A SOBOLEV INEQUALITY AND NEUMANN HEAT KERNEL ESTIMATE FOR UNBOUNDED DOMAINS

Z. Q. Chen, R. J. Williams, and Z. Zhao

ABSTRACT. Suppose *D* is an unbounded domain in \mathbb{R}^d (*d* \geq 2) with compact boundary and that *D* satisfies a uniform interior cone property. We show that for $1 \leq p \leq d$, there exists a constant $c = c(D, p)$ such that for each $f \in W^{1,p}(D)$ the following Sobolev inequality holds:

$$
||f||_q \leq c ||\nabla f||_p,
$$

where $1/q = 1/p - 1/d$ and for $r = p, q, ||\cdot||_r$ denotes the norm in $L^r(D)$. As an application of this Sobolev inequality, assuming in addition that *D* is a Lipschitz domain in \mathbb{R}^d with $d \geq 3$, we obtain a Gaussian upper bound estimate for the heat kernel on *D* with zero Neumann boundary condition.

1. Introduction

For a domain $U \subset \mathbb{R}^d$ and $p \in [1, \infty)$, we define $L^p(U)$ to be the space of real-valued functions defined on *U* that are *L^p*-integrable relative to Lebesgue measure on *U*. The norm on $L^p(U)$ is given by

$$
||f||_p = \left(\int_U |f(x)|^p dx\right)^{\frac{1}{p}}.
$$

We further define

(1)
$$
W^{1,p}(U) = \left\{ f \in L^p(U) : \frac{\partial f}{\partial x_i} \in L^p(U) \text{ for } i = 1,\ldots,d \right\},\
$$

with norm $||f||_{1,p} \equiv ||f||_p + ||\nabla f||_p$, where $\nabla f = \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_d}\right)$. Here the partial derivatives $\frac{\partial f}{\partial x_i}$ are understood in the distributional sense. Note that in the above we do not indicate the dependence of $\|\cdot\|_p$ and $\|\cdot\|_{1,p}$ on *U*, since usually there will only be one relevant domain *U*. If there is

Received October 1, 1993.

Research supported in part by NSF Grants DMS 8657483 and GER 9023335.

¹⁹⁹¹ *Mathematics Subject Classification*. Primary: 46E35; Secondary: 35K05, 60J35.

Key words and phrases. Sobolev inequality, cone property, imbedding theorem, Lipschitz domain, heat kernel, Neumann boundary condition.

any chance of ambiguity, we shall explicitly indicate the domain *U* in the norm, for example, $\|\cdot\|_{U,p}$ for $\|\cdot\|_p$.

In the sequel, we assume that D is an unbounded domain in \mathbb{R}^d with compact boundary and that *D* has the following uniform interior cone property, henceforth referred to simply as the cone property.

Cone Property. The domain *D* is said to have the cone property if there exists a finite cone

$$
V = \left\{ x = (x_1, \dots, x_d) \in \mathbb{R}^d : x_d > \alpha (x_1^2 + \dots + x_{d-1}^2)^{1/2} \text{ and } ||x|| < \beta \right\}
$$

for some $\alpha, \beta > 0$ such that each point $x \in D$ is the vertex of a finite cone V_x contained in *D* which is congruent to *V*. Here $\|\cdot\|$ denotes the Euclidean norm on R*^d*.

Our main result is the following.

Theorem 1. Suppose that *D* is an unbounded domain with compact boundary and that *D* has the cone property. Then for $1 \leq p \leq d$, there exists a constant $c = c(D, p)$ such that the following Sobolev inequality holds:

(2)
$$
||f||_q \leq c ||\nabla f||_p \quad \text{for all } f \in W^{1,p}(D),
$$

where $1/q = 1/p - 1/d$.

It is well known (cf. [1], [5]) that the above Sobolev inequality holds with $W_0^{1,p}(D)$ in place of $W^{1,p}(D)$ for arbitrary domains *D*, where $W_0^{1,p}(D)$ is the subspace of $W^{1,p}(D)$ obtained by completing the space of C^{∞} functions having compact support in *D* with respect to the norm $\|\cdot\|_{1,p}$. However, the Sobolev inequality (2) on $W^{1,p}(D)$ cannot hold without any restrictions on *D*. For example, (2) cannot be true for a domain *D* with finite Lebesgue measure since in this case $1 \in W^{1,p}(D)$ and the right hand side of (2) vanishes.

In [9], using a form of capacity, Maz'ja characterizes the class $\mathcal J$ of open sets *D* for which the Sobolev inequality (2) holds. He also gives the best constant *c* in the Sobolev inequality (2) (see Theorem 4.7.4 of [9]). However we found Maz'ja's condition difficult to check in practice, despite the fact that the class $\mathcal J$ is closed under the operation of taking finite unions (by Theorem 4.7.4 and Proposition 4.3.1/1 in [9]). This motivated us to prove the Sobolev inequality (2) directly under the assumptions in Theorem 1. In particular, by Theorem 1 and Theorem 4 below, unbounded domains with compact boundary having the cone property and exteriors of closed convex sets are in \mathcal{J} .

As an application of the Sobolev inequality (2) for $p = 2$ and $d \geq 3$, we shall prove Theorem 2 below. This has been applied in [3] to the study of semilinear elliptic equations with Neumann boundary conditions. Before we can state Theorem 2, several notions need to be introduced.

A domain *D* is said to be Lipschitz (or $C^{0,1}$) if locally near ∂D , *D* can be represented as the region lying above the graph of a Lipschitz function (see, e.g., p.244 of [5]). For such a domain *D*, denote by $\mathcal E$ the quadratic form defined on $W^{1,2}(D)$ by:

$$
\mathcal{E}(f,g) = \frac{1}{2} \int_D f(x)g(x)dx, \quad \text{for } f, g \in W^{1,2}(D).
$$

There is a unique self-adjoint non-positive operator A , with domain $\mathcal{D}(\mathcal{A})$, associated with $(W^{1,2}(D), \mathcal{E})$. In particular,

$$
\mathcal{D}(\mathcal{A}) = \left\{ f \in W^{1,2}(D) : \exists g \in L^2(D) \text{ s.t. } \right\}
$$

$$
\mathcal{E}(f, h) = -\int_D gh \, dx \text{ for all } h \in W^{1,2}(D) \right\},
$$

and for *f* and *g* as in the description of $\mathcal{D}(\mathcal{A})$, $\mathcal{A}f = g$ (see [7]). The symmetric strongly continuous contraction semigroup ${P_t}_{t>0}$ associated with $(A, \mathcal{D}(A))$ has a symmetric integral kernel $p(t, x, y)$ which is smooth on $(0, \infty) \times D \times D$ and such that $P_t f(x) = \int_D p(t, x, y) f(y) dy$ a.e. on *D* for $f \in L^2(D)$. See Lemma 2.11 of [6] for details on the existence of $p(t, x, y)$ (note that although in [6] domains are assumed to be bounded, the proof of the above fact works for unbounded domains as well). When *∂D* is smooth, $p(t, x, y)$ can be shown to be the fundamental solution for the heat equation with zero Neumann boundary condition (see [12], for example). By analogy, when *D* is Lipschitz, we call $p(t, x, y)$ the heat kernel for $\frac{1}{2}\Delta$ on *D* with zero Neumann boundary condition.

Theorem 2. Suppose *D* is an unbounded domain with compact Lipschitz boundary in \mathbb{R}^d where $d \geq 3$. Then the heat kernel $p(t, x, y)$ of $\frac{1}{2}\Delta$ on *D* with zero Neumann boundary condition can be extended continuously to $(0, \infty) \times \overline{D} \times \overline{D}$; we still denote the extension by $p(t, x, y)$. Then there exist constants $c_1 > 0$ and $M > 1$ such that

(3)
$$
p(t, x, y) \le \frac{c_1}{t^{d/2}} \exp\left(-\frac{|x-y|^2}{Mt}\right)
$$
, for all $t > 0$, $x, y \in \overline{D}$.

For $x, y \in \overline{D}$, let $G(x, y) = \int_0^\infty p(t, x, y) dt$. When $G(x, y)$ is finite for all $x, y \in \overline{D}$ with $x \neq y$, it is called the Green's function for $\frac{1}{2}\Delta$ on D with zero Neumann boundary condition. Integrating both sides of (3) gives:

Corollary 3. The Green's function $G(x, y)$ for $\frac{1}{2}\Delta$ on *D* with zero Neumann boundary condition exists and is continuous on $\overline{D} \times \overline{D}$, except on the diagonal. Furthermore, there exists a constant $c_2 = c_2(D) > 0$ such that

(4)
$$
G(x,y) \leq \frac{c_2}{|x-y|^{d-2}} \quad \text{for all } x, y \in \overline{D}.
$$

2. Proof of Theorem 1

We begin by proving the Sobolev inequality (2) for the exterior of a closed convex set.

Theorem 4. Suppose that *U* is the exterior of a closed convex set in \mathbb{R}^d . Then for $1 \leq p \leq d$ there exists a constant $c = c(U, p)$ such that for $f \in W^{1,p}(U)$,

$$
(5) \t\t\t\t\t||f||_q \leq c \, \|\nabla f\|_p,
$$

where $1/q = 1/p - 1/d$. In particular, the above inequality holds for the exterior of a bounded closed ball.

Remark. In the above theorem, U may have non-compact boundary.

Proof. Since *U* is the exterior of a closed convex set, *U* is Lipschitz (see, for example, Theorem 4.2 of Ch.V in [5]). Therefore by Theorem 4.7 of Chapter V in [5], the set of restrictions to *U* of all C^{∞} functions with compact support in \mathbb{R}^d is $\|\cdot\|_{1,p}$ -dense in $W^{1,p}(U)$ for $p \geq 1$. Hence it suffices to prove (5) for all functions f in $W^{1,p}(D)$ that are smooth in D and such that $f(x)$ vanishes when $||x||$ is sufficiently large. Since $\mathbb{R}^d \setminus U$ is convex, for $x \in U$ and each $i \in \{1, \dots, d\}$, there is a half-line in *U* which is parallel to the *i*th coordinate axis and has *x* as its initial point. Thus one has, for all $x \in U$,

(6)
$$
|f(x)| \leq \int_{-\infty}^{\infty} 1_D(\xi) \left| \frac{\partial f}{\partial \xi_i}(\xi) \right| d\xi_i, \quad i = 1, 2, \dots, d.
$$

Inequality (5) then follows from the standard argument for proving the corresponding Sobolev inequality in $W_0^{1,p}(D)$ (see the proof of Theorem 3.6 in Ch.V of [5], for example). \square

For $r > 0$, denote by B_r the ball $\{x \in \mathbb{R}^d : ||x|| < r\}$. Let $D_r = D \cap B_r$. Define $W_r^{1,p}(D_r)$ to be the closure in $W^{1,p}(D_r)$ of the set of restrictions to D_r of all $C^{\infty}(\mathbb{R}^d)$ functions having compact support in B_r . Intuitively, $W_r^{1,p}(D_r)$ contains those functions in $W^{1,p}(D_r)$ that vanish on ∂B_r .

We have the following Poincaré inequality on $W_r^{1,p}(D_r)$ for $r > 0$ such that $B_r \supset \partial D$.

Lemma 5. Suppose that $1 \leq p < d$ and $r > 0$ such that $B_r \supset \partial D$. There exists a constant $c = c(D, r, p) > 0$ such that for each $f \in W_r^{1,p}(D_r)$,

$$
||f||_p \le c ||\nabla f||_p.
$$

Proof. Let

$$
\lambda = \inf \left\{ \frac{\|\nabla f\|_p}{\|f\|_p} : f \in W_r^{1,p}(D_r) \right\}.
$$

There exists a sequence $\{f_n\}_{n\geq 1} \subset W_r^{1,p}(D_r)$ such that $||f_n||_p = 1$ for all *n* and $\|\nabla f\|_p$ decreases to λ as $n \to \infty$. Since D_r is a bounded domain with the cone property, by the Rellich-Kondrachov compactness theorem (see [1], p.144), the imbedding $W^{1,p}(D_r) \hookrightarrow L^p(D_r)$ is compact for $1 \leq p < d$ (note that for this one uses the fact that $p < q \equiv pd/(d - p)$). Therefore, without loss of generality, we may assume that ${f_n}_{n\geq 1}$ converges in $L^p(D_r)$ to some *f* with $||f||_p = 1$. Now suppose that $\lambda = 0$. Then $||\nabla f_n||_p$ decreases to zero as $n \to \infty$, and for any smooth function ψ with compact support in D_r and $i = 1, 2, \ldots, d$, using integration by parts we have

$$
\int_{D_r} f(x) \frac{\partial \psi}{\partial x_i}(x) dx = \lim_{n \to \infty} \int_{D_r} f_n(x) \frac{\partial \psi}{\partial x_i}(x) dx
$$

=
$$
- \lim_{n \to \infty} \int_{D_r} \frac{\partial f_n}{\partial x_i}(x) \psi(x) dx
$$

= 0.

Thus $\nabla f = 0$ and *f* is a constant function on D_r . But *f* is a limit in $W^{1,p}(D_r)$ of functions in $W_r^{1,p}(D_r)$ and hence $f \in W_r^{1,p}(D_r)$. The only constant function in this space is identically zero, which contradicts the fact that $||f||_p = 1$. Therefore $\lambda > 0$ and (7) is established with $c = 1/\lambda$. \square

Proof of Theorem 1. In this proof we have functions defined on different domains, *U*1*, U*2*, D*. To clearly indicate which domain applies for integration, for this proof only we shall use the notation

$$
||g||_{U,p} = \left(\int_U |g(x)|^p dx\right)^{1/p}
$$

for a domain *U* and $g \in L^p(U)$. In this proof, *c* will denote various constants.

Let $r > 1$ such that $B_{r-1} \supset \partial D$. Let ϕ be a C^{∞} function on \mathbb{R}^d with compact support in B_r such that $0 \leq \phi \leq 1$ and $\phi = 1$ on $B_{r-\frac{1}{2}}$. Let $U_1 = D \cap B_r$ and $U_2 = \{x \in \mathbb{R}^d : ||x|| > r - 1\}$. For $f \in W^{1,p}(\tilde{D})$, set $f_1 = f \phi$ and $f_2 = f(1 - \phi)$ on *D*. Then $f = f_1 + f_2$. We next consider f_1 as an element of $W_r^{1,p}(U_1)$ and f_2 as an element of $W_0^{1,p}(U_2)$. Since U_1 is bounded and has the cone property, by the Sobolev imbedding theorem for $W^{1,p}(U_1)$ (cf. Theorem 5.4 of [1]),

$$
||f_1||_{U_1,q} \leq c \left(||\nabla f_1||_{U_1,p} + ||f_1||_{U_1,p} \right),
$$

which by Lemma 5 implies

(8)
$$
||f_1||_{U_1,q} \leq c ||\nabla f_1||_{U_1,p} \leq c (||\nabla f||_{D,p} + ||f \nabla \phi||_{D,p}).
$$

By Theorem 4,

(9)
$$
||f_2||_{U_2,q} \leq c ||\nabla f_2||_{U_2,p} \leq c (||\nabla f||_{D,p} + ||f \nabla \phi||_{D,p}).
$$

Since $\nabla \phi$ is supported in $B_r \setminus B_{r-1}$, by Hölder's inequality,

(10)
$$
\|f \nabla \phi\|_{D,p} = \|f \nabla \phi\|_{U_2,p} \leq \|\nabla \phi\|_{D,d} \|f\|_{U_2,q}.
$$

Note that the restriction of *f* to U_2 is in $W^{1,p}(U_2)$ and so by Theorem 4,

(11)
$$
||f||_{U_2,q} \le c ||\nabla f||_{U_2,p} \le c ||\nabla f||_{D,p}.
$$

Since $f = f_1 + f_2$ where f_1 has support in U_1 and f_2 has support in U_2 , combining (8)-(11) proves the Sobolev inequality (2). \Box

3. Proof of Theorem 2

In this section we assume that *D* is an unbounded domain in \mathbb{R}^d with compact Lipschitz boundary and $d \geq 3$. Thus, the Sobolev inequality (2) yields

(12)
$$
||f||_p \le c ||\nabla f||_2 \text{ for all } f \in W^{1,2}(D),
$$

with $p = 2d/(d-2)$. Let $p(t, x, y)$ be the heat kernel for $\frac{1}{2}\Delta$ on *D* with zero Neumann boundary condition as described in Section 1. Recall that $p(t, x, y)$ is symmetric in *x, y* and is smooth on $(0, \infty) \times D \times D$. By using the standard method in [4] (more specifically, Theorems 2.4.6, 2.2.3, and a straightforward adaptation of Section 3.2 to the case of zero Neumann boundary conditions), one can use (12) to show that

(13)

$$
p(t, x, y) \le \frac{c_3}{t^{d/2}} \exp\left(-\frac{|x-y|^2}{Mt}\right)
$$
, for all $(t, x, y) \in (0, \infty) \times D \times D$,

for some constants $c_3 > 0$ and $M > 1$.

We are going to show now that $p(t, x, y)$ can be extended continuously to $(0, \infty) \times \overline{D} \times \overline{D}$. Let $r > 0$ such that $B_r \supset \partial D$. Denote by $h(t, x, y)$

the (symmetric) heat kernel for $\frac{1}{2}\Delta$ on $D_r = D \cap B_r$ with zero Neumann boundary condition. From [2] we have that *h* can be extended continuously to $(0, \infty) \times \overline{D}_r \times \overline{D}_r$ and that for each $T > 0$ there exist constants $c_r =$ $c_r(D, r, T) > 0$ and $M_r = M_r(D, r, T) > 1$ such that

$$
(14)
$$

$$
h(t, x, y) \le \frac{c_r}{t^{d/2}} \exp\left(-\frac{|x - y|^2}{M_r t}\right) \quad \text{for all } (t, x, y) \in (0, T] \times \overline{D}_r \times \overline{D}_r.
$$

Let $(Y, \{Q_x, x \in \overline{D}_r\})$ be the continuous strong Markov process that is (normally) reflecting Brownian motion on the bounded Lipschitz domain D_r (see [2]). It follows from [2] that this process has $h(t, x, y)$ as its transition density function. Denote by $p_r(t, x, y)$ the symmetric integral kernel on $D ∩ B_r$ for the semigroup of *Y* killed on hitting ∂B_r . The existence of *p^r* follows from the strong Markov property of *Y* in a similar manner to that in [10], p.33; in particular we have

(15)
$$
p_r(t, x, y) = h(t, x, y) - E^{Q_x}[h_r(t - \tau_r, Y_{\tau_r}, y); t > \tau_r]
$$

for $(t, x, y) \in (0, \infty) \times (\overline{D} \cap B_r) \times (\overline{D} \cap B_r)$, where $\tau_r = \inf\{t \geq 0 : Y_t \in \partial B_r\}.$ Intuitively $p_r(t, x, y)$ is the heat kernel for $\frac{1}{2}\Delta$ on D_r with zero Neumann boundary condition on *∂D* and zero Dirichlet boundary condition on *∂Br*. For $\epsilon \in (0, r)$, by (14) ,

$$
|h(t, x, y)| \le \frac{c_r}{t^{d/2}} \exp\left(-\frac{\epsilon^2}{M_r t}\right)
$$

for all $(t, x, y) \in (0, T] \times \partial B_r \times (\overline{D} \cap \overline{B}_{r-\epsilon}).$

Thus as $t \to 0$, $h(t, x, y)$ converges to zero uniformly for $(x, y) \in \partial B_r$ × $(\overline{D} \cap \overline{B}_{r-\epsilon})$. Therefore $\{h(t,x,y)\}_{x \in \partial B_r}$ as a family of functions of (t,y) is equi-continuous on $(0, T] \times (\overline{D} \cap \overline{B}_{r-\epsilon})$. Since $Y_{\tau_r} \in \partial B_r$,

$$
\left\{E^{Q_x}\left[h(t-\tau_r,Y_{\tau_r},y);t>\tau_r\right]\right\}_{x\in\overline{D}\cap B_r}
$$

is equi-continuous for $(t, y) \in (0, T] \times (\overline{D} \cap \overline{B}_{r-\epsilon})$. It follows from (15) that $\{p_r(t, x, y)\}_{x \in \overline{D} \cap \overline{B}_{r-\epsilon}}$ is equi-continuous for $(t, y) \in [\epsilon, T] \times (\overline{D} \cap \overline{B}_{r-\epsilon})$ for any $\epsilon \in (0, T)$. Since $p_r(t, x, y)$ is symmetric in (x, y) , $p_r(t, x, y)$ is uniformly continuous on $[\epsilon, T] \times (\overline{D} \cap \overline{B}_{r-\epsilon}) \times (\overline{D} \cap \overline{B}_{r-\epsilon})$. Therefore $p_r(t, x, y)$ is continuous on $(0, T) \times (\overline{D} \cap B_r) \times (\overline{D} \cap B_r)$ for each $T > 0$.

On the other hand, if $(X, \{P_x, x \in \overline{D}\})$ denotes the continuous strong Markov process that is (normally) reflecting Brownian motion on \overline{D} , then similar to (15) we have for $(t, x, y) \in (0, \infty) \times D_r \times D_r$,

(16)
$$
p_r(t, x, y) = p(t, x, y) - E^{P_x}[p(t - \tau_r, X_{\tau_r}, y); t > \tau_r],
$$

where $\tau_r = \inf\{t \geq 0 : X_t \in \partial B_r\}$. Since $X_{\tau_r} \in \partial B_r$, it follows from the inequality (13) that for each positive integer *k*, as a function of (t, x, y) in $(0, \infty) \times D_k \times D_k$, $E^{P_x}[p(t-\tau_r, X_{\tau_r}, y); t > \tau_r]$ converges to zero uniformly as $r \to \infty$, where $D_k = D \cap B_k$. Therefore for each $k > 0$, $p_r(t, x, y)$ converges to $p(t, x, y)$ uniformly on $(0, \infty) \times D_k \times D_k$ as $r \to \infty$. Hence $p(t, x, y)$ can be extended continuously to $(0, \infty) \times \overline{D}_k \times \overline{D}_k$ and therefore on $(0, \infty) \times \overline{D} \times \overline{D}$. Thus inequality (13) holds for $(t, x, y) \in (0, \infty) \times \overline{D} \times \overline{D}$. Theorem 2 is now proved. ान

Acknowledgement

The authors would like to thank Salah Baouendi, Carlos Kenig and Peter Li for helpful discussions and suggestions.

References

- 1. R. A. Adams, *Sobolev Spaces*. Academic Press, 1975.
- 2. R. F. Bass and P. Hsu, *Some potential theory for reflecting Brownian motion in H¨older and Lipschitz domains.* Ann. Probab. **19** (1991), 486–508.
- 3. Z. Q. Chen, R. J. Williams and Z. Zhao, *On the existence of positive solutions for semilinear elliptic equations with Neumann boundary conditions.* Preprint.
- 4. E. B. Davies, *Heat Kernels and Spectral Theory*. Cambridge University Press, Cambridge, U.K., 1989.
- 5. D. E. Edmunds and W. D. Evans, *Spectral Theory and Differential Operators*. Clarendon Press, Oxford, 1987.
- 6. M. Fukushima, *A construction of reflecting barrier Brownian motions for bounded domains.* Osaka J. Math. **4** (1967), 183–215.
- 7. M. Fukushima, *Dirichlet Forms and Markov Processes*. North-Holland, Amsterdam, 1980.
- 8. P. Li and S.-T. Yau, *Asymptotically flat complete Kähler manifolds*. In Pure and Applied Mathematics **143**, edited by G. Komatsu and V. Sakane, Marcel Dekker, New York-Basel-Hong Kong, 1992, 131–143.
- 9. V. G. Maz'ja, *Sobolev Spaces*. Springer-Verlag, Berlin-Heidelberg-New York, 1985.
- 10. S. C. Port and C. J. Stone, *Brownian Motion and Classical Potential Theory*. Academic Press, New York, 1978.
- 11. D. W. Stroock, *Diffusion semigroups corresponding to uniformly elliptic divergence form operators.* In Lecture Notes in Mathematics **1321**, Springer-Verlag, Berlin-Heidelberg-New York, 1988, 316–347.
- 12. K. Sato and T. Ueno, *Multi-dimensional diffusion and the Markov process on the boundary.* J. Math. Kyoto Univ. **4-5** (1965), 529–605.

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, USA

E-mail address: zchen@euclid.ucsd.edu, rjwilliams@ucsd.bitnet

Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA

E-mail address: mathzz@mizzou1.missouri.edu