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A SOBOLEV INEQUALITY AND NEUMANN HEAT
KERNEL ESTIMATE FOR UNBOUNDED DOMAINS

Z. Q. Chen, R. J. Williams, and Z. Zhao

Abstract. Suppose D is an unbounded domain in R
d (d ≥ 2) with com-

pact boundary and that D satisfies a uniform interior cone property. We
show that for 1 ≤ p < d, there exists a constant c = c(D, p) such that for
each f ∈ W 1,p(D) the following Sobolev inequality holds:

‖f‖q ≤ c ‖∇f‖p,

where 1/q = 1/p− 1/d and for r = p, q, ‖ · ‖r denotes the norm in Lr(D).
As an application of this Sobolev inequality, assuming in addition that D
is a Lipschitz domain in R

d with d ≥ 3, we obtain a Gaussian upper bound
estimate for the heat kernel on D with zero Neumann boundary condition.

1. Introduction
For a domain U ⊂ R

d and p ∈ [1, ∞), we define Lp(U) to be the space
of real-valued functions defined on U that are Lp-integrable relative to
Lebesgue measure on U . The norm on Lp(U) is given by

‖f‖p =
(∫

U

|f(x)|pdx

) 1
p

.

We further define

W 1,p(U) =
{

f ∈ Lp(U) :
∂f

∂xi
∈ Lp(U) for i = 1, . . . , d

}
,(1)

with norm ‖f‖1,p ≡ ‖f‖p +‖∇f‖p, where ∇f =
(

∂f
∂x1

, · · · , ∂f
∂xd

)
. Here the

partial derivatives ∂f
∂xi

are understood in the distributional sense. Note
that in the above we do not indicate the dependence of ‖ · ‖p and ‖ · ‖1,p

on U , since usually there will only be one relevant domain U . If there is

1991 Mathematics Subject Classification. Primary: 46E35; Secondary: 35K05,
60J35.

Key words and phrases. Sobolev inequality, cone property, imbedding theorem, Lip-
schitz domain, heat kernel, Neumann boundary condition.

Received October 1, 1993.
Research supported in part by NSF Grants DMS 8657483 and GER 9023335.

177



178 Z. Q. CHEN, R. J. WILLIAMS, AND Z. ZHAO

any chance of ambiguity, we shall explicitly indicate the domain U in the
norm, for example, ‖ · ‖U,p for ‖ · ‖p.

In the sequel, we assume that D is an unbounded domain in R
d with

compact boundary and that D has the following uniform interior cone
property, henceforth referred to simply as the cone property.
Cone Property. The domain D is said to have the cone property if there
exists a finite cone

V =
{

x = (x1, · · · , xd) ∈ R
d : xd > α(x2

1 + · · · + x2
d−1)

1/2 and ‖x‖ < β
}

for some α, β > 0 such that each point x ∈ D is the vertex of a finite
cone Vx contained in D which is congruent to V . Here ‖ · ‖ denotes the
Euclidean norm on R

d.

Our main result is the following.

Theorem 1. Suppose that D is an unbounded domain with compact
boundary and that D has the cone property. Then for 1 ≤ p < d, there
exists a constant c = c(D, p) such that the following Sobolev inequality
holds:

‖f‖q ≤ c ‖∇f‖p for all f ∈ W 1,p(D),(2)

where 1/q = 1/p − 1/d.

It is well known (cf. [1], [5]) that the above Sobolev inequality holds with
W 1,p

0 (D) in place of W 1,p(D) for arbitrary domains D, where W 1,p
0 (D) is

the subspace of W 1,p(D) obtained by completing the space of C∞ functions
having compact support in D with respect to the norm ‖·‖1,p. However, the
Sobolev inequality (2) on W 1,p(D) cannot hold without any restrictions on
D. For example, (2) cannot be true for a domain D with finite Lebesgue
measure since in this case 1 ∈ W 1,p(D) and the right hand side of (2)
vanishes.

In [9], using a form of capacity, Maz’ja characterizes the class J of
open sets D for which the Sobolev inequality (2) holds. He also gives the
best constant c in the Sobolev inequality (2) (see Theorem 4.7.4 of [9]).
However we found Maz’ja’s condition difficult to check in practice, despite
the fact that the class J is closed under the operation of taking finite
unions (by Theorem 4.7.4 and Proposition 4.3.1/1 in [9]). This motivated
us to prove the Sobolev inequality (2) directly under the assumptions in
Theorem 1. In particular, by Theorem 1 and Theorem 4 below, unbounded
domains with compact boundary having the cone property and exteriors
of closed convex sets are in J .

As an application of the Sobolev inequality (2) for p = 2 and d ≥ 3, we
shall prove Theorem 2 below. This has been applied in [3] to the study of
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semilinear elliptic equations with Neumann boundary conditions. Before
we can state Theorem 2, several notions need to be introduced.

A domain D is said to be Lipschitz (or C0,1) if locally near ∂D, D can
be represented as the region lying above the graph of a Lipschitz function
(see, e.g., p.244 of [5]). For such a domain D, denote by E the quadratic
form defined on W 1,2(D) by:

E(f, g) =
1
2

∫
D

f(x)g(x)dx, for f, g ∈ W 1,2(D).

There is a unique self-adjoint non-positive operator A, with domain D(A),
associated with (W 1,2(D), E). In particular,

D(A) =
{

f ∈ W 1,2(D) : ∃ g ∈ L2(D) s.t.

E(f, h) = −
∫

D

gh dx for all h ∈ W 1,2(D)
}

,

and for f and g as in the description of D(A), Af = g (see [7]). The
symmetric strongly continuous contraction semigroup {Pt}t>0 associated
with (A,D(A)) has a symmetric integral kernel p(t, x, y) which is smooth
on (0,∞) × D × D and such that Ptf(x) =

∫
D

p(t, x, y)f(y) dy a.e. on
D for f ∈ L2(D). See Lemma 2.11 of [6] for details on the existence of
p(t, x, y) (note that although in [6] domains are assumed to be bounded,
the proof of the above fact works for unbounded domains as well). When
∂D is smooth, p(t, x, y) can be shown to be the fundamental solution for
the heat equation with zero Neumann boundary condition (see [12], for
example). By analogy, when D is Lipschitz, we call p(t, x, y) the heat
kernel for 1

2∆ on D with zero Neumann boundary condition.

Theorem 2. Suppose D is an unbounded domain with compact Lipschitz
boundary in R

d where d ≥ 3. Then the heat kernel p(t, x, y) of 1
2∆ on

D with zero Neumann boundary condition can be extended continuously to
(0,∞)×D×D; we still denote the extension by p(t, x, y). Then there exist
constants c1 > 0 and M > 1 such that

p(t, x, y) ≤ c1

td/2
exp

(
−|x − y|2

Mt

)
, for all t > 0, x, y ∈ D.(3)

For x, y ∈ D, let G(x, y) =
∫ ∞
0

p(t, x, y)dt. When G(x, y) is finite for
all x, y ∈ D with x �= y, it is called the Green’s function for 1

2∆ on D with
zero Neumann boundary condition. Integrating both sides of (3) gives:
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Corollary 3. The Green’s function G(x, y) for 1
2∆ on D with zero Neu-

mann boundary condition exists and is continuous on D × D, except on
the diagonal. Furthermore, there exists a constant c2 = c2(D) > 0 such
that

G(x, y) ≤ c2

|x − y|d−2
for all x, y ∈ D.(4)

2. Proof of Theorem 1
We begin by proving the Sobolev inequality (2) for the exterior of a

closed convex set.

Theorem 4. Suppose that U is the exterior of a closed convex set in R
d.

Then for 1 ≤ p < d there exists a constant c = c(U, p) such that for
f ∈ W 1,p(U),

‖f‖q ≤ c ‖∇f‖p,(5)

where 1/q = 1/p − 1/d. In particular, the above inequality holds for the
exterior of a bounded closed ball.

Remark. In the above theorem, U may have non-compact boundary.

Proof. Since U is the exterior of a closed convex set, U is Lipschitz (see,
for example, Theorem 4.2 of Ch.V in [5]). Therefore by Theorem 4.7 of
Chapter V in [5], the set of restrictions to U of all C∞ functions with
compact support in R

d is ‖ · ‖1,p-dense in W 1,p(U) for p ≥ 1. Hence it
suffices to prove (5) for all functions f in W 1,p(D) that are smooth in D
and such that f(x) vanishes when ‖x‖ is sufficiently large. Since R

d \U is
convex, for x ∈ U and each i ∈ {1, · · · , d}, there is a half-line in U which
is parallel to the ith coordinate axis and has x as its initial point. Thus
one has, for all x ∈ U ,

|f(x)| ≤
∫ ∞

−∞
1D(ξ)

∣∣∣∣ ∂f

∂ξi
(ξ)

∣∣∣∣ dξi, i = 1, 2, . . . , d.(6)

Inequality (5) then follows from the standard argument for proving the
corresponding Sobolev inequality in W 1,p

0 (D) (see the proof of Theorem
3.6 in Ch.V of [5], for example).

For r > 0, denote by Br the ball {x ∈ R
d : ‖x‖ < r}. Let Dr = D∩Br.

Define W 1,p
r (Dr) to be the closure in W 1,p(Dr) of the set of restrictions

to Dr of all C∞(Rd) functions having compact support in Br. Intuitively,
W 1,p

r (Dr) contains those functions in W 1,p(Dr) that vanish on ∂Br.
We have the following Poincaré inequality on W 1,p

r (Dr) for r > 0 such
that Br ⊃ ∂D.
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Lemma 5. Suppose that 1 ≤ p < d and r > 0 such that Br ⊃ ∂D. There
exists a constant c = c(D, r, p) > 0 such that for each f ∈ W 1,p

r (Dr),

‖f‖p ≤ c ‖∇f‖p.(7)

Proof. Let

λ = inf
{‖∇f‖p

‖f‖p
: f ∈ W 1,p

r (Dr)
}

.

There exists a sequence {fn}n≥1 ⊂ W 1,p
r (Dr) such that ‖fn‖p = 1 for all n

and ‖∇f‖p decreases to λ as n → ∞. Since Dr is a bounded domain with
the cone property, by the Rellich-Kondrachov compactness theorem (see
[1], p.144), the imbedding W 1,p(Dr) ↪→ Lp(Dr) is compact for 1 ≤ p < d
(note that for this one uses the fact that p < q ≡ pd/(d − p)). There-
fore, without loss of generality, we may assume that {fn}n≥1 converges in
Lp(Dr) to some f with ‖f‖p = 1. Now suppose that λ = 0. Then ‖∇fn‖p

decreases to zero as n → ∞, and for any smooth function ψ with compact
support in Dr and i = 1, 2, . . . , d, using integration by parts we have∫

Dr

f(x)
∂ψ

∂xi
(x) dx = lim

n→∞

∫
Dr

fn(x)
∂ψ

∂xi
(x) dx

= − lim
n→∞

∫
Dr

∂fn

∂xi
(x)ψ(x) dx

= 0.

Thus ∇f= 0 and f is a constant function on Dr. But f is a limit in
W 1,p(Dr) of functions in W 1,p

r (Dr) and hence f ∈ W 1,p
r (Dr). The only

constant function in this space is identically zero, which contradicts the fact
that ‖f‖p = 1. Therefore λ > 0 and (7) is established with c = 1/λ.

Proof of Theorem 1. In this proof we have functions defined on different
domains, U1, U2, D. To clearly indicate which domain applies for integra-
tion, for this proof only we shall use the notation

‖g‖U,p =
(∫

U

|g(x)|pdx

)1/p

for a domain U and g ∈ Lp(U). In this proof, c will denote various
constants.

Let r > 1 such that Br−1 ⊃ ∂D. Let φ be a C∞ function on R
d with

compact support in Br such that 0 ≤ φ ≤ 1 and φ = 1 on Br− 1
2
. Let

U1 = D ∩ Br and U2 = {x ∈ R
d : ‖x‖ > r − 1}. For f ∈ W 1,p(D), set
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f1 = f φ and f2 = f (1 − φ) on D. Then f = f1 + f2. We next consider
f1 as an element of W 1,p

r (U1) and f2 as an element of W 1,p
0 (U2). Since U1

is bounded and has the cone property, by the Sobolev imbedding theorem
for W 1,p(U1) (cf. Theorem 5.4 of [1]),

‖f1‖U1,q ≤ c (‖∇f1‖U1,p + ‖f1‖U1,p) ,

which by Lemma 5 implies

‖f1‖U1,q ≤ c ‖∇f1‖U1,p ≤ c (‖∇f‖D,p + ‖f ∇φ‖D,p) .(8)

By Theorem 4,

‖f2‖U2,q ≤ c ‖∇f2‖U2,p ≤ c (‖∇f‖D,p + ‖f ∇φ‖D,p) .(9)

Since ∇φ is supported in Br \ Br−1, by Hölder’s inequality,

‖f ∇φ‖D,p = ‖f∇φ‖U2,p ≤ ‖∇φ‖D,d ‖f‖U2,q.(10)

Note that the restriction of f to U2 is in W 1,p(U2) and so by Theorem 4,

‖f‖U2,q ≤ c ‖∇f‖U2,p ≤ c ‖∇f‖D,p.(11)

Since f = f1 + f2 where f1 has support in U1 and f2 has support in U2,
combining (8)-(11) proves the Sobolev inequality (2).

3. Proof of Theorem 2
In this section we assume that D is an unbounded domain in R

d with
compact Lipschitz boundary and d ≥ 3. Thus, the Sobolev inequality (2)
yields

‖f‖p ≤ c ‖∇f‖2 for all f ∈ W 1,2(D),(12)

with p = 2d/(d − 2). Let p(t, x, y) be the heat kernel for 1
2∆ on D with

zero Neumann boundary condition as described in Section 1. Recall that
p(t, x, y) is symmetric in x, y and is smooth on (0,∞) × D × D. By using
the standard method in [4] (more specifically, Theorems 2.4.6, 2.2.3, and
a straightforward adaptation of Section 3.2 to the case of zero Neumann
boundary conditions), one can use (12) to show that

p(t, x, y) ≤ c3

td/2
exp

(
−|x − y|2

Mt

)
, for all (t, x, y) ∈ (0, ∞) × D × D,

(13)

for some constants c3 > 0 and M > 1.
We are going to show now that p(t, x, y) can be extended continuously

to (0, ∞) × D × D. Let r > 0 such that Br ⊃ ∂D. Denote by h(t, x, y)
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the (symmetric) heat kernel for 1
2∆ on Dr = D ∩ Br with zero Neumann

boundary condition. From [2] we have that h can be extended continuously
to (0,∞) × Dr × Dr and that for each T > 0 there exist constants cr =
cr(D, r, T ) > 0 and Mr = Mr(D, r, T ) > 1 such that

h(t, x, y) ≤ cr

td/2
exp

(
−|x − y|2

Mrt

)
for all (t, x, y) ∈ (0, T ] × Dr × Dr.

(14)

Let (Y, {Qx, x ∈ Dr}) be the continuous strong Markov process that is
(normally) reflecting Brownian motion on the bounded Lipschitz domain
Dr (see [2]). It follows from [2] that this process has h(t, x, y) as its transi-
tion density function. Denote by pr(t, x, y) the symmetric integral kernel
on D ∩ Br for the semigroup of Y killed on hitting ∂Br. The existence of
pr follows from the strong Markov property of Y in a similar manner to
that in [10], p.33; in particular we have

pr(t, x, y) = h(t, x, y) − EQx [hr(t − τr, Yτr
, y); t > τr](15)

for (t, x, y) ∈ (0,∞)×(D∩Br)×(D∩Br), where τr = inf{t ≥ 0 : Yt ∈ ∂Br}.
Intuitively pr(t, x, y) is the heat kernel for 1

2∆ on Dr with zero Neumann
boundary condition on ∂D and zero Dirichlet boundary condition on ∂Br.
For ε ∈ (0, r), by (14),

|h(t, x, y)| ≤ cr

td/2
exp

(
− ε2

Mrt

)

for all (t, x, y) ∈ (0, T ] × ∂Br × (D ∩ Br−ε).

Thus as t → 0, h(t, x, y) converges to zero uniformly for (x, y) ∈ ∂Br ×
(D∩Br−ε). Therefore {h(t, x, y)}x∈∂Br as a family of functions of (t, y) is
equi-continuous on (0, T ] × (D ∩ Br−ε). Since Yτr ∈ ∂Br,{

EQx [h(t − τr, Yτr
, y); t > τr]

}
x∈D∩Br

is equi-continuous for (t, y) ∈ (0, T ]× (D∩Br−ε). It follows from (15) that
{pr(t, x, y)}x∈D∩Br−ε

is equi-continuous for (t, y) ∈ [ε, T ] × (D ∩ Br−ε)
for any ε ∈ (0, T ). Since pr(t, x, y) is symmetric in (x, y), pr(t, x, y) is
uniformly continuous on [ε, T ] × (D ∩ Br−ε) × (D ∩ Br−ε). Therefore
pr(t, x, y) is continuous on (0, T ) × (D ∩ Br) × (D ∩ Br) for each T > 0.

On the other hand, if (X, {Px, x ∈ D}) denotes the continuous strong
Markov process that is (normally) reflecting Brownian motion on D, then
similar to (15) we have for (t, x, y) ∈ (0,∞) × Dr × Dr,

pr(t, x, y) = p(t, x, y) − EPx [p(t − τr, Xτr , y); t > τr],(16)
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where τr = inf{t ≥ 0 : Xt ∈ ∂Br}. Since Xτr
∈ ∂Br, it follows from the

inequality (13) that for each positive integer k, as a function of (t, x, y) in
(0,∞)×Dk×Dk, EPx [p(t−τr, Xτr , y); t > τr] converges to zero uniformly
as r → ∞, where Dk = D ∩ Bk. Therefore for each k > 0, pr(t, x, y)
converges to p(t, x, y) uniformly on (0,∞) × Dk × Dk as r → ∞. Hence
p(t, x, y) can be extended continuously to (0,∞)×Dk ×Dk and therefore
on (0,∞)×D×D. Thus inequality (13) holds for (t, x, y) ∈ (0,∞)×D×D.
Theorem 2 is now proved.
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Hölder and Lipschitz domains. Ann. Probab. 19 (1991), 486–508.
3. Z. Q. Chen, R. J. Williams and Z. Zhao, On the existence of positive solutions for

semilinear elliptic equations with Neumann boundary conditions. Preprint.
4. E. B. Davies, Heat Kernels and Spectral Theory. Cambridge University Press, Cam-

bridge, U.K., 1989.
5. D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators.

Clarendon Press, Oxford, 1987.
6. M. Fukushima, A construction of reflecting barrier Brownian motions for bounded

domains. Osaka J. Math. 4 (1967), 183–215.
7. M. Fukushima, Dirichlet Forms and Markov Processes. North-Holland, Amster-

dam, 1980.
8. P. Li and S.-T. Yau, Asymptotically flat complete Kähler manifolds. In Pure and

Applied Mathematics 143, edited by G. Komatsu and V. Sakane, Marcel Dekker,
New York-Basel-Hong Kong, 1992, 131–143.

9. V. G. Maz’ja, Sobolev Spaces. Springer-Verlag, Berlin-Heidelberg-New York, 1985.
10. S. C. Port and C. J. Stone, Brownian Motion and Classical Potential Theory.

Academic Press, New York, 1978.
11. D. W. Stroock, Diffusion semigroups corresponding to uniformly elliptic divergence

form operators. In Lecture Notes in Mathematics 1321, Springer-Verlag, Berlin-
Heidelberg-New York, 1988, 316–347.

12. K. Sato and T. Ueno, Multi-dimensional diffusion and the Markov process on the
boundary. J. Math. Kyoto Univ. 4-5 (1965), 529–605.

Department of Mathematics, University of California, San Diego, La Jolla,
CA 92093-0112, USA

E-mail address: zchen@euclid.ucsd.edu, rjwilliams@ucsd.bitnet

Department of Mathematics, University of Missouri, Columbia, Missouri
65211, USA

E-mail address: mathzz@mizzou1.missouri.edu


