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MACDONALD’S POLYNOMIALS AND
REPRESENTATIONS OF QUANTUM GROUPS

PAVEL I. ETINGOF AND ALEXANDER A. KIRILLOV, JR.

Introduction

Recently 1. Macdonald defined a family of systems of orthogonal sym-
metric polynomials depending on two parameters ¢, k which interpolate
between Schur’s symmetric functions and certain spherical functions on
SL(n) over the real and p-adic fields [M]. These polynomials are labeled by
dominant integral weights of SL(n), and (as was shown by I. Macdonald)
are uniquely defined by two conditions: 1) they are orthogonal with re-
spect to a certain weight function, and 2) the matrix transforming them to
Schur’s symmetric functions is strictly upper triangular with respect to the
standard partial ordering on weights (“strictly” means that the diagonal
entries of this matrix are equal to 1). Another definition of Macdonald’s
polynomials is that they are (properly normalized) common eigenfunctions
of a commutative set of n self-adjoint partial difference operators M, ..., M,
(Macdonald’s operators) in the space of symmetric polynomials.

In this paper we present a formula for Macdonald’s polynomials which
arises from the representation theory of the quantum group U,(gl,,). This
formula expresses Macdonald’s polynomials as vector-valued characters—
(weighted) traces of intertwining operators between certain modules over
Uq(gl,,). This result was announced in [EK]. It is an interesting problem to
relate this construction to a recent paper of Noumi ([No]) which gives an
interpretation of Macdonald’s polynomials for special values of k as zonal
spherical functions on a homogeneous space for a quantum group.

The paper is organized as follows. In Section 1, we define Macdonald’s
inner product, orthogonal polynomials, and commuting difference opera-
tors, and compute the eigenvalues of these operators. In Section 2, we
review some facts about representations of quantum groups that will be
needed in the following sections. In Section 3 we introduce weighted traces
of intertwiners (vector-valued characters) and prove an analogue of the
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Weyl orthogonality theorem for them. In Section 4 we formulate the main
result—the explicit formula for Macdonald’s polynomials for positive inte-
ger values of k—and give a complete proof of this formula. In Section 5, we
generalize the result of Section 4 to the case of an arbitrary k. In Section
6, we construct Macdonald’s operators from the generators of the center of
U,(gl,,), and derive an explicit formula for generic (non-symmetric) eigen-
functions of Macdonald’s operators using this construction.

1. Macdonald’s polynomials

Here we give the definition and main properties of Macdonald’s polyno-
mials for the root system of type A,_1, following [M].

Let R C C" be the root system of type A,_1: R = {oj}tizj, i =
g —¢5, € = (0,...,0,1,0,...,0) € Z™ (1 in the i*" place). Also, let
RT = {wi;}ic; be the set of positive roots, and o; = &; — g;41 be the
simple roots. Let @ be the lattice spanned by the roots, and let Q* C Q
be the semigroup spanned by the positive roots.

A sequence A = (A1...\,) € (Z4)" is called a partition if \; > \;11. We
define a partial order on partitions: A > pif YA, = > p; and Ay = pq,. . .,
Ak = Uk, Ae+1 > Mr+1 for some k < n.

Let us consider polynomials of n variables z1 ... z,: A= Clxy,...,z,].
For any A € Z™, let 2> = xi‘l ... 2. We have an obvious action of the Weyl

group S, on A. We can take a basis of A% formed by the orbitsums m, =
> LESHA x*, where A runs through the set of all partitions. These functions
are orthogonal with respect to the inner product given by (f, g)o = [fd]o,
where g(z1,...,2,) = g(z7 ', ..., z;Y), and []o: Clz!, ..., 2] — Cis the
constant term.

The main object of our study are Macdonald’s polynomials, defined
in [M]. This is a family of polynomials depending on two independent vari-

ables ¢,t and defined by the following theorem:
Theorem. (Macdonald)  There exists a unique family of polynomials

Py(z;q,t) € C(g,t)[z] (x = (z1,...,2n)), where X is a partition and C(q,t)
is the field of rational functions in q,t, satisfying the following properties:

(1) Px(z:q,t) is symmetric under the action of S, on the x’s.

(2) P)\(w; Q>t) = m)\(.%) + Zp,<)\ C)\,umu(x)‘
(3) For fized q,t the polynomials Py(x;q,t) are orthogonal with respect
to the inner product given by <f,g>q,t = [fgQAq.tlo, where

o0

1—
(11) H H 2mt2x ZE H H gmt2xo¢

1#£j m= 0 aER M= 0
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These polynomials are called Macdonald’s polynomials (our notation
differs slightly from that of Macdonald: what we denote by Py(z;¢,t) in
the notations of [M] would be Py(¢?,t?)).

It is often convenient to consider Macdonald’s polynomials for ¢ = ¢¥,
k € Z,; for example, for k = 0 these polynomials reduce to the orbitsums
my, and for k£ = 1 to Schur’s symmetric functions. However, most of
the properties of Macdonald’s polynomials obtained for t = ¢* can be
generalized to the case when ¢,t are independent variables.

The proof of the theorem is based on the use of the following family of
operators in the space C(q,t)[x,...,x,]":

r(r—m) t2$il — Ty
(12) M, =t > I —/—=)Teu, - Tea.,

o N LTy Ty T Xy
11<t2<-<ip “j&{i1...0,}
I=1...r

where (T2 . f)(21,.. ., 2n) = f(@1,.. ., @®Tiy. .., 2p), and 7 =1,...,n (cf.
[Ch]).
Proposition 1.1. (Macdonald)

(1) [M;, M;]=0

(2) M, is self-adjoint with respect to the inner product (-,-)q.:.

(3) M, Py(x;q,t) = K\ Px(z;q,t), where ¢ = > ] gPrutntl=2i),
i< < =1

2. The quantum group U,gl,, and its representations

Let ¢ be a formal variable. By definition ([D1, J]), the quantum group
U,gl, is a Hopf algebra with unit over the field C(g) of rational functions
in ¢ with generators e;, f;, i = 1...n—1, ¢, i =1...n, in which multipli-
cation, comultiplication, counit and antipode are defined by the relations

[hia h]] =0 [h’ia ei] =€
(2.1) [hiy fi] = = fi [hiy1, e = —e; :
[hit1, fil = fi [hiyej] = [his f5] =0, j#i,i+1
hi—hi his1—hi
q 7 i+1 _q 41 (3
eiaf' - 51 )
en ) = 0y T
eie; — (q+q "eieje; +ejef =0 o
2 —1 2 ’ t=j+1
fiti—(a+q ) fififi+ fifi =0

[fi, fi] = 0 = [ei, 5], li —j| > 1
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Ae, =e; ® q(hz‘+1—hz‘)/2 + q(hi—h¢+1)/2 ® e

Af; = f; @ ¢Pinr=h/2 4 glhimhin) 2 g 1

ed") =1,  ele) =e(fi) =0,
S(e:) = —q e, S(fi) = —aqfi S(hi) = —hi.

In the limit ¢ — 1, U,gl,, becomes the universal enveloping algebra of
the Lie algebra gl,,: one can identify the generators with the matrix units
as follows: €; = Lyi+1, fz = Ei+1i7 hz = Eu

Like its classical analogue, U,gl,, admits the following polarization:

Ugl,=U"-U"-U",

where U™ is the subalgebra generated by e; (respectively, f;), and U is the
algebra generated by ¢"i. Uggl, also admits an algebra automorphism w
(Cartan involution), which transposes Ut and U™: we; = —f;, wfi = —e;,
wh; = —h;. Note that w is a coalgebra antiautomorphism.

The representation theory of U,gl,, is quite parallel to the classical case.
Unless otherwise stated, we consider only finite-dimensional representa-
tions. Define the Cartan subalgebra h to be the linear span of h;; then
every A = (A1,...,\,) € C" can be considered as a weight, i.e. an element
of h* by A(h;) = A;. We have a bilinear form on the weights given by
(A, 1) = > Aips, which allows us to identify b ~ h*. We keep the notations
R,R*,Q,Q7 from Section 1.

Define the set of integral weights P = {A\; — \; € Z} and the set
of dominant weights Py = {A\A; — A\i11 € Z;}. Note that A € P, iff

A+a(l,...,1) is a partition for some a € C. We have a natural order
on P which is defined precisely in the same way as in Section 1. It is
also convenient to introduce fundamental weights w; = (1,...,1,0...,0)

(t ones), t = 1...,n—1. Then A € Py iff A = a(1,...,1) + > njw;,
n; € Zy. As usual, let p = %ZaeR+ o= ("7*1, ”7*3,,1*7")

For every A € P, we denote by V) the finite-dimensional irreducible
representation of U,gl, with highest weight A.

It is known that for any V, W the representations V@ W and W @ V
are isomorphic, but the isomorphism is non-trivial. More precisely (see
[D1]), there exists a universal R-matrix R € U,gl,®U,gl, (® should be
understood as a completed tensor product) such that

(2.2) Ryw =Pony @my(R): VW - WeV
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is an isomorphism of representations. Here P is the transposition: Pv®@w =
w ® v. Also, it is known that R has the following form:

(2.3) R=q XMBhRs RrcUt@U"
(e@)(R)=(12e)(R)=1a1.

We will also need the notion of dual representation. Namely, if V' is a rep-
resentation of U,gl,, then by definition V* is the representation of U,gl,, in
the dual space to V' given by (zv*,v) = (v*, S(x)v). One easily checks that
in this case the canonical pairing V*®V — C and embedding C — V@ V*
are homomorphisms of representations (the order of the factors is impor-
tant here). Also, one has canonical isomorphisms: Homgy, g (V,W) =
Homy, g (C,V* ®@ W) = (V* @ W)Ussh For an irreducible representa-
tion Vi, (VA)" =~ Vi«, where (A\1...0\,)* = (=n,..., —A1). If we take
(V*)*, we get another action of U,gl,, on the same space V. These two ac-
tions are isomorphic: ¢~/ : V — V** is an isomorphism of U,gl,,-modules.
This is due to the fact that S?(z) = ¢~ 2 xq?".

Finally, if V' is an irreducible representation of U,gl,, let us consider the
action of Uggl, in V given by myw(z) = m(wz), where w is the Cartan
involution defined above. We denote V' endowed with this action by V“.
One can easily check that V' ~ (V“)* (which is, of course, equivalent to
saying that V¥ ~ V*); that is, there exists non-degenerate pairing V ®
V¢ — C which commutes with the action of U,gl,. In other words, there
exists a non-degenerate bilinear pairing (Shapovalov form) (-, )y: V@V —
C such that (zv,v")y = (v,wS(z)v")y. This form is symmetric (which
relies on wSw = S71).

Note also that (V @ W)¥ = W« ® V¢ and that if &:V — W is an

intertwiner then ® is also an intertwiner considered as a map V¥ — W<,
3. Traces of intertwiners and the
generalized Weyl orthogonality theorem

Let V,U be finite-dimensional representations of U,gl,, and ®:V —
V ® U be a non-zero intertwining operator for U,gl,,.

Definition. A vector-valued character is the following function of x =

(T1,...,2p):

(3.1) Xa(T1,. .. xp) = Tr |y (P2l ... 2.

n

From the definition it is clear that x4 is a linear combination of mono-
mials z# where p runs over the set of weights of V. Thus, we can consider
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X as an element of AQU, where A is the group algebra of the weight group:

A =C(q)[P] ~ { Z a)\.%'A’CL)\ € C(q), almost all ay = 0}.
AEP

We will sometimes call elements of A generalized Laurent polynomials in
;; also, we will write 2" instead of " ... 2= Note that the elements of A
can also be interpreted as functions on h by letting x;(> zjh;) = e*. This
is the same as considering the function on b given by x(h) = Tr |y (®e”).
In particular, for V=V, x¢ € x/\C(q)[;—f, ..., 22—l ® U; the highest

T

term of y is uz® and the lowest term is v/z=* for some u,u’ € U. Note
that in the contrast with the classical case, x4 is not S,-symmetric if U is
not a trivial representation.

Using the notion of dual representation, we can rewrite xy¢ as follows:
we can identify ® with an intertwiner ®:V* @ V. — U; then xo(x) =
®(1 @ 2") S v* @ v;, where v;, vt are the dual bases in V,V*. Note that
Y vi®v; = (1®q¢~2°)1, where 1 = i(1), i:C — V*®V being an embedding
of U,gl,,-modules. In particular, this implies that x4 (¢*) = 0 if U is a non-
trivial irreducible representation.

Generalized Weyl Orthogonality Theorem. Let ) : V) — V), ® U,
®,:V, =V, ®U be intertwiners, and X\ # p. Then the characters x1 =
X&y, X2 = Xa, are orthogonal with respect to the following inner product:
(f,9)1 = [(f,9)uAlo, where A = [[,cp(l —2%), (-,-)v is the Shapovalov

form and all the other notations are as in Section 1.

Proof. As was explained above, we can as well consider ®,, as an intertwiner
Ve — UY @V Thus, (x1(2), x2(z7"))v = Trlv,eve (P @ z") (note
the change of sign of h in the second factor!), where the intertwiner ¥: V), ®
Vy — Va®V; is defined as the following composition
QDY "
eV 2 v U eUY @ Ve~ 8,y g yw,
Since Vy @ V¥ = @ N,V,, we see that (xi(z), x2(z™"))v is a linear
combination of usual characters x, (x). But since these characters are the
same as for gl,, we know that [x,(z)A]p = 0 unless v = 0. On the other
hand, it is known that if A # p then the decomposition of Vy ® Vi does
not contain the trivial representation (i.e. Ny = 0); thus, in this case x1
and yo are orthogonal. [J

4. The main theorem

Through this section, we assume k € N and show how one gets Mac-
donald’s polynomials Py(z;q,q") as vector-valued characters. Let U be
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the finite-dimensional representation of U,gl,, with the highest weight (k —
Dnwi—(k—1)(1,...,1) = (k—1)(n—1,—-1,...,—1); as a Uysl,,-module, this
is a g-analogue of the representation S*~1)”C"™. Note that all the weight
subspaces in U are one-dimensional; this property will be very useful to us.

Lemma. A non-zero Uggl, -homomorphism ®:Vy — Vy®@ U exists iff \ —
(k—1)p € Py; if it exists, it is unique up to a factor.

As we discussed before, it suffices to prove this lemma for gl,,, which is
a standard exercise.
Let us consider the (non-zero) intertwiners

(41) D, : V/\—i-(k—l)p — V/\—l—(k—l)p ® U, A€ Py,

and the corresponding traces

(4.2) ox(2) = xay (2) = Tr vy, oy, (P22").
As we discussed before, @y (z) has the form oy (z) = 2 tE=Dep(z),
p(z) € C(q)[2, ..., ;2] @ U. It takes values in the zero-weight subspace

U[0], which is one-dimensional; therefore, we can regard it as a complex-
valued function. We choose the normalization of ® and the identification
U[0] ~ C in such a way that the coefficient at the highest term is one:
SOA(-T) — 1;/\+(k_1)9 4+

Proposition 4.1.

k—1
(4.3) vo() =[] T @**—q*a=/?).
i=1 a€RT

Proof. First, we prove the following statement:

Lemma 1. oy(z) is divisible by (1 — ¢*’x=%) for any positive root o and
1<j<k—1.

The proof is done in several steps. Let us introduce F; = f;qi+1—hi)/2;
then
(4.4) AF) =F @ ¢ +19F

Let F' be a (non-commutative) polynomial in F}, ..., F,_; of weight —a,
a € QF. Let pf = Tr|y, (®xFz"). Also, let us fix a basis in U: Ula] =
Cwy, a € Q. Then
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Lemma 2. There exists a polynomial Pp € C(q)[P] such that

Pp(z)px(z)
Hgga, geqt (1 - q<6’ﬁ>xiﬂ)

Proof is by induction in o € Q*. For a = 0 the statement is obvious.
Now, let & = > m;a;, Y m; = m and assume that the statement is proved
for all o' < a. Take F' = Fj, ... F; . Then AF = A(F},)...A(F},,) =
> a7 F () GEJI*:’(CV—’yi)q_hW +F®@q ", wherey; € Q, v <, 0; €Z,
and F'(y) has weight —v. Therefore, using the intertwining property of @,
and the cyclic property of the trace, we get

(4.5) 5 (@) = W

ok (z) = Tr(A(F)®aa") = ¢ ' Tr(Fdza™) + A = ¢ @270} (z) + A,
where A =3 ¢% F(a — 4;)qg~ " Tr(F(7;)®xz"). Thus,

1

F _
oy (z) = 1 glaaig—a

On the other hand, it follows from the induction assumption that A is
an expression of the form (4.5) containing only the factors 1 — ¢ =7
with 8 < « in the denominator. This completes the proof of Lemma 2.

Lemma 3. Let o € RT, and let F,, be a (non-commutative) polynomial in
F; which in the limit ¢ = 1 becomes a root element of sl,,. Then Ppr-1 is

a non-zero polynomial relatively prime to Hf;ll (1—q%x—).
It suffices to prove this lemma for ¢ = 1. But for ¢ = 1, A(F,) =
F,®1+1® F,, and therefore

ol = To(@\FF 1ot = F, Te(@AFF22h) + Te(@FF 22" F,)

F(LC—Q _a F(ic—l
= 0490)\ +x 90)\ )

SO
Fk-1 e F(INQ—Q e _
Py = (12T )T Fapy (2) == (127 P (@) Fy T wo.

Since FF~1lwg = CaW(1—k)a for some ¢, # 0, we see that

HBS(kfl)a (1 - x_ﬁ)

Pora = Cq

Fa (1 —g—)k-1
k—1
= Co H (1—279) H(1 + 7% 4 (179,
B<(k—1)a s=1

B#sa
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One can easily see that this polynomial is relatively prime to 1 — z7¢.
Thus, we have proved Lemma 3.

Now, let us return to the proof of Lemma 1. Let us write

P Foif— 10N (:L’)

k—1 e
Hj:l (1—q¢*z=)

Since the left-hand side is a non-zero Laurent polynomial in z;, and Ppr-1
is relatively prime to Hf;ll
by Hf;ll(l —¢*x7%). So Lemma 1 is proved.

Now it is easy to prove Proposition 4.1: Lemma 1 implies that ¢y =
f(zx) Hf;ll [Tocr+ (1—g*2~«) for some Laurent polynomial f(x); compar-
ing the highest and the lowest terms on both sides we see that f = 1. This
completes the proof of Proposition 4.1 [

Tr(®)\Fitah) =

(1—¢* x=%), we see that o, (z) must be divisible

Now we can formulate our main theorem:

Theorem 1. If A is a partition then x(x) is divisible by po(x), and the
ratio o (x)/¢o(z) is the Macdonald’s polynomial Py(z;q,q").

Proof. Let us first prove that ¢, (z) is divisible by ¢o(x), and the ratio
is a symmetric generalized Laurent polynomial in x; with highest term
2*. Consider the tensor product V = Vy ® Vik—1)p- It decomposes as
follows: V' = Vyy—1), + Zu</\ NxuVys(k—1)p- Consider the intertwiner
® =1Idy, ®Pp:V — V®U. On one hand, it follows from the definition
that Tr(®z") = xv, @0, where xy, is the (usual) character of Vy. On
the other hand, the decomposition of V implies that Tr(®z") = @y +
Do pex WPy, and thus ©x/po = xv, + X2, c) @xupp/po. Since xv, is a
symmetric Laurent polynomial in z;, it follows by induction in A that ¢y /¢q
is also a symmetric Laurent polynomial.

Using S,,-symmetry and the fact that A is a partition, it is easy to show
that in fact ¢y (x)/@o(z) is a polynomial, i.e. belongs to Clxzy,...,x,]%".
Thus, it suffices to prove that these ratios are orthogonal with respect
to the inner product (-,-)4¢ This immediately follows from the general-
ized Weyl orthogonality theorem and Proposition 4.1. Indeed, we know
from the generalized Weyl orthogonality theorem that [prp,A]y = 0 if

X # p. Therefore, [(ox/¢0)(Yu/vo)popoAlo = 0. Due to Proposition 4.1,
0oPoA = [loecr Hi:ol(l—q%a:a) = A, +(x), which proves the orthogonality

of {¢a(x)/po(x)} with respect to the inner product (-,-)q: O

5. The case of generic k

In this section we show how to get Macdonald’s polynomials for the case
when ¢ and ¢ are independent variables. However, it will be convenient to
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introduce formal variable k such that ¢t = ¢*; thus, ¢ and ¢* are algebraically
independent variables. One can check that all the formulas can be rewritten
in such a way that k appears only in the expression ¢* and thus we could
avoid using k, writing everything entirely in terms of ¢,¢; however, this
would make our construction less transparent. Also, we must consider the
algebra U,gl,, as well as the representations, over the field C(q,t) rather
than C(q).

Let M, be a Verma module with highest weight ;1 over Uygl,,, and v, be
the corresponding highest weight vector. We choose a homogeneous basis
a; in U™ ; then the basis in M, is given by a;v,. In particular, this applies
to the module My (1_1),, which is a natural generalization of the module
considered in the previous section. Note that if k is a formal variable then
this module is irreducible.

We can also introduce the analogue of the module U. Indeed, let

Wi =A{(z1... :L'n)k_lp(l’),p(:ﬁ) € (C[a:fl, .. ,xffl], degp =0}

with the action of U,gl,, given by
(5.1)
0
hi — Tig — = (k—=1), ej = x;Diy1, fir zip1D;
(2
flxy,...,quiy .. xn) — f(oy,. . q ey, 2y

(¢ —q Yz

(Dif)(l”l, - ,:En) =

Wy, is an irreducible infinite-dimensional module over U,gl,. The set
of weights of W}, is the root lattice (), and every weight subspace is one-
dimensional: Wi[\] = Cwy, wy = (z1...2,)" 122,

If we replace the formal variable k in the formulas above by a posi-
tive integer k then W has a finite-dimensional submodule U, = Wj N
Clx1,...,xy]; it coincides with the module U defined in Section 4.

Lemma 5.1. For every A\ € P, there exists a unique up to a constant
factor intertwiner

(5.2) DN Myt (k-1)p — My (r—1)p @ W

We use the notation ® to distinguish these intertwiners from those for
finite-dimensional modules introduced in Section 4; the same convention
applies to all other notations.

The proof is based on the general fact: if the Verma module M, is
irreducible then the space of intertwiners M, — M,, ® W is in one-to-one
correspondence with the zero-weight subspace W/[0].
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Let us fix the normalization of @’f\ by choosing a highest-weight vector
Ung(k—1)p € Mri—1)p[A + (k — 1)p] and requiring that ‘D’f\UAJr(k,l)p =
Unt(k—1)p@wo+- - -. Then one can find explicit formulas for matrix elements
of ® as follows: write

(5.3) (i)’;(aiv/\—i-(k—l)p) = Z Ri\jlajvﬂr(k—l)ﬂ ® wi.

Then the condition for ® to be an intertwiner can be rewritten as a
system of linear equations on R;ﬂ Due to Lemma 5.1, this system has
a unique solution. From this approach one can easily see that ]:Zf\ﬂ is a
rational function in ¢, ¢*.

Similarly to Section 4, define the trace: @%(z) = Tr \MA+(k71)p(€l:>§xh).

Again, @¢% () takes values in W;[0], which is one-dimensional; so we con-

sider ¢ as a scalar-valued function, identifying Wj[0] ~ C so that wg — 1.
Then

(5.4) P () = 2 e (1 + ) qu(q,q’“)w_“),

HEQ+
and R/\u are rational functions of ¢, ¢*.
Theorem 2. @5(x)/@k(x) is the Macdonald’s polynomial Py(x;q,q").

Proof. Let k be a positive integer, A € P, and compare the traces and
intertwiners defined above with go’;i, <I>’§\ defined in Section 4. First, note
that U defined in Section 4 is a submodule in the module W} defined in
the beginning of this section, so we can as well consider ® as an intertwiner
Vit (k=1)p = Vag(k—1)p @ Wi. Next, the irreducible module V) (x_1), is a
factor module of the Verma module My (x_1),. Moreover, if

(5.5) p=> mniai, n; €Ly Yy mi<k

then dim V) (4—1)p[A + (k — 1)p — p] = dim My, (x—1)p[A + (k= 1)p — p].
Thus, if we consider elements a; of the basis in U~ such that p = —weight a;
satisfies condition (5.5) then the vectors a;v4(x—1), form a basis in the cor-
responding weight subspaces of Vy(x_1),. Let us consider the restriction
of the operator ® to these subspaces. Then it can be written in the form
DX (aivrs(o—1)p) = Ri'l;kajv)\Jr(k_l)p@wl, where the coefficients RY"" (¢)
are rational functions of ¢. They can be found by solving the system of
equations expressing the intertwining property of ®. This is the same sys-
tem which defined the coefficients R;ﬂ(q, q") in the expansion (5.3) of the
intertwiners ®, but now we consider k as a positive integer, not a formal
variable. Still one can check that if we restrict ourselves to considering only
Riﬂ;k such that both —wt a;, —wt a; satisfy (5.5) then this system has a
unique solution. Thus, we have the following lemma.
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Lemma. For fized \,i,j,1 such that —weight a;, —weight a; satisfy (5.5),
(5.6) R{"(q) = R (4,4")

for k € Zy, k > 0. Here the right-hand side should be understood as
a rational function of q obtained by substituting t = ¢, k € Zy in the
rational function of two variables R;ﬂ(q,t).

Corollary 1. If we write
@) =2 e (14 3 R (@)a ),
neQT

then for fited A\, and k € Z4, k> 0 we have R’f\u(q) = R)\”(q, qr).

Let us consider the ratios @5 /@F, o5 /pk. Clearly, they can be written
in the form

(5.7)
2() ; W), A "
¢§($) =2 (143 Quula, d)a"), @%(z) = (1430 Q™)

nEQT HEQT

(in fact, the latter sum is finite due to Theorem 1).
Then Corollary 1 above immediately implies the following:

Corollary 2. For fized \, p, Q’f\“(q) = Q,\“(q, q*) fork € Z,, k> 0.

On the other hand, Theorem 1 in the previous section claims that if one
writes Macdonald’s polynomials in the form

Py(z;q,t) = 2 (1 + ) qu(q,t)w_“)
HEQT

then Q’f\u(q) = Py.(q,q") for all k € N. Comparing this with Corollary 2,
we see that Qxﬂ(q, q*) = P\u(q,q") if k € Z, k> 0. Since both Py, (g, 1),
Qxu(q,t) are rational functions in g, ¢, this is possible only if Py, = Q.
Thus, @ /@E equals the Macdonald’s polynomial Py(z;q,t). O

Using a similar argument, one can prove
Proposition 5.2.
[e3

- 1T 1 —¢%z~
(5.8) @ () = ot 1P H H 1 — @lth—Dg—a"

i=1a€Rt
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Proof. Let the rational functions S,(q,t) be defined by the formula

«

o0 1— quCL,f _
(59) H H 1 —q2(i+k—1)x—a =1+ Z Sli(q7t)x -

i=1la€Rt+ et

Proposition 4.1, formula (5.4), and Corollary 1 in the proof of Theorem 2
imply that for a fixed p and sufficiently large positive integer k (k > k(u)),
Rou(q, q") = S,.(g,¢%). Since both of these functions are rational, they
must coincide identically: Ro,(g,t) = S, (g,t). This implies (5.9). O

Corollary. The traces gb’f\, X € P, are pairwise orthogonal with respect
to the pairing (,)1.

Proof.  Proposition 5.2 implies that A(x)@k(z)@k(z) = Ay (), which
(by virtue of Theorem 2) means that (25, 8), = (25/@8, 5 /@6)qe =
(Py, P,)q.t, which implies that (&%, @Zh =0when A\ #p. O

6. The center of U,gl, and Macdonald’s operators

In this section we show how one can get Macdonald’s operators M,
introduced in Section 1 from the quantum group U,gl,,. This construction
is parallel to the one for ¢ =1 (see [E]).

For simplicity, in this section we assume that ¢t = ¢*, k € N. Consider
functions f of n variables x1,...,x, and introduce the ring of difference
operators, acting on these functions:

DO = {D = }\gﬂ aAT,\‘ almost all ay = 0},

where (T\f)(z1,...,2,) = f(¢*21,...,¢*x,), and ay are rational func-
tions in z;,¢'/? with poles only at the points where z#¢™ = 1 for some
pEZ, me 37

As before, let us consider a non-zero intertwiner ®: V. — VW, where V
is a highest-weight module over U,gl,, and W is an arbitrary module with
finite-dimensional weight spaces (V, W need not be finite-dimensional), and
define the corresponding trace ¢(z) = Tr|y(®z"). This function takes
values in W.

Theorem 3. For any u € Uygl,, there exists a difference operator D, &
DO®U,gl,, independent of the choice of V., W and the intertwiner ® such
that

(6.1) Tr |y (Puz™) = D, Tr |y (®2").
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D, is defined uniquely modulo the left ideal in U,gl,, generated by qi—1;
thus, D, f is well defined for any function f(x1,...,x,) with values in W10].

Proof. Without loss of generality we can assume that u is a monomial in
the generators e;, f;, ¢™ of the form v = v~ vlut, vt € U*, «° € U°.
Define sdeg u = degu™ — degu™, where dege; = —deg f; = 1. We prove
the theorem by induction in sdeg u.

If sdegu = 0 then v = u® = ¢X=*" for some A\ € Z". Then it follows
immediately from the definition that D, = T), so the theorem holds.

Let us make the induction step. Assume that sdegu > 0; then either
degu™ # 0 or degu™ # 0. We can assume that v~ € Ulu], u # 0.

Since @ is an intertwiner, Tr(®u~uutz") = Tr(A(u™)@ulutz"). From
the definition of comultiplication one easily sees that

Al™) =u” ©@¢= M 13wy @

for some A € 1Z", and uj,v; € UU~ such that sdeg(ujuou™) < sdegu.
Thus,

Tr(Puz”) = ¢>= " Tr(dulutzu™) + Z v; Tr(Pulu™ 2" uj;).

Since commuting with z does not change sdeg uj, by the induction
assumption we can write

Tr(Puz’) = =" Tr(®ulutz"u™) + D' Tr(dzh)
= ¢t Tr(@ulutu~a") + D Tr(Pah)
= ¢ Te(®(u + [ulut, u7])z") + D Tr(®zh)

for some D' € DO ® U,gl,. Since the sdeg of all terms in [u®u™, u™] is less
than sdegu~u’ut, we can again apply the induction assumption and get

1

Tr ((I)uac )= TR wr— s W

D" Tr(®z").
This proves the existence part of the theorem. Uniqueness follows from
the following lemma:

Lemma. Let us fix a Uygl,-module W with finite-dimensional weight
spaces. If D € DO ® Hom(W|[0], W[u|) is such that Dy = 0 for any
o(z) = Tr(®z"), ®:V - V@ W, V an arbitrary highest-weight module,
then D = 0.

Proof of the lemma. Let us assume that D # 0. Multiplying D by a suit-
able polynomial of z; we can assume that D has polynomial coefficients:
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D = Zx’\D(A), D(y) being difference operators with constant matrix-
valued coefficients. Let us take the maximal (with respect to the lexico-
graphic ordering) A such that D(y) # 0. Then if we have a trace ¢ as above
such that ¢(z) = z#w + lower order terms then, taking the highest term
of Dy, we see that Dy (2z#w) = 0. On the other hand, if we take p such
that p + p € —P, then the Verma module M, is irreducible and thus for
every w € W|0] there exists a non-zero intertwiner ®: M,, — M, ® W such
that the corresponding trace has the form p(x) = z#w+ lower order terms.
Thus D(y)(z#w) = 0 for all p € =Py — p, w € W[0]. Thus, if one writes
D()\) = Zﬁ (I)\ng then Zﬁ a>\/3q<6’“>w =0forall w e W[O], we—Py—p.
This is possible only if all ayg = 0, which contradicts the assumption
Dy #0. 0O

In general, u — D, is not an algebra homomorphism. However, if u is
central: v € Z(Uggl,) then ®u is also an intertwiner, and thus for every
v € Uygl,, we have:

Dy, Tr(®2") = Tr(®uva”) = D, Tr(®uz") = D, D, Tr(®z").
This implies the following proposition:

Proposition 6.1. u — D, is an algebra homomorphism of Z(Uygl,,) to
DO ® U,gl,[0]/1, where I is the ideal generated by ¢ — 1.

Proposition 6.2. Let c € Z(Uygl,), V be a highest-weight module over
Uggl,, (not necessarily finite-dimensional), c|y = C-1d for some C € C(q),
and let ®:V — V @ W be a non-zero intertwiner. Then the trace p(x) =
Tr |y (®z") satisfies the difference equation

(6.2) Dep(z) = Cop(x).

This proposition is an obvious corollary of Theorem 3.

This shows that our construction allows us to construct commutative
algebras of difference operators and their eigenfunctions. In general, these
functions are vector-valued (they take values in the space W0]); however,
if we choose W as in Section 4 so that W/[0] is one-dimensional then we
can consider the traces as scalar functions; since every central element
in U,gl, has weight zero, D, preserves W[0] and thus can be considered
as a difference operator with scalar coefficients. We want to show that
for appropriate choice of central elements the operators D, are precisely
Macdonald’s operators (up to conjugation).

To find these central elements we will use Drinfeld’s construction of
central elements ([D2]), which is based on the universal R-matrix R €
U,el,&U,gl, discussed in Section 2 (a similar construction was indepen-
dently proposed by N. Reshetikhin [R]). Define R*! = P(R), Pz ®@y) =
YyRx.



294 PAVEL I. ETINGOF AND ALEXANDER A. KIRILLOV, JR.
Proposition 6.3. Define ¢, € Uygl,,, r=1,...,n by
(6.3) ¢r = (Id @ Trar)-) (R R(1®¢™)),

where Ay is the q-deformation of the representation of gl,, in the r-th exte-
rior power of the fundamental representation A"C™. Then
(1) ¢ € Z(Uygl,).
(2) If V is a highest-weight module with highest weight X\, then c,|y =
S, P LictOP)Id, where the sum is taken over all subsets I C
{1,...,n} of order r.

Proof. 1. This is based on the following statement (see [D2]): if 0: U,gl,, —
C(q) is such that 6(zy) = 0(yS?(z)) then the element cp = (Id ® 0)(R*'R)
is central. On the other hand, we know that S?(x) = ¢=%°x¢*", so 0(x) =
Tr |y (zg=2P), where V is any finite-dimensional representation of U,gl,,,
satisfies 0(xy) = 0(yS?(x)). Taking V = (A})*, we get statement 1 of the
proposition.

2. Let vy be a highest-weight vector in V; let us calculate c,vy. Let
w € (A)*[p]. Then (2.3) implies

RAR(vy @ w) = ¢ 2N 0y @ w + Z v @ W)

where wt w; < p. Thus, c,on = (32, (dim (Ap)*[u])g= 2=k g 2=, i)y,
where the sum is taken over all the weights of (A})*. Since the weights of
(A7) are u = (p1, ..., ptn) such that y; = 0 or —1, > p; = —r, and the
multiplicity of each weight is 1, we get the desired formula. [

Remark. These central elements are closely related to those constructed in
[FRT]. Essentially, the central elements constructed in [FRT] are traces of
the powers of L-matrix, whereas our central elements are coefficients of the
characteristic polynomial of L.

Theorem 4.
M, = ¢y (z) 0 De, 0 o(),

where M, is Macdonald’s operator introduced in Section 1, c, is the central
element constructed in Proposition 6.3, and pq is the operator of multipli-
cation by the function ¢q defined by (4.3).

Proof. This follows from the fact that M, and ¢y *(2) D, ¢o(x) coincide on
the Macdonald’s polynomials Py(z) = px(z)/¢o(x): just compare Propo-
sition 1.1, Theorem 1 and Proposition 6.3. Repeating the uniqueness argu-
ments outlined in the proof of Theorem 3, but considering A € P, +(k—1)p
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instead of A € —P; — p, we see that it is only possible if M, = ¢, LoD, o
©0- O

Thus, we can use the traces of the form (4.2) to find eigenfunctions of
Macdonald operators M,.. Indeed, let us consider A = (A1,...,\,) as a
formal variable; then ¢, ¢ are algebraically independent. In this case
the Verma module M) is irreducible, and thus there exists an intertwiner
®: My — M\®U, where the module U is the same one we used in Section 4.

Theorem 5.

(1) The function f(z) = Tr|ar, (®z") /0o (), where @ : My — M\QU
is a non-zero intertwiner and po(x) is defined by (4.3), satisfies the
following system of difference equations:

(6.5) M, fa(z) =) ¢*2ict 05 £ (x),
I

(2) The functions fy(x4p)—p, 0 € Sp form a basis of solutions of the
system (6.5) in the space of generalized Laurent series

F = Zx”@(q,q)‘i)“i—j,... In H

)
Tn—1

Proof.

1. This is an immediate corollary of Proposition 6.2 and Theorem 4.

2. Suppose that f € F is a solution of (6.4) of the form f(x) =
z¥ + lower order terms. Expanding coefficients of Macdonald’s operators
in Laurent series, we find the highest term of M, f:

(Mrf)(l‘) = Z q2 Zz‘e] piTQQ,fo — Z qQ Ziel(ll+p)ixy + e

I:|I|=r I:|I|=r

Thus f(z) can be a solution only if for any r,

Z qQZiGI(V+p)i: Z q2zi€1(>‘+p)i7
L|I|=r I:|I|=r

which is only possible if v + p = o(X + p) for some o € S,. Then the
highest term of f coincides with the highest term of f,(x1,)—,. Considering
f = fo(r+p)—p and repeating the same arguments, we finally see that f is a
linear combination of the functions fonip)—p. U

This theorem can be generalized to the case of arbitrary k; in this case
one must replace the module U by the module Wy, defined in Section 5.
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