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A NECESSARY CONDITION FOR

ANALYTIC HYPOELLIPTICITY

Michael Christ

1. Results

A partial differential operator, L, is said to be analytic hypoelliptic in
some open set Ω, if for every open U ⊂ Ω and every distribution u ∈ D′(U),
if Lu ∈ Cω(U), then u ∈ Cω(U).

Let X1, X2 be real vector fields defined in an open set Ω ⊂ R
3. Assume

them to have analytic coefficients, to be linearly independent at every point,
and to satisfy the hypothesis of Hörmander [Ho] that the Lie algebra which
they generate spans the tangent space to R

3 at each point of Ω. If L =
X2

1 + X2
2 , then Lu ∈ C∞(U) implies u ∈ C∞(U) [Ho].

Fixing any coordinate system, define the determinant

λ(x) = det (X1, X2, [X1, X2]).

A point x ∈ R
3 is said to be of type 2 if λ(x) �= 0, and otherwise to

be a point of higher type. We say that a real curve γ : (−ε, ε) �→ R
3 is

subordinate to {X1, X2} if γ̇(t) ∈ span {X1, X2} at γ(t), and if γ̇(t) �= 0,
for all |t| < ε.

We confirm the following special case of a belief expressed by Treves
[Tr].

Theorem 1. L = X2
1 + X2

2 is not analytic hypoelliptic in any open set
containing a subordinate curve composed only of points of higher type.

A simple corollary is that L cannot be analytic hypoelliptic in any open
set in which λ changes sign. It is this author’s conviction that analytic
hypoellipticity can fail, for sums of squares of two vector fields in R

3, in
other situations besides that of the theorem.

The pair X1, X2 defines a CR structure, so that ∂̄b = X1 + iX2 is a
Cauchy-Riemann operator associated to the structure. Denote by ∂̄b

∗ the

Received November 30, 1993.

Research supported by the National Science Foundation.

241



242 MICHAEL CHRIST

formal adjoint of ∂̄b, with respect to any nonvanishing real analytic density.
The CR structure is said to be pseudoconvex if λ never changes sign, and
to be of finite type if the bracket condition of Hörmander is satisfied. It is
weakly pseudoconvex at those points where λ vanishes.

Theorem 2. Suppose that ∂̄b is a Cauchy-Riemann operator associated to
a real analytic, pseudoconvex CR structure of finite type in Ω ⊂ R

3, and
that Ω contains a nonconstant real curve γ with

γ̇(s) ∈ span {�(∂̄b), �(∂̄b)}(γ(s)),

and such that the CR structure is weakly pseudoconvex at γ(s), for all s.
Then there exists an open subset U ⊂ Ω and a function u ∈ C∞(U), such
that ∂̄b∂̄b

∗u ∈ Cω(U) but ∂̄b
∗u /∈ Cω(U).

This kind of regularity is the natural one in the context of ∂̄b [K].
Some of the partial results which have been known concerning sufficient

and necessary conditions for analytic hypoellipticity of these and related
operators are as follows.
(1) L is analytic hypoelliptic in any open set in which λ never vanishes
[Ta1],[Ta2],[Tr], and likewise for ∂̄b [G].
(2) In R

d+1, a sum L =
∑

X2
j of squares of d pointwise linearly inde-

pendent analytic vector fields, satisfying Hörmander’s condition, fails to be
analytic hypoelliptic in any open set in which the determinant of an asso-
ciated Levi form, generalizing λ, vanishes identically [M]. This condition
is vacuous, though, for two vector fields in dimension three satisfying the
bracket condition, and is not optimal in higher dimensions.
(3) L is analytic hypoelliptic in certain cases in which λ vanishes some-
where, including

X1 = ∂x1 , X2 = ∂x2 + a(x1, x2)∂x3

where λ = ∂x1a = xm
1 +xn

2 for any even, positive integers m, n [GS]; in this
case λ vanishes along a curve which, however, fails to be subordinate.
(4) For m ≥ 3, L fails to be analytic hypoelliptic for

X1 = ∂x1 , X2 = ∂x2 + xm−1
1 ∂x3

[He],[Pr],[HH],[C1],[C2]; likewise for ∂̄b in the pseudoconvex case of even
m [CG],[C3], and more generally for differential operators expressible as
(generic) homogeneous polynomials, with constant coefficients, in these two
vector fields [C4].
(5) For

X1 = ∂x1 , X2 = ∂x2 + (xm−1
1 + x1x

M
3 )∂x3 ,



A NECESSARY CONDITION FOR ANALYTIC HYPOELLIPTICITY 243

∂̄b fails to be analytic hypoelliptic in the sense of Theorem 2, provided
that m, M are even and sufficiently large [C5]. These examples were the
first, with only a one-dimensional set of points of higher type, in which
nonanalytic solutions were proved to exist.

The model vector fields (4) are not merely examples. In Lemma 1, be-
low, it is shown how any structure satisfying the hypotheses of Theorem 1
may be viewed as a small perturbation, along γ, of one of these model struc-
tures. The examples (5) were analyzed by a method that treated them as
perturbations of (4); that method had weaknesses which prevented it from
succeeding except for suitably small perturbations, whence the hypothesis
that m, M be large. Here we outline a modification which renders it both
more precise, and simpler. Full details will appear elsewhere.

It is not altogether natural to begin with the three-dimensional case.
While the mechanism behind the models (4) and Theorems 1 and 2 does
exploit three independent variables, there exist operators L = X2+Y 2 in R

2

which fail to be analytic hypoelliptic, yet are elliptic except at a single point.
This matter will be investigated in a forthcoming paper. Rather simple
examples demonstrate that higher dimensions give rise to more complex
phenomena, hence that our analysis cannot extend in a straightforward
manner.

2. Proof

A preliminary reduction will help us to view L as a perturbation of model
operators (4).

Lemma 1. Suppose that through x0 there passes a subordinate curve γ,
which contains only points of higher type. Then there exists an integer
m ≥ 3 such that arbitrarily close to x0 may be found an open set U , on
which there are coordinates y with 0 ∈ U , and real vector fields X̃1, X̃2 on
U which are linear combinations, with real analytic coefficients, of X1, X2,
which are linearly independent at every point of U , and which take the form

X̃1 = ∂y1 , X̃2 = ∂y2 + b(y)∂y3

where b ∈ Cω,

b(y) = a(y2, y3)ym−1
1 + O(ym

1 ) if m is odd

b(y) = a(y2, y3)ym−1
1 + O(ym

1 ) + O(ym/2
1 y3) + O(y1y

2
3) if m is even,

and where
b(0, y2, y3) ≡ 0 and a(0) > 0.
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In these coordinates λ(y) = ∂b/∂y1 vanishes on the subordinate curve
γ̃ = {(0, y2, 0)} (and possibly elsewhere).

Theorems 1 and 2 admit refinements in the scale of Gevrey classes Gs: if
m is as in Lemma 1, then for each s < m, there exists u such that Lu ∈ Cω

in U , yet u fails to belong to Gs. Likewise in Theorem 2, there exists u
such that ∂̄b∂̄b

∗u ∈ Cω, yet ∂̄b
∗u /∈ Gs.

In order to prove Theorem 1 we next seek solutions, or near-solutions,
for L, of the form u = eφh, where

φ = φζ,λ(y2, y3) = iλmy3 − λm+1y2
3 + iζλy2,

λ ∈ R
+ is a large parameter, and ζ ∈ Γ ⊂ C, where Γ is a small circle

centered at a point ζ0 to be described. Substitute y = (λ−1x, y2, y3), and
write z = (y2, y3). An equation L(eφh) = eφg becomes Aϕ = ψ, where
ϕ(x, z) = h(λx, z), ψ is related to g in the same way modulo multiplication
by a factor of λ2, and

A = Aζ,λ =
∑
|β|≤2

λ|β|−2aβ(λ−1x, z)Pβ(∂x, Y + E)

where

Y = iζ + (i − 2y3λ)b̃,

b̃(x, z) = λm−1b(λ−1x, z),

E = λ−1∂y2 + λ−mb̃ ∂y3 ,

and β ranges over a finite index set so that the Pβ represent all possible
monomials of degrees |β| ≤ 2 in two noncommuting variables.

Let ε0 > 0 be small, and set

D = {z ∈ C
2 : |y2| < ε0, |y3| < ε0λ

−m/2}.

Let H2(D) denote the Hilbert space of all holomorphic functions on D
which are in L2(D) with respect to Lebesgue measure, and define bounded
operators on it by

∂̃y2

∑
j,k≥0

ajk yj
2 yk

3 =
∑

k

∑
j≤ε1λ

ajk jyj−1
2 yk

3 ,

∂̃y3

∑
j,k≥0

ajk yj
2 yk

3 =
∑

j

∑
k≤ε1λ

ajk yj
2 kyk−1

3 .
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Set
Z = λ−1∂̃y2 + λ−mb̃ ∂̃y3

and replace Aζ,λ by

Ãζ,λ =
∑
|β|≤2

λ|β|−2aβ(λ−1x, z)Pβ(∂x, Y + Z).

In order to disprove analytic hypoellipticity, we aim to construct a one-
parameter family of trial functions gλ, such that Lgλ and many of its deriva-
tives are relatively small for large λ, while gλ itself is not small, thereby
contradicting certain Cauchy estimates (detailed in the second-to-last para-
graph below) which are a necessary condition for analytic hypoellipticity.
We solve

Ãζ,λfζ,λ = ψ

where ψ(x, z) = exp(iξx− x2m) for a fixed constant ξ, independent of ζ, λ.
Let L′ denote the operator L represented in the (x, z) coordinates, so that
e−φζ,λ ◦ L′ ◦ eφζ,λ = Aζ,λ. Setting

Fλ =
∮

Γ

eφζ,λfζ,λ ζσ dζ

for some nonnegative integer σ, and noting that
∮
Γ

eφζ,λψ ζσ dζ ≡ 0,

L′Fλ =
∮

Γ

eφζ,λAζ,λfζ,λ ζσ dζ =
∮

Γ

eφζ,λ(Aζ,λ − Ãζ,λ)fζ,λ ζσ dζ.

Denoting by D′ � D the polydisc whose radii are half those of D, the
operators ∂y2 − ∂̃y2 , ∂y3 − ∂̃y3 map H2(D) to H2(D′) with operator norms
O(exp(−cλ)) for some c > 0, so that this last integrand may be expected
to be small for z ∈ D′.

The main estimates are as follows.

Lemma 2. There exist ζ0 ∈ C, ξ ∈ R, 0 ≤ σ ∈ Z, a circle Γ centered at
ζ0, and ε0, ε1, ε > 0 such that for all sufficiently large λ ∈ R

+, there exists
for each ζ ∈ Γ a solution fζ,λ of

Ãζ,λfζ,λ ≡ ψ on {|x| < λ1/2} × D

satisfying

|∂α
x,zfζ,λ(x, z)| ≤ C1+|α||α|!λ|α|m/2e−ε|xm| for all α∫
|x|≤1

∣∣∣
∮

Γ

eφζ,λfζ,λ ζσ dζ
∣∣∣2 dx ≥ c > 0 where z = 0.
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A consequence is that

|∂α(Aζ,λ − Ãζ,λ)fζ,λ(x, z)| ≤ e−ελC1+|α||α|! λ|α|m/2e−ε|xm| for all α,

for |x| ≤ λ1/2, z ∈ D′.
In outline, the proof of the lemma proceeds as follows. Consider

B =
∑
|β|=2

aβ(0)Pβ(∂x, iζ + a(0)xm−1),

and denote by Hk the Hilbert space of functions defined on R, and taking
values in H2(D), such that

∑
0≤i+j≤k

∫ ∞

−∞
‖(1 + |x|m−1)i∂j

xf(x)‖2
H2(D) eε2|x|m dx < ∞.

So long as ζ avoids a discrete subset of C and ε2 is chosen to be sufficiently
small, B (which acts trivially with respect to z ∈ D) defines a bijection
of H2 with H0. We modify aβ , b̃ in such a way that they become defined
for all x ∈ R, but remain unchanged for |x| ≤ λ1/2, and show that (if
this modification is done properly) the norm of Ãζ,λ − B, as an operator
from H2 to H0, may be made arbitrarily small by choosing ε0, ε1, ε2 to be
sufficiently small and taking λ sufficiently large. A special case of the L2

Riesz transform bounds of [RS] is crucial here.
The equation Ãζ,λf = ψ may consequently be solved by Neumann se-

ries. There exists ζ ∈ C such that Bζ has a nonzero solution which is
O(exp(−ε|x|m)) as x → ±∞ [C4]; fix such a ζ0. Γ is a small circle centered
at ζ0, σ is chosen so that

∮
Γ

Bζ
−1 ζσ dζ is a nonzero operator, and ξ is

chosen to ensure that ψ is not in its nullspace.
A delicate point is the splitting of ∂y2 , for ∂̃y2 must be � λ in order

that the Neumann series be convergent, while ∂y2 − ∂̃y2 must map H2(D)
to H2(D′) with bound O(exp(−cλ)), in order that (Aζ,λ − Ãζ,λ)fζ,λ will
be sufficiently small for the a priori Cauchy estimates in the second-to-last
paragraph below to be violated. There is no room to spare.

Return to the coordinates y and define trial functions by

gλ(y) = Fλ(λy1, y2, y3) ηλ(λ1/2ε−1
0 y1) ηλ(λm/2ε−1

0 y3)

where ηλ ∈ C∞
0 (R) is supported in [−1, 1], is identically equal to one on

[−1/2, 1/2], and satisfies

‖dkηλ/dsk‖∞ ≤ Ck+1λk for all k ≤ λ,
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with C independent of λ. The gλ are then smooth functions in a fixed
open set, independent of λ. Note that the factor Fλ(·) is O(exp(−cλ)) on
the supports of the gradients of the two cutoff functions, because of the
rapid x–decay in the bounds of Lemma 2 and the factor exp(−λm+1y2

3)
in the definition of φζ,λ; this ensures that Lgλ is still small despite the
introduction of the cutoff factors.

The following is a straightforward consequence of Lemma 2, the defini-
tions, and a minor additional calculation.

Lemma 3. There exist c, ε > 0, C < ∞, and p < ∞ such that for all large
λ and all k ≤ λ,

∫

λ1/2|y1|+λ|y2|+λm|y3|≤1

∣∣∣∣∂
kgλ

∂yk
3

∣∣∣∣
2

dy ≥ ck+1λ−pλ2mk,

and such that for |y2| < ε0/4, for all |α| ≤ λ,

|∂α
y Lgλ(y)| ≤ C |α|+1λm|α|e−ελ,

and
|gλ(y)| ≤ C.

A theorem of Métivier [M] asserts that (under a small additional hy-
pothesis, which L does satisfy) if L were analytic hypoelliptic in Ω, then
for any open U ′ � Ω and any compact K ⊂ U ′, there would exist C < ∞
such that for any g ∈ C∞(U ′), for any n ∈ Z

+,

∑
|β|=n

‖∂βg‖L2(K) ≤ Cn+1nn
∑

0≤|α|≤n

|α|−|α|‖∂αLg‖L2(U ′) +Cn+1nn‖g‖L2(U ′).

This criterion opens the door to the use of trial functions for which Lg /∈ Cω

to disprove analytic hypoellipticity. Let U be as in Lemma 1 and choose
U ′ ⊂ U to be so small a neighborhood of 0 that for y ∈ U ′, | exp(iζλy2)| �
exp(ελ), uniformly for all ζ ∈ Γ, where ε is the constant appearing in the
second estimate of Lemma 3. Taking g = gλ, choosing n ≈ λ/

√
log λ and

exploiting the factor of exp(−ελ), one finds that these inequalities do not
hold, for ∂ngλ/∂yn

3 , for any finite C independent of λ, as λ → ∞.
The proof of Theorem 2 proceeds along the same lines, but Métivier’s

criterion must be adapted to cope with the nonstandard notion of regularity
at issue for ∂̄b. This amounts to a straightforward microlocalization, and
is Proposition 7.1 of [C5].
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