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SUBELLIPTIC ESTIMATES OF POLYNOMIAL
DIFFERENTIAL OPERATORS AND APPLICATIONS TO

RIGIDITY OF ABELIAN ACTIONS

A. Katok and R. J. Spatzier

Abstract. We use subelliptic estimates for certain polynomial differential
operators to show C∞-regularity of distributions smooth “along” foliations
which satisfy a certain non-degeneracy condition and whose sum is totally
non-integrable. We use this to extend the cocycle trivialization theorem
for Anosov actions of higher rank abelian groups [10] to certain partially
hyperbolic actions of Z

k or R
k for k ≥ 2. As a consequence, there are only

trivial smooth time changes for these actions (up to an automorphism).

1. Introduction
A classical result from analysis asserts that a function f : R2 → R is C∞

provided that ∂n

∂xn f and ∂n

∂yn f exist for all positive integers n. This follows
from the ellipticity of the operator ∂n

∂xn + ∂n

∂yn , and standard regularity
theory of elliptic operators. This easily generalizes to functions that are
smooth along transverse smooth foliations on a manifold, and more deeply,
functions that are smooth along transverse Hölder foliations with smooth
leaves [5, 6, 7, 13].

In this note, we consider extensions of this phenomenon to smooth fo-
liations or smooth plane fields Di whose sum is a totally non-integrable
plane field. Here one calls a plane field totally non-integrable if the tan-
gent space TpM at any point p ∈ M is spanned by brackets of vectorfields
tangent to the plane field. Suppose that a distribution f on M has contin-
uous or locally L2 partial derivatives in the directions of Di of any order
for each Di. We then show that f is C∞ on M , under some mild tech-
nical assumption on the distributions. In particular, f has derivatives in
directions transverse to the sum of the Di. This theorem relies heavily
on deep results of L. Rothschild, B. Helffer and F. Nourrigat, G. Metivier
and C. Rockland on the hypoellipticity of certain polynomial differential
operators [15, 1, 16].
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We apply this regularity result to show rigidity of smooth cocycles of
certain partially hyperbolic actions of Rk and Zk for k ≥ 2. They include
the class of Anosov actions we introduced in [10]. This paper extends our
results about the first cohomology of Anosov actions of higher rank abelian
groups to certain partially hyperbolic actions.

As in [10], the main construction of the solution of the cohomology
equation uses harmonic analysis and is very similar to [10]. The regular-
ity properties of the solution rely on the subelliptic estimates mentioned
above.

As an application, we obtain non-existence of smooth time changes for
the standard partially hyperbolic actions.

2. Subelliptic estimates and regularity
We will consider totally non-integrable plane fields D on a manifold that

satisfy the following technical condition:

(∗): for each j, the dimension of the space spanned by the com-
mutators of length at most j at each point is constant in a neigh-
borhood.

Theorem 2.1. Let D1, . . . ,Dk be C∞ plane fields on a manifold M such
that their sum

∑k
i=1 Di is totally non-integrable and satisfies condition (∗).

Let P be a distribution on M . Assume that for any positive integer p and
C∞ vectorfield X tangent to any Dj, the pth partial derivative Xp(P ) exists
as a continuous or a local L2 function . Then P is C∞ on M .

Note that we make no assumptions on the existence of mixed derivatives.
Also note that a function P is C∞ on M provided that it is C∞ along k
foliations for which the sum of its tangent distributions is totally non-
integrable and satisfies condition (∗). We do not know if condition (∗) is
merely technical.

Proof. The claim clearly follows from its local version. By condition (∗)
we may therefore assume that

(1) X1, . . . , Xl are linearly independent C∞ vectorfields on a neigh-
borhood U that, together with their commutators of length at
most r, span the tangent space at every point of U ,

(2) for each j ≤ r, the dimension of the space spanned by their com-
mutators of length at most j is constant in each neighborhood.

Since
∑l

i=1 X2
i (P ) is continuous or L2

loc, Hörmander’s square theorem
ensures that any distribution P is an L2

loc-function [3, 17].
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To show higher regularity, consider the polynomial differential operator
L =

∑l
i=1 Xm

i for any positive even integer m. Given a set of vector
fields X1, . . . , Xl as above, Metivier attached a nilpotent Lie algebra to
any point x ∈ M that is generated by elements X̂1, . . . , X̂l [14, 16]. Let
Gx denote the simply- connected Lie group with that Lie algebra. If π is
a unitary representation of Gx, let Sπ denote the space of C∞ vectors of
π. By [15, Proposition 7.1] the operator π(

∑l
i=1 X̂m

i ) is injective as an
operator on Sπ for any non-trivial irreducible representation π. It follows
from [16, Theorem 0.7] that L is maximally hypoelliptic. This means that
for any multiindex α with |α| ≤ m there exists Cα > 0 such that in a
neighborhood V of x

‖Xαf‖2
0 ≤ Cα

(‖Lf‖2
0 + ‖f‖2

0

)

for all f ∈ C∞
0 (V ) where ‖ ‖0 denotes the L2-norm.

Denote by Hα the αth Sobolev space of V with Sobolev norm ‖ ‖α.
By the above and [17, §16] there is a constant C > 0 such that for all
f ∈ C∞

0 (V )

‖f‖m/r ≤ C
(‖Lf‖2

0 + ‖f‖2
0

) 1
2 .

A. and J. Unterberger introduced mollifiers of the form

Op(φ)u(x) =
∫

φ(x, η, y)e−2iπ(y−x)·η u(y) dy dη

where φ(x, η, y) is a C∞-function on R3n all of whose partial derivatives
decay superpolynomially in η [18]. These mollifiers are infinitely smooth-
ing. Let φt(x, η, y) = φ(x, tη, y). Then for 0 < t ≤ 1 and any s ∈ R,
Op(φt) is in a bounded set of continuous linear endomorphisms of Hs(Rn)
with the operator norm topology, and for every u ∈ Hs(Rn), Op(φt)u con-
verges to the product of u by the function φ(x, 0, x) in Hs(Rn) as t → 0
[18, Theorem 1.2]. Moreover, let X be a vectorfield. Suppose that for
every y there is a compact set that contains the support of φ( , η, y) for
all η. Then there is another symbol ψ with superpolynomial decay such
that [X, Op(φt)] = Op(ψt) [18, Theorem 1.1]. They also satisfy the last
property as one can see from the explicit formula given in [18].

Let us pick a mollifier φ as above where we identify V with Rn. By
the last assertion we can inductively find mollifiers φi,j with φ = φ0,0 such
that [Xj , Op(φi,j

t )] = Op(φi+1,j
t ). Then we easily see that

L Op(φt)f = Op(φt)Lf +
l∑

j=1

m∑
i=1

(
m

i

)
Op(φm−i,j

t ) (Xj)i f.
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By the a priori estimate we see that

‖Op(φt)f‖2
m
r
≤ C

(‖LOp(φt)f‖2
0 + ‖Op(φt)f‖2

0

)

= C

(∥∥∥∥Op(φt)Lf

+
l∑

j=1

m∑
i=1

(
m

i

)
Op(φm−i,j

t ) (Xj)i f

∥∥∥∥
2

0

+ ‖Op(φt)f‖2
0

)
.

By assumption all (Xj)if are continuous or locally integrable and hence
belong to L2(V ) for small enough V . Hence by the properties of the
mollifiers above ‖Op(φt)f‖m/r is bounded as t → 0 and hence f ∈ Hm/r−ε

for every ε > 0 by Rellich’s Lemma. Since this is true for all m, the Sobolev
lemma shows that f is C∞.

3. Partially hyperbolic actions

Definition 3.1. Let A be Rk or Zk. Suppose A acts C∞ and locally freely
on a manifold M with a Riemannian norm ‖ ‖. Call an element g ∈ A
normally hyperbolic if there exist real numbers λ > µ > 0, C, C ′ > 0 and
a continuous splitting of the tangent bundle

TM = E+
g + E0

g + E−
g

such that E+
g and E−

g have positive dimension and for all p ∈ M , for all
v ∈ E+

g (p) (v ∈ E−
g (p) respectively) and n > 0 (n < 0 respectively) we

have for the differential g∗ : TM → TM

‖gn
∗ (v)‖ ≤ Ce−λ|n|‖v‖

and for all n ∈ Z and v ∈ E0 we have

‖gn
∗ (v)‖ ≥ C ′e−µ|n|‖v‖.(∗∗)

Definition 3.2. Call an A-action partially hyperbolic if it contains a nor-
mally hyperbolic element such that the subbundle E0 is uniquely integrable
and that the growth in E0 is subexponential, i.e. the estimate (∗∗) takes
place for any µ > 0 for a constant that depends on µ.

We call E+
g and E−

g its stable and unstable subbundle respectively.
Call g ∈ A regular if the neutral direction for g is contained in the neutral
direction of any other element.
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If M is compact, these notions do not depend on the ambient Rieman-
nian metric. Note that the splitting and the constants in the definition
above depend on the normally hyperbolic element, and that the subbundle
E0 contains the tangent subbundle TO to the A-orbits. If A acts partially
hyperbolically, we will call the foliation into the integral manifolds of E0

the neutral foliation.
It is an interesting and apparently open problem whether any topolog-

ically transitive partially hyperbolic action contains a regular element.
Hirsch, Pugh and Shub developed the basic theory of partially hyper-

bolic transformations in [2].

Theorem 3.3. Suppose g ∈ A acts partially hyperbolically on a mani-
fold M . Then there are Hoelder foliations W s

g and Wu
g tangent to the

subbundles E+
g and E−

g respectively. We call these foliations the stable
and unstable foliations of g. The individual leaves of these foliations are
C∞-immersed submanifolds of M .

Note that all Anosov actions are partially hyperbolic [10]. In particular,
the standard Anosov actions introduced in [10] are all partially hyperbolic.
We will now extend this class by including certain genuine partially hy-
perbolic actions. All examples of Rk-actions in this class come from the
following unified algebraic construction. Let G be a connected Lie group,
A ⊂ G a closed Abelian subgroup which is isomorphic with Rk, S a com-
pact subgroup of the centralizer Z(A) of A, and Γ a cocompact lattice in

G. Then A acts by left translation on the compact space M
def
= S \ G/Γ.

Example 3.4 (Symmetric space examples). Let G be a semisimple
connected real Lie group of the noncompact type and of R-rank at least
2. Let A be the connected component of a split Cartan subgroup of G.
Suppose Γ is an irreducible torsion-free cocompact lattice in G. Then the
action of A on G/Γ is partially hyperbolic.

Indeed, recall that the centralizer Z(A) of A splits as a product Z(A) =
M A where M is compact. Let Σ denote the restricted root system of G.
Then the Lie algebra G of G decomposes

G = M + A +
∑
α∈Σ

Gα

where gα is the root space of α and M and A are the Lie algebras of M
and A. Fix an ordering of Σ. If X is any element of the positive Weyl
chamber Cp ⊂ A then α(X) is nonzero and real for all α ∈ Σ. Hence exp X
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acts normally hyperbolically on G with respect to the foliation given by
the MA-orbits.

Since A commutes with M , A acts on N
def
= M \ G/Γ. We called this

action the Weyl chamber flow of A in [10]. We will call the Weyl chamber
flows as well as the actions on the cover G/Γ or any intermediate cover
standard. For the partially hyperbolic actions we will also assume that
the Lie algebra G of G does not have factors isomorphic with so(n, 1) or
su(n, 1).

Let us note that we only need Γ to be torsion-free to assure that G/Γ
is a manifold. All of our arguments in this paper directly generalize to the
orbifold case.

Restrict any such Rk-action to any lattice Zk ⊂ Rk. Then we get
partially hyperbolic Zk-actions which satisfy our properties above. We
may also restrict to any Rm or discrete Zm in Rk which contains a regular
element. Again, these examples are called standard. Note that again we
do not consider G with factors isomorphic with so(n, 1) or su(n, 1).

Example 3.5 (Twisted symmetric space examples). Assume the
notations of Example 2.7. Let ρ : Γ → SL(n, Z) be a representation of
Γ which is irreducible over Q. Then Γ acts on the n-torus Tn via ρ and
hence on (M \ G) × Tn via

γ(x, t) = (xγ−1, ρ(γ)(t)).

Let N
def
= M \G×Γ Tn def

= (M \G×Tn)/Γ be the quotient of this action.
As the action of A on M \G×Tn given by a(x, t) = (ax, t) commutes with
the Γ-action, it induces an action of A on N .

This example generalizes by taking an action on an intermediate cover
between G/Γ and M \G/Γ as the base space of the twisting. We may also
restrict the action of Rk to a closed subgroup isomorphic to either Rm or
Zm with m ≥ 2 as long as at least one element acts partially hyperbolically
with neutral foliation given by the quotient of the MA-orbit foliation. Note
that such a partially hyperbolic element is a regular element of the split
Cartan subgroup. For the non-Anosov examples, we will again assume
that the Lie algebra G of G does not have factors isomorphic with so(n, 1)
or su(n, 1).

The above construction can be generalized considering toral extensions
of other higher rank actions for which one of the monodromy elements
is Anosov. For example, using a twisted Weyl chamber flow as above as
the base we obtain nilmanifold extensions of the Weyl chamber flow. As
A. Starkov pointed out, one can also start with the product of a Weyl



SUBELLIPTIC ESTIMATES AND RIGIDITY OF ACTIONS 199

chamber flow with a transitive action of some Rl on a torus and produce
a toral extension which is Anosov and no finite cover splits as a product.
These two extension constructions can be combined and iterated. This is
our last class of standard examples.

Let us emphasize that for all standard actions, the splitting TM =
E+

g + E0
g + E−

g is smooth, and that the following property holds:

The sum of the subbundles E+
g and E−

g is totally non-
integrable, i.e. the vectorfields belonging to them and their
brackets span TM .

The next theorem generalizes the cocycle triviality theorem for Anosov
actions from [10].

Theorem 3.6. Consider a standard partially hyperbolic A-action on a
manifold M where A is isomorphic to Rk- or Zk with k ≥ 2. Then any
C∞-cocycle β : A × M → Rl is C∞-cohomologous to a constant cocycle.

As in [10, Proof of Theorem 2.12 in Section 5], we get the

Corollary 3.7. All C∞-time changes of a standard partially hyperbolic
Rk-action with k ≥ 2 are C∞-conjugate to the original action up to an
automorphism.

Proof of Theorem 3.6. We may and will always assume that l = 1. Pick a
regular element a ∈ A for which the sum of the subbundles E+

a and E−
a

is totally non-integrable. For the symmetric space and twisted symmetric
space actions any element regular for the ambient Rk-action will work.

We will show that β is cohomologous to ρ(b) =
∫

M
β(b, x)dx, or that

β − ρ is cohomologous to 0. Thus we may assume that β has 0 averages.
Define the function f by f(x) = β(a, x). Now we can define formal

solutions of the cohomology equation by

P+
a =

∞∑
k=0

ak
1f and P−

a = −
−1∑

k=−∞
akf.

The first step is to show that P+
a and P−

a are distributions. Let us
consider the symmetric space case first. We use the exponential decay of
matrix coefficients for irreducible unitary representations of G. In Section 3
of [10], we established a specific form of such estimates. Let g ∈ C∞(G/Γ).
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By Corollary 3.2 in [10], there is a positive integer m and constant E > 0
such that

∣∣〈ak
1f, g〉∣∣ ≤ Ee−kρ‖f‖m‖g‖m where ‖ ‖m is the Sobolev norm.

Hence
∑∞

k=0〈ak
1f, g〉 converges absolutely, and there is a constant A >

0 such that
∣∣∑∞

k=0〈ak
1f, g〉∣∣ ≤ A‖g‖m. Thus P+ and similarly P− are

distributions. In fact, they are elements of the Sobolev space H−m.
The following lemma contains the key to the trivialization of cohomol-

ogy for the higher rank abelian actions. It shows that the natural dual
obstructions for the solvability of the cohomology equation disappear for
smooth cocycles with 0 averages. A similar argument for actions by toral
automorphisms is Lemma 4.3 in [10]. The same key idea is used in [8,
Proposition 2.3] to show the nth cohomology of a Zk-action by hyperbolic
toral automorphisms trivializes for all 1 ≤ n ≤ k − 1.

Lemma 3.8. The distributions P+
a and P−

a coincide.

Proof. For a ∈ A, denote by ∆a the difference operator (∆af)(x) =
f(a x) − f(x). Set a1 = a, and let a2 be R-linearly independent from
a = a1. As in the proof of Proposition 4.2 we have the difference equa-
tions

∆a−1
j

fi = ∆a−1
i

fj .

Hence we get

l∑
k=−l

ak
1a2f1 −

l∑
k=−l

ak
1f1 =

l∑
k=−l

ak+1
1 f2 − ak

1f2 = al+1
1 f2 − a−l

1 f2.

Since Γ is an irreducible lattice the matrix coefficients of elements in
L2(G/Γ) orthogonal to the constants vanish [20, ch. 2]. Hence we see
that for g ∈ C∞(G/Γ)

∞∑
k=−∞

〈ak
1f1, a

−1
2 g〉 −

∞∑
k=−∞

〈ak
1f1, g〉 = lim

l→∞
〈al+1

1 f2 − a−l
1 f2, g〉 = 0.

Since ak
1am

2 → ∞ as (k, m) → ∞ and the matrix coefficients decay expo-
nentially, the sum

∞∑
m=−∞

∞∑
k=−∞

〈ak
1f1, a

m
2 g〉 = lim

m→∞ 2m
∞∑

k=−∞
〈ak

1f1, g〉

converges absolutely. Thus we get
∑∞

k=−∞〈ak
1f1, g〉 = 0.

For the twisted symmetric space examples, this technique is combined
with the superexponential decay of Fourier coefficients of smooth functions
in the toral fiber direction. For a detailed treatment, we refer to Section
4.4 of [10].
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Hyperbolicity implies that the distribution P+
a has continuous deriva-

tives of any order along the stable manifolds while P−
a has continuous

derivatives of any order along the unstable manifolds. Note that for Anosov
actions by Z and R, P+

a and P−
a in general do not coincide even if they

are distributions. In the higher rank case however, they do coincide, and
thus P+

a is differentiable along both stable and unstable manifolds which
is the basis for proving P+

a is a smooth function.
The stable and unstable directions are totally non-integrable and satisfy

the technical condition in Theorem 2.1. Thus P+
a is smooth. Once it is

known that the solution P+
a is at least a measurable function, an ergodicity

argument shows that it is a solution of the coboundary equation for the
whole group.

Remark 3.9. Let us note that the cocycle trivialization theorem is also
correct for partially hyperbolic actions of toral automorphisms. More pre-
cisely, we need to assume that the action is irreducible, i.e. no finite cover
splits as a product, and that Zk contains a Z2 such that every non-trivial
element of Z2 acts ergodically with respect to Haar measure. In this case,
the formal solutions are constructed using Fourier analysis. The counter-
part of the key lemma above holds with the same proof as that of Lemma
4.3 in [10]. The smoothness of P follows from Proposition 5.8 in [19]. Dio-
phantine properties of eigenspaces play the role of the uniform estimates
in the hyperbolic case.
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3. L. Hörmander, The analysis of linear partial differential operators III, IV, Springer
Verlag, Berlin, 1985.



202 A. KATOK AND R. J. SPATZIER

4. R. Howe, A notion of rank for unitary representations of the classical groups,
Harmonic analysis and group representations, CIME (A. Figà Talamanca, ed.),
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