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THE FIRST EIGENVALUE OF ANALYTIC

LEVEL SURFACES ON SPHERES

Sagun Chanillo

A bstract . In this paper we establish a lower bound for the first eigen-
value of the Laplace-Beltrami operator of the level set of a real valued
real-analytic function defined on spheres. The question of existence of such
a lower bound was posed by P.Cordaro and J.Hounie and arose in their
work on local solvability of systems of vector fields [CH].

0. Introduction

The aim of this note is to give a proof of a question raised by Paulo
Cordaro and Jorge Hounie. Consider a real valued, real-analytic fun-
tion f defined on the n + 1 dimensional sphere Sn+1, with n ≥ 1, i.e.
f : Sn+1 → R, n ≥ 1. We next consider the non-singular connected
level set Vt given by Vt = f−1(t), t ∈ R. Vt is a manifold and further-
more Vt inherits the Riemannian structure of the sphere. Let t0 denote
a critical value of f . We are interested in the first eigenvalue λ1(Vt) as
t → t0, of the Laplace-Beltrami operator on Vt. We henceforth choose
the sign of the Laplace-Beltrami operator on Vt so that its eigenvalues are
non-negative.

Theorem. There exist constants (independent of t and t0), C = C(f) > 0
and α = α(f), such that

λ1(Vt) ≥ C|t − t0|α as t → t0.

In the case where f is a polynomial, M. Gromov [G] has answered the
Cordaro-Hounie question in the affirmative. However from the viewpoint
of applications to local solvability which originally led Cordaro and Hounie
to pose this question, it is essential that f be allowed to be at least real-
analytic. When one wishes to study local solvability of a system of vector
fields as in [CH] one is interested in appropriate bounds on the Green
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function, this is equivalent to our theorem. The function f arises from the
first integrals of these vectors fields which a-priori need not be polynomials.
The results of this paper can be used to give another proof of theorem (3.1)
of [CH] wherein Cordaro and Hounie partially proved a conjecture of Treves
[Tr] for the particular case of forms of top degree.

It is possible to prove the theorem by using elementary calculus but this
approach leads to a very large value of α. For local solvability questions
the value of α is immaterial. Since the value of α may be important for
other problems we have approached this problem by using some differential
geometry, though elementary.

In what follows C, C1 denote constants which are different at different
places but at all times independent of t and t0. In particular C1 will only
depend on the dimension.

1. Proof of the theorem

We proceed by reducing the problem to essentially a Euclidean case.
First notice, from the Lojasiewicz inequality,

(1) inf
x∈Vt

|∇f(x)| ≥ C |t − t0|α1

for C = C(f) > 0 and α1 = α1(f) independent of t and t0.
We now set up some notation. We will denote by {e1, . . . , en} an or-

thonormal basis for the tangent space at a point x ∈ Vt. We denote the
sectional curvature at x with respect to the tangent directions ei and ej by
κ(x)(ei, ej). Finally we set |κ(x)| = supi,j |κ(x)(ei, ej)|.
Lemma 1. Let κ(x) be defined as above. Then for some β < 0, β inde-
pendent of t and t0, we have

sup
x∈Vt

|κ(x)| ≤ C|t − t0|β , C = C(f).

Proof. This follows from the definition of sectional curvature and (1). In
fact one can set β = −3α1. �
Lemma 2. Let τ = τ(Vt) denote the injectivity radius of Vt. Then

τ(Vt) ≥ C|t − t0|γ , C = C(f).

Proof. We first note that on Vt we have, in suitable local coordinates,
f(x1, . . . , xn+1) = t. Denote by z0 any point of Vt that we keep fixed
for the rest of the calculation. Assume, with no loss of generality in view of
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(1), that | ∂f
∂xn+1

(z0)| ≥ C|t − t0|α1 and xn+1 is the normal direction to the
surface Vt at z0. We will show that there is a neighbourhood of z0 of radius
at least C|t − t0|α1 such that for all points z ∈ Vt in this neighborhood
we also have | ∂f

∂xn+1
(z)| ≥ C|t − t0|α1 . Thus the implicit function theorem

will tell us that Vt is given by a graph in a neighborhood of z0 of radius
C|t − t0|α1 .

To see this, note that

| ∂f

∂xn+1
(z0)| ≤ | ∂f

∂xn+1
(z0) −

∂f

∂xn+1
(z)| + | ∂f

∂xn+1
(z)|.

Now by (1) applied to the left side of the above inequality and the fact that
f is real analytic, in particular C2, we have

C|t − t0|α1 ≤ C|z0 − z| + | ∂f

∂xn+1
(z)|.

Thus for |z−z0| ≤ C
2 |t−t0|α1 our claim follows by subtracting the first term

on the right above from the left hand side of the inequality. Next note that
the fact that | ∂f

∂xn+1
(z)| ≥ C|t− t0|α1 for all z for which |z− z0| ≤ |t− t0|α1

easily implies that the absolute value of the dot product of the unit normal
vector to the graph at z and the unit vector along the positive xn+1 axis
is bounded below by C|t − t0|α1 for all z for which |z − z0| ≤ C|t − t0|α1 .
Thus by a projection onto the tangent plane of Vt at z0, the lemma follows
in fact with the choice γ = 2α1. We point out that the lemma is stated in
[G] with no proof. �

We now select α2 so that we have

r0 =
C|t − t0|α2

100
≤ min

(
τ(Vt)
100

, C|t − t0|−β/2

)
.

A choice α2 = 2α1 will suffice, for example. Consider the geodesic ball
B(x, s), s ≤ 10r0. By Lemma 2 and the choice for r0, on this ball we
may introduce geodesic polar coordinates. That is, for each z ∈ B(x, s),
we have z = erξ, r ∈ R, 0 ≤ r ≤ 10r0, ξ ∈ Sn−1. Let dµ denote the
volume element on Vt, with respect to the induced metric. Then one has,
in geodesic polar coordinates,

dµ(r, ξ) =
√

g(r, ξ) dr dσ(ξ),

where dσ(ξ) is the surface measure of the n − 1 dimensional sphere.
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Lemma 3. For r ≤ 10r0, there exists C1 > 0 a dimensional constant such
that

C1r
n−1 ≤

√
g(r, ξ) ≤ C−1

1 rn−1.

Proof. The left hand inequality follows by using Lemma 1 and the Bishop
comparison theorem, eqn. (34), pg. 69 of [C]. We now prove the right hand
inequality. First we denote the Ricci tensor by Ric(x)(η, η′) where η and
η′ are two tangent vectors in the tangent space at x ∈ Vt. Set η = |η|en.
Here |η| denotes the metric length of the tangent vector η. Then observe
that,

Ric(x)(η, η) = |η|2
n−1∑
i=1

κ(x)(ei, en).

Applying the lower bound of Lemma 1 we see at once that uniformly for
x ∈ Vt we have the following lower bound on the Ricci curvature,

Ric(x)(η, η) ≥ −C(n − 1)|t − t0|β |η|2.

Thus the second Bishop comparison theorem equation (42), pg. 72 of [C]
applies and we immediately conclude the right hand inequality above. No-
tice the right hand inequality holds under a weaker hypothesis: just a
lower bound for the Ricci curvature will suffice. Lemma 1 gives us a much
stronger hypothesis than what is needed to apply the Bishop comparison
theorem. �

Our next lemma is a local Poincaré inequality. We set up some notation.
Let

|B(x, s)| =
sn

n

∫
Sn−1

dσ(ξ),

the “Euclidean” volume of B(x, s). Further, for z ∈ B(x, s), z = erξ we
will write h(z) as h(r, ξ).

Lemma 4. For any function h ∈ C1(Vt), we have, for 0 ≤ s ≤ 10r0 and
C1 = C1(n), ∫

B(x,s)

|h − hB |2 dµ ≤ C1s
2

∫
B(x,s)

|∇h|2 dµ

where hB = 1
|B(x,s)|

∫
B(x,s)

h(r, ξ)rn−1 dr dσ(ξ).

Proof. Since s is less than the injectivity radius of Vt we may express the
left side in geodesic polar coordinates and use the right hand inequality of
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Lemma 3 to get

∫
B(x,s)

|h − hB |2
√

g(r, ξ) dr dσ(ξ) ≤ C1

∫
B(x,s)

|h − hB |2 rn−1 dr dσ(ξ).

Applying the regular Euclidean Poincaré inequality to the right side, the
right side is bounded by

C1s
2

∫
B(x,s)

|∇h|2 rn−1 dr dσ(ξ).

Applying the left hand inequality of Lemma 3 to the integral above we
immediately get our lemma. �

We next need a covering lemma the statement of which was motivated
by the pictures in Gromov’s paper [G].

Lemma 5. There exists a family of geodesic balls {B(x1, r0)}k
i=1 such that

(a) Vt =
k⋃

i=1

B(xi, r0)

(b) For i 
= j, B(xi,
r0
2 ) ∩ B(xj ,

r0
2 ) is a set of measure zero.

(c) k ≤ Cr−n
0 , C = C(f) independent of t and t0.

Proof. Parts (a) and (b) are trivial to accomplish. For part (c) we use a
result of R. Hardt [H2], which is based on [H1]. Particularly elegant proofs
have also been given by H. Sussmann [S] and B. Teissier [T]. Their results
state that Hn(Vt), the n-dimensional Hausdorff measure of Vt, satisfies

(2) Hn(Vt) ≤ C, C = C(f),

independent of t and t0.

Part (c) immediately follows from (b) and (2), for Vt ⊃
k⋃

i−1

B(xi,
r0
2 ) and

thus by (b), (2) and Lemma 3,

krn
0 ≤ CHn(Vt) ≤ C.

This gives us (c). �

We can now prove our theorem.
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Proof of the theorem. It will be enough to show that one can find a
constant ch = c(h), such that for any h ∈ C1(Vt),

(3)
∫

Vt

|h − ch|2 dµ ≤ C|t − t0|−α

∫
Vt

|∇h|2 dµ.

We now denote the balls B(xi, r0) in Lemma 5 by Bi. We simply set

ch =
1

|B1|

∫
B1

h(r, ξ)rn−1 dr dσ(ξ).

By (a) of Lemma 5,

(4)
∫

Vt

|h − ch|2 dµ ≤
k∑

i=1

∫
Bi

|h − ch|2 dµ.

Using the notation of Lemma 4, we set

hBi =
1

|B(xi, r0)|

∫
B(xi,r0)

h(r, ξ)rn−1 dr dσ(ξ).

The right side of (4) is thus at most

(5) A + B = 4
k∑

i=1

∫
Bi

|h − hBi
|2 + 4

k∑
i=1

|hBi
− ch|2µ(Bi).

We apply Lemma 4 to the sum A to get

A ≤
k∑

i=1

4r2
0

∫
Bi

|∇h2| dµ ≤ 4k2
0

∫
Vt

|∇h|2 dµ.

Using (c) of Lemma 5 and inserting the estimate for k, we do get the right
side of (3). We now estimate B. First note we can connect any ball Bi

to the ball B1, by a chain of balls Bi,1 = B1, . . . , Bi,m, . . . , Bi,m0 = Bi,
where the balls Bi,m are members of the cover in Lemma 5. Thus, keeping
in mind ch = hBi,1 , we have

(6) |hBi
− ch| ≤

m0∑
m=1

|hBi,m
− hBi,m+1 |.

The balls Bi,m and Bi,m+1 are adjacent and have the same radii, r0. Thus
there exists a ball Bm = B(x, 5r0) such that

a) Bm ⊃ Bi,m and Bm ⊃ Bi,m+1; and
b) |Bm| ≤ C1|Bi,m| and |Bm| ≤ C1|Bi,m+1|.
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Thus,

(7) |hBi,m − hBi,m+1 | ≤ |hBi,m − hBm | + |hBm − hBi,m+1 |.
Now, by Schwarz’s inequality

|hBi,m − hBm | ≤ 1
|Bi,m|

∫
Bm

|h − hBm | ≤
(

1
|Bi,m|

∫
Bm

|h − hBm |2
)1/2

.

By (a) and (b) above |Bi,m| ≈ |Bm|. Thus applying Lemma 3 to the last
integral on the right above we may replace the last integral by(

1
|Bm|

∫
Bm

|h − hBm
|2 dµ

)1/2

.

Since 5r0 ≤ τ(Vt) we may apply Lemma 4 to upper bound the expression
above by

C1r0

(
1

|Bm|

∫
Bm

|∇h|2 dµ

)1/2

.

Thus, we have the pair of inequalities

|hBi,m
− hBm

| ≤ C1r0

(
1

|Bm|

∫
Bm

|∇h|2 dµ

)1/2

and

|hBi,m+1 − hBm | ≤ C1r0

(
1

|Bm|

∫
Bm

|∇h|2 dµ

)1/2

.

From (7) and the pair of inequalities above we get

|hBi,m+1 − hBi,m | ≤ C1r0|Bm|−1/2

(∫
Bm

|∇h|2 dµ

)1/2

.

Inserting this in (6), and remembering that |Bm| ≈ C1r
n
o and m0 ≤ k, we

get

|hBi − ch| ≤ Cr
−(n−2)/2
0 k

(∫
Vt

|∇h|2 dµ

)1/2

.

We now insert this into the expression B in (5), and recalling from Lemma 3
that µ(Bi) ≈ C1r

n
0 , we get

B ≤ C1r
2
0k

3

∫
Vt

|∇h|2 dµ.

Thus summing up A and B,∫
Vt

|h − ch|2 dµ ≤ C1r
2
0k

3

∫
Vt

|∇h|2 dµ.

Since k ≤ Cr−n
0 and r0 = C|t−t0|−β

100 , we easily have (3) with α = α2(3n−2),
α2 = 2α1. This proves the theorem. �
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