
Mathematical Research Letters 1, 345–357 (1994)

THETA FUNCTIONS FOR SL (n) VERSUS GL (n)

Ron Donagi and Loring W. Tu

1. Introduction

Over a smooth complex projective curve C of genus g one may con-
sider two types of moduli spaces of vector bundles, M := M(n, d), the
moduli space of semistable bundles of rank n and degree d on C, and
SM := SM(n, L), the moduli space of those bundles whose determinant
is isomorphic to a fixed line bundle L on C. We call the former a full
moduli space and the latter a fixed-determinant moduli space. Since the
spaces SM(n, L) are all isomorphic as L varies in Picd(C), we also write
SM(n, d) to denote any one of them.

On both moduli spaces there are well-defined theta bundles, as we recall
in Section 2. While the theta bundle θ on SM is uniquely defined, the
theta bundles θF on M depend on the choice of complementary vector
bundles F of minimal rank over C. For any positive integer k, sections
of θk

F generalize the classical theta functions of level k on the Jacobian
of a curve, and so we call sections of θk over SM and θk

F over M theta
functions of level k for SL(n) and GL(n) respectively.

Our goal is to study the relationship between these two spaces of theta
functions. We prove a simple formula relating their dimensions, and then
formulate a conjectural duality.

Theorem 1. If h = gcd(n, d) is the greatest common divisor of n and d,
and L ∈ Picd(C), then

dimH0(SM(n, L), θk) · kg = dimH0(M(n, d), θk
F ) · hg.

In the case k = 1, d = 0, both sides are computed explicitly in [BNR].
This case of our result then shows that the two computations are really
equivalent to each other. More generally, the celebrated Verlinde formulas
([BL], [BS], [Bo], [F], [S], [V]) evaluate the left-hand side, so our theorem
gives the dimension of the space of GL(n) theta functions. A similar
argument should relate the Verlinde number for any reductive group to
that of its semisimple part. [Added in proof: This has now been done by
T. Pantev, cf. [P].]
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In [Li, p. 547] there is a conjecture on the dimension of the space of
first-order GL(n) theta functions. Our Theorem 1, together with the rank
2, degree 1, and level k = 1 case of the Verlinde formula ([Be], [La], [S]),
disproves this conjecture.

Theorem 1 is consistent with and therefore lends credence to another,
so far conjectural, relationship between these two types of theta functions.
To explain this, start with integers n̄, d̄, h, k such that n̄, h, k are positive
and gcd(n̄, d̄) = 1. Let F ∈ M(n̄, d̄) and write

SM1 = SM(hn̄, (detF )h) and M2 = M(kn̄, k(n̄(g − 1) − d̄)).

The tensor product map τ sends SM1 ×M2 to M(hkn̄2, hkn̄2(g − 1)).

Conjecture 2. The tensor product map induces a natural duality between
H0(SM1, θ

k) and H0(M2, θ
h
F ).

This conjecture may be yet another instance where the physics has
gone well ahead of the mathematics. At least in the special case of degree
zero (that is, n̄ = 1, d̄ = 0), some variants of this conjecture seem to
be folklore in Conformal Field Theory, cf. [NS] for a physics discussion,
and the references listed there for some representation-theoretic results.
(We thank A. Beauville for this reference.) We have not been able to
find any references to the general situation, nor a mathematical proof
even in the special case. It is possible that the physics results could be
translated into a mathematical argument, as has been done successfully
for the Verlinde conjectures ([BL], [F]), but we have not attempted this.
We content ourselves in Section 6 with the precise statement of the general
conjecture, followed by a list of the available algebro-geometric evidence
for it.

We benefited greatly from conversations with Rob Lazarsfeld on the
subject of Theorem 1, with Alexis Kouvidakis on the proof of Proposition
5, and with Raoul Bott and Andras Szenes on special cases of the theorem
and the conjecture. We thank them, as well as Ludmil Katzarkov and
Tony Pantev, for their help.

Notation and Conventions.

h0( ) dimH0( )
Jd Picd(C), i.e. the set of isomorphism classes of

line bundles of degree d on C
J or J0 Pic0(C)
L1 � L2 π∗

1L1 ⊗ π∗
2L2 if Li is a line bundle on Xi and

πi : X1 × X2 → Xi is the i-th projection
ShC the hth symmetric product of C
Tn the group of n-torsion bundles on C
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2. Theta bundles

We recall here the definitions of the theta bundles on a fixed-determinant
moduli space and on a full moduli space. Our definitions are slightly dif-
ferent from but equivalent to those in [DN].

For L ∈ Picd(C), the Picard group of SM := SM(n, L) is Z and the
theta bundle θ on SM is the positive generator of Pic(SM).

When n and d are such that χ(E) = 0 for E ∈ M(n, d), i.e., when
d = (g − 1)n, there is a natural divisor Θ ⊂ M(n, n(g − 1)):

Θ = closure of {E stable in M(n, n(g − 1)) | h0(E) �= 0}.
The theta bundle θ over M(n, n(g − 1)) is the line bundle corresponding
to this divisor.

We say that a semistable bundle F is complementary to another bundle
E if χ(E ⊗ F ) = 0. We also say that F is complementary to M(n, d) if
χ(E ⊗ F ) = 0 for any E ∈ M(n, d). It follows easily from the Riemann-
Roch theorem that if E ∈ M(n, d), h = gcd(n, d), n = hn̄, and d = hd̄,
then F has rank nF and degree dF , where

nF = kn̄ and dF = k(n̄(g − 1) − d̄)

for some positive integer k.
If F is complementary to M(n, d), let

τF : M(n, d) → M(nnF , nnF (g − 1))

be the tensor product map

E �→ E ⊗ F.

Pulling back the theta bundle θ from M(nnF , nnF (g − 1)) via τF gives
a line bundle θF := τ∗

F θ over M(n, d). (This bundle may or may not
correspond to a divisor in M(n, d).) Let det : M(n, d) → Jd(C) be the
determinant map. When rkF is the minimal possible: rkF = n̄ = n/h,
then θF is called a theta bundle over M(n, d); otherwise, it is a multiple
of a theta bundle. Indeed, we extract from [DN] the formula:

Proposition 3. Let F and F0 be two bundles complementary to M(n, d).
If rkF = a rkF0, then

θF � θ⊗a
F0

⊗ det ∗(detF ⊗ (detF0)−a),

where we employ the usual identification of Pic0(C) with Pic0(J0).

In particular, θF depends only on rkF and detF . If θF is a theta bundle
on M(n, d), then for any L ∈ Picd(C), θF restricts to the theta bundle on
SM(n, L).
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3. A Galois covering

Let τ : Y → X be a covering of varieties, by which we mean a finite
étale morphism. A deck transformation of the covering is an automorphism
φ : Y → Y that commutes with τ . The covering is said to be Galois if the
group of deck transformations acts transitively (hence simply transitively)
on a general fiber of the covering.

Denote by J = Pic0(C) the group of isomorphism classes of line bundles
of degree 0 on the curve C, and G = Tn the subgroup of torsion points of
order n. Fix L ∈ Picd(C) and let SM = SM(n, L) and M = M(n, d).
Recall that the tensor product map

τ : SM × J → M
(E, M) �→ E ⊗ M

gives an n2g-sheeted étale map ([TT], Prop. 8). The group G = Tn acts
on SM × J by

N.(E, M) = (E ⊗ N−1, N ⊗ M).

It is easy to see that G is the group of deck transformations of the covering
τ and that it acts transitively on every fiber. Therefore, τ : SM ×J → M
is a Galois covering.

Proposition 4. If τ : Y → X is a Galois covering with finite abelian
Galois group G, then τ∗OY is a vector bundle on X which decomposes
into a direct sum of line bundles indexed by the characters of G:

τ∗OY =
∑

λ∈Ĝ

Lλ,

where Ĝ is the character group of G.

Proof. Write O = OY . The fiber of τ∗O at a point x ∈ X is naturally a
complex vector space with basis τ−1(x). Hence, τ∗O is a vector bundle
over X. The action of G on τ−1(x) induces a representation of G on
(τ∗O)(x) equivalent to the regular representation. Because G is a finite
abelian group, this representation of G decomposes into a direct sum of
one-dimensional representations indexed by the characters of G:

(τ∗O)(x) =
∑

λ∈Ĝ

Lλ(x).

Thus, for every λ ∈ Ĝ, we obtain a line bundle Lλ on X such such τ∗O =∑
λ Lλ.
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4. Pullbacks

We consider the tensor product map

τ : SM(n1, L1) ×M(n2, d2) → M(n1n2, n1d2 + n2d1)
(E1, E2) �→ E1 ⊗ E2,

where d1 = deg L1. For simplicity, in this section we write SM1 =
SM(n1, L1), M2 = M(n2, d2), and M12 = M(n1n2, n1d2 + n2d1).

Proposition 5. Let F = F12 be a bundle on C complementary to M12.
Then

τ∗θF � θc � θE1⊗F

for any E1 ∈ SM(n1, L1), where

c :=
n2 rkF

rkF1
=

n2 rkF

n1/ gcd(n1, d1)

and F1 is a minimal complementary bundle to E1.

Proof. For E2 ∈ M(n2, d2), let

τE2 : SM1 → M12

be tensorization with E2. Then

(τ∗θF )|SM1×{E2} = τ∗
E2

θF = τ∗
E2

τ∗
F θ = τ∗

E2⊗F θ = θc,

where by Proposition 3

c = rk(E2 ⊗ F )/ rkF1

=
n2 rkF

n1/ gcd(n1, d1)
.

Similarly,

(τ∗θF )|{E1}×M2 = τ∗
E1

θF = τ∗
E1

τ∗
F θ

= τ∗
E1⊗F θ = θE1⊗F .

Note that the bundle θE1⊗F depends only on rk(E1 ⊗ F ) = n1 rkF and
det(E1 ⊗ F ) = Lrk F

1 ⊗ (detF )n1 . Hence, both (τ∗θF )|SM1×{E2} and
(τ∗θF )|{E1}×M2 are independent of E1 and E2. By the seesaw theorem,

τ∗θF � θc � θE1⊗F .
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Corollary 6. Let L ∈ Picd(C) and

τ : SM(n, L) × J0 → M(n, d)

be the tensor product map. Suppose F is a minimal complementary bundle
to M(n, d). Choose N ∈ Picg−1(C) to be a line bundle such that Nn =
L ⊗ (detF )h, where h = gcd(n, d). Then

τ∗θF = θ � θ
n2/h
N .

Proof. Apply the Proposition with rkF = n/h and n1 = n, d1 = d, n2 =
1, d2 = 0. Then c = 1. By Proposition 3,

θE1⊗F = θ
n2/h
N ⊗ det ∗(det(E1 ⊗ F ) ⊗ N−n2/h)

= θ
n2/h
N .

5. Proof of Theorem 1

We apply the Leray spectral sequence to compute the cohomology of
τ∗θk

F on the total space of the covering τ : SM × J → M of Section
3. Recall that SM = SM(n, d), J = J0, and M = M(n, d). Because
the fibers of τ are 0-dimensional, the spectral sequence degenerates at the
E2-term and we have

H0(SM × J, τ∗θk
F ) = H0(M, τ∗τ∗θk

F ).(1)

By Cor. 6 and the Künneth formula, the left-hand side of (1) is

H0(SM × J, τ∗θk
F )) = H0(SM × J, θk � θ

kn2/h
N ))

= H0(SM, θk) ⊗ H0(J, θ
kn2/h
N ).

By the Riemann-Roch theorem for an abelian variety,

h0(J, θ
kn2/h
N ) = (kn2/h)g.

So the left-hand side of (1) has dimension

h0(SM, θk) · (kn2/h)g.(2)
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Next we look at the right-hand side of (1). By the projection formula
and Prop. 4,

τ∗τ∗θk
F = θk

F ⊗ τ∗O
= θk

F ⊗
∑

λ∈Ĝ

Lλ

=
∑

λ∈Ĝ

θk
F ⊗ Lλ.

Our goal now is to show that for any character λ ∈ Ĝ,

H0(M, θk
F ⊗ Lλ) � H0(M, θk

F ).(3)

This will follow from two lemmas.

Lemma 7. The line bundle Lλ on M is the pullback under det : M → Jd

of some line bundle Nλ of degree 0 on Jd := Picd(C).

Lemma 8. For F a vector bundle as above, k a positive integer, and M
a line bundle of degree 0 over C,

H0(M, θk
F⊗M ) � H0(M, θk

F ).

Assuming these two lemmas, let’s prove (3). By Proposition 3,

θF⊗M = θF ⊗ det ∗MnF ;

hence,
θk

F⊗M = θk
F ⊗ det ∗MnF k.

If Lλ = det ∗Nλ, and we choose a root M = N
1/(nF k)
λ , then

θk
F ⊗ Lλ = θk

F ⊗ det ∗Nλ = θk
F⊗M .

Equation (3) then follows from Lemma 8.

Proof of Lemma 7. Define α : SM × J → J to be the projection onto the
second factor, β : M → J to be the composite of det : M → Jd followed
by multiplication by L−1 : Jd → J , and ρ : J → J to be the n-th tensor
power map. Then there is a commutative diagram

SM × J
τ−−−−→ M

α

�
�β

J −−−−→
ρ

J.
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Furthermore, in the map α : SM × J → J we let G = Tn act on J by

N.M = N ⊗ M, M ∈ J,

and in the map β : M → J we let G act trivially on both M and J . Then
all the maps in the commutative diagram above are G-morphisms.

By the push-pull formula ([H], Ch. III, Prop. 9.3, p. 255),

τ∗α∗OJ = β∗ρ∗OJ .

By Proposition 4, ρ∗OJ is a direct sum of line bundles Vλ on J , where
λ ∈ Ĝ. In fact, these Vλ are precisely the n-torsion bundles on J ; in
particular, their degrees are zero. If τL−1 : Jd → J is multiplication by the
line bundle L−1, we set Nλ := τ∗

L−1Vλ. Then

τ∗OSM×J = β∗ ∑

λ∈Ĝ

Vλ

= det ∗τ∗
L−1

∑
Vλ

=
∑

det ∗Nλ.

By Prop. 4, τ∗OSM×J =
∑

Lλ. Since both Lλ and det ∗Nλ are eigen-
bundles of τ∗OSM×J corresponding to the character λ ∈ Ĝ,

Lλ = det ∗Nλ.

Proof of Lemma 8. Tensoring with M ∈ J0(C) gives an automorphism

τM : M → M
E �→ E ⊗ M,

under which
θF⊗M = τ∗

MθF .

Hence,
θk

F⊗M = τ∗
M (θk

F )

and the lemma follows.

Returning now to Eq. (1), its right-hand side is

H0(M, τ∗τ∗θk
F ) =

∑

λ∈Ĝ

H0(M, θk
F ⊗ Lλ)

�
∑

λ∈Ĝ

H0(M, θk
F ), (by (3))

which has dimension
h0(M, θk

F ) · n2g.
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By (2) the left-hand side of Eq. (1) has dimension

h0(SM, θk) · (kn2/h)g.

Equating these two expressions gives

h0(M, θk
F ) = h0(SM, θk) · (k

h
)g.

This completes the proof of Theorem 1.�

6. A conjectural duality

As in the Introduction we start with integers n̄, d̄, h, k such that n̄, h,
k are positive and gcd(n̄, d̄) = 1. Take

n1 = hn̄, d1 = hd̄, n2 = kn̄, d2 = k(n̄(g − 1) − d̄), and L1 ∈ Picd1(C).

The tensor product induces a map

τ : SM(n1, L1) ×M(n2, d2) → M(n1n2, n1n2(g − 1)).

As before, write SM1 = SM(n1, L1), M2 = M(n2, d2), and M12 =
M(n1n2, n1n2(g − 1)). Let F2 = F and F12 = O be minimal complemen-
tary bundles to M2 and M12 respectively.

By the pullback formula (Proposition 5)

τ∗θO = θn2/n̄ � θE1 .

But by Proposition 3,

θE1 = θh
F ⊗ det ∗(L ⊗ (detF )−h).

If L = (detF )h, then θE1 = θh
F and

τ∗θO = θk � θh
F .

By the Künneth formula,

H0(SM1 ×M2, τ
∗θO) = H0(SM1, θ

k) ⊗ H0(M2, θ
h
F ).

In [BNR] it is shown that up to a constant, θO has a unique section s over
M12. Then τ∗s is a section of H0(SM1×M2, τ

∗θO) and therefore induces
a natural map

H0(SM1, θ
k)∨ → H0(M2, θ

h
F ).(4)

We conjecture that this natural map is an isomorphism.
Among the evidence for the duality (4), we cite the following.
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i) (Rank 1 bundles) The results of [BNR] that

H0(SM(n,O), θ)∨ � H0(M(1, g − 1), θn
O)

and
H0(M(n, n(g − 1)), θO) = C,

are special cases of (4), for (n2, d2) = (1, g−1) and (n1, d1) = (1, 0),
respectively.

ii) (Consistency with Theorem 1) Given (n1, d1, k), a triple of
integers, we define h, n̄, d̄ by

h = gcd(n1, d1), n1 = hn̄, d1 = hd̄,

and let n2, d2 be as before:

n2 = kn̄, d2 = k(n̄(g − 1) − d̄).

Assuming n1 and k to be positive, it is easy to check that the
function

(n1, d1, k) �→ (n2, d2, h)

is an involution. Write

v(n, d, k) = h0(M(n, d), θk
F ) and s(n, d, k) = h0(SM(n, d), θk).

Then Theorem 1 assumes the form

v(n1, d1, k) · hg = s(n1, d1, k) · kg.(5)

The duality (4) implies that there is an equality of dimensions

s(n1, d1, k) = v(n2, d2, h).(6)

Because (n1, d1, k) �→ (n2, d2, h) is an involution, it follows that

s(n2, d2, h) = v(n1, d1, k).(7)

Putting (5), (6), and (7) together, we get

v(n2, d2, h)kg = s(n2, d2, h)hg,

which is Theorem 1 again.
iii) (Degree 0 bundles) Consider the moduli space SM(n, 0) of rank

n and degree 0 bundles. In this case,

n1 = n, d1 = 0, h = gcd(n, 0) = n, n2 = k, d2 = k(g − 1).

So the conjectural duality is

H0(SM(n,O), θk)∨ � H0(M(k, k(g − 1)), θn
O).
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Because M(k, k(g − 1)) is isomorphic to M(k, 0) (though non-
canonically), it follows that in the notation of ii)

s(n, 0, k) = v(k, 0, n).

According to R. Bott and A. Szenes, this equality follows from
Verlinde’s formula.

iv) (Elliptic curves) We keep the notation above, specialized to the
case of a curve C of genus g = 1:

n1 = hn̄, d1 = hd̄, n2 = kn̄, d2 = −kd̄.

Set C ′ := Picd̄(C). The map sending a line bundle to its dual
gives an isomorphism C ′ � Pic−d̄(C). If L ∈ Picd̄(C), viewed as
a line bundle on C, we let ' be the corresponding point in C ′,
and OC′(') the associated line bundle of degree 1 on the curve C ′.
There is a natural map

γ : Pichd̄(C) → Pich(C ′)

which sends L := L1⊗· · ·⊗Lh ∈ Pichd̄(C) to L′ := OC′('1 + · · ·+
'h), where Li ∈ Picd̄(C) corresponds to the point 'i ∈ C ′.

From [A] and [T] we see that there are natural identifications

M(hn̄, hd̄) � ShM(n̄, d̄) � Sh Picd̄(C) = ShC ′

and
M(kn̄,−kd̄) � SkM(n̄,−d̄) � Sk Pic−d̄(C) � SkC ′.

Furthermore, there is a commutative diagram

M(hn̄, hd̄) ∼−−−−→ ShC ′

det

�
�α

Pichd̄(C) −−−−→
γ

Pich(C ′).

Since the fiber of the Abel-Jacobi map α : ShC ′ → Pich(C ′) above L′ is the
projective space PH0(C ′, L′), it follows that there is a natural identification

SM(hn̄, L) � PH0(C ′, L′).

Since the theta bundle is the positive generator of SM(hn̄, L), it corre-
sponds to the hyperplane bundle on PH0(C ′, L′). For F ∈ M(n̄, d̄), let



356 RON DONAGI AND LORING W. TU

q ∈ C ′ be the point corresponding to the line bundle Q := detF ∈ Picd̄(C).
Then

H0(SM(hn̄, (detF )h), θk) � H0(PH0(C ′,OC′(hq)),O(k))
= SkH0(C ′,OC′(hq))∨.

Recall that each point q ∈ C ′ determines a divisor Xq on the symmetric
product SkC ′:

Xq := {q + D | D ∈ Sk−1C ′}.
The proof of Theorem 6 in [T] actually shows that if F ∈ M(n̄,−d̄),
then under the identification M(kn̄,−kd̄) � SkC ′, the theta bundle θF

corresponds to the bundle associated to the divisor Xq on SkC ′, where q

is the point corresponding to detF ∈ Picd̄. Therefore, by the calculation
of the cohomology of a symmetric product in [T],

H0(M(kn̄,−kd̄), θh
F ) = H0(SkC ′,O(hXq))

= SkH0(C ′,O(hq)).

So the two spaces H0(SM(hn̄, (detF )h), θk) and H0(M(kn̄,−kd̄), θh
F ) are

naturally dual to each other.
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fibrés semi–stables sur les courbes algébriques, Invent. Math. 97 (1989), 53–94.

[F] G. Faltings, A proof of the Verlinde formula, to appear in Journal of Algebraic
Geometry.

[H] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52,
Springer-Verlag, New York, Heidelberg, Berlin, 1977.

[La] Y. Laszlo, La dimension de l’espace des sections du diviseur thêta généralisé,
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