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THE SMOOTH INVARIANCE OF THE KODAIRA

DIMENSION OF A COMPLEX SURFACE

Robert Friedman and Zhenbo Qin

Introduction

The purpose of this note is to announce the following result:

Theorem 1. Let X be a complex surface of general type. Then X is not
diffeomorphic to a rational surface.

Combining Theorem 1 with the results in [5] gives:

Corollary 2. If X is a complex surface diffeomorphic to a rational sur-
face, then X is a rational surface. Thus, up to deformation equivalence,
there is a unique complex structure on the smooth 4-manifolds S2 ×S2 and
CP 2#nCP

2
.

On the other hand, using the results of [7], we obtain:

Corollary 3. If X1 and X2 are two diffeomorphic complex surfaces, then

κ(X1) = κ(X2),

where κ(Xi) denotes the Kodaira dimension of Xi.

Corollary 3 settles a conjecture due to Van de Ven [21] (see also [6]).
Let us give a brief history of results along these lines. Yau [23] showed

that every complex surface homotopy equivalent to CP 2 is in fact CP 2.
In [3], Donaldson used gauge theory to show that a certain simply con-
nected elliptic surface known to be homeomorphic to the blowup of CP 2 at
nine points was not in fact diffeomorphic to a rational surface. In [5] this
result was generalized to show that no nonrational elliptic surface could be
diffeomorphic to a rational surface. (The case of minimal elliptic surfaces
is also considered in [15]). The methods developed in [5] also characterize
the possible self-diffeomorphisms of rational surfaces. It follows from the
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work of Kotschick, Okonek-Van de Ven, and Pidstrigach [9, 11, 16, 17]
that no minimal surface of general type oriented homotopy equivalent to
CP 2#8CP

2
can be diffeomorphic to a rational surface, and Kotschick [11]

has announced a similar result for the blowups of such a surface. According
to [19, 20], surfaces of general type whose second Betti number are at most
10 and whose algebraic minimal models do not contain certain smooth ra-
tional curves can not be diffeomorphic to rational surfaces; in particular,
this result handles the case where X is oriented homotopy equivalent to
S2 × S2 or CP 2#CP

2
. At the same time, building on ideas of Donaldson,

Pidstrigach and Tyurin [18], using Spin polynomial invariants, showed that
no minimal surface of general type is diffeomorphic to a rational surface.
We shall outline a new proof of the theorem of Pidstrigach-Tyurin below,
which will give extra information on the possible embedded 2-spheres in X.

1. Preliminaries on SO(3)-invariants

Let X be a smooth simply connected 4-manifold with b+
2 (X) = 1, and

fix an SO(3)-bundle P over X with w2(P ) = w and p1(P ) = p. Then, a
wall of type (w, p) for X is a class ζ ∈ H2(X; Z) such that ζ ≡ w mod 2
and p ≤ ζ2 < 0. Let

ΩX = {x ∈ H2(X; R) : x2 > 0}

be the positive cone of X, and let W ζ = ΩX ∩ (ζ)⊥. A chamber of type
(w, p) for X is a connected component of the set

ΩX −
⋃

{W ζ : ζ is a wall of type (w, p) }.

For a chamber C of type (w, p) on X, let γw,p(X; C) ∈ Symd(p)(H2(X; Z))
be the Donaldson polynomial invariant associated to the SO(3)-bundle P
and the chamber C defined in [10, 12], where d(p) = −p− 3. When X is an
algebraic surface and L is an ample divisor on X, let c1 be a divisor whose
mod two reduction is w and let c2 be the integer defined by p = c2

1−4c2. If
ML(c1, c2) denotes the moduli space of L-stable rank-2 holomorphic vector
bundles V over X with c1(V ) = c1 and c2(V ) = c2, then γw,p(X; C) can
be computed from ML(c1, c2) in certain circumstances [4, 7]. Our first
result states that, under certain nonvanishing hypotheses for γw,p(X; C),
certain classes in H2(X; Z) cannot be represented by smoothly embedded
2-spheres.

Theorem 4. Let e ∈ H2(X; Z) be the cohomology class of a smoothly
embedded 2-sphere in X with e2 = −1, and let (w · e) be odd. Suppose that



THE SMOOTH INVARIANCE OF KODAIRA DIMENSION 371

M ∈ H2(X; Z) satisfies M2 > 0 and M · e = 0. Then, for every chamber C
of type (w, p) whose closure contains M ,

γw,p(X; C)(Md) = 0.

In case e is not a wall of the chamber C, which is the only case necessary
for this paper, Theorem 4 is due to Kotschick [10].

We shall play Theorem 4 off against the following nonvanishing theorem:
let M be a divisor on the algebraic surface X such that, for all k � 0, the
linear system |kM | has no base points and defines a birational morphism
ϕ : X → X̄ to a normal surface X̄. We assume further that X is minimal,
or more generally that there are no exceptional curves E of the first kind
contracted by ϕ, i.e. such that M · E = 0.

Theorem 5. Let w ∈ H2(X; Z/2Z) be the mod two reduction of [KX ].
Suppose that the connected components of the set of one-dimensional fibers
of ϕ are either irreducible curves or the minimal resolutions of rational or
minimally elliptic singularities. Let C be a chamber of type (w, p) containing
M in its closure which contains the first Chern class of an ample line
bundle. Then for all p � 0, if d = −p − 3, then

γw,p(X; C)(Md) > 0.

Theorem 5 is a generalization of Donaldson’s nonvanishing theorem for
ample divisors on algebraic surfaces with positive geometric genus [2, 4,
7 Chapter 5], and the proof uses very similar ideas together with work of
Jun Li [13, 14]. We note that the statement and proof of Theorems 4 and 5
carries over to the case where pg(X) > 0 as well, where we can drop the
chamber C from the notation.

Combining Theorem 4 and Theorem 5, we see that, if there is a class
E of square −1 in H2(X; Z) such that M · E = 0, where M satisfies the
hypotheses of Theorem 5, then E cannot be represented by an embedded
2-sphere. In the next section, given a class E with E2 = −1 and E ·KX =
1, we shall explain how to find divisors M on minimal simply connected
surfaces X of general type which satisfy the hypotheses of Theorem 5 and
such that M · E = 0.

2. Embedded spheres in minimal surfaces of general type

Our main result concerning minimal surfaces is the following base point
free theorem:
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Theorem 6. Let X be a minimal simply connected surface of general type.
Let E be a (1, 1)-class in H2(X; Z) such that E2 = −1 and E · KX = 1.
Then there exists an orientation-preserving diffeomorphism ψ : X → X and
a divisor M on X such that

(i) M · ψ∗E = 0;
(ii) |kM | is base-point-free for all k � 0 and defines a birational mor-

phism ϕ : X → X̄ which satisfies the hypotheses of Theorem 5.

Note that, if pg(X) = 0, then every class is a (1, 1)-class. If pg(X) >
0 and E is a class of square −1 in H2(X; Z) which is represented by a
smoothly embedded 2-sphere, then it follows from a result of Brussee [1]
that E is a (1, 1)-class.

Given Theorem 6, let us show how to deduce Theorem 1 for minimal
surfaces X of the same homotopy type as a rational surface. By applying
Theorems 4 and 5 we conclude that the class ψ∗E cannot be represented
by a smoothly embedded 2-sphere. Likewise E itself cannot be represented
by a smoothly embedded 2-sphere. Now there is an oriented homotopy
equivalence α from X to a del Pezzo surface Y . Using a result of Kneser [8],
we may further assume that α∗[KY ] = −[KX ]. If X is homotopy equivalent
to S2 × S2, we are done by the results of [19]. If Y �= S2 × S2, then there
exist classes E′ on Y satisfying (E′)2 = E′ · KY = −1 (the classes of
exceptional curves). Setting E = α∗E′, we see that there exist classes E
satisfying the hypotheses of Theorem 6 on X. Moreover, it is a consequence
of a theorem of Wall [22] that, if X is diffeomorphic to a rational surface,
then these classes are represented by embedded 2-spheres, a contradiction.
Thus X cannot be diffeomorphic to a rational surface.

The above argument should be contrasted with the method of [19, 20]
to show that X is not diffeomorphic to a rational surface. There it is shown
that, for an appropriate choice of a basis {E0, . . . , En} for H2(X; Z), with
E2

0 = 1 and E2
i = −1 for i > 0 and for w the mod 2 reduction of Ei, the

polynomial invariant is not zero for a suitable chamber. On the other hand,
for a del Pezzo surface Y and for the corresponding class and chamber, the
invariant is zero, as can be seen by an easy calculation with stable bundles.
Roughly speaking, the underlying idea is that, if the polynomial invariant
is nonzero, then the class E0 −Ei of square zero cannot be represented by
a smoothly embedded 2-sphere.

Let us give a very brief idea of the proof of Theorem 6. First suppose that
the divisor M = KX + E is nef. Note that M ·E = 0. Consider the curves
C such that M · C = 0 and let X ′ be the surface obtained by contracting
these curves (which have a negative definite intersection matrix, since M
has positive square). If the collection of these curves is the resolution



THE SMOOTH INVARIANCE OF KODAIRA DIMENSION 373

of a rational singularity, then M induces an ample divisor on X ′ by the
Nakai-Moishezon criterion and so M is eventually base point free. Thus
M is a divisor to which we can apply Theorem 5. If there is a nonrational
singular point on X ′, then we show that there is an effective rational linear
combination

∑
i aiCi of the curves contracted by M such that the Q-divisor

KX +
∑

i aiCi is orthogonal to E, nef and big and eventually base point
free, and such that the image of the resulting contraction has only rational
and minimally elliptic singularities. Thus we can again apply Theorem 5.
Finally, there is the case where M is not nef. In this case, we claim that
after modifying E by a suitable orientation-preserving self-diffeomorphism
ψ of X, we can assume that M ·C ≥ 0 for all smooth rational curves C on
X of self-intersection −2. Indeed, the reflections about the classes of such
curves are realized by orientation-preserving self-diffeomorphisms of X, and
it is well-known that after applying an element in the group generated by
these reflections we can arrange that E ·C ≥ 0 for all such C. Thus a curve
C satisfying M · C < 0 either has pa(C) ≥ 1 or pa(C) = 0 and C2 ≤ −3
(since X is minimal and by the above construction). In either case it is
easy to find a Q-divisor of the form KX + λC with λ > 0 which is nef, big,
eventually base point free, and orthogonal to E, and we are done in this
case as well.

The arguments used to prove Theorem 6 together with the known results
for S2 × S2 also show the following:

Theorem 7. Let X be a minimal surface of general type oriented homotopy
equivalent to a rational surface, and let KX be the canonical class of X.
Then there exist

(i) a class w ∈ H2(X; Z/2Z);
(ii) an integer p ∈ Z;

(iii) a chamber C for X of type (w, p), and
(iv) a homotopy equivalence α : Y → X, where Y is a suitable blowup

of CP 2 at distinct points, satisfying [KY ] = −α∗[KX ],

such that
α∗γw,p(X; C) �= ±γα∗w,p(Y, α∗C).

3. Reduction to the minimal case

To complete the proof of Theorem 1, we must handle the case of a
nonminimal surface X. We begin by recalling some terminology and results
from [5]. A good generic rational surface Y is a rational surface such that
KY = −C where C is a smooth curve, and such that there does not exist
a smooth rational curve on Y with self-intersection −2. Every rational
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surface is diffeomorphic to a good generic rational surface. If Y is a good
generic rational surface with b−2 (Y ) ≤ 8, then Y is a del Pezzo surface.

Now suppose that some blow up X̃ of a minimal surface of general
type is diffeomorphic to a rational surface Ỹ , which we may assume to
be a good generic rational surface. Then the exceptional classes in X̃
yield smoothly embedded 2-spheres of self-intersection −1 in Ỹ . Thus
the reflection about the class of each such 2-sphere is realized by a self-
diffeomorphism of Ỹ . Now the possible automorphisms of H2(Ỹ ; Z) real-
ized by self-diffeomorphisms of Ỹ are described in [5] using the chamber
structure on H2(Ỹ ; Z) arising from walls of square −1. With this descrip-
tion, and the general theory developed in [5], we can show the following:

Theorem 8. Let X be a minimal surface of general type and let X̃ → X be
a blowup of X at r distinct points. Let E′

1, . . . , E
′
r be the homology classes

of the exceptional curves on X̃. Let ψ0 : X̃ → Ỹ be a diffeomorphism,
where Ỹ is a good generic rational surface. Then there exist a diffeomor-
phism ψ : X̃ → Ỹ and a good generic rational surface Y with the following
properties:

(i) The surface Ỹ is the blowup of Y at r distinct points.
(ii) If f1, . . . , fr are the classes of the exceptional curves in H2(Ỹ ; Z),

then possibly after renumbering ψ∗(fi) = E′
i for all i.

(iii) Identifying H2(X) with a subgroup of H2(X̃) and H2(Y ) with a sub-
group of H2(Ỹ ) in the obvious way, we have ψ∗(H2(Y )) = H2(X).

Moreover, for every choice of an isometry τ from H2(Y ) to H2(X), there
exists a choice of a diffeomorphism ψ satisfying (i)–(iii) above and such
that ψ∗|H2(Y ) = τ .

In particular, if X̃ is a surface of general type diffeomorphic to a rational
surface Ỹ , we can choose the diffeomorphism so as to line up the homology
classes of the exceptional curves. Now we have the following “easy” blow up
formula:

Lemma 9. Let X#CP
2

be a blowup of X, and identify H2(X; Z) with a
subspace of H2(X#CP

2
; Z) in the natural way. Given w ∈ H2(X; Z/2Z),

let C̃ be a chamber of type (w, p) for X#CP
2

containing the chamber C in
its closure. Then

γw,p(X#CP
2
; C̃)|H2(X; Z) = ±γw,p(X; C).

Combining Theorem 8 and Lemma 9, it is easy to see that we can arrange
a contradiction to Theorem 7.
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One should interpret Theorem 8 as follows: if we can distinguish the
diffeomorphism type of minimal surfaces X from rational surfaces by an
invariant which satisfies an “easy” blow up formula, then we can also prove
that nonminimal surfaces of general type cannot be diffeomorphic to ratio-
nal surfaces. In particular, using an “easy” blow up formula for the Spin
polynomials, we could give a different proof of Theorem 1 based on the
results of Pidstrigach-Tyurin. However, one goal of this research has been
to find an independent proof of the theorem of Pidstrigach-Tyurin using
only the SO(3)-invariants. Aside from the desirability of a different proof,
our method also gives some new information on the possible smoothly em-
bedded 2-spheres in a simply connected surface of general type. Indeed the
arguments outlined above prove the following:

Theorem 10. Let X be a minimal simply connected surface of general
type. Let E ∈ H2(X; Z) satisfy E2 = −1 and E·KX = 1. Let X̃ be a blowup
of X, and view H2(X; Z) as included in H2(X̃; Z) in the natural way. Then
the class E ∈ H2(X̃; Z) is not represented by a smoothly embedded 2-sphere.
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