters. If Rn and Pn denote the algebras in the Jones tower for the two inclu-
sions then we have: (a) sup dimZ(S′∩Rn) <∞ iff sup dimZ(Q′∩Pn) <∞.
(b) lim dim(S′∩Rn)1/n = lim dim(Q′∩Pn)1/n. In particular, the standard
graphs of S ⊂ R and Q ⊂ P have the same norm. (c) dim Z(S′ ∩ R∞) is
finite iff dim Z(Q′ ∩ P∞) is finite.
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To prove 2.8 consider first a representation of N ⊂M with finite dimen-
sional center as in (ii). Then (M ′ ∩ N )′ ∩ N = Q ⊂ P = (M ′ ∩ N )′ ∩M
is a matricial inclusion of type II1 von Neumann algebras with finite in-
clusion matrix and N ⊂ M sits into it with finite index, in particular
sup

n
dimZ(Q′ ∩ Pn) < ∞ and so Lemma 2.9 applies. The other implica-

tions are similar.
Finally, to prove 2.9 note that we have sup

n
dimZ(S′∩Pn) <∞, because

IndES′∩Pn

Q′∩Pn
≤ IndES′

Q′ = IndEQ
S < ∞. Since IndES′∩Pn

S′∩Rn
≤ IndERn

Pn
=

IndER
P < ∞ we deduce that sup

n
dimZ(S′ ∩ Rn) < ∞ which proves (a).

Then (b) and (c) are easy to prove by the same type of arguments and by
using (1.3.5 in [Po1]).

3. Symmetric hypertraces and nonstandard AFD

We will now discuss the property for an inclusion of type II1 factors
N ⊂ M of being approximable by finite dimensional commuting squares
not coming from higher relative commutants. Some of the considerations
that we will present appear already in ([Po3]), but with a slightly differ-
ent terminology and without giving the proper motivation. To give such
motivation let us consider the following:

Example 3.1. Let

P−1 ⊂ P0

∪ ∪(*)
Q−1 ⊂ Q0

be an extremal commuting square of finite dimensional Markov inclusions,
with Z(P−1) ∩ Z(P0) = C,Z(Q−1) ∩ Z(Q0) = C. Let

P−1 ⊂ P0

e1⊂ P1 ⊂ · · ·
∪ ∪ ∪

Q−1 ⊂ Q0

e1⊂ Q1 ⊂ · · ·

be its associated tower of commuting squares, obtained by iterating the
basic construction. Let Q∞ = ∪

n
Qn ⊂ ∪

n
Pn = P∞, which is an extremal

inclusion of type II1 factors with [P∞ : Q∞] = ‖TQ−1⊂P−1‖2 ([We]). By [H]
there exist commuting squares (∗) for which ΓQ∞,P∞ = A∞, in particular
Q′

∞ ∩ P∞ = C, while 2 +
√

5 > ‖TQ−1⊂P−1‖2 = [P∞ : Q∞] > ‖A∞‖2 = 4.
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By 2.1, it thus follows that the associated symmetric enveloping type II1
factor is nonhyperfinite (yet thin).

More properties related to this example are given by the next:

Proposition 3.2. If (Qi ⊂ Pi)i≥−1 and (Q∞ ⊂ P∞) notation= (N ⊂M) are
as in 3.1 then we have:

1◦. Alg(Pn, eN , JMPnJM ) %

x 
→ πn
m(x) = ePmxePm ∈ ePmB(L2(M))ePm � B(L2(Pm))

is a finite dimensional representation of

Alg(Pn, eN , JMPnJM ) ⊂ B(L2(M)), with

lim
m→∞

ϕm(T ) = τ(π(x)), where π : C∗(M, eN , JMJ) → M �
eN

Mop,

ϕm(T ) = 1
dim Pm

TrB(L2(Pm))(ePmTePm) and τ is the trace on M �
eN

Mop. Thus, the algebras Alg(Pn, eN , JPnJ) are diagonalizable.
2◦. The state ϕ(T ) = lim

n→ω
ϕn(T ) on B(L2(M)) satisfies ϕ(Tx) =

ϕ(xT ), ∀T ∈ B(L2(M)), ∀x ∈ C∗(M, eN , JMJ).
3◦. If Mn = JPnJ ′ ∩ B(L2(M)), Nn = J〈Pn, eN 〉J ′ ∩ B(L2(M)) then

N ⊂ M is represented in Nn ⊂ Mn and there exists a (N ⊂ M)-
hypertrace on ⊕Nn ⊂ ⊕Mn.

4◦. M �
eN

Mop can be embedded in the Feldman-ultrapower type II1 factor

Π
n→ω

B(L2(Pn)).
5◦. If ΓN,M is finite then for any n there exists a subfactor of finite

index S in N such that S′ ∩ M is finite dimensional and Pn ⊂
S′ ∩M . In particular, Alg(Pn, eN , JMPnJM ) ⊂ B(L2(M)) is finite
dimensional for each n.

6◦. If ‖ΓN,M‖2 < [M : N ] (i.e. ΓN,M is not amenable) then we also
have:
(a) π(Alg(Pn, eN , JMPnJM )) = Alg(Pn, eN , P op

n ) is a nonnuclear,
subalgebra of M �

eN

Mop and Alg(Pn, eN , JMPnJM ) is a non-

nuclear, diagonalizable subalgebra in B(L2(M)). In particular,
they are both infinite dimensional.

(b) M �
eN

Mop is a thin but nonhyperfinite type II1 factor.

To prove 2◦ note that ϕ(xT ) = ϕ(Tx), ∀x ∈ ∪Pn, x = eN , x ∈
∪JMPnJM and ∀T ∈ B(L2(M)). Since ϕ|M = τ , by [C2] we will have
the equality for all x ∈M ∪JMJ . Then 1◦ follows from 2◦, 3◦ is just 3.1.3
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of [Po1] and 4◦ is a consequence of 1◦. Next, 5◦ follows from the bicom-
mutant relation of M in M∞ for finite depth subfactors and from the fact
that the enveloping algebra Sc

∞ of Qn ⊂ Pn is a subalgebra of M∞ that
contains N ′ ∩M∞ as a subfactor of finite [PiPo1] index. Thus, if we let
S = Sc′

∞ ∩M∞ then S satisfies the condition. Finally, 6◦ is a consequence
of 2.1 and [C1].

Related to property 3.2.5◦ above, note that for the standard commuting
squares of higher relative commutants, as also emphasized in 2.4(c), we
have:

Proposition 3.3. Let N ⊂ M be an extremal inclusion of type II1 fac-

tors and M
e0⊃ N

e−1⊃ N1 ⊃ · · · ⊃ Nk a choice of the tunnel up to
some k. Then Alg(N ′

k ∩ M, eN , JM (N ′
k ∩ M)JM ) ⊆ N ′

k ∩ JMN ′
kJM =

N ′
k ∩ 〈M, eN , Je0J, . . . , Je−k+1J〉 in B(L2(M)). In particular, Alg(N ′

k ∩
M, eN , (N ′

k ∩ M)op) ⊆ N ′
k ∩ (Nop

k )′ = N ′
k ∩ Mk+1 in M �

eN

Mop, where

Mk+1 = 〈M, eN , eop
0 , . . . , eop

−k+1〉. We have everywhere equalities when
N ⊂M has finite depth and k is larger than the depth.

Remark 3.4. If Q ⊂ P is a finite dimensional Markov inclusion with stan-
dard inclusion graph TQ⊂P , i.e., with TQ⊂P equal to the graph of a sub-
factor, then TQ⊂P has a finite dimensional symmetric Markov trace (i.e.,
a symmetric Markov trace τ on U = C∗

bin(P, eQ, P op) with πτ (U) finite
dimensional). Also, if

Q ⊂ P

∪ ∪
B ⊂ A

is a commuting square with B ⊂ A a Markov inclusion of same index as
Q ⊂ P , then TB⊂A has a finite dimensional symmetric Markov trace as
well. This fact and 3.2 may be useful for excluding some bipartite graphs
from being standard, but we do not have any example to illustrate this.

We will, in fact, consider a slightly weaker condition of approximate
finite dimensionality than the one in 3.1.

Definition 3.5. N ⊂ M is AFD if ∀x1, . . . , xn ∈ M, ∀ε > 0, ∃ a finite
dimensional inclusion Q ⊂ P in N ⊂ M such that ENEP = EP EN =
EQ, xi ∈

ε
P , ∀i.

We also consider the following functional analytical objects:

Definition 3.6. Let π be a representation of U = C∗
bin(M, eN , Mop) on

B(H). A state ϕ on B(H) such that ϕ(xT ) = ϕ(Tx), ∀x ∈ π(U), ∀T ∈ B(H)
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is called a symmetric Markov hypertrace for U via π. The term “hypertrace”
is inspired from Connes’ single algebra terminology. Yet note that if N = M
and M , Mop are represented on B(L2(M)) in the usual way, then the above
symmetric hypertraces ϕ require both M and Mop(= JMJ) be in the
centralizer of ϕ.

The next observation shows how one can “transport” hypertraces from
a Hilbert space to another.

Proposition 3.7. If U has a symmetric hypertrace via some representa-
tion π0 then it has a symmetric hypertrace via any other representation π of
U with kerπ ⊂ kerπ0. In particular, if C∗

min(M, eN , Mop) has a symmetric
hypertrace via some representation π0 then any representation of U has a
symmetric hypertrace.

Indeed, if π0 : U→ B(H0), with ϕ0 a state on B(H0) having π0(U) in its
centralizer, and π : U→ B(H) is another representation with kerπ ⊂ ker π0

then let σ be the ∗-morphism from π(U) onto π0(U) defined by σ = π0 ◦
π−1 and ψ a completely positive map from B(H) into B(H0) extending σ
(cf. Arveson’s extension theorem). Then ψ(Tx) = ψ(T )σ(x), ψ(xT ) =
σ(x)ψ(T ) for any x ∈ π(U), T ∈ B(H). Thus ϕ0 ◦ ψ is a hypertrace for U

via π.
This result enables us to give one more characterization for the amenabil-

ity of an inclusion.

Theorem 3.8. Let N ⊂ M be an extremal inclusion. The following con-
ditions are equivalent:

(i) N ⊂M is amenable.
(ii) If τ denotes the trace on C∗

min(M, eN , Mop) then πτ has a symmetric
Markov hypertrace.

(iii) Any representation π of C∗
bin(M, eN , Mop) has a symmetric Markov

hypertrace.
(iv) C∗

bin(M, eN , Mop) is simple.

Note that in the case N = M the equivalence between (i) on (iv) reduces
to some well known results of Effros-Lance. Also, related to (iv) in the
above theorem, note that in ([Bi1]) the possibility for the compact operators
K(L2(M)) to be an ideal of C∗(M, eN , JMJ) is proved equivalent to the
existence of nontrivial central sequences for M contained in N (the “N ⊂
M” analogue of Connes’ characterization of property Γ).

To prove 3.8, note that by 2.1, if N ⊂M is amenable then

πτ (C∗
min(M, eN , Mop)) = M �

eN

Mop
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is hyperfinite so (i) ⇒ (ii) and since the proof of (iv) ⇒ (v) in 2.1 uses
only the existence of a state having πτ (C∗

min(M, eN , Mop)) in its central-
izer, we also have (ii) ⇒ (i). Then (ii) ⇔ (iii) by 3.7. Next, if x ∈
C∗

bin(M, eN , Mop) ⊂ B(H) and x is approximated in norm by an element

of the form x0 =
n

Σ
i=1

yop
i zix

op
i ∈ spMopMkMop (cf. 1.2), then each zi

can be approximated by z′i = Σ
j
pjE

Mk

(Nj
�j

)′∩Mk
(zi)pj , for some choices of

tunnels {N j
r }r and pj ∈ P(N j

$j
)P(N j

$j

′ ∩ Mk), in the strong topology
on B(H). Thus x′

0 = Σ
i
yop

i z′ix
op
i approximate x in the ∗-strong topol-

ogy and ‖x′
0‖ ≤ ‖x‖. But ‖x′

0‖ = sup
j
‖x′

0pj‖ and each ‖x′
0pj‖ is ma-

jorized by ‖Σ
i
yop

i EMk

Nj
�j

′∩Mk
(zi)x

op
i ‖B(H) = ‖Σ

i
yop

i EMk

Nj
�j

′∩Mk
(zi)x

op
i ‖Mop

�j
=

‖Σ
i
yop

i EMk

Nj
�j

′∩Mk
(zi)x

op
i ‖C∗

min(M,eN ,Mop) ≤ ‖x0‖C∗
min(M,eN ,Mop).

Thus, by the semicontinuity of the norm in the strong topology, we get
‖x‖B(H) ≤ ‖x‖C∗

min(M,eN ,Mop). This proves (iii) ⇒ (iv). Conversely, if
(iv) holds true then a similar proof as in ([E-L]) shows that there exists
a symmetric Markov hypertrace on C∗(M, eN , JMJ) ⊂ B(L2(M)) and by
3.7 we get (iv) ⇒ (ii).

We will now relate the existence of symmetric hypertraces to AFD prop-
erties of the subfactor.

Theorem 3.9. Let N ⊂ M be an extremal inclusion of hyperfinite fac-
tors.

(a) If ∀ε > 0 there exists a subfactor Q ⊂ N such that Q′∩N ⊂ Q′∩M
is a finite dimensional inclusion with ‖TQ′∩N⊂Q′∩M‖2 > [M : N ]−ε
then N ⊂ M has the AFD property. If in addition Q can be taken
such that [N : Q] < ∞ then N ⊂ M follows amenable. Also, if
[N : Q] < ∞ and ‖TQ′∩N⊂Q′∩M‖2 = [M : N ] then N ⊂ M has
finite depth.

(b) If N ⊂ M is AFD then C∗(M, eN , JMJ) ⊂ B(L2(M)) has a sym-
metric Markov hypertrace.

(c) C∗(M, eN , JMJ) has a symmetric Markov hypertrace iff given any
unitary elements u1, . . . , un ∈ M and any ε > 0 there exists a
finite dimensional vector subspace H0 ⊂ L2(M) such that H0 =
H∗

0(= JH0), eNH0 ⊂ H0 and

‖uiprojH0
u∗

i − projH0
‖HS < ε‖projH0

‖HS

‖Ju∗
i JprojH0

JuiJ − projH0
‖HS < ε‖projH0

‖HS .
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The proof of the first part of (a) is the same as the proof of the main
theorem in [Po2], by using the hyperfiniteness of N, M for approximate
innerness and the hyperfiniteness of Q for central freeness. The case when
[N : Q] < ∞ is just a reformulation of 2.8 (ii). To prove (b), for any finite
set α ⊂M one considers an inclusion Qα ⊂ Pα such that x ε

1/|α|
Pα, ∀x ∈ α,

and such that each irreducible part of the inclusion matrix of Qα ⊂ Pα

checks a Folner type condition as in [Po2] globally (it is easy to see that
AFD implies one can do this). But then ϕ(T ) = lim

α→ω
(dimPα)−1Tr(TePα)

will be a symmetric Markov hypertrace.
To prove (c) one uses the Day-Namioka-Connes trick like in (4.2 of [Po1]).
From (c) of the above theorem we can can now construct examples of

hyperfinite subfactors without the AFD property, from certain classes of
inclusions of the form Nσ ⊂ Mσ. Note that such an inclusion is AFD if
and only if given any finite subst X in P and any ε > 0, there exists a finite
dimensional subalgebra B in P and unitary elements ug1 , ..., ugn in B such
that X is ε-contained in B and ‖Adugi(x)− σ(gi)(x)‖2 < ε.

Corollary 3.10. Let P be the hyperfinite type II1 factor, G a property T
group and σ a Bernoulli shift action on P � ⊗

g∈G
Rg, Rg � R, ∀g ∈ G.

Let Nσ ⊂ Mσ be the locally trivial diagonal subfactor associated to σ and
to some choice of generators (5.1.5 in [Po1]). Then C∗(Mσ, eNσ , Mσop) ⊂
B(L2(Mσ)) has no symmetric Markov hypertraces. In particular, Nσ ⊂
Mσ is not AFD.

Indeed, by (c) of 3.9 we deduce that if a symmetric Markov hypertrace
exists then the trivial representation of G is weakly contained (thus, by
property T, actually contained) in the representation implemented by σ on
L2(P )⊗̄L2(P op)( C, contradiction.

Example 3.11. The (non)AFD property for subfactors of the form Nσ ⊂
Mσ is not always dictated by the nature of its standard graph ΓNσ,Mσ

(=Cayley matrix of (G; g0, g1, ..., gn)). To see this we consider a class
of nonstandard AFD subfactors of the form Nσ ⊂ Mσ as follows: Let
(G; g0, ..., gn) be a finitely generated nonamenable group of finite resolution
and πn : G → Gn be a sequence of group morphisms from G onto some
finite groups Gn such that ∩ ker πn = {e}. Recall that free groups and most
of the known property T groups have this property. Let P = ⊗B(l2(Gn))
be the hyperfinite type II1 factor and let σ be the properly outer action of
G on P given by the product type action σ(g) = ⊗ Ad λn(πn(g)), where
λn is the left regular representation of Gn on l2(Gn). Then Nσ ⊂ Mσ is
clearly AFD and if one takes G = SL(n, Z), n > 2, then G has the property
T like the groups in 3.10, so that the standard graph of Nσ ⊂Mσ here will
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be the same as the one in 3.10. Yet one of this inclusions is AFD while the
other is not.

Finally, let us mention that the reverse implications in (a) and (b) of
3.9 will be discussed in a forthcoming paper, dealing with the values of the
index for the irreducible inclusions of hyperfinite type II1 subfactors.
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