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COMMUTATIVE ALGEBRA IN STABLE HOMOTOPY
THEORY AND A COMPLETION THEOREM

A. D. Elmendorf, J. P. C. Greenlees, I. Kriz, and J. P. May

Abstract. We construct a category of spectra that has all limits and col-
imits and also has a strictly associative and commutative smash product.
This provides the ground category for a new theory of structured ring
and module spectra that allows the wholesale importation of techniques of
commutative algebra into stable homotopy theory. Applications include
new constructions of basic spectra, new generalized universal coefficient
and Künneth spectral sequences, and a new construction of topological
Hochschild homology. The theory works equivariantly, where it allows the
construction of equivariant versions of Brown-Peterson, Morava K-theory,
and other module spectra over MU . Via a topological realization of “local
homology and cohomology groups”, the general theory leads to a com-
pletion theorem for the computation of M∗(BG) and M∗(BG) in terms
of equivariant cobordism groups, where M is MU , BP , k(n), K(n), or
any other module spectrum over MU . (The reader most interested in the
equivariant applications may wish to read the last section first.)

1. Background on the stable homotopy category
Stable homotopy theory embraces homology and cohomology theory

and is a major branch of algebraic topology. Over thirty years ago, it
became apparent that the appropriate setting in which to study stable
phenomena is the “stable homotopy category” of “spectra” (or “stable
spaces”). The translation from topology to algebra through such tools as
the Adams spectral sequence becomes far smoother and more structured
when carried out in this category, and many constructions and arguments
that are essential to calculations are impossible to carry out without it.

The stable homotopy category is “triangulated”, which means that it
has a suspension functor that is an equivalence of categories together with
exact triangles, or cofibration sequences, that satisfy appropriate axioms.
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It also has a “smash product”, denoted ∧, that is associative, commuta-
tive, and unital up to coherent natural isomorphisms, the unit being the
sphere spectrum S. Abstractly, a category with such a product is said to
be “symmetric monoidal” (or “tensored”). This structure allows one to
transport algebraic notions such as ring and module into stable homotopy
theory. Thus, in the stable homotopy category of spectra — which we de-
note by h̄S — a ring is a spectrum R together with a product φ : R∧R→R
and unit η : S→R such that the following diagrams commute in h̄S :

S ∧ R R ∧ R R ∧ S and R ∧ R ∧ R R ∧ R

R R ∧ R R

η∧1 ��

�

JJJJJJJJ ��
φ

��

1∧η��

�
��t t t t t t t t

φ∧1

��

1∧φ ��

φ

��φ ��

The unlabelled equivalences are canonical isomorphisms in h̄S that
give the unital property, and we have suppressed such an associativity
isomorphism in the second diagram. Intuitively, these diagrams commute
only up to homotopy. Similarly, there is a transposition isomorphism τ :
E ∧ F→F ∧ E in h̄S , and R is commutative if the following diagram
commutes in h̄S :

R ∧ R R ∧ R

R

φ

FFFFFFF��

τ ��

φ
��xxxxxxx

An R-module is a spectrum M together with a map µ : R ∧ M→M
such that the following diagrams commute in h̄S :

S ∧ M R ∧ M and R ∧ R ∧ M R ∧ M

M R ∧ M M

η∧1 ��

�

KKKKKKKKK��
µ

��
φ∧1

��

1∧µ ��

µ

��µ ��

The stable homotopy category admits many different constructions.
They are obtained, essentially, by passage to homotopy categories from
inequivalent point-set level categories of spectra, e.g. [4, 2, 16, 9]. How-
ever, all known point-set level precursors of the stable homotopy category
suffer from one defect or another. In fact, it has long been accepted wisdom
that there can be no construction of the stable homotopy category from
an underlying category of spectra that is both complete and cocomplete
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(has arbitrary limits and colimits) and has an associative and commutative
smash product.

Over twenty years ago, it became apparent that it would be of great
value to have more precisely structured point-set level notions of ring and
module, with good properties before passage to homotopy. May, Quinn,
and Ray [20] defined “A∞ and E∞ ring spectra” in 1972. They used
“operad actions” defined in terms of “twisted half-smash products” to
compensate for the lack of an associative and commutative smash prod-
uct. In the early 1980’s, such rings up to homotopy were advertised by
Waldhausen under the rubric “brave new rings.” Elmendorf and May [un-
published] and Robinson [22] defined “A∞ and E∞ module spectra” in
1983. The A∞ notions give the associative theory and have been studied
by Robinson [22, 23, 24, 25]. The E∞ notions add commutativity.

Some examples of E∞ ring spectra are the sphere spectrum S, the
Eilenberg-MacLane spectrum HR associated to a commutative ring R,
the Thom spectra MO and MU , the spectra kO and kU that represent
connective real and complex K-theory, and the algebraic K-theory spec-
trum KR associated to a commutative ring R [20, 21, 16]. Recent work of
Hopkins, Miller, McClure, Vogt, Schwänzl, and ourselves gives many more
examples. In particular, the third author has proven that the Brown-
Peterson spectra BP are E∞ ring spectra.

While E∞ ring spectra have been studied extensively, ours is the first
study of E∞ modules. This point-set level notion of module is far more
powerful than the up to homotopy notion given above. Working in h̄S , it
is not even true that the cofiber of a map of R-modules is an R-module,
so that one does not have a triangulated category of R-modules. Much
more deeply, when R is commutative, one wants a smash product over R,
M ∧R N , that is again an R-module. This is clearly impossible with the
homotopy level definition.

2. Commutative algebra in stable homotopy theory
We have a new approach to these algebraic structures. We begin with

the category S of “coordinate free spectra” of [20, 16]. That category is
complete and cocomplete; it has many homotopy equivalent smash prod-
ucts, none of which are associative and commutative. Our first theorem
singles out a new category SM of “S-module spectra” whose objects are
spectra in S with extra structure.

Theorem 1. There is a complete and cocomplete category SM of S-
module spectra that admits an associative and commutative smash product
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M ∧S N with a natural unit equivalence ξ : S ∧S M→M . It also admits
function S-modules FS(M, N) such that

SM (L ∧S M, N) ∼= SM (L, FS(M, N)).

The map ξ satisfies the expected properties of an action of S on M ,
hence the term “S-module”. Replacing ∧ by ∧S in the definitions of ring
and module spectra above, it now makes sense to require the displayed
diagrams to commute on the point-set level, that is, to commute in the
category SM . We thereby obtain new definitions of ring and module
spectra. The new notion of a ring spectrum can be given a more conceptual
formulation. There is a modified version of the smash product, M ∗S N ,
that is defined on spectra equipped with given “unit maps” S → M ; this
smash product is unital, and there results a symmetric monoidal category
SMu of S-modules with unit. Our new definition of a (commutative) ring
spectrum coincides with the obvious notion of a (commutative) monoid
in this symmetric monoidal category. Remarkably, these new definitions
coincide exactly with the original, and seemingly much more complicated,
definitions of A∞ and E∞ ring and module spectra.

These reinterpretations of the definitions of structured ring and module
spectra place them in a far more technically manageable framework. This
conceptual simplicity allows easy versions of constructions that before were
difficult or seemingly impossible. Our work on structured ring spectra
overlaps ongoing work of Hopkins, Miller, and McClure. In particular, the
following sample result — whose proof is now a formal triviality — has
been emphasized by Hopkins.

Proposition 2. If R and R′ are E∞ ring spectra, then R ∗S R′ is an E∞
ring spectrum and is the coproduct of R and R′ in the category of E∞ ring
spectra. If M is an R-module and M ′ is an R′-module, then M ∧S M ′ is
an R ∗S R′-module.

An A∞ ring spectrum R is analogous to an algebra over a commutative
ring k, and, exactly as in algebra, we can define the smash product over
R of a right R-module M and a left R-module N to be the coequalizer of
the pair of maps

µ ∧ 1, 1 ∧ ν : M ∧S R ∧S N→M ∧S N,

where µ : M ∧S R→M and ν : R∧S N→N are the given actions. Similarly,
for left R-modules M and N , there is a function S-module FR(M, N); it
is defined as the equalizer of an easily defined pair of maps

FS(M, N)→FS(R ∧S M, N).
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Specializing to E∞ ring spectra, we can generalize Theorem 1.

Theorem 3. Let R be an E∞ ring spectrum. The category RM of R-
module spectra is complete and cocomplete. It admits an associative and
commutative smash product M∧RN , and there is a natural unit equivalence
ξ : R ∧R M→M . It also admits function R-modules FR(M, N) such that

RM (L ∧R M, N) ∼= RM (L, FR(M, N)).

Further, there is an associative composition pairing

FR(M, N) ∧R FR(L, M)→FR(L, N).

There is also a theory of left-right bimodules with all of the properties
that one would expect. In the A∞ context, it specializes to recover the
results of [22, 24, 25].

Again, there is a modified smash product, M ∗R N , of R-modules with
unit maps R→M , and there results a symmetric monoidal category RMu

of unital R-modules. A monoid in this category is an “A∞ R-algebra”. For
any R-module M , FR(M, M) is such an R-algebra. Many other standard
algebraic concepts translate similarly into our topological context.

The stable homotopy category h̄S is constructed from the homotopy
category of spectra by adjoining formal inverses to the weak equivalences.
Analogously, we construct the stable homotopy category h̄RM of R-
modules from the homotopy category of R-modules by adjoining formal
inverses to the weak equivalences, where a weak equivalence is a map of
R-modules that is a weak equivalence of underlying spectra. The category
h̄SM is our new model for the stable homotopy category.

Theorem 4. The forgetful functor SM→S induces an equivalence of
categories h̄SM→h̄S . For S-modules M and N , there are natural iso-
morphisms in h̄S

M ∧ N � M ∧S N and F (M, N) � FS(M, N).

The categories h̄RM provide a powerful new tool in stable homotopy
theory. They are also of considerable intrinsic interest, as the following
result illustrates.

Theorem 5. Let R be a commutative ring. Then R-modules M can be
realized functorially by Eilenberg-Mac Lane spectra HM that are modules
over the E∞ ring spectrum HR, and

TorR
n (M, N) ∼= πn(HM∧HRHN) and Extn

R(M, N) ∼= π−nFHR(HM, HN)
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as R-modules. Further, the stable homotopy category of HR-modules is
equivalent to the derived category of R-modules.

The essential point is that our HM ∧HR HN and FHR(HM, HN) are
equivalent to derived tensor product and Hom functors in the category of
chain complexes of R-modules. The A∞ analog of this theorem recovers
the results of [23].

Another interesting example is the stable homotopy category h̄K(F )M
of the algebraic K-theory E∞ ring spectra K(F ) associated to a field F .
As noted at the end of [13], this category gives a possible home for the
integral mixed Tate motives of F in algebraic geometry.

For any E∞ ring spectrum R, there is a free R-module functor F :
S→RM . Taking “sphere R-modules” to be R-modules of the form FSn,
we develop a theory of cell and CW R-modules that is exactly like the
usual theory of cell and CW spectra. A weak equivalence of cell R-
modules is a homotopy equivalence, any R-module is weakly equivalent
to a cell R-module, and h̄RM is equivalent to the homotopy category of
cell R-modules. Functors on R-modules that do not preserve weak equiv-
alences are transported to the category h̄RM by first approximating their
arguments by cell R-modules; the last statement of Theorem 4 must be
interpreted in this light.

For a spectrum E, let En = πn(E) = E−n. By using free R-modules
to realize free R∗-module resolutions of M∗ topologically, we obtain the
following calculational generalization of Theorem 5. It gives a kind of
Eilenberg-Moore (or hyperhomology) spectral sequence in stable homotopy
theory.

Theorem 6. Let R be an E∞ ring spectrum. For R-modules M and N ,
there are spectral sequences of differential R∗-modules

TorR∗∗,∗(M∗, N∗) =⇒ π∗(M∧RN) and Ext∗,∗
R∗ (M∗, N∗) =⇒ π−∗(FR(M, N)).

These give universal coefficient and Künneth spectral sequences by spe-
cialization.

Theorem 7 (universal coefficient). For an R-module N and an S-mod-
ule X, there are spectral sequences of differential R∗-modules

TorR∗∗,∗(R∗X, N∗) =⇒ N∗X and Ext∗,∗
R∗ (R∗X, N∗) =⇒ N∗X.
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Theorem 8 (Künneth). For S-modules X and Y , there are spectral se-
quences of differential R∗-modules

TorR∗∗,∗(R∗X, R∗Y ) =⇒ R∗(X∧Y ) and Ext∗,∗
R∗ (R∗X, R∗Y ) =⇒ R∗(X∧Y ).

There are spectral sequences more generally when R is only an A∞ ring
spectrum, but without the R∗-module structure needed for explicit calcu-
lation. Such spectral sequences were first obtained by Robinson [22, 24].
Adams [1] derived universal coefficient and Künneth spectral sequences
like these under ad hoc calculational hypotheses that require case-by-case
verification.

We can realize many other homological constructions topologically. A
particularly interesting example is a generalization of Bökstedt’s topologi-
cal Hochschild homology THH(A) [5] from discrete rings A to A∞ algebras
over E∞ ring spectra. The Hochschild homology groups of an algebra A
over a commutative ring R can be computed as the homology groups of the
chain complex of R-modules associated to a certain simplicial R-module
H•(A) such that Hn(A) is the n-fold tensor power of A; the faces and
degeneracies of H•(A) are defined in terms of the product and unit of A.
If A is commutative, then H•(A) is a simplicial R-algebra.

Now let R be an E∞ ring spectrum and let A be an A∞ R-algebra.
Simply by replacing tensor products over R by smash products ∗R in the
explicit definition of H•(A), we obtain a simplicial spectrum H•(A) whose
geometric realization we call THH(A). If A is an E∞ R-algebra, then
H•(A) is a simplicial E∞ R-algebra and THH(A) is an E∞ R-algebra.
Its homotopy groups are the topological Hochschild homology groups of
A (relative to R). In fact, H•(A) is a cyclic R-module spectrum and
THH(A) has an action of the circle group S1. It seems that a slightly
more sophisticated construction gives a better version of the S1-action that
makes THH(A) a cyclotomic spectrum in the sense of [19], and in fact a
cyclotomic R-module. Assuming this, we will also have a generalization of
topological cyclic homology from discrete rings to A∞ algebras over E∞
ring spectra. However, this is work in progress.

Another immediate application of our general theory gives a homotopy-
theoretic replacement for the Baas-Sullivan theory of manifolds with sin-
gularities [3, 6]. The latter theory uses geometric methods to construct
spectra by killing or inverting generators in the homotopy groups of cer-
tain cobordism spectra, especially MU . Recent work in stable homotopy
theory has focused on the study of these fundamentally important spec-
tra, but their manifold-theoretic construction bears negligible relation to
the techniques of their study and has made it difficult to analyze their
multiplicative and uniqueness properties. Moreover, we can now obtain
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equivariant versions of all of these spectra, something that would be ex-
tremely difficult, if it could be done at all, using manifolds with singulari-
ties. We shall return to MU shortly. The basic construction is applicable
to modules over any E∞ ring spectrum.

Construction 9. Let R be an E∞ ring spectrum, let x ∈ πn(R), and let
M be an R-module. Then we can realize the map on homotopy groups
given by multiplication by x,

·x : π∗M→π∗M,

as the map on homotopy groups induced by the map of R-modules

µ ◦ (x ∧S 1) : Sn ∧S M→R ∧S M→M.

The cofiber M/xM of this map is again an R-module. We can therefore
iterate and pass to telescopes to construct M/XM for any sequence X =
{x1, . . . , xi, . . . } of elements of π∗R. If I is the ideal generated by X and
if X is a regular sequence for π∗M , then the resulting map M → M/XM
induces an isomorphism

π∗(M)/Iπ∗(M) ∼= π∗(M/XM).

Similarly, we can use iterated multiplication by elements and passage to
telescopes to construct an R-module M [X−1] and a map M→M [X−1]
that induces localization

π∗(M)→π∗(M)[X−1].

Techniques of conventional stable homotopy theory in the stable homo-
topy category of R-modules can be used to derive information about the
multiplicative structures on spectra constructed in this fashion. In partic-
ular, all of the known information about the multiplicative structure on
the spectra usually constructed by Baas-Sullivan theory can be obtained
in this way. We can also construct completions of modules at ideals in
π∗(R), as we explain in an equivariant setting.

3. New equivariant spectra and a completion theorem
Completion theorems relate the nonequivariant cohomology of classify-

ing spaces to algebraic completions of associated equivariant cohomology
theories. They are at the heart of equivariant stable homotopy theory and
its nonequivariant applications. Two fundamental theorems along this line
are the Atiyah-Segal completion theorem and the Segal conjecture. The
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first asserts that, for any compact Lie group G, K∗(BG) is the comple-
tion of K∗

G ≡ K∗
G(pt) at the augmentation ideal of the representation ring

R(G). Here K0
G = R(G), K1

G = 0, and K∗
G is periodic with period 2.

The second asserts that, for any finite group G, the stable cohomotopy
π∗(BG) is isomorphic to the completion of π∗

G at the augmentation ideal
of the Burnside ring A(G). Here π0

G = A(G), πq
G = 0 for q > 0, and the πq

G

for q < 0 are unknown in general. Thus the Segal conjecture proves the
equality of two interesting sequences of invariants of the group G, both of
which are very hard to compute.

Let G be a compact Lie group. Our general theory of structured ring and
module spectra applies verbatim to G-spectra and allows us to construct
new equivariant spectra and to prove completion theorems about them.
Two problems stated and discussed by Carlsson in his recent survey [7] of
equivariant stable homotopy theory read as follows:

“Define and compute equivariant Morava K-theory spectra.”
“Formulate a conjecture about MU∗(BG), for G a finite group.”

The second problem had already been posed by Landweber in 1970 [14],
and he noted that the problem of studying MU∗(BG) seemed to be even
harder. Prior to our work, nothing at all was known about the first problem
and, except when G is Abelian, little was known about the second. On
the conceptual level, we shall solve both problems; on the computational
level, however, our work will merely point the direction to further study.

There is a stabilized version of equivariant cobordism that was intro-
duced by tom Dieck [8]. It is represented by an E∞ ring G-spectrum
MUG with underlying nonequivariant E∞ ring spectrum MU . The G-
spectrum MUG is “split,” which means that there is a map from MU
to the fixed point spectrum (MUG)G whose composite with the inclusion
(MUG)G → MU is the identity. Therefore MU∗ = π∗(MU) is a direct
summand of MUG

∗ ≡ πG
∗ (MUG). This allows us to construct equivari-

ant versions of the Brown-Peterson spectrum BP , the Morava K-theory
spectra k(n) and K(n), and all of the other spectra that are usually con-
structed from MU by means of the Baas-Sullivan theory of manifolds with
singularities.

Recall that π∗(MU) = Z[xi|deg(xi) = 2i]. Starting from MUG, we
can construct MUG-module spectra by killing off any chosen sequence of
elements of π∗(MU) and inverting any other chosen sequence. If we kill
off the xi for i not of the form pn − 1 and then localize at p, we obtain the
Brown-Peterson spectrum BPG. Its underlying nonequivariant spectrum
is BP . Recall that π∗(BP ) = Z(p)[vi|deg(vi) = 2(pi − 1)], where the
generators vi come from π∗(MU) (provided that we use the Hazewinkel
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generators). We list a few of the important spectra derived from BP , with
their coefficient rings. Let Fp denote the field with p elements.

BP 〈n〉 Z(p)[v1, . . . , vn] E(n) Z(p)[v1, . . . , vn, v−1
n ]

P (n) Fp[vn, vn+1, . . . ] B(n) Fp[v−1
n , vn, vn+1, . . . ]

k(n) Fp[vn] K(n) Fp[vn, v−1
n ]

We construct BP 〈n〉G from BPG by killing off the vi for i > n, and
we construct E(n)G from BP 〈n〉G by inverting vn. We construct k(n)G

and K(n)G from BP 〈n〉G and E(n)G by killing off the vi for i < n. We
do not know that the sequences of elements that we are killing are reg-
ular sequences in MUG

∗ , but that does not affect the constructions. The
constructions are independent of the order in which we kill and invert
elements. It is immediate that the underlying nonequivariant spectra of
BP 〈n〉G, k(n)G, K(n)G, etc, are BP 〈n〉, k(n), K(n), etc, and the G-
spectra constructed in this fashion are split. It is also immediate that our
constructions are functorial in G. These are two of the primary desiderata
of equivariant Brown-Peterson and Morava K-theory G-spectra. Explicit
computations will require better understanding of MUG

∗ than is now avail-
able. We give a perhaps over-optimistic conjecture.

Conjecture 10. MUG
∗ is MU∗-free on generators of even degree.

This was stated by Löffler [17, 18] when G is Abelian, but his proof has
not appeared. Comezana (unpublished) has recently supplied a complete
argument. Again, little is known for non-Abelian groups.

A third desideratum of equivariant Morava K-theories is that there
should be a close relationship between K(n)∗G and K(n)∗(BG). We have
a surprisingly general theorem along these lines: it is valid for a large class
of groups G and for all MUG-module spectra M (in the E∞ sense), and
it deals with M∗(BG) as well as M∗(BG). It shows that these homology
and cohomology groups are the homotopy groups of certain G-spectra
HI(MUG;M) and HI(MUG;M). There are spectral sequences for the
computation of these groups in terms of “local cohomology groups” and
“local homology groups” that can be computed from knowledge of the ring
MUG

∗ . Thus it establishes a close connection between the geometrically
defined equivariant cobordism groups and the homology and cohomology
of classifying spaces with coefficients in MU -module spectra.

The idea is to mimic the second author’s homological version of the
Atiyah-Segal completion theorem [10], using our new technology. This
entails the importation of techniques of commutative algebra into equiv-
ariant stable homotopy theory, and we must set out briefly the relevant
constructions from commutative algebra. Let R be a graded commutative
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ring and let I = (α1, . . . , αn) be a finitely generated ideal in R. Define
K•(I) to be the tensor product of the graded chain complexes

K•(αi) = (R → R[1/αi]),

where R and R[1/αi] lie in homological degrees 0 and 1. Up to quasi-
isomorphism, K•(I) depends only on the radical of I. For a graded R-
module M , define

Hs,t
I (R;M) = Hs,t(K•(I) ⊗ M),

where s indicates the homological degree and t the internal grading. Such
“local cohomology groups” were first defined by Grothendieck. Special
cases of these algebraic local cohomology groups turn out to compute topo-
logical homology groups.

There are dual “local homology groups” which, to the best of our
knowledge, were first introduced in [11, 12]. Replacing K•(I) by a quasi-
isomorphic R-free chain complex K ′•(I), define

HI
s,t(R;M) = Hs,t(Hom(K ′•(R), M)).

There is a tri-graded universal coefficient spectral sequence converging to
these groups; ignoring the internal grading t, which is unchanged by the
differentials, it converges in total degree s = −(p + q) and satisfies

Ep,q
2 = Extp

R(H−q
I (R;R), M) and dr : Ep,q

r → Ep+r,q−r+1
r .

There is a natural epimorphism HI
0 (R;M) → M Î whose kernel is a certain

lim1 group. If R is Noetherian, then HI
∗ (R;M) calculates the left derived

functors of I-adic completion [12].
Now let R be an E∞ ring G-spectrum and M be an E∞ R-module. For

α ∈ RG
k , let R[1/α] be the telescope of iterates

R → Σ−kR → Σ−2kR → · · ·
of multiplication by α and let K(α) be the fiber of the canonical map
R → R[1/α]. For a finitely generated ideal I = (α1, . . . , αn) in R∗, let K(I)
be the smash product over R of the R-modules K(α). Up to equivalence
of R-modules, K(I) depends only on the radical of I. Define the “local
cohomology spectrum of M” to be the R-module

HI(R;M) ≡ K(I) ∧R M.

Define the “local homology spectrum of M ,” alias the completion of M at
I, to be the R-module

HI(R;M) ≡ FR(K(I), M) ≡ M Î .
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There is a spectral sequence converging to HI(R; M)G
∗ (in total degree

p + q), with

E2
p,q = H−p,−q

I (RG
∗ ;MG

∗ ) and dr : Er
p,q → Er

p−r,q+r−1,

and there is a spectral sequence converging to HI(R;M)∗G (in total degree
p + q) with

Ep,q
2 = HI

−p,−q(R
∗
G;M∗

G) and dr : Ep,q
r → Ep+r,q−r+1

r .

Now take I to be the augmentation ideal, I = Ker(RG
∗ → R∗). We

need to know that I is the radical of a finitely generated ideal in order to
perform our constructions, but the rings that we are interested in are not
Noetherian. We also need a compatibility relation with change of groups
to allow induction.

Proposition 11. If G acts freely on a finite product of unit spheres of
representations, for example if G is nilpotent, then the augmentation ideal
I = IG of MUG

∗ is the radical of a finitely generated ideal. Moreover, for
H ⊂ G, the radical of the augmentation ideal IH of MUH

∗ is equal to the
radical of the ideal generated by the image of IG under restriction.

The canonical map K(I) → R is an equivalence of underlying spectra,
and there results a map

κ : EG+ ∧ R → K(I)

of R-module spectra over R, where EG+ is the union of EG and a G-fixed
disjoint basepoint. The map κ induces maps of R-modules

EG+ ∧ M � EG+ ∧ R ∧R M → K(I) ∧R M = HI(R;M)

and

HI(R;M) = FR(K(I), M) → FR(EG+ ∧ R, M) � F (EG+, M),

both of which will be equivalences for all M if κ is an equivalence. We can
now state our completion theorem for modules over MUG.

Theorem 12. If G acts freely on a finite product of unit spheres of rep-
resentations, then κ : EG+ ∧ MUG → K(I) is an equivalence. Therefore,

EG+ ∧ M → HI(MUG;M) and HI(MUG; M) → F (EG+, M)

are equivalences for any MUG-module M .
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It is valuable to obtain a completion theorem about EG ×G X for a
general G-space X, obtaining the motivating result about BG by taking
X to be a point. For this purpose, we replace M by M ∧ X+ in the first
equivalence and by F (X+, M) in the second. If M is split, then

πG
∗ ((EG × X)+ ∧ Σ−Ad(G)M) ∼= M∗(EG ×G X)

and
πG
∗ (F ((EG × X)+, M)) ∼= M∗(EG ×G X),

where Ad(G) is the adjoint representation of G [16, II.8.4]. Thus the
theorem has the following immediate consequence.

Theorem 13. If G acts freely on a finite product of unit spheres of rep-
resentations and M is a split MUG-module spectrum, then

HI(MUG; Σ−Ad(G)M ∧ X+)G
∗ ∼= M∗(EG ×G X)

and
HI(MUG;F (X+, M))∗G ∼= M∗(EG ×G X)

for any G-space X.

We conjecture that the hypothesis on G can be removed in the previous
theorems. More precisely, we conjecture that K(J) is independent of J for
sufficiently large finitely generated subideals J of I and that the theorems
hold with I replaced by any such ideal J . [Added in proof: we have now
proven this conjecture for all finite groups G.]

As we have indicated, there are spectral sequences for the computation
of the groups on the left in terms of local cohomology and local homology
groups, respectively. In this connection, we note the following result of
Löffler [18].

Theorem 14 (Löffler). If G is a compact Abelian Lie group, then

(MU∗
G)Î

∼= MU∗(BG).

Here MU∗(BG) is completely understood [15, 17, 18]. In this case, the
topology forces the following algebraic conclusion.

Corollary 15. If G is a compact Abelian Lie group, then

HI
0 (MU∗

G;M∗
G) ∼= ((MUG)Î)∗G ∼= (MU∗

G)Î

and
HI

p (MU∗
G;M∗

G) = 0 if p �= 0.
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Like the Segal conjecture, our Theorem 13 relates two very interesting
unknowns: the equivariant stabilized cobordism groups and the nonequiv-
ariant cohomology of classifying spaces for theories that are represented
by E∞-module spectra over MU , such as MU itself and BP , k(n), and
K(n). There is a long and extensive history of explicit calculations of
groups M∗(BG) and M∗(BG) in special cases. Our theorem gives a gen-
eral conceptual framework into which all such computations must fit.

Our new foundations in stable homotopy theory open up many other
avenues of exploration. The new ability to mimic algebraic constructions
topologically has only begun to be exploited, and there is much work in
progress, by ourselves and others. We are very grateful to Mike Hopkins,
Haynes Miller, Jim McClure, Rainer Vogt, Roland Schwänzl, and Ib Mad-
sen for sharing their ideas with us.
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