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MAPPING CLASS GROUPS ARE AUTOMATIC

Lee Mosher

Let S be a compact surface, possibly with the extra structure of an orien-
tation or a finite set of distinguished points called punctures. The mapping
class group of S is the group MCG(S) = Homeo(S)/ Homeo0(S), where
Homeo(S) is the group of all homeomorphisms of S preserving the extra
structure, and Homeo0(S) is the normal subgroup of all homeomorphisms
isotopic to the identity through elements of Homeo(S). By convention each
boundary component of S contains a puncture; in general, if a boundary
component contains no puncture it may be collapsed to a puncture without
changing the mapping class group.

Given a group G, suppose that A = {g1, . . . , gk} is a finite set of genera-
tors and L is a set of words over the alphabet A, such that each element of
G is represented by at least one word in L, and L is a regular language over
A, i.e. one can check for membership in L with a finite automaton. The
words in L representing a given group element can be thought of as normal
forms for that element. Then L is an automatic structure for G if for any
two words v, w ∈ L, one can check with a finite automaton whether the
associated group elements v̄ and w̄ are equal, and whether they differ by
a certain generator. A more geometric characterization of automaticity is
given by the fellow traveller property , which says that there is a constant K
such that for any v, w ∈ L, if d(v̄, w̄) ≤ 1, where d(v̄, w̄) is the word length
of v̄−1w̄, then for any n ≥ 0, letting v(n) and w(n) be the prefixes of v̄ and
w̄ of length n, then d(v̄(n), w̄(n)) ≤ K. A group G is automatic if it has
an automatic structure. The theory of automatic groups is presented in
[ECHLPT]. An automatic group has a quadratic isoperimetric inequality,
and a quadratic time algorithm for the word problem, in addition to many
other nice geometric and computational properties.

Theorem [M3]. The group MCG(S) is automatic.

In [P], Penner computes the action of MCG(S) on the Dehn-Thurston
parameterization of the space of simple closed curves on S. An algorithm
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for the word problem in MCG(S) may be derived from this computation:
given a word in the generators, carry out Penner’s computation and see if
the action is trivial. When S is a punctured surface a similar algorithm
may be described using ideal triangulations and elementary moves (see
[M2] for the necessary computations), and the resulting formulas are even
simpler than in Penner’s computation. This leads one to wonder whether
ideal triangulations and elementary moves can be used to give an auto-
matic structure when S is punctured, and this is what we do. The main
idea is to “comb” one ideal triangulation along the arcs of another, in a
manner similar to that used by Hatcher [H] to prove contractibility of the
ideal arc complex of S. When S is a closed surface, we were not able to
convert Penner’s algorithm into an automatic structure; we have found an
automatic structure using other ideas.

The proofs use results on groupoids described in [ECHLPT section 11.1].
Suppose Γ is a groupoid, whose objects are called vertices. The morphisms
of Γ with initial vertex x are denoted Γx, those with terminal vertex y
are denoted Γy, and Γy

x = Γx ∩ Γy. Associated to each vertex x of Γ
is the group Γx

x, which is well-defined up to isomorphism independent of
x. An automatic structure for Γ is defined by choosing a base vertex v,
a generating set A = {g1, . . . , gk} of morphisms, and a regular language
L over A representing each morphism of Γv at least once, such that the
fellow traveller property is satisfied. Then [ECHLPT, theorem 11.1.3] says
that the associated group Γv

v is automatic if and only if the groupoid Γ
is automatic. We shall describe an automatic groupoid whose associated
group is MCG(S).

First we do the case where S is a punctured surface, and for simplicity
we assume S is oriented. An ideal triangulation of S is a triangulation
whose vertex set is the set of punctures. The edges of the triangulation
are called ideal arcs. In general, if an ideal triangulation is labelled by
choosing an oriented ideal arc, then the only elements of Homeo(S) which
preserve the triangulation and the labelling are elements in Homeo0(S).
Thus, by convention we insist that each ideal triangulation be labelled.
Let D(S) be the set of isotopy classes of ideal triangulations on S. Then
MCG(S) acts freely on D(S), and it follows by general principles that orbits
of the diagonal action of MCG(S) on D(S)×D(S) form a groupoid whose
associated group is MCG(S); we call this the mapping class groupoid of S,
denoted MCGD(S). The vertices of MCGD(S) are the orbits of the action
of MCG(S) on D(S). The vertex corresponding to an ideal triangulation
δ is denoted {δ}, and the morphism corresponding to an ordered pair of
ideal triangulations (δ, δ′) is denoted {δ, δ′}.

The groupoid MCGD(S) is generated by two types of morphisms. If
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δ and δ′ differ only by a change of labelling, then the morphism {δ, δ′}
is called a relabelling generator . To define the second type of generator,
consider an ideal triangulation δ and an ideal arc h of δ. If there are two
distinct triangles on either side of h, then h may be removed and the two
triangles joined into a quadrilateral Q, and the opposite diagonal h′ of Q
may be inserted to form another ideal triangulation δ′. We say that δ → δ′

is an elementary move performed on h, with support Q. The resulting
morphism denoted {δ → δ′} is called an elementary move generator . The
set of all relabelling and elementary move generators forms a symmetric
generating set for MCGD(S) denoted A0.

As a first step, we construct an asynchronous automatic structure L0

over the alphabet A0 for MCGD(S). This means that the fellow traveller
property is replaced by the weaker “asynchronous fellow traveller property”:
there is a constant K such that for each v, w ∈ L0, if d(v̄, w̄) ≤ 1 then
there are strictly increasing subsequences v(ni), w(mi) with n0 = m0 = 0,
mi+1 − mi ≤ K, ni+1 − ni ≤ K, and d(v̄(ni), w̄(mi)) ≤ K for all i.

Fix a base ideal triangulation δB , so {δB} will be the base vertex for
MCGD(S). Fix once and for all an orientation for each ideal arc of δB ,
and choose an enumeration {g1, . . . , gn} of the ideal arcs of δB . Given
δ, a normal form for the morphism {δB , δ} is obtained by “combing” δ
along the arcs of δB . First isotop so that δ and δB are pulled tight with
respect to each other. Some arcs of δB may then be identical to arcs of
δ; we say that δ is combed along these arcs. Let gi be the first arc of
δB along which δ is uncombed. The arc gi emerges from some corner
(called a prong) of some triangle T of δ, traverses T to the opposite edge
h, and then crosses h into the next triangle. There is an elementary move
δ → δ′ performed on h, called the first step in combing δ along δB . Now
define a sequence of elementary moves δ = δ0 → δ1 → · · · such that for
each n ≥ 0, δn → δn+1 is the first step of combing δn along δB . One
checks that this sequence terminates in an ideal triangulation δN which
is a relabelling of δB , and δ0 → · · · → δN is called the combing sequence
of δ. The normal form for the morphism {δB , δ0} is taken to be w0(δ) =
{δB , δN} ◦ {δN → δN−1} ◦ · · · ◦ {δ1 → δ0}, a single relabelling generator
followed by a sequence of elementary move generators. By construction,
each morphism in MCGD(S) has a unique normal form, which defines L0.
Regularity of L0 is proved by constructing an automaton that remembers
three pieces of data: the “combinatorial type” of δ, the ideal arcs of δB

along which δ is combed, and the prongs of δ from which the remaining
arcs of δB emerge.

Theorem. The language L0 is an asynchronous automatic structure for
MCGD(S).
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This result was discovered previously by Hatcher and Vogtmann [HV].

The theorem is proved by applying relators to sequences of elementary
moves, using techniques very much like those presented in [M1] for comput-
ing conjugacy invariants of pseudo-Anosov elements of MCG(S). Defining
relators for MCGD(S) are constructed as follows. Given two elementary
moves δ → δ′, δ → δ′′ performed on h, h′ respectively, if the supports are
disjoint then the elementary moves commute, meaning that there are el-
ementary moves δ′ → δ′′′ and δ′′ → δ′′′ performed on h′, h respectively;
this forms a relator of four elementary moves called a commutator rela-
tor . On the other hand, the supports may overlap in a single triangle,
hence their union is a pentagon, and there is a sequence of five elemen-
tary moves supported in this pentagon, called a pentagon relator . Sup-
pose that δ0 → · · · → δN is the combing sequence for δ0, and δ0 → δ′0 is
an elementary move. It may happen that this elementary move extends
or reduces the normal form by a single elementary move, in which case
the fellow traveller property with K = 1 is immediate. If this does not
happen, let δ′0 → · · · → δ′N ′ be the combing sequence for δ′0. Doing a
case by case analysis, applying either a commutator relator or a penta-
gon relator, one proves either that there is an elementary move δi → δ′j
with (i, j) ∈ {(1, 1), (1, 2), (2, 1)}, or that δ2 = δ′2. Applying induction on
Max(N, N ′), this shows that the asynchronous fellow traveller property is
true with a constant K = 3, with 2 units of K coming from elementary
moves and 1 unit of K coming from a relabelling.

To synchronize the fellow traveller property and get a true automatic
structure, the generating set and the language will be changed. For sim-
plicity, we describe the changes only in the case where S is a closed, ori-
ented surface with one puncture. There are certain subwords of combing
sequences of the form δn → · · · → δn′ such that δn′ and δn differ by a
Dehn twist τ on a closed curve γ which is a boundary component of a
regular neighborhood of some arc h of δn; these Dehn twists are described
in [M1], and are used to make the computation of conjugacy invariants
more efficient. The morphism {δn, δn′} is called a Dehn twist generator ,
and if n < i < n′ then the morphism {δn, δi} is called a fractional Dehn
twist generator . The alphabet A1 is taken to consist of all Dehn twist,
fractional Dehn twist, and relabelling generators, and their inverses. Each
word w0(δ) ∈ L0 may be factored uniquely as a relabelling generator fol-
lowed by a sequence of Dehn twist and fractional Dehn twist generators,
with the proviso that no fractional Dehn twist generator can be absorbed
into the previous Dehn twist factor. This factorization of w0(δ) yields a
word w1(δ) over the alphabet A1, and we take L1 to be the set of all such
words w1(δ). The word acceptor for L0 may, by slight modifications, be
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converted into a word acceptor for L1, so L1 is a regular language over
A1. The proof of the asynchronous fellow traveller property for L0 may,
with some effort, be souped up to prove the synchronous fellow traveller
property for L1, and we have:

Theorem. When S is a closed, oriented surface with one puncture, the
language L1 is an automatic structure for MCGD(S), hence MCG(S) is
automatic.

When S is a general punctured surface, one must add additional words
closely related to Dehn twists and the fractions thereof, in order to get
a canonical factorization of words in L0, and an automatic structure is
obtained.

When S is a closed surface, some new techniques are needed. Choosing
a base point x on S, one obtains a homomorphism MCG(S, x) → MCG(S)
from the once-punctured mapping class group to the closed mapping class
group. When c is a closed curve on S based at x, then by pushing the
point x around the curve c, one obtains an element of MCG(S, x) denoted
pushc. This yields a homomorphism push:π1(S) → MCG(S, x), and when
χ(S) ≤ −2 we obtain a short exact sequence as follows [B]:

1 → π1(S, x) → MCG(S, x) → MCG(S) → 1.

The cases when χ(S) ≥ −1 all yield mapping class groups which are well-
known automatic groups.

In [M4], we consider a short exact sequence of finitely generated groups

1 → K → G → H → 1.

such that K is non-elementary word hyperbolic. In this situation, we prove
that many geometric properties of the group G are inherited by its quotient
H. This is true in particular of the property of “combability”. Recall
that a finitely generated group G is combable if there exists a (bounded
synchronous) combing consisting of a surjective language L of normal forms
satisfying the fellow traveller property. Thus, an automatic structure is a
regular combing. If L is a combing of G and K is non-elementary word
hyperbolic, a combing for H is defined as follows. Let T be the space of
distinct triples of points on the boundary of K. The automorphism group of
K acts on T by homeomorphisms, hence G acts on T by homeomorphisms.
Let the action be denoted Ag: T → T for g ∈ G. Restricting this action to
K yields a properly discontinuous, cocompact action. Choose a compact
fundamental domain C ⊂ T for the action of K, which means simply that
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the translates of C by K cover all of T . Also, choose a base point ξ ∈ T .
With these choices, a sublanguage Lc ⊂ L may be defined as follows:

Lc = {w ∈ L
∣
∣ ξ ∈ Aw̄C}

It is proved in [M4] that Lc is a combing of H.
Since π1(S, x) is a non-elementary word hyperbolic group, and since

MCG(S, x) is automatic, it follows that MCG(S) is combable. This already
proves many of the geometric properties of automatic groups, such as the
quadratic isoperimetric inequality. To obtain more, we must show that a
combing for MCG(S) can be defined in a more strictly constructive manner,
so that the combing is regular. This is done first by constructing a short
exact sequence of groupoids

1 → π1(S, p) → MCGD(S, p) → MCGD(S) → 1

where the associated group of the groupoid

MCGD(S) = MCGD(S, p)/π1(S, p)

is MCG(S). The construction given above, using the space T of triples
of points in the boundary of π1(S, p), may be generalized to the groupoid
setting, hence we may define a sublanguage Lc

1 ⊂ L1 which is a combing
of the groupoid MCGD(S). To do this, first one chooses a base point
ξ ∈ T . Then one chooses a fundamental domain system which associates,
to each ideal triangulation δ of (S, p), a fundamental domain Cδ for the
action of π1(S, p) on T , so that Cδ depends equivariantly on δ, i.e. for each
Φ ∈ MCG(S, p), AΦCδ = CΦδ. Then define

Lc
1 = {w1(δ) ∈ L1

∣
∣ ξ ∈ Cδ}.

The methods of [M4] are then adapted to prove that Lc
1 is a combing of

MCGD(S). It remains to choose ξ and the fundamental domain system
{Cδ} carefully so that Lc

1 is a regular language.
This is accomplished by making sure that Cδ is “finitely defined”. In-

tuitively, this means that for any point η = (η1, η2, η3) ∈ T , the decision
about whether η ∈ Cδ can be made purely in terms of the interaction of the
points η1, η2, η3 ∈ ∂π1(S, p) with the arcs of δ, and with the arcs of trian-
gulations which differ from δ by at most a constant number of elementary
moves. Points in ∂π1(S, p) are compared with arcs of δ by lifting each arc
to the universal cover of S, taking a connected lift passing through a base
point p̃ lying over p, and using the endpoints at infinity of the lift. We show
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that T may be exhausted by a sequence of compact sets Cδ,k, depending
equivariantly on δ, so that each Cδ,k is finitely defined. Since π1(S, p) acts
properly discontinuously and cocompactly on T , then for each δ there ex-
ists k such that Cδ,k is a fundamental domain for T . Choosing k = k(δ)
minimally so that Cδ = Cδ,k(δ) is a fundamental domain, we obtain a fun-
damental domain system {Cδ} such that Cδ is finitely defined in terms of
δ. The base point ξ is then chosen to be any “finitely defined” point of T .
Using this base point and fundamental domain system, carry out the con-
struction of Lc

1 described above, obtaining a combing for MCGD(S). Using
finite definability of Cδ, together with the word acceptor automaton and
the multiplier automata for the automatic structure L1, it is then proved
that Lc

1 is regular. Thus:

Theorem. When S is a closed surface, the language Lc
1 is an automatic

structure for MCGD(S), hence the group MCG(S) is automatic.

As a final remark, when S is punctured the automatic structure can be
efficiently computed in terms of the topological type of S. But when S
is closed we do not know how to efficiently find the automatic structure,
because of our inability to find an efficient formula for the parameter k(δ)
described above.
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