
Mathematical Research Letters 1, 339–344 (1994)

AVERAGE KISSING NUMBERS
FOR NON-CONGRUENT SPHERE PACKINGS

Greg Kuperberg and Oded Schramm

1. Introduction

Let P be a packing of n (round) balls in R
3. (A packing of round balls,

also known as a sphere packing, is a collection of round balls with disjoint
interiors.) The balls may have different radii. The average kissing number
of P is defined as k(P ) = 2m/n, where m is the number of tangencies
between balls in the packing. Let

k = sup{ k(P ) | P is a finite packing of balls in R
3 }.

Theorem 1.

12.566 ≈ 666/53 ≤ k < 8 + 4
√

3 ≈ 14.928.

(The appearance of the number of the beast in the lower bound is purely
coincidental.)

The supremal average kissing number k is defined in any dimension, as
are kc, the supremal average kissing number for congruent ball packing,
and ks, the maximal kissing number for a single ball surrounded by con-
gruent balls with disjoint interiors. (Clearly, kc ≤ k and kc ≤ ks.) It is
interesting that k is always finite, because a large ball can be surrounded
by many small balls in a non-congruent ball packing. Nevertheless, a sim-
ple argument presented below shows that k ≤ 2ks in every dimension, and
clearly ks is always finite. In two dimensions, an Euler characteristic ar-
gument shows that k ≤ 6, but it is also well-known that ks = kc = 6. One
might therefore conjecture that k = kc always, or at least in dimensions
such as 2, 3, 8, and 24 (and conjecturally several others) in which ks = kc

[1]. Surprisingly, in three dimensions, k > 12 even though ks = kc = 12.
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Remark 1. No packing P achieves the supremum k = k(P ), because if P ′

is a translate of P that meets P in only one point, then k(P ∪P ′) > k(P ).

Let P = (Pv, v ∈ V ) be a packing, where V is some indexing set.
The nerve of P is a combinatorial object that encodes the combinatorics
of the packing. It is the (abstract) graph G = (V, E) on V , where an
edge {u, w} appears in E precisely when Pu and Pw intersect. If P is
a packing of round disks in the plane, then it is easy to see that G is a
planar graph. Conversely, the circle packing theorem [3] states that every
finite planar graph is the nerve of some disk packing in the plane. This
non-trivial theorem has received much attention lately, mostly because of
its surprising relation with complex analysis. (Compare references [7], [5],
and [8].)

Since the nerves of planar disk packings are understood, it is natural to
ask for a description of all graphs that are nerves of ball packings in R

3.
In lieu of a complete characterization, which is probably intractable, The-
orem 1 gives a necessary condition on such graphs: 2|E| < (8 + 4

√
3)|V |.

We wish to thank Gil Kalai for a discussion which led to the question
of estimating k.

2. The upper bound

Theorem 2. If P is a finite ball packing in R
3, then k(P ) < 8 + 4

√
3.

As a warm-up, we will show that k(P ) ≤ 24. Let E be the set of
unordered pairs of balls in P that kiss. Let r(B) be the radius of a ball
B ∈ P . By a famous result ([6], [4]), it is impossible for more than 12
unit balls with disjoint interiors to kiss a unit ball B. If C kisses B and
r(C) > 1 = r(B), then C contains a (unique) unit ball that kisses B.
Thus, in a packing, B cannot kiss more than 12 balls at least as large as
B. Consider a function f : E → P that assigns to {B, C} ∈ E the smaller
of the balls B and C, or either if they are the same size. Since f is at most
12 to 1, |E| ≤ 12|P |. Consequently, k(P ) = 2|E|/|P | ≤ 24.

The proof of Theorem 2 is a refinement of this argument.

Proof. In addition to the above notation, we let E(B) denote the set of
C ∈ P such that {B, C} ∈ E.

Let ρ > 1 be a constant to be determined below. For each ball B ∈ P ,
let S(B) be the concentric spherical shell with radius ρr(B). For each
B, C ∈ P , define

a(B, C) =
area(C ∩ S(B))

area(S(B))
.(1)
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Since the interiors of the balls in P are disjoint, for any B,

1 ≥
∑
C∈P

a(B, C) ≥
∑

C∈E(B)

a(B, C).(2)

Summing over B,

|P | ≥
∑

{B,C}∈E

(a(B, C) + a(C, B)) .(3)

θ

b c

q
S(C)

S(B)

Figure 1. The intersection of B and C with a plane pass-
ing through their centers.

We will obtain a lower bound on a(B, C)+a(C, B) for two kissing balls
B and C. Suppose that B intersects S(C) and C intersects S(B), as shown
in Figure 1. Let b and c be the centers of B and C. Let q be a point on
the relative boundary in S(B) of the spherical disk C ∩ S(B). Clearly,

d(b, c) = r(B) + r(C)
d(b, q) = ρr(B)
d(c, q) = r(C),

where d(x, y) is the distance from x to y. Let θ = ∠cbq be the angular
radius of C ∩ S(B). By the law of cosines,

cos θ =
(r(B) + r(C))2 + (ρr(B))2 − r(C)2

2(r(B) + r(C))ρr(B)
=

r(B) + ρ2r(B) + 2r(C)
2ρ(r(B) + r(C))

.

(4)

Also,

area(C ∩ S(B)) =
1 − cos θ

2
area(S(B)).(5)
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Combining equations (1), (4) and (5),

a(B, C) =
1
2
− r(B) + ρ2r(B) + 2r(C)

4ρ(r(B) + r(C))
.(6)

Switching B and C and adding,

a(B, C) + a(C, B) = 1 − 3 + ρ2

4ρ
.(7)

Isn’t it remarkable that a(B, C) + a(C, B) does not depend on r(B) and
r(C)? We now choose ρ =

√
3 to maximize the right side of equation (7).

Then a(B, C) + a(C, B) = 1 −
√

3
2 , under the assumption that S(B) ∩ C

and S(C) ∩ B are non-empty. If S(B) ∩ C = ∅, a(B, C) = 0, which is
greater than the negative value at the right side of equation (6). As a
result, a(B, C) + a(C, B) ≥ 1 −

√
3

2 in the general case. Applying this

inequality to inequality (3) yields |P | ≥ |E|
(
1 −

√
3

2

)
, which gives

k(P ) = 2|E|/|P | ≤ 8 + 4
√

3.

In conclusion, k ≤ 8 + 4
√

3. By Remark 1, k(P ) < k, establishing Theo-
rem 2.

Remark 2. In fact, k < 8 + 4
√

3. Let B ∈ P . Since each ball C ∈ E(B)
that intersects S(B) must have r(C) ≥ (ρ − 1)r(B)/2, there is a finite
bound for the number of balls C ∈ E(B) such that a(B, C) > 0. Therefore
there is some α < 1 (depending on ρ but not P ) such that

∑
C∈E(B)

a(B, C) ≤ α.

Using this inequality in place of inequality (2) in the above proof would
multiply the upper bound by a factor of α. A good estimate for α would
consequently strengthen Theorem 2.

3. The lower bound

Theorem 3. There exists a sequence of finite packings {Pn} with

lim
n→∞ k(Pn) = 666/53.
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Observe that all questions about nerves of ball packings and aver-
age kissing numbers are invariant under sphere-preserving transformations
such as stereographic projection from the 3-sphere S3 to R

3 and inversion
in a sphere.

There exists a packing D in S3 of 120 congruent spherical balls such
that each ball kisses exactly 12 others [2], or 720 kissing points in total.
The existence of D already implies that k(P ) > 12 for some packing P ,
because by Remark 1, k > k(D) = 12.

The proof of Theorem 3 is a refinement of this construction.

Proof. We give an explicit description of D. Let S3 be the unit 3-sphere
in R

4 and let τ = 1+
√

5
2 be the golden ratio. Choose the centers of the

balls of D to be the points in the orbits of 1
2 (τ, 1, 1/τ, 0), 1

2 (1, 1, 1, 1), and
(1, 0, 0, 0) under change of sign of any coordinate and even permutations
of coordinates. The radius of each ball is 18◦. We will need the following
four properties of D, which can be verified using the explicit description
or by other means: The 12 balls that kiss a given ball have an icosahedral
arrangement with 30 mutual kissing points, the centers of two kissing balls
of D are 36◦ apart, the centers of two next-nearest balls of D are 60◦ apart,
and D is self-antipodal. (If X is a point, set of points, or set of set of points
in S3, the antipode of X is given by negating all coordinates in R

4 and is
denoted −X.)

Let B0 ∈ D be a ball with center b and let P0 = D \ {B0,−B0}. The
packing P0 has 720 − 24 = 696 kissing points and 118 balls. Let R be the
set of 12 balls in D that kiss B0, and let S be the unique sphere centered
at b which contains the 30 kissing points between the balls in R. Let
IS : S3 → S3 be inversion in the sphere S. Observe that S meets the
boundary of each B ∈ R orthogonally in a circle (because, by symmetry,
it is orthogonal to the boundary at each kissing point), and therefore each
B ∈ R is invariant under IS . Let σ : S3 �→ S3 be the map σ(p) = IS(−p).
This map σ contracts S3 \ {−b} towards b, sends −S to S, and preserves
spheres. Because IS leaves each B ∈ R invariant, σ sends −R to R. For
each n > 0, let

Pn = Pn−1 ∪ σn(P0).

We claim that the sphere S does not intersect any ball in P0 \ R. As-
suming this claim, the packing Q = P0 \ (R ∪ −R) lies between −S and
S, and σn(Q) is separated from σn+1(Q) by σn(S). Therefore each Pn

consists of an alternation of layers

−R, Q, σ(−R) = R, σ(Q), σ2(−R), σ2(Q), . . . , σn(−R)

such that each layer only intersects the two neighboring layers and inter-
sects only in kissing points. In particular, each Pn is a packing. Moreover,
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Pn+1 has 118−12 = 106 more balls and 696−30 = 666 more kissing points
than Pn does. Therefore

lim
n→∞ k(Pn) = 2

666
106

=
666
53

.

It remains to check the claim. Let B1, B2 be two kissing balls in R. Let
b1 and b2 be their centers and let p be their kissing point. Evidently the
angular radius of S is ∠b0p. Using the inclusion S3 ⊂ R

4 and the notation
of vector calculus,

b1 · b2 = b · b1 = b · b2 = τ/2,

b · b = b1 · b1 = b2 · b2 = 1,

p =
b1 + b2

|b1 + b2| ,

∠b0p = cos−1

(
b · (b1 + b2)
|b1 + b2|

)
= cos−1

(√
2 + τ

5

)
≈ 31.717◦.

On the other hand, the center of a ball in P0 which is not in R is at least
60◦ away from b, and therefore the closest point of any such ball is at least
42◦ away from b. Thus, S does not intersect any such ball.
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