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A NECESSARY CONDITION FOR
ANALYTIC HYPOELLIPTICITY

MiCHAEL CHRIST

1. Results

A partial differential operator, L, is said to be analytic hypoelliptic in
some open set 2, if for every open U C 2 and every distribution u € D'(U),
if Lu € C¥(U), then u € C¥(U).

Let X1, X5 be real vector fields defined in an open set 0 C R3. Assume
them to have analytic coefficients, to be linearly independent at every point,
and to satisfy the hypothesis of Hormander [Ho| that the Lie algebra which
they generate spans the tangent space to R? at each point of Q. If L =
X% + X3, then Lu € C*°(U) implies u € C>°(U) [Ho].

Fixing any coordinate system, define the determinant

)\(J)) = det (Xl,XQ, [Xl,XQ]).

A point z € R3 is said to be of type 2 if A(x) # 0, and otherwise to
be a point of higher type. We say that a real curve v : (—¢,¢) — R3 is
subordinate to {X1, X2} if 4(t) € span{X1, X2} at v(t), and if §(¢t) # 0,
for all |t] < e.

We confirm the following special case of a belief expressed by Treves
[Tr].

Theorem 1. L = X? + X? is not analytic hypoelliptic in any open set
containing a subordinate curve composed only of points of higher type.

A simple corollary is that L cannot be analytic hypoelliptic in any open
set in which A changes sign. It is this author’s conviction that analytic
hypoellipticity can fail, for sums of squares of two vector fields in R3, in
other situations besides that of the theorem.

The pair X7, X» defines a CR structure, so that 0, = X; +iX5 is a
Cauchy-Riemann operator associated to the structure. Denote by 9,* the
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formal adjoint of Jy, with respect to any nonvanishing real analytic density.
The CR structure is said to be pseudoconvex if A never changes sign, and
to be of finite type if the bracket condition of Hérmander is satisfied. It is
weakly pseudoconvex at those points where A vanishes.

Theorem 2. Suppose that 0y is a Cauchy-Riemann operator associated to
a real analytic, pseudoconvex CR structure of finite type in Q C R3, and
that Q contains a nonconstant real curve v with

Y(s) € span{R(s), () }(7(s)),

and such that the CR structure is weakly pseudoconvex at v(s), for all s.
Then there exists an open subset U C Q and a function u € C>(U), such
that OpOp*u € C¥(U) but Oy*u ¢ C¥(U).

This kind of regularity is the natural one in the context of 9, [K].

Some of the partial results which have been known concerning sufficient
and necessary conditions for analytic hypoellipticity of these and related
operators are as follows.

(1) L is analytic hypoelliptic in any open set in which A never vanishes
[Tal],[Ta2],[Tr], and likewise for 9, [G].

(2) In R asum L = Y X7 of squares of d pointwise linearly inde-
pendent analytic vector fields, satisfying Hérmander’s condition, fails to be
analytic hypoelliptic in any open set in which the determinant of an asso-
ciated Levi form, generalizing A, vanishes identically [M]. This condition
is vacuous, though, for two vector fields in dimension three satisfying the
bracket condition, and is not optimal in higher dimensions.

(3) L is analytic hypoelliptic in certain cases in which A vanishes some-
where, including

X1 = 0y, Xo = 0y, + a(z1,22)04,

where A = 0,,a = z]" + 2% for any even, positive integers m,n [GS]; in this
case \ vanishes along a curve which, however, fails to be subordinate.
(4) For m > 3, L fails to be analytic hypoelliptic for

X1 = 81;1, X2 = 81;2 + x{nilag%

[He],[Pr],[HH],[C1],[C2]; likewise for J; in the pseudoconvex case of even
m [CG],[C3], and more generally for differential operators expressible as
(generic) homogeneous polynomials, with constant coefficients, in these two
vector fields [C4].
(5) For

X1 = axl, Xy = 8362 + (SL’T_I + mlxé\/[)axg,
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O, fails to be analytic hypoelliptic in the sense of Theorem 2, provided
that m, M are even and sufficiently large [C5]. These examples were the
first, with only a one-dimensional set of points of higher type, in which
nonanalytic solutions were proved to exist.

The model vector fields (4) are not merely examples. In Lemma 1, be-
low, it is shown how any structure satisfying the hypotheses of Theorem 1
may be viewed as a small perturbation, along -y, of one of these model struc-
tures. The examples (5) were analyzed by a method that treated them as
perturbations of (4); that method had weaknesses which prevented it from
succeeding except for suitably small perturbations, whence the hypothesis
that m, M be large. Here we outline a modification which renders it both
more precise, and simpler. Full details will appear elsewhere.

It is not altogether natural to begin with the three-dimensional case.
While the mechanism behind the models (4) and Theorems 1 and 2 does
exploit three independent variables, there exist operators L = X24Y? in R?
which fail to be analytic hypoelliptic, yet are elliptic except at a single point.
This matter will be investigated in a forthcoming paper. Rather simple
examples demonstrate that higher dimensions give rise to more complex
phenomena, hence that our analysis cannot extend in a straightforward
manner.

2. Proof

A preliminary reduction will help us to view L as a perturbation of model
operators (4).

Lemma 1. Suppose that through xo there passes a subordinate curve -,
which contains only points of higher type. Then there exists an integer
m > 3 such that arbitrarily close to xo may be found an open set U, on
which there are coordinates y with 0 € U, and real vector fields X1, X5 on
U which are linear combinations, with real analytic coefficients, of X1, Xa,
which are linearly independent at every point of U, and which take the form

X1 =0y,  Xo=0,+by)dy,
where b € C¥,
b(y) = a(yz,yg))y{”_l +O(y") if m is odd
b(y) = alyz, y3)yi" " + Oyi") + O(yinﬂyg) + O(y193) if m is even,

and where

b(0,y2,y3) =0 and a(0) > 0.
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In these coordinates A\(y) = 0b/0y; vanishes on the subordinate curve
4 ={(0,y2,0)} (and possibly elsewhere).

Theorems 1 and 2 admit refinements in the scale of Gevrey classes G*: if
m is as in Lemma 1, then for each s < m, there exists v such that Lu € C¥
in U, yet u fails to belong to G°. Likewise in Theorem 2, there exists u
such that 9y0p*u € C¥, yet Oy u ¢ G°.

In order to prove Theorem 1 we next seek solutions, or near-solutions,
for L, of the form u = e®h, where

¢ = dea(y2,y3) = iN"ys — A" T1y3 +iCAya,

A € RT is a large parameter, and ( € I' C C, where I' is a small circle
centered at a point (y to be described. Substitute y = (A~'x,y2,¥3), and
write 2 = (y2,¥3). An equation L(e®?h) = e®g becomes Ap = 1, where
o(z,2) = h(\x, 2), 1 is related to g in the same way modulo multiplication
by a factor of A2, and

A=Acn= > A2a5(A7 2, 2)Py(0,,Y + E)
|B1<2

where

Y =iC+ (i — 2y3\)b,
b(z,z) = Ao\ "z, 2),
E=X"19,, + \"™bd,,,
and [ ranges over a finite index set so that the Pj represent all possible

monomials of degrees |3| < 2 in two noncommuting variables.
Let €5 > 0 be small, and set

D={z¢ C? . ly2| < €0, |ys| < 50)\*"‘/2}.

Let H?(D) denote the Hilbert space of all holomorphic functions on D
which are in L?(D) with respect to Lebesgue measure, and define bounded
operators on it by

Oyy > ajBys = > aziyy 'y,

4,k20 k j<eiX

5?;3 Z ajky% Y5 = Z Z ajkyé kyS—1.

4,k>0 § k<el
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Set . -
Z=X"10y, + X700,

and replace A¢ x by

A=Y NI=2a5(A"1a, 2)P3(0,,Y + Z).
|B1<2

In order to disprove analytic hypoellipticity, we aim to construct a one-
parameter family of trial functions gy, such that Lg, and many of its deriva-
tives are relatively small for large A, while gy itself is not small, thereby
contradicting certain Cauchy estimates (detailed in the second-to-last para-
graph below) which are a necessary condition for analytic hypoellipticity.
We solve

Acafer =1

where 9 (z, z) = exp(ifx — 2?™) for a fixed constant ¢, independent of ¢, \.
Let L' denote the operator L represented in the (x, z) coordinates, so that
e~%x o L/ oeer = A¢ ). Setting

Py = f e9A fox (7 dC
I

for some nonnegative integer o, and noting that fr ePerh (7 d¢ = 0,

L= 7{ PP A afer (7 dC = j'{ PN (A n — A ) fen ¢7 dC.
I I

Denoting by D’ @ D the polydisc whose radii are half those of D, the
operators dy, — 0y,, Oy, — Oy, map H?(D) to H*(D') with operator norms
O(exp(—cA)) for some ¢ > 0, so that this last integrand may be expected
to be small for z € D’.

The main estimates are as follows.

Lemma 2. There exist (5 € C, £ € R, 0 < o € Z, a circle I centered at
Co, and g,€1,€ > 0 such that for all sufficiently large X € R™, there ewists
for each ¢ € I' a solution fc x of

Acxfer=v  on{lz| <AV} x D
satisfying
102, feal(x, z)] < CH |t Aledm/2e=<le™ 1 for gl o

2
/ ‘7{6¢<ka¢,>\ ¢?d¢| de>c>0 where z = 0.
lzj<1'Jr
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A consequence is that

0%(Acx — Ac ) fer(, 2)| < em=rCHHel |t lelm/2e=el=™] for all a,
for |z| < AY/?% ze D'
In outline, the proof of the lemma proceeds as follows. Consider

B= " ag(0)Ps(d,,i¢ +a(0)z™ "),
|B]=2

and denote by H* the Hilbert space of functions defined on R, and taking
values in H2(D), such that

S [ A @y e e < o

0<itj<k™

So long as ¢ avoids a discrete subset of C and &5 is chosen to be sufficiently
small, B (which acts trivially with respect to z € D) defines a bijection
of H? with H°. We modify ag, b in such a way that they become defined
for all z € R, but remain unchanged for |z| < \'/2, and show that (if
this modification is done properly) the norm of 12147 » — B, as an operator
from H? to H°, may be made arbitrarily small by choosing g, €1, €2 to be
sufficiently small and taking X\ sufficiently large. A special case of the L2
Riesz transform bounds of [RS] is crucial here.

The equation flg »f = ¥ may consequently be solved by Neumann se-
ries. There exists ( € C such that B¢ has a nonzero solution which is
O(exp(—¢|z|™)) as x — %oo [C4]; fix such a (. I' is a small circle centered
at (o, o is chosen so that fr B:71¢7d(¢ is a nonzero operator, and £ is
chosen to ensure that v is not in its nullspace.

A delicate point is the splitting of 0,,, for 5y2 must be < A in order
that the Neumann series be convergent, while 8y, — d,, must map H?(D)
to H?(D') with bound O(exp(—c))), in order that (A¢ x — A¢ ))fen will
be sufficiently small for the a priori Cauchy estimates in the second-to-last
paragraph below to be violated. There is no room to spare.

Return to the coordinates y and define trial functions by

9 (y) = Fx(Owyr, y2,y3) I %eg tyn) m(A™ 2eg 1 ys)

where 7y, € C§°(R) is supported in [—1, 1], is identically equal to one on
[—1/2,1/2], and satisfies

[d¥nx/ds" || oo < CFFIN for all k < ),
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with C independent of A. The g, are then smooth functions in a fixed
open set, independent of A. Note that the factor F)(-) is O(exp(—cA)) on
the supports of the gradients of the two cutoff functions, because of the
rapid z—decay in the bounds of Lemma 2 and the factor exp(—A"*"1y32)
in the definition of ¢¢ x; this ensures that Lgy is still small despite the
introduction of the cutoff factors.

The following is a straightforward consequence of Lemma 2, the defini-
tions, and a minor additional calculation.

Lemma 3. There exist c,e > 0, C < oo, and p < oo such that for all large

A and all k < X,
/ % g
Ok

AY/2 |y [+ M y2 [+Am]ys| <1

2
dy Z ck+1)\—p>\2mk’

and such that for |y2| < eo/4, for all |a| < A,
10 Lga(y)| < Clelttamiale=e,

and
lga(y)| < C.

A theorem of Métivier [M] asserts that (under a small additional hy-
pothesis, which L does satisfy) if L were analytic hypoelliptic in €2, then
for any open U’ € Q and any compact K C U’, there would exist C' < oo
such that for any g € C°>°(U’), for any n € Z*,

> 10% Ny < € Y ol T 0% Ly 2wy + CT0 gl L2 ).

1Bl=n 0<la|<n

This criterion opens the door to the use of trial functions for which Lg ¢ C¥
to disprove analytic hypoellipticity. Let U be as in Lemma 1 and choose
U’ C U to be so small a neighborhood of 0 that for y € U’, |exp(i(A\y2)| <
exp(e)), uniformly for all { € I', where ¢ is the constant appearing in the
second estimate of Lemma 3. Taking g = gy, choosing n =~ A/y/log A and
exploiting the factor of exp(—e\), one finds that these inequalities do not
hold, for 0" gy /0y%, for any finite C' independent of A, as A — oc.

The proof of Theorem 2 proceeds along the same lines, but Métivier’s
criterion must be adapted to cope with the nonstandard notion of regularity
at issue for 9. This amounts to a straightforward microlocalization, and
is Proposition 7.1 of [C5].
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