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ON A CLASS OF FINITELY DETERMINED PLANAR
DOMAINS

Mihai Putinar

1. Introduction

This note describes a class of planar domains which are determined by
finitely many of their moments. A classical result whose proof can be
traced back to the last century to the works of P. L. Cebyshov and A.
A. Markov asserts that the only sets of the real axis which are finitely
determined by their moments are the unions of finite intervals. It was M.
G. Krein who has continued the theory of Cebyshov and Markov during
this century, by developing its functional analytic roots and by finding a
wide range of applications. The monographs [2], [14] and the survey paper
[13] treat these questions in detail.

The domains discussed in the present note are known in literature as
“quadrature domains” and they appear in at least four different contexts:
exact quadrature formulae for analytic functions, the inward balayage phe-
nomenon in potential theory, free boundary problems for partial differen-
tial equations and the Schwarz function and conformal maps derived from
it. The monographs [9] and [21] are devoted to these topics.

Let F be a bounded closed set of the complex plane. The moments of
F are the complex numbers:

amn =
∫

F

zmz ndA(z), m, n ∈ N,

where dA stands for the Lebesgue planar measure. Together with the
double sequence of moments it is natural to consider (following the work
of Markov and that of Akhiezer and Krein in one variable) the following
exponential transform:

∞∑
m,n=0

bmnXm+1Y n+1 = 1 − exp(−
∞∑

m,n=0

amnXm+1Y n+1).

The latter indentity is considered in the formal series ring with two inde-
pendent variables X, Y .
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We call the moment sequence amn degenerated if det(bmn)N
m,n=0 = 0

for a finite positive integer N . The set F is in that case determined by the
finite sequence amn, 0 ≤ m, n ≤ N, and it corresponds exactly to the union
of intervals in the one variable theory.(See [2]). The structure of these sets
supporting degenerated moment sequences is expected to be quite rigid.
The first result along these lines can be stated as follows.

Theorem 1. The compact closed set F ⊂ C has a degenerated moment
sequence if and only if it is bounded by real algebraic curves and there is a
meromorphic function in int(F ) which extends continuously the function
z from the boundary of F .

Since the set F satisfying the condition stated in Theorem 1 has piece-
wise smooth boundary, we can equally work with its interior, which has
the same moments. The natural conformal map from a circular slit domain
onto int(F ) reveals partially the geometry and the analytic structure of
these supports of degenerated moment sequences.

Theorem 2. Let Ω = int(F ), where F is a compact set with a degenerated
moment sequence, and let ∆ be a connected component of Ω.
a). ∆ is simply connected if and only if there is a rational conformal map
from the unit disk onto ∆;
b). ∆ is one-connected if and only if it is the image of the rectangle R =
{z ∈ C; 0 < �z < a, 0 < �z < 2b} by an elliptic function with periods
2a, 2bi and which is one to one on R.

In general, for a multiply connected domain ∆ the conformal map from
a circular slit domain D onto ∆ extends to a meromorphic function defined
on a compact Riemann surface which doubles D in a canonical way.

The proof of Theorem 2 is based on a repeated application of the sym-
metry principle to the meromorphic function which extends z from the
boundary of F . Once we observe that the domains described in Theorem
1 are quadrature domains ( in a sense which will be explained in Section 4
below), the first part of Theorem 2 is not new, see for references [1] and [9].
Moreover, Gustafsson has proved in [11] that in any conformal class of a
finitely connected domain there is at least one representative which fulfils
the condition in Theorem 1. The geometry of these (quadrature) domains
is remarkable, and it is still investigated at present by several authors, (see
the references in [21]).

In the proof of Theorem 1 three objects, naturally related with each
other and representing different interpretations of the moment sequence
amn, appear. The next result enlightens this relationship. To simplify the
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statements we adopt the following notation, for a given compact set F and
a point z ∈ C\F :

E(F )(z) = exp(
−1
π

∫
F

dA(ζ)
|ζ − z|2 ).

Theorem 3. Let F be a compact planar set. The following conditions are
equivalent:
a). F has a degenerated moment sequence;
b). The function E(F )(z) is rational for |z| large, with a denominator of
the form |p(z)|2, where p is a polynomial;
c). There is a bounded linear operator T acting on a Hilbert space, with
spectrum equal to F , with rank one self commutator and satisfying
p(T )∗[T ∗, T ] = 0, for a polynomial p.

The question treated in this note ( that of characterizing the sets with
degenerated moment sequences ) is a part of a more general problem,
related to arbitrary functions bounded by 0 and L- the so called L-problem
of moments. The operator theoretic aspects of this problem were discussed
in [19,20]. A very general conclusion of these papers is that the inverse
problem for the principal function of a hyponormal operator with rank-
one self-commutator is equivalent to the L-problem of moments. This
explains the presence of the function E(F ) (a two variable perturbation
determinant) in the statement of Theorem 3.

The class of Hilbert space operators with one dimensional self-commu-
tator is very well understood by now, thanks to the works of Pincus [17],
Carey and Pincus [5], Helton and Howe [12], and more recently Clancey
[8], Pincus, J. Xia and D. Xia [18] and several other authors. A unitary
invariant for these operators is a measurable function with values in the
interval [0, 1], which extends naturally the Fredholm index across the spec-
trum. This function was called the principal function in [17], and it was
the subject of many investigations since then. The monographs [8,15,22]
are devoted to this subject.

The proof of Theorem 1 makes use of the theory of the principal function
and the properties of the kernel E(F ), which plays the role of a charac-
teristic function for the class of operators with rank one self-commutator.
It must be noted that these objects are two dimensional generalizations of
the phase shift, perturbation determinant and trace formulae, all due to
M. G. Krein.

The next section recalls the dictionary between the L-problem of mo-
ments, operators with rank one self-commutator and the kernels E(F )(z).
Section 3 contains a few steps in the proofs of the main results. In the
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last section we briefly discuss the relationship between the domains which
carry degenerated moments and quadrature domains.

2. The L-problem of moments

Let T be a bounded linear operator acting on a complex Hilbert space
H, having one dimensional self-commutator:

[T ∗, T ] = ξ ⊗ ξ.

(In some respect, this is the class of operators closest to the normal op-
erators.) We call T pure if there is no normal operator which is a direct
orthogonal summand of T . Let z, w be points in the resolvent set of T .
The following multiplicative commutator plays an important role in the
parametrization of the operators T .

C(z, w) = (T − z)∗−1(T − w)(T − z)∗(T − w)−1

= I − (T − z)∗−1[T ∗, T ](T − w)−1

= 1 − 〈(T − z)∗−1ξ, (T − w)∗−1ξ〉.
A generalization of Krein’s determinantal formula from the perturbation

theory of self-adjoint operators (formulated for the first time in [17] )
asserts that there is a measurable function g : C −→ [0, 1], supported by
the spectrum of T and characterized by the following identity:

det C(z, w) = exp(
−1
π

∫
C

g(ζ)dA(ζ)
(ζ − z)(ζ − w)

),(1)

which is valid for any points z, w in the resolvent set of T .
The function g is called the principal function of the operator T and

it encodes the spectral behaviour of the pure part of T . In fact there
is a bijection between pure Hilbert space operators with rank one non-
negative self-commutator and the set of elements g ∈ L1

comp(C) satisfy-
ing 0 ≤ g ≤ 1, a.e. We mention that there are at least three different
ways of constructing the operator T from the principal function g. (See
[8,15,18,23]).

Based on the equivalence between the above class of operators and their
principal functions we can easily approach the L-problem of moments. Let
us consider the moments of a virtual principal function:

amn =
∫

C

zmz ng(z)dA(z), m, n ∈ N.(2)
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Then the exponential transform:

1 − exp(
−1
π

∞∑
m,n=0

amnXm+1Y n+1) =
∞∑

m,n=0

bmnXm+1Y n+1

produces from the moments amn the double sequence:

bmn = 〈T ∗nξ, T ∗mξ〉.

Define further the kernel K : N2 × N2 −→ C using the following rules
inductively:

a) K(0, 0;m, n) = K(0, m; 0, n) = bmn,

b) K(m, n; p, q) = K(p, q;m, n),
c) K(m + 1, n; p, q) = K(m, n; p, q + 1) +

∑m
r=1 K(m, n; r − 1, 0)bp−r,q.

Then, similarly to the one dimensional case treated by Akhiezer and
Krein [1], one proves that the problem (2) has a solution g with support
in the ball centered at the origin with radius r if and only if the kernels
K(m, n; p, q) and r2K(m, n; p, q) − K(m + 1, n; p + 1, q) are non-negative
definite. (See [19] for details).

By using properties of the principal function one proves that the solution
g of the problem (2) is integer valued whenever there is a polynomial P
in two variables with the property that P (T ∗, T )ξ = 0. Here we arrange
by convention all powers of T ∗ to be to the left of the powers of T . In
particular, if there is an integer N with the property that det(bmn)N

m,n=0 =
0, then the vectors ξ, T ∗ξ, . . . , T ∗Nξ are linearly dependent and hence g is
the characteristic function of a compact set F ⊂ C.

According to the identity (1), if we start with g equal to the charac-
teristic function of a compact set F , for large values of |z| we obtain the
relation:

E(F )(z) = 1 − ‖(T − z)∗−1ξ‖2.

Therefore, assuming that E(F )(z) = q(z, z)/|p(z)|2 , where q, p are poly-
nomials, one easily proves that p(T )∗ξ = 0.

These considerations explain Theorem 3 in the introduction.
We end this section by recalling that the identity (1) was extended in [7]

and [8] over the whole complex plane, in a weak sense. In the same papers
a series of remarkable properties of the non-negative kernel detC(z, w)
were established.
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3. The geometry of finitely determined domains

In view of Theorem 3, it is equivalent to consider either a compact set
F which has a degenerated sequence of moments, or a pure operator T
with rank one self commutator [T ∗, T ] = ξ ⊗ ξ, subject to the condition
p(T )∗ξ = 0, where p is a polynomial.

In this case the function E(F )(z) is rational in z and z in a neighbour-
hood of infinity. By taking the logarithmic derivative of E(F )(z) in z one
finds that the function

∫
F

(ζ − z)−2(ζ − z)dA(ζ) is also rational. A simple
argument shows then that the set F is semi-algebraic. (See [20], Lemma
5.2 for details). Thus, one can assume without loss of generality that F
is the closure of a bounded open set with real algebraic boundary F = Ω.
Let Ωj , 1 ≤ j ≤ r, be the connected components of Ω. Since

E(Ω)(z) =
r∏

j=1

E(Ωj)(z),

and E(Ωj)(z) < 1 for z ∈ C\Ω, one finds that each of the factors E(Ωj)(z)
is rational at infinity, with |p(z)|2 as denominator. This proves that if the
set Ω has degenerated moments, then each connected component Ωj has
the same property.

Let Ω be a bounded planar domain with a degenerated sequence of
moments. Let T be the associated operator with rank one self-commutator
and let p be a polynomial with the property p(T )∗[T ∗, T ] = 0 . The identity
(1) gives in particular:

f(z) =
∫

∂Ω

p(ζ)ζdζ

ζ − z

=
∫

∂Ω

(p(ζ) − p(z))ζdζ

ζ − z
+ p(z)〈(T − z)∗−1ξ, ξ〉.

Hence the function f(z) coincides with a polynomial function P (z) in
the complement of Ω. Consequently, the Sohotskii-Plemelj-Privalov for-
mula shows that the function p(z)z − P (z) extends analytically from ∂Ω
to Ω. This is the main observation which proves half of Theorem 1.

If z extends meromorphically from ∂Ω to Ω, then one evaluates directly
by using the Cauchy formula the kernel E(Ω)(z) and one proves that it
is rational at infinity, with denominator |p(z)|2. This part of the proof of
Theorem 1 relies also on general properties of the kernel E(Ω) as derived
from the spectral theory of the operator T .

Theorem 2 is a consequence of Theorem 1 and the symmetry principle
for analytic functions. It is worth mentioning that for a simply connected
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bounded domain Ω, the function E(Ω) is rational at infinity (without any
assumption on the denominator) if and only if the domain Ω carries a
degenerated sequence of moments.

Examples. The simplest example of a bounded domain Ω as above is a
disk Da(r) centered at a and of radius r. In that case one easily computes
the associated kernel:

E(Da(r))(z) = 1 − r2

|z − a|2 , |z − a| > r.

The corresponding operator is in that case T = r(S − a), where S denotes
the unilateral shift of multiplicity one. We note that only in that case T
is a subnormal operator. Thus the disk Da(r) is determined by four of its
moments:

a00 = πr2

a01 = a10 = πar2

a11 = π(
r4

2
+ |a|2r2)

Similarly, a disjoint union of N open disks is determined by the moments
amn, 0 ≤ m, n ≤ N .

It is interesting to remark that the union of two non-disjoint disks (not
any contained one in the other) is not finitely determined by its moments.
Indeed, in that case the function z extends to different meromorphic func-
tions, from different portions of the boundary. This argument also shows
that a polygon with straight sides is never finitely determined by its mo-
ments.

On the other hand, according to Theorem 2, the Joukovski profile (of an
airplane wing) is determined by finitely many of its moments. To be more
specific, the image J by the map z+z−1 of a disk , not containing the origin
in its closure, is determined by the moments amn, 0 ≤ m, n ≤ 2. Other
simple examples of similar domains can be constructed using Theorem 2.

Several similar examples are contained in [9]. We point out that there
is no example of a multiply connected domain which fulfills the condition
in Theorem 1. All results about these domains are qualitative and not
constructive, cf. [11].

By comparing the results in this note with the classical theory in one
variable we expect that the classification of the degenerated moment se-
quences given in Theorem 1 will enlighten the truncated L-problem of
moments (2). First it should be pointed out that, contrary to the classical
situation, one can prove that in two variables the power moment problem
and the L-problem are no more in a natural correspondence. However,



396 MIHAI PUTINAR

the finite determinacy in the truncated L-problem seems to have further
analytical and geometrical consequences. Some facts in this direction, as
well as the complete proofs of the above results, will appear in a separate
paper.

4. Quadrature domains

Let Ω be a bounded domain with piece-wise smooth boundary in the
complex plane. We call Ω a quadrature domain if there is a distribution u
supported by finitely many points of Ω, with the property that:

∫
Ω

f(z)dA(z) = u(f),(3)

for any analytic and Lebesgue integrable function f in Ω.
It was Phillip Davis (cf. [9] and the references there) who has investi-

gated first these domains, from the point of view of approximation theory
and the theory of the Schwarz function. Later, Aharonov and Shapiro [1]
have rediscovered these domains in connection with an inverse problem
in potential theory. Afterwards, this subject has flourished in several di-
rections. The recent monograph [21] contains many remarks and updated
references related to quadrature domains.

The contents of this note adds a new interpretation, based on Hilbert
space operators, to the theory of quadrature domains. Next we confine
ourselves to explain formula (3) from the point of view of operator theory.

Let T be a bounded linear operator with rank one self-commutator
[T ∗, T ] = ξ⊗ ξ , acting on the Hilbert space H and with the property that
the space K generated by the vectors ξ, T ∗ξ, T ∗2ξ, . . . is finite dimensional.
Then we know from Theorem 3 that the spectrum of T is the closure of a
domain Ω, characterized by the analytic condition in Theorem 1. By using
the trace formula derived from the identity (1) we obtain:

1
π

∫
Ω

f(z)dA(z) = Tr[T ∗, T f(T ∗)] = Tr[T ∗, T ]f(T ∗)

= 〈f(T ∗)ξ, ξ〉 = 〈f(T ∗|K)ξ, ξ〉

where f is an antianalytic function in a neighbourhood of Ω. It is obvious
that the last expression above represents a distribution with finite support
in Ω, applied to the analytic function f(z). In order to extend this formula
to any integrable analytic function in Ω one can rely on the functional
model of T developed in [15] Chapter XI.
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This matricial representation of the quadrature formula (3) has a series
of applications, both to the theory of quadrature domains and to the theory
of the principal function. We will resume these topics in a separate paper.
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