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THE FIRST EIGENVALUE OF ANALYTIC
LEVEL SURFACES ON SPHERES

SAGUN CHANILLO

ABstrAacT. In this paper we establish a lower bound for the first eigen-
value of the Laplace-Beltrami operator of the level set of a real valued
real-analytic function defined on spheres. The question of existence of such
a lower bound was posed by P.Cordaro and J.Hounie and arose in their
work on local solvability of systems of vector fields [CH].

0. Introduction

The aim of this note is to give a proof of a question raised by Paulo
Cordaro and Jorge Hounie. Consider a real valued, real-analytic fun-
tion f defined on the n + 1 dimensional sphere S™"*!, with n > 1, i.e.
f 8"l R, n > 1. We next consider the non-singular connected
level set V; given by V; = f~1(t), t € R. V; is a manifold and further-
more V; inherits the Riemannian structure of the sphere. Let ¢y denote
a critical value of f. We are interested in the first eigenvalue \;(V;) as
t — to, of the Laplace-Beltrami operator on V;. We henceforth choose
the sign of the Laplace-Beltrami operator on V; so that its eigenvalues are
non-negative.

Theorem. There exist constants (independent of t and ty), C = C(f) >0
and o = a(f), such that

)\1(%)20|t—t0|a ast—>t0.

In the case where f is a polynomial, M. Gromov [G] has answered the
Cordaro-Hounie question in the affirmative. However from the viewpoint
of applications to local solvability which originally led Cordaro and Hounie
to pose this question, it is essential that f be allowed to be at least real-
analytic. When one wishes to study local solvability of a system of vector
fields as in [CH] one is interested in appropriate bounds on the Green
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function, this is equivalent to our theorem. The function f arises from the
first integrals of these vectors fields which a-priori need not be polynomials.
The results of this paper can be used to give another proof of theorem (3.1)
of [CH] wherein Cordaro and Hounie partially proved a conjecture of Treves
[Tr] for the particular case of forms of top degree.

It is possible to prove the theorem by using elementary calculus but this
approach leads to a very large value of a. For local solvability questions
the value of « is immaterial. Since the value of o« may be important for
other problems we have approached this problem by using some differential
geometry, though elementary.

In what follows C, C; denote constants which are different at different
places but at all times independent of ¢ and ¢y3. In particular C; will only
depend on the dimension.

1. Proof of the theorem

We proceed by reducing the problem to essentially a Euclidean case.
First notice, from the Lojasiewicz inequality,

| .
1) inf [V/(@)] = C |t~ to

for C = C(f) >0 and ay = «1(f) independent of ¢ and .

We now set up some notation. We will denote by {ei,...,e,} an or-
thonormal basis for the tangent space at a point = € V;. We denote the
sectional curvature at x with respect to the tangent directions e; and e; by
k(z)(esi, ej). Finally we set |k(z)| = sup, ;[x(x)(es, ;)]

Lemma 1. Let k(z) be defined as above. Then for some 3 < 0, (8 inde-

pendent of t and tg, we have

sup |k(z)] < Ot — to|?, C =C(f).
zeV;

Proof. This follows from the definition of sectional curvature and (1). In
fact one can set 0 = —3a;. O

Lemma 2. Let 7 = 7(V;) denote the injectivity radius of Vi. Then
T(Vi) 2 Clt—to|”,  C=C(f).
Proof. We first note that on V; we have, in suitable local coordinates,

f(x1,...,2p41) = t. Denote by zo any point of V; that we keep fixed
for the rest of the calculation. Assume, with no loss of generality in view of
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(1), that |6ff+1 (20)| > C|t — to|** and x,,41 is the normal direction to the
surface V; at zg. We will show that there is a neighbourhood of 2 of radius
at least C|t — to|** such that for all points z € V; in this neighborhood

we also have |=2L—(2)| > C|t — to|*'. Thus the implicit function theorem

O0Tpi1
will tell us that XZ is given by a graph in a neighborhood of zy of radius
C|t — to|**.
To see this, note that
of of of of
< — .
\axnﬂ (20)] < !aan (20) T (2)] + !axnﬂ (2)]

Now by (1) applied to the left side of the above inequality and the fact that
f is real analytic, in particular C?, we have

of

Clt —to|** < Clzo — 2| + yax )
n+

(2)I-

Thus for |z—29| < $[t—to|** our claim follows by subtracting the first term
on the right above from the left hand side of the inequality. Next note that
the fact that \8fnf+1 (2)| = Clt —to|* for all z for which |z — zo| < |t —to|™*
easily implies that the absolute value of the dot product of the unit normal
vector to the graph at z and the unit vector along the positive x, 1 axis
is bounded below by C|t — to|** for all z for which |z — zo| < C|t — to|*.
Thus by a projection onto the tangent plane of V; at zp, the lemma follows
in fact with the choice v = 2a;. We point out that the lemma is stated in
[G] with no proof. O

We now select as so that we have

C’t—to’aQ . T(‘/;g) _
— 0 < Clt —to|7P/2 ).
"o 0 = min| Tgo Clt ol

A choice ap = 27 will suffice, for example. Consider the geodesic ball
B(z,s), s < 10rg. By Lemma 2 and the choice for rg, on this ball we
may introduce geodesic polar coordinates. That is, for each z € B(z,s),
we have z = €™, r € R, 0 <r < 10rg, & € S""!'. Let du denote the
volume element on V;, with respect to the induced metric. Then one has,
in geodesic polar coordinates,

d/i(?",f) = \/g(’r? g) dr dO’(&),

where do(§) is the surface measure of the n — 1 dimensional sphere.
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Lemma 3. Forr < 10rq, there exists C1 > 0 a dimensional constant such

that
Oyl < \/g(r—,g) < Cfl rnl

Proof. The left hand inequality follows by using Lemma 1 and the Bishop
comparison theorem, eqn. (34), pg. 69 of [C]. We now prove the right hand
inequality. First we denote the Ricci tensor by Ric(z)(n,n’) where n and
7’ are two tangent vectors in the tangent space at © € V;. Set n = |n|e,.
Here |n| denotes the metric length of the tangent vector 1. Then observe
that,

Ric()(nm) =l Y £(2)(ersea).

Applying the lower bound of Lemma 1 we see at once that uniformly for
x € Vi we have the following lower bound on the Ricci curvature,

Ric(z)(n,n) > —C(n—1)[t — to|’[n|*.

Thus the second Bishop comparison theorem equation (42), pg. 72 of [C]
applies and we immediately conclude the right hand inequality above. No-
tice the right hand inequality holds under a weaker hypothesis: just a
lower bound for the Ricci curvature will suffice. Lemma 1 gives us a much
stronger hypothesis than what is needed to apply the Bishop comparison
theorem. [

Our next lemma is a local Poincaré inequality. We set up some notation.

Let
s

Blas)| = [ do(o)

Sn—1

the “Euclidean” volume of B(z,s). Further, for z € B(x,s), z = "¢ we
will write h(z) as h(r,§).

Lemma 4. For any function h € C1(V;), we have, for 0 < s < 10rg and
Cl = Cl (n),

/ |h — hp|*du < Cy 82 / |Vh|? du
B(z,s) B(w,s)

where hp = m]g(f ) h(r,&)r"~Ldrdo(§).

Proof. Since s is less than the injectivity radius of V; we may express the
left side in geodesic polar coordinates and use the right hand inequality of
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Lemma 3 to get

I — hal? /g &) dr do(€) < Cy / i — |2 7 dr do(€).

B(z,s) B(w,s)

Applying the regular Euclidean Poincaré inequality to the right side, the
right side is bounded by

Cy 52 / IVh|? v~ dr do(€).
B(z,s)
Applying the left hand inequality of Lemma 3 to the integral above we
immediately get our lemma. O

We next need a covering lemma the statement of which was motivated
by the pictures in Gromov’s paper [G].

Lemma 5. There exists a family of geodesic balls { B(x1,70)}r_, such that

(a) Vi = L_kJ B(x;,70)

i=1
(b) Fori# j, B(x;, )N B(xj,3) is a set of measure zero.

(c) k< Cry™, C =C(f) independent of t and ty.

Proof. Parts (a) and (b) are trivial to accomplish. For part (c) we use a
result of R. Hardt [H2], which is based on [H1]. Particularly elegant proofs
have also been given by H. Sussmann [S] and B. Teissier [T]. Their results
state that H"™(V}), the n-dimensional Hausdorff measure of V;, satisfies

(2) H'W)<C,  C=C(f)
independent of ¢ and .

k
Part (c) immediately follows from (b) and (2), for V; > |J B(x;, %) and
i—1

thus by (b), (2) and Lemma 3,
kry < CH™(V;) < C.

This gives us (¢). O

We can now prove our theorem.
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Proof of the theorem. It will be enough to show that one can find a
constant ¢, = c(h), such that for any h € C*(V}),

(3) |h—cn>du < Clt —to] ™ [ |VA|* dp.
Vt Vt

We now denote the balls B(x;,rg) in Lemma 5 by B;. We simply set

1
ch = —— h(r,&)r"~tdr do(€).
1B1l /5,
By (a) of Lemma 5,
k
(4) h-afdi<d [ b du
Vi i=1" Bi

Using the notation of Lemma 4, we set

1
hg, =

; m / h(r,&)r" ™" dr do(§).

B(zq,r0)

The right side of (4) is thus at most

k k
(5) A+B—4Z/ h—hp 2 +43 " |hs, — cnPu(By).
i=1 Y Bi i=1

We apply Lemma 4 to the sum A to get

k
A< Z4r§/ |Vh2|dp < 4k2 [ |Vh|?dp.
i=1 B;

Vi

Using (c) of Lemma 5 and inserting the estimate for k, we do get the right
side of (3). We now estimate B. First note we can connect any ball B;
to the ball Bl, by a chain of balls Bi71 = Bl, ey Bi,ma .. ~aBi,m0 = Bi,
where the balls B; ,, are members of the cover in Lemma 5. Thus, keeping

in mind ¢, = hp, ,, we have

mo
(6) b, —cnl <D hpe,, = hs, -

m=1

The balls B; ;,, and B; ,+1 are adjacent and have the same radii, 7. Thus
there exists a ball B,, = B(x,5r¢) such that

a) By, D B; ., and By, D B; p41; and

b) [Bp| < C1|Bim| and [By,| < C1|B; m1]-
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Thus,
(7) |th,m - hBi,m+1‘ S |hBi,7n - th| + |th - hBi,m+l |
Now, by Schwarz’s inequality

1/2
1 1
e T ALEURE (o AL B
| Bz,m Bm| |Bz,m’ Bm’ Bm| ’Bl,m‘ Bm| N ’

By (a) and (b) above |B; | ~ |By,|. Thus applying Lemma 3 to the last
integral on the right above we may replace the last integral by

1 , 1/2
Bl s, 17Tl )

Since 519 < 7(V;) we may apply Lemma 4 to upper bound the expression

above b
Y 1 1/2
Ciro <—]B ’/ |Vh|? d,u) )
m B,

Thus, we have the pair of inequalities

1 1/2
hp,. — ] < Ciro (— / |Vh|2du)
' ’Bm’ Bm

and

1 1/2
‘th m+1 th’ S CITO (_/ |Vh|2du) .
’ Bl /5

m

From (7) and the pair of inequalities above we get

1/2
‘h’Bq‘,,mJﬂ - hB¢7m| < C'1740|Bm|_1/2 (/ |Vh|2du) .
Bm

Inserting this in (6), and remembering that |B,,| ~ Cir] and mg < k, we
get

1/2
hp, — cn| < Crg "7k ( |Vh? du) :
Ve
We now insert this into the expression B in (5), and recalling from Lemma 3

that u(B;) ~ Cirly, we get
B < Clrgkg/ |Vh|? dpu.
Vi
Thus summing up A and B,

|h —en|? dp < C’lrgk‘g/ |Vh|? du.
Vi

Vi
Since k < Cry ™ and rp = %too‘_ﬁ, we easily have (3) with o = a2(3n—2),

ag = 2a1. This proves the theorem. [
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