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AVERAGE KISSING NUMBERS
FOR NON-CONGRUENT SPHERE PACKINGS

GREG KUPERBERG AND ODED SCHRAMM

1. Introduction

Let P be a packing of n (round) balls in R3. (A packing of round balls,
also known as a sphere packing, is a collection of round balls with disjoint
interiors.) The balls may have different radii. The average kissing number
of P is defined as k(P) = 2m/n, where m is the number of tangencies
between balls in the packing. Let

k = sup{ k(P) | P is a finite packing of balls in R?}.
Theorem 1.

12.566 ~ 666/53 < k < 8 + 4v/3 ~ 14.928.

(The appearance of the number of the beast in the lower bound is purely
coincidental.)

The supremal average kissing number k is defined in any dimension, as
are k., the supremal average kissing number for congruent ball packing,
and kg, the maximal kissing number for a single ball surrounded by con-
gruent balls with disjoint interiors. (Clearly, k. < k and k. < ks.) It is
interesting that k is always finite, because a large ball can be surrounded
by many small balls in a non-congruent ball packing. Nevertheless, a sim-
ple argument presented below shows that k£ < 2k, in every dimension, and
clearly k; is always finite. In two dimensions, an Euler characteristic ar-
gument shows that k£ < 6, but it is also well-known that ks = k. = 6. One
might therefore conjecture that k& = k. always, or at least in dimensions
such as 2, 3, 8, and 24 (and conjecturally several others) in which ks = k.
[1]. Surprisingly, in three dimensions, & > 12 even though ks = k. = 12.
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Remark 1. No packing P achieves the supremum k = k(P), because if P’
is a translate of P that meets P in only one point, then k(P U P’) > k(P).

Let P = (P,, v € V) be a packing, where V is some indexing set.
The nerve of P is a combinatorial object that encodes the combinatorics
of the packing. It is the (abstract) graph G = (V,E) on V, where an
edge {u,w} appears in E precisely when P, and P, intersect. If P is
a packing of round disks in the plane, then it is easy to see that G is a
planar graph. Conversely, the circle packing theorem [3] states that every
finite planar graph is the nerve of some disk packing in the plane. This
non-trivial theorem has received much attention lately, mostly because of
its surprising relation with complex analysis. (Compare references [7], [5],
and [8].)

Since the nerves of planar disk packings are understood, it is natural to
ask for a description of all graphs that are nerves of ball packings in R3.
In lieu of a complete characterization, which is probably intractable, The-
orem 1 gives a necessary condition on such graphs: 2|E| < (8 4+ 4v/3)|V|.

We wish to thank Gil Kalai for a discussion which led to the question
of estimating k.

2. The upper bound
Theorem 2. If P is a finite ball packing in R?, then k(P) < 8 4+ 4v/3.

As a warm-up, we will show that k(P) < 24. Let E be the set of
unordered pairs of balls in P that kiss. Let r(B) be the radius of a ball
B € P. By a famous result ([6], [4]), it is impossible for more than 12
unit balls with disjoint interiors to kiss a unit ball B. If C' kisses B and
r(C) > 1 = r(B), then C contains a (unique) unit ball that kisses B.
Thus, in a packing, B cannot kiss more than 12 balls at least as large as
B. Consider a function f : F — P that assigns to {B,C} € E the smaller
of the balls B and C, or either if they are the same size. Since f is at most
12 to 1, |E| < 12|P|. Consequently, k(P) = 2|E|/|P| < 24.

The proof of Theorem 2 is a refinement of this argument.

Proof. In addition to the above notation, we let F(B) denote the set of
C € P such that {B,C} € E.

Let p > 1 be a constant to be determined below. For each ball B € P,
let S(B) be the concentric spherical shell with radius pr(B). For each
B,C € P, define

area(C N S(B))

) (B, C) = area(S(B))
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Since the interiors of the balls in P are disjoint, for any B,

2 > Y aBo> Y aBo)
ceP CeE(B)

Summing over B,

(3) P> > (a(B,C)+a(C,B)).
{B,C}€E

s
o

FiGURE 1. The intersection of B and C with a plane pass-
ing through their centers.

We will obtain a lower bound on a(B, C') +a(C, B) for two kissing balls
B and C. Suppose that B intersects S(C) and C intersects S(B), as shown
in Figure 1. Let b and ¢ be the centers of B and C. Let ¢ be a point on
the relative boundary in S(B) of the spherical disk C'N S(B). Clearly,

SB)

d(b,c) = r(B)+r(C)
d(b,q) = pr(B)
d(c,q) = r(C),

where d(x,y) is the distance from x to y. Let § = Zcbg be the angular
radius of C'N S(B). By the law of cosines,

(4)
g (B) £ (O (pr(B)E (O r(B) +p*r(B) +2r(C)
2(r(B) +1(C))pr(B) 2p(r(B) +1(C))
Also,
1—cosé
(5) area(C N S(B)) = ———— area(S(B)).

2
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Combining equations (1), (4) and (5),

r(B) + p?r(B) + 2r(C)

(6) a(B,C) = 4p(r(B) +r(C))

N —

Switching B and C' and adding,

3+ p?
4p

(7) a(B,C) +a(C,B) =1 —

Isn’t it remarkable that a(B,C) + a(C, B) does not depend on r(B) and

r(C)? We now choose p = v/3 to maximize the right side of equation (7).
Then ao(B,C) +a(C,B) =1 — @, under the assumption that S(B) N C
and S(C) N B are non-empty. If S(B)NC = 0, a(B,C) = 0, which is
greater than the negative value at the right side of equation (6). As a
result, a(B,C) + a(C,B) > 1 — @ in the general case. Applying this

inequality to inequality (3) yields |P| > |E| (1 — @), which gives

k(P) =2|E|/|P| < 8 +4V3.

In conclusion, k& < 8 + 4v/3. By Remark 1, k(P) < k, establishing Theo-
rem 2. [

Remark 2. In fact, k < 8 + 4v/3. Let B € P. Since each ball C € E(B)
that intersects S(B) must have r(C) > (p — 1)r(B)/2, there is a finite
bound for the number of balls C' € E(B) such that a(B, C) > 0. Therefore
there is some a < 1 (depending on p but not P) such that

Z a(B,C) < a.

CeE(B)

Using this inequality in place of inequality (2) in the above proof would
multiply the upper bound by a factor of a. A good estimate for o would
consequently strengthen Theorem 2.

3. The lower bound

Theorem 3. There exists a sequence of finite packings {P,} with

lim k(P,) = 666/53.
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Observe that all questions about nerves of ball packings and aver-
age kissing numbers are invariant under sphere-preserving transformations
such as stereographic projection from the 3-sphere S2 to R3 and inversion
in a sphere.

There exists a packing D in S of 120 congruent spherical balls such
that each ball kisses exactly 12 others [2], or 720 kissing points in total.
The existence of D already implies that k(P) > 12 for some packing P,
because by Remark 1, k > k(D) = 12.

The proof of Theorem 3 is a refinement of this construction.

Proof. We give an explicit description of D. Let S® be the unit 3-sphere
in R* and let 7 = % be the golden ratio. Choose the centers of the
balls of D to be the points in the orbits of %(7‘, 1,1/7,0), %(1, 1,1,1), and
(1,0,0,0) under change of sign of any coordinate and even permutations
of coordinates. The radius of each ball is 18°. We will need the following
four properties of D, which can be verified using the explicit description
or by other means: The 12 balls that kiss a given ball have an icosahedral
arrangement with 30 mutual kissing points, the centers of two kissing balls
of D are 36° apart, the centers of two next-nearest balls of D are 60° apart,
and D is self-antipodal. (If X is a point, set of points, or set of set of points
in S2, the antipode of X is given by negating all coordinates in R* and is
denoted —X.)

Let By € D be a ball with center b and let Py = D \ {Bg, —By}. The
packing Py has 720 — 24 = 696 kissing points and 118 balls. Let R be the
set of 12 balls in D that kiss By, and let S be the unique sphere centered
at b which contains the 30 kissing points between the balls in R. Let
Is : S3 — 83 be inversion in the sphere S. Observe that S meets the
boundary of each B € R orthogonally in a circle (because, by symmetry,
it is orthogonal to the boundary at each kissing point), and therefore each
B € R is invariant under Is. Let o : S® — S3 be the map o(p) = Is(—p).
This map o contracts S® \ {—b} towards b, sends —S to S, and preserves
spheres. Because Ig leaves each B € R invariant, o sends —R to R. For
each n > 0, let

Pn = Pn—l UO’TL(P()).

We claim that the sphere S does not intersect any ball in Py \ R. As-
suming this claim, the packing @ = Py \ (R U —R) lies between —S and
S, and o™(Q) is separated from o""1(Q) by o™(S). Therefore each P,
consists of an alternation of layers

—R,Q,0(—R) = R,0(Q),0*(—R),0%(Q),... 0" (—R)

such that each layer only intersects the two neighboring layers and inter-
sects only in kissing points. In particular, each P, is a packing. Moreover,
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P, +1 has 118 —12 = 106 more balls and 696 —30 = 666 more kissing points
than P, does. Therefore

lim k(P,) = 2000 _ 506,
n—oo 106 53

It remains to check the claim. Let By, Bs be two kissing balls in R. Let
b1 and by be their centers and let p be their kissing point. Evidently the
angular radius of S is ZbOp. Using the inclusion S C R* and the notation
of vector calculus,

bl'bgzb‘bl :b'bQZT/2,
b-b=10b1-by =bg-by=1,

b+ b
b ‘b1+b2’7
_ b(b1+b2) _ 2—|—T
Zb0p = =) = ! ~ 31.717°.
p = cos ( ]b1+bz\ co 3

On the other hand, the center of a ball in Py which is not in R is at least
60° away from b, and therefore the closest point of any such ball is at least
42° away from b. Thus, S does not intersect any such ball. O
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