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RIGIDITY AND DYNAMICS AROUND

MANIFOLDS OF NEGATIVE CURVATURE

Chengbo Yue

This survey grew out of a series of talks at A. Katok’s seminar on “geo-
metric rigidity and smooth group actions”. A complete survey on mani-
folds of negative curvature should include 1) Kanai [K], Feres-Katok [FK1],
[FK2], [F] and Benoist-Foulon-Labourie’s [BFL] [BF] work on the regular-
ity of Anosov foliations; 2) The results of Hamenstädt [H4] [H5] on entropy
rigidity (as a generalization of Mostow rigidity); 3) The work of Croke [C]
and Otal [O] on marked length spectrum; 4) Besson, Courtois and Gallot’s
work [BCG] on minimal entropy of locally symmetric spaces, and many
others. However, the lack of time and space forces ourselves to restrict to
problems of more analytical nature. Most of the problems discussed here
seem to have originated from [K1]: various measures associated with the
geodesic flow, entropy like invariants of the Riemannian metric. They turn
out to be closely related to many other rigidity problems: regularity of the
Anosov foliation, marked length spectrum, etc. In as much as this is a sur-
vey, it should be obvious that not all the proofs are given. However, we do
not hesitate to provide a detailed explanation of the main ideas whenever
possible. I also take this opportunity to state some new results and write
down some open problems. We hope the bibliography to be a helpful guide
into the evolution of the subject.

1. Basic constructions

1.1. The meaning of non-positive curvature.
Consider a surface of negative curvature and let ∆ be a geodesic triangle

with angles α1, α2, α3. By the Gauss-Bonnet theorem, α1 + α2 + α3 = π +∫
∆

K < π where K is the sectional curvature. This means that in negative
curvature the two geodesics γ1, γ2 diverge faster than in the Euclidean
situation. In higher dimensions, we can think of Jacobi fields which sweep
infinitesimal triangles. Let J(t) be a Jacobi field along a geodesic v(t). So
it satisfies the Jacobi equation J ′′ = −R(J, v̇)v̇ where R is the curvature
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operator. Then 〈J, J ′〉′ = 〈J, J ′′〉+〈J ′, J ′〉 = −〈R(J, v̇)v̇, J〉+‖J ′‖2 ≥ ‖J ′‖2
by non-positive curvature. Thus, using the Schwarz inequality,

‖J‖′′ =
( 〈J, J ′〉
‖J‖

)′
=
〈J, J ′〉′‖J‖2 − 〈J, J ′〉2

‖J‖3 ≥ ‖J
′‖2‖J‖2 − 〈J, J ′〉2

‖J‖3 ≥ 0,

and we get the following result (see [Kl] for example).

Proposition 1.1. i) ‖J‖ is a convex function. ii) If v1(t), v2(t) are two
geodesics, then d(v1(t), v2(t)) is a convex function of t.

1.2. Some comments on manifolds of non-positive curvature. Let
G be a semi-simple group of non-compact type. Let H ⊂ G be a maximal
compact subgroup. Then M̃ = G/H admits a G-invariant metric g. By
the theorem of E. Cartan, K(g) ≤ 0 and K is strictly negative if and
only if rankR G = 1. In fact, one can define the rank of any manifold
of nonpositive curvature by rank(M) � min

v∈SM
{dimension of the space of

Jacobi fields parallel along the geodesic v(t), where v(t) is the geodesic with
initial velocity v: v̇(0) = v}.
Theorem 1.2. Let M be complete, vol(M) < ∞, −a2 ≤ K ≤ 0 for some
positive number a. Assume that the universal cover M̃ is irreducible (i.e.
M̃ does not split into a Riemannian product). Then (Ballmann, Brin,
Burns, Eberlein, Spatizer [BBE] [BBS] [BA] [BS])

i) Either M̃ = G/H, as described above (symmetric).
ii) or rank(M) = 1.

Remark. By theorem 1.2 and Margulis’ arithmeticity theorem all finite vol-
ume manifolds with rank ≥ 2 and nonpositive curvature arise in a simple
way—they are the quotients Γ\G/H where Γ is a discrete subgroup pro-
duced usually by arithmetic constructions. On the contrary, there are many
rank-1 manifolds of nonpositive curvature which are not the quotients of Lie
groups. For example, there are closed manifolds with arbitrarily pinched
negative curvature −1 ≤ K ≤ −1 + ε which are not homeomorphic to any
manifold of constant negative curvature (see [GT]). However, the geodesic
flow of a rank-1 manifold is almost Anosov. The geometric characteristics
of the metric are reflected in the asymptotic properties of this flow.

1.3. Notations. From now on we consider a closed n-dimensional Rie-
mannian manifold M , with negative sectional curvature −∞ < −b2 ≤ K ≤
−a2 < 0. We denote by

M̃ the universal cover of M ;
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SM (resp. SM̃) the unit tangent bundle of M (resp. M̃);
Γ the fundamental group Γ = π1(M);

v(t) the unit speed geodesic on M or M̃ with initial ve-
locity v̇(0) = v.

The geodesic flow gt is defined on SM , by gt(v) = v̇(t). The Jacobi
equation J̈ + R(J, v)v = 0 is exactly the linear approximation of the ge-
odesic flow (see [Kl]). Thus, by the discussion in 1.1, the norm ‖J(t)‖ of
each Jacobi field J(t) is a strictly convex function. Let us denote by Es

(resp. Eu) the space of all Jacobi fields J(t) which satisfy ‖J(t)‖ → 0 as
t → ∞ (resp. t → −∞). Then by the usual identification ([Kl]) of the
tangent space of SM with the space of Jacobi fields, we obtain a continu-
ous decomposition T S M = Es⊕Eu⊕RX where X is the geodesic spray,
such that for some constant A > 0, if ξ ∈ Es, then A−1e−bt ≤

∣∣dgt(ξ)
∣∣ ≤

A e−at|ξ| for all t ∈ R and if ξ ∈ Eu, then A−1eat|ξ| ≤
∣∣dgt(ξ)

∣∣ ≤ A ebt|ξ|
for all t ∈ R. In other words, gt is an Anosov flow. Under this splitting,
the differential of the geodesic flow along the Es-direction dgt

∣∣
Es is repre-

sented by a fundamental matrix Y (t) which satisfies the Jacobi equation
Ẏ + R(Y, v)v = 0. We can set U(t) = Ẏ (t)Y −1(t). Then U is exactly the
second fundamental form of the horosphere which is positively asymptotic
to v (see [Kl]) and it satisfies the Ricatti equation −U̇ + U2 + R = 0.

1.4. The ideal sphere ∂M̃ and its regularity. Since gt is Anosov, the
distance between two geodesics in M̃ either tends to 0 or tends to infinity as
t→∞. In the former case they are called asymptotic. The ideal boundary
∂M̃ is defined as the set of equivalence classes of asymptotic geodesics
of M̃ . Given a point x ∈ M̃ , then for any v ∈ SxM , there is a unique
equivalence class corresponding to v(t), which we denote by v(∞), thus we
have a bijection

SxM̃
Px−→ ∂M̃.

We can check that the topology on ∂M̃ that makes Px a homeomorphism
is independent of the point x. This is called the sphere topology.

Proposition 1.4.1 ([A] [AS]). ∂M̃ has a Cα (i.e. α-Hölder)-structure,
where α = a

b .

Proof. Let o, x1, x2 be three points in M̃ and d be the Riemannian distance.
By the Toponogov theorem [CE]: if d(o, x1) = d(o, x2) = r, then 2r +
2
a ((nθ− 1) ≤ d(x1, x2) ≤ 2r + 2

b ((nθ +1) for all r large enough and θ small
enough, where θ is the angle spanned by the geodesics

−→
ox1 and

−→
ox1.

Now let v, w ∈ Sx1M̃ , θ = ∠(v, w) and θt = ∠(x2; v(t), w(t)) (i.e. the
angle at x2 spanned by the two points v(t) and w(t)). Then again by
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the Toponogov theorem, if t is large enough, 2
a ((nθt − 1) + 2t + C1 ≤

d(v(t), w(t)) ≤ 2t + 2
b ((nθ + 1) for some constant C1 = C1(x1, x2). Thus

θt ≤ C2θ
a
b for some constant C2. �

Remarks.

1. It is easy to check that the Cα-regularity of ∂M̃ is equivalent to the
Cα-regularity of the Anosov splitting T S M = Es ⊕ Eu ⊕ R X.

2. If dimM = 2, or if a
b > 1

2 (i.e. 1
4 -pinching) then ∂M̃ carries a C1-

structure ([HP]). See also [Ha1] for further results. However, our
argument here only gives a C

1
2 -structure.

3. For more delicate regularity properties in dimension 2, see [HK].
4. In [BFL], Benoist, Foulon and Labourie, generalizing works of

Kanai, Feres and Katok, prove that for a closed Riemannian man-
ifold of negative curvature, if the ideal boundary has a C∞ struc-
ture then its geodesic flow is time preserving C∞ conjugate to the
geodesic flow of a locally symmetric space of negative curvature.
Furthermore, the C∞-condition was reduced to some Ck, k < ∞,
in [Ha2].

1.4.2. Busemann functions and horospheres. For each v ∈ SM̃ , there
corresponds a Busemann function ρv(y) def= lim

t→∞
d(v(t), y) − t. Sometimes

one also writes it as ρx,ξ(y), where ξ = v(∞) is the asymptotic class of
the geodesic v(t). This is a smooth function of y. The level set of the
Busemann function at v through y is called the horosphere centered at
ξ passing through y. We denote it by H(y, ξ) or H(v) if v ∈ SyM and
v(∞) = ξ.

1.4.3. Action of Γ at infinity. Every isometry γ ∈ Γ extends to a home-
omorphism of ∂M̃ naturally: γ(v(∞)) def= γ(v)(∞), v ∈ SM . If Γ is co-
compact, then it is well known [E] that the Γ-action on ∂M̃ is minimal,
i.e., every Γ–orbit is dense in ∂M̃ . Γ also acts naturally on ∂M̃ × ∂M̃ by
γ(ξ, η) = (γξ, γη). Observe that the space of geodesics on M̃ is canonically
identified with ∂M̃×∂M̃� diagonal. There is also a natural 1-1 correspon-
dence between the following two sets: {gt-invariant measures on SM} ←→
{Γ-invariant measures on ∂M̃ × ∂M̃� diagonal}.

1.5. Patterson-Sullivan measure at infinity. Next we shall construct
two families of measures on ∂M̃ . (i) the Patterson-Sullivan measures, using
the lattice Γ-action; and (ii) the harmonic measures using potential the-
ory. Observe that all these constructions are apparently unrelated with the
geodesic flow.
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Fix two points x, y ∈ M̃ and consider the Poincaré series gs(x, y) =∑
γ∈Γ

e−sd(x,γy). Define the critical exponent δ(Γ) def= δ
def= sup{s > 0

∣∣gs(x, y)

diverges at s}. Now let Sk be the number of orbit points Γy in the annulus
B(x, k + 1

2 ) � B(x, k− 1
2 ) where B(x, r) denotes the geodesic ball centered

at x of radius r, then gs(x, y) ∼
∞∑

k=0

Ske−ks. Therefore

δ = lim
k→∞

log Sk

k
= lim

k→∞

log vol[B(x, k + 1
2 ) � B(x, k − 1

2 )]
k

= lim
k→∞

log vol(B(x, k))
k

.

Now we fix a reference point x0 and consider the family of measures on M̃ :

µs
x =

1
gs(x0, x0)

∑
γ∈Γ

e−sd(x0,γx)δγx,

where δγx is the Dirac measure at γx. Using the triangle inequality it
is easy to see that e−sd(x0,x)gs(x0, x0) < gs(x0, x) < e+sd(x0,x)gs(x0, x0).
Therefore {µs

x}s>δ is a family of finite measures on M̃ with uniformly
bounded total mass. Let µx = lim

sj→δ+
µ

sj
x be a weak limit. It is easy to

see that µx is concentrated on ∂M̃ and that for any other point y ∈ ∂M̃ ,
µy = lim

sj→δ+
µ

sj
y also exists. Moreover we have for ξ ∈ ∂M̃ ,

dµy

dµx
(ξ) = e−δρx,ξ(y),

where ρx,ξ(y) is the Busemann function (see 1.4.2).

1.6. Dirichlet Problem and Harmonic Measures. (See the references
[A], [S1], [AS]). One example of how negative curvature affects geometry is
given by the behavior of the Laplacian. Let r(y) = d(x, y) be the distance
function, then we have

(∗) ∆e−δr =
[
δ2 − δ · θ

′

θ

]
e−δr,

here θ(x, y) is given by d∗(expx(·)) dm(y) = θ(x, y) · dσ, where d∗ de-
notes the Jacobian, dm(y) is the Riemannian volume on M̃ and dσ is the
Euclidean volume on TxM̃ and θ′

θ is exactly the mean curvature of the
geodesic sphere S(x, r) at y. It is easy to see that if −b2 ≤ K ≤ −a2, then
θ′

θ ≥ (n− 1)a.
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Theorem 1.6.1. (Solution of Dirichlet problem). For any ϕ ∈ C0(∂M̃),
there exists a unique harmonic function U ∈ C∞(M̃) ∩ C0(M) where
M = M̃ ∪ ∂M̃ , such that U

∣∣
∂M̃

= ϕ.

Proof. (See [A] [AS] for more details.) Consider the polar coordinates
system (r, θ) on M̃ at the reference point x. Extend ϕ to M̃ � {x} by
ϕ(r, θ) = ϕ(θ). Then average ϕ by

ϕ̃(y) =

∫
M̃

χ(d2(y, z))ϕ(z)dz∫
M̃

χ(d2(y, z))dz

where 0 ≤ χ ≤ 1, χ ∈ C∞
0 (R), suppχ ⊂ [−1, 1] and dz is the Riemann-

ian volume. One can prove that (i) ϕ̃(y) → ϕ(y), as y → ∞, (ii) |∆ϕ̃| ≤
C1e

−ar. Compare this with (∗). For some constants C2 and δ small enough,
one has ∆(ϕ̃+C2e

−δr) ≤ 0 ≤ ∆(ϕ̃−C2e
−δr). Hence one can use ϕ̃+C2e

−δr

and ϕ̃−C2e
−δr as barrier functions and apply the Perron method to get a

harmonic function u satisfying ϕ̃− C2e
−δr ≤ u ≤ ϕ̃ + C2e

−δr. �
1.6.2. Existence of the Green functions. The above calculation shows

that if δ is small enough, then ∆(e−δr) ≤ 0 ≤ ∆(e−
1
δ r). A result of

geometry [AS] (actually a corollary of the maximum principle) tells us that
if there exists a bounded positive superharmonic function, then there exists
a global Green function G(x, y), which satisfies

1. G(x, y) = G(y, x), ∆yG(x, y) = 0, x �= y.
2. G(x, y) ≥ 0.

3. G(x, y) ∼


 log

1
r

as y → x , dimM = 2,

r2−n as y → x , dimM > 2.

1.6.3. The Poisson kernel. Recall the Harnack Principle [AS]: Let o ∈ M̃

and v ∈ SoM̃ , if u1, u2 are two positive harmonic functions on the cone
c(θ, v) = {y ∈ M̃

∣∣∠(
→
oy, v) ≤ θ}, and u1

∣∣
c(θ,v)∩∂M̃

= u2

∣∣
c(θ,v)∩∂M̃

= 0.
Then there exists a constant c > 0, such that

c−1 u1(o)
u2(o)

≤ u1(x)
u2(x)

≤ c
u1(o)
u2(o)

As an easy corollary of the Harnack principle, for each ξ ∈ ∂M̃ the following
limit exists

K(x, y, ξ) = lim
z→ξ

G(y, z)
G(x, z)
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and satisfies:
1. K(x, y, ξ) > 0,
2. K(x, x, ξ) = 1,
3. K(x, y, ξ)|

∂M̃�{ξ} = 0.

K(x, y, ξ) is called the Poisson kernel. By the Harnack principle, one can
also prove that the Poisson kernels are unique.

1.6.4. Harmonic measures. For each x ∈ M̃ and each f ∈ C0(∂M̃) let
F (y) be the solution of the Dirichlet problem of f . Then Lxf

def= F (x)
gives a positive linear functional. It follows from the Riesz representation
theorem that there exists a unique measure νx on ∂M̃ , such that for all
f ∈ C0(∂M̃), F (x) =

∫
∂M̃

f(ξ)dνx(ξ). By the uniqueness of the Poisson
kernel, one can prove that dνy

dνx
(ξ) = K(x, y, ξ). The measure νx is called

the harmonic measure at x.

1.7. Construction of invariant measures of the geodesic flow. As
we noted in 1.4.3, invariant measures of gt on SM are in a 1-1 correson-
dence with Γ-invariant measures on ∂M̃ × ∂M̃ . First we construct, from
the Patterson-Sullivan measure µx and harmonic measure νx, Γ-invariant
measures on ∂M̃ × ∂M̃ .

1.7.1.. The Bowen-Margulis measure µ. Define a measure dU on ∂M̃ ×
∂M̃ by dU(ξ, η) = eδβx(ξ,η)dµx(ξ) × dµx(η) where dµx is the Patterson-
Sullivan measure, βx(ξ, η) = ρx,ξ(y) + ρx,η(y) for any y on the geodesic
from ξ to η (one can check that this definition does not depend on the
choice of y). By definition, for γ ∈ Γ,

dU(γξ, γη)
d(γ∗U)(γξ, γη)

=
eδβx(γξ,γη) dµx(γξ) dµx(γη)

eδβx(ξ,η)eδργ−1x,ξ(x)+δργ−1x,η(x) dµx(γξ) dµx(γη)
= 1.

Thus dU is Γ-invariant on ∂M̃ × ∂M̃ . Now define the Bowen-Margulis
measure µ on SM̃ by dµ(ξ, η, t) = dU(ξ, η)dt and then project it down
to SM (one can only do this because dU is Γ-invariant). We denote the
projected measure by the same symbol µ. This is a gt-invariant measure
on SM , which we shall discuss in later detail.

Remark. The traditional construction of the Bowen-Margulis measure in-
volves theory from hyperbolic dynamics. Observe that the construction
here uses nothing from dynamics. One can check that, although the Pat-
terson-Sullivan measure µx depends on the initial point x0 (1.5), however,
the measure µ does not depend on the choice of x0 or x.
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1.7.2. The harmonic measure ν. The harmonic measure ν on SM was
first constructed by Ledrappier through Gibbs theory [L2]. The following
is a more direct construction given by Kaimanovich ([Kam3]).

Let

Gx(ξ, η) = lim
y1→ξ
y2→η

G(y1, y2)
G(x, y1)G(x, y2)

,

and define the measure dΛ on ∂M̃×∂M̃ by dΛ(ξ, η) = Gx(ξ, η)dνx(ξ)dνx(η)
where dνx is the harmonic measure. By definition, for γ ∈ Γ,

dΛ
d(γ∗Λ)

(γξ, γη) =
Gx(γξ, γη)
Gx(ξ, η)

dνx

dνγ−1x
(ξ)

dνx

dνγ−1x
(η)

=
Gx(νξ, νη)
Gx(ξ, η)

K(γ−1x, x, ξ)K(γ−1x, x, η)

= 1 (see (1.6.3)).

The corresponding invariant measure dν(ξ, η, t) = dΛ(ξ, η) · dt on SM̃ and
its projection on SM are called the harmonic measure of the geodesic
flow gt. One can also check that this measure does not depend on the
choice of νx.

1.7.3.. The Liouville measure. This is the natural Liouville invariant
measure corresponding to the contact structure of the geodesic flow,

∫
SM

f dm =
∫

M

(∫
SxM

f(v) dv

)
dx,

where dx is the Riemannian volume on M and dv is the Lebesgue measure
on SxM .

If M is a locally symmetric space of negative curvature, then the mea-
sures m, ν and µ all coincide. But in general they are not in the same
measure class for a arbitrary manifold of negative curvature. In fact we
have the following conjecture.

Conjecture (Katok [K], Sullivan [S1]). Any two of the above three mea-
sure classes coincide if and only if M is locally symmetric.

1.8. Other descriptions of the three measures.

1.8.1. As equilibrium states. By Gibbs theory, for any Hölder function
ϕ : SM → R, there exists a unique probability measure µϕ called the
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equilibrium state of ϕ on SM , which is invariant and ergodic under gt.
Moreover,

hµϕ
(gt) +

∫
ϕ dµϕ = sup

α∈U(SM)

{
hα(gt) +

∫
ϕdα

}
,

where U(SM) is the set of gt-invariant probability measures on SM . Two
Hölder functions ϕ1, ϕ2 have the same equilibrium state if and only if there
exists a function ψ on SM such that ϕ1(v) − ϕ2(v) = d

dt

∣∣
t=0

ψ(gtv). The
Bowen-Margulis measure µ is the equilibrium state of the zero function,
which gives the measure of maximal entropy, hµ = htop. The Harmonic
measure ν is the equilibrium state of the function

τ(v) =
d

dt

∣∣∣∣
t=0

K(v(0), v(t), v(∞)),

with entropy given by hν =
∫

SM
τ(v) dν. The Liouville measure m is the

equilibrium state of trU(v) = d
dt

∣∣
t=0

det
(

d gt
(
Es(v)

))
with entropy given

by hm =
∫

SM
trU dm. This formula is known as the Pesin formula.

1.8.2. Equidistribution theorems. (see [PP]) For any closed geodesic τ ,
denote by λ(τ) the period of τ . Then for any f ∈ C0(SM),

∑
λ(τ)≤T

∫ λ(τ)

0
f(gtv) dt∑

λ(τ)≤T

λ(τ)
−→

∫
SM

f dµ as T →∞.

More generally, for any Hölder function ϕ : SM → R,

lim
T→∞

∑
λ(τ)≤T

e
∫ λ(τ)
0 ϕ(t)dt ·

∫ λ(τ)

0
f(gtv) dt

∑
λ(τ)≤T

λ(τ)e
∫ λ(τ)
0 ϕ(t)dt

=
∫

SM

f dµϕ.

1.9. Brownian motion along foliations and harmonic measures of
foliations ([Ga]).

Let F be any foliation on a compact manifold M equipped with a leafwise
Riemannian metric. Then we have a Laplace operator ∆L on each leaf
L. For each x ∈ M , let Pt(x, y) be the heat kernel (see [Ga]) of ∆L on
Lx (the leaf through x). Then for each f ∈ C0(M), define Ttf(x) def=
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∫
Lx

f(y)Pt(x, y) dy, where dy is the Riemannian volume on Lx. If m is
a measure on M , define D(t)m by

∫
M

f d(D(t)m) =
∫

M
Dtf dm for all

f ∈ C0(M). The set of probability measures E(M) on M is a nonempty
convex set. D(t) is a one-parameter family of continuous affine mappings
on E(M). By the Markov-Kakutani fixed point theorem [Ga], there exists
a measure m, such that D(t)m = m.

1.9.1. Definition. If D(t)m = m for all t, then m is called a harmonic
measure for the foliation F .

Proposition 1.9.2. ([Ga]) m is harmonic if and only if
(i)

∫
M

∆Lf dm = 0 for any bounded measurable function f on M which
is C2 in the leaf direction, or equivalently,

(ii) For any flow box E of F , dm = K(s, y) dy dσ(s) where K(s, y) is
a harmonic function for each s, dσ is a Borel measure along the
transversal directions, and dy is the Riemannian volume along the
leaves.

The leaf path ergodic theorem 1.9.3. ([Ga]) Let {ωt} be the set of
Brownian paths lying on the leaves of the foliation F . Let m be any har-
monic ergodic measure on M . Then for any f ∈ L1(m),

lim
T→∞

1
T

∫ T

0

f(ωt) dt =
∫

M

f dm.

A harmonic measure m is said to be ergodic if M cannot be split into
two disjoint measurable leaf saturated sets with intermediate measure.

1.9.4. Unique ergodicity of the W ss foliation. A foliation is said to be
uniquely ergodic if it has only one ergodic harmonic measure. If M is a
manifold of negative curvature then on SM there exists a natural horo-
spherical foliation W ss. Its leaf passing through v ∈ SM is defined by
W ss(v) = {w ∈ SM | lim

t→∞
d(gtv, gtw) = 0}.

Theorem 1.9.4. ([L3] [Y2]) The horospherical foliation W ss of a neg-
atively curved manifold M is uniquely ergodic, with harmonic measure
dwss = dµx · dx, where dµx is the Patterson-Sullivan measure on SxM
and dx is the Riemannian volume on M .

Proof. 1) dωss is a harmonic measure.
(i) Define a vector field Y on M by

Y (y) =
∫

SyM

ϕX(v) dµy(v) =
∫

SxM

[ϕXe−hρx,v(y)] dµx(v)
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where ϕ is any C1 function on SM and X is the geodesic spray. Then

div
∣∣
y=x

Y =
∫

SxM

div
∣∣
y=x

[ϕ X e−hρx,v(y)] dµx(v)

=
∫

SxM

[ϕ̇ + (h− trU)ϕ] dµx

(∵ div X = trU). Thus, using Green’s formula∫
SM

[ϕ̇ + (h− trU)ϕ] dwss = 0.

(ii) Consider the function Φ(y) =
∫

SyM
ϕ dµy on M . Its Laplacian is

given by

∆Φ
∣∣
y=x

=
∫

SyM

∆[e−hρx,v(y)ϕ] dµx(v)

=
∫

SxM

[∆ϕ + h(h− trU)ϕ + 2hϕ̇] dµx.

Thus
∫

SM
[∆ϕ + h(h − trU)ϕ + 2hϕ̇] dωss = 0. We also know that ∆ϕ =

∆ssϕ − ϕ̈ + ϕ̇ trU . If ϕ ≡ const., then
∫

SM
(h − trU) dωss = 0, and

h =
∫

SM
trU dωss. Combining everything, one obtains

∫
SM

∆ssϕ dωss = 0.
It follows that dωss is a harmonic measure.

2) Uniqueness. Consider the W ss foliation of any Anosov flow. By
Sullivan and Williams ([SW]), the leaves of W ss have polynomial growth.

By Kaimanovich [Kam2], if all leaves of a foliation F have polynomial
growth, then no leaf supports non-constant bounded harmonic functions.
Thus all its harmonic measures m must be holonomy invariant (i.e., locally,
we have dm = dy · dσ(s) where the function K(s, y) in proposition 1.9.2 is
equal to 1). By Bowen and Marcus [BM], strong-stable foliations of Anosov
flow has unique holonomy invariant measure. �

1.9.5. Unique ergodicity of the W s foliation. Let W s be the weak stable
foliation of the geodesic flow gt on a negatively curved manifold. Let dωs

be the measure on SM , given by
∫

SM
f dωs =

∫
M

(∫
SxM

f dνx

)
dx for all

f ∈ Co(SM), where dx is the Riemannian volume on M and dνx is the
harmonic measure.

Theorem 1.9.5. dωs is the unique ergodic harmonic measure of the W s

foliation.

Proof. (1) dωs is harmonic.
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(i) By Green’s formula, for all ϕ ∈ C2(SM),

0 =
∫

M

∆
(∫

SxM

ϕ dνx

)
dm(x) =

∫
M

∫
SxM

(∆ϕ + 2〈∇ϕ,∇ log K〉) dm(x)

where K is the Poisson kernel (see 1.6.3).
(ii) Again by Green’s formula,

0 =
∫

M

div
(∫

SxM

∇ϕdνx

)
dm(x)

=
∫

M

(∫
SxM

(∆ϕ + 〈∇ϕ,∇ log K〉) dνx

)
dm(x).

Combining (i), (ii) we have
∫

SM
∆ϕ dωs = 0 and

∫
SM
〈∇ϕ,∇ log K〉dωs =

0. Therefore ωs is a harmonic measure of W s.
(2) Uniqueness. Given any other ergodic harmonic measure σ of the W s

foliation and any function f ∈ C0(SM), by the leaf path ergodic theorem,
for σ-a.e. leaf W s(x0, ξ), ξ ∈ ∂M̃ , for all (y, ξ) ∈W s(x0, ξ) and Py almost
every path ω starting at y, we have (I):

∫
SM

f dσ = lim
T→∞

1
T

∫ T

0
f(ω̃(t), ξ) dt.

Also given any other ωs-typical leaf W s(x0, η), for Py almost any path ω

starting at y, we have (II):
∫

SM
f dωs = lim

T→∞
1
T

∫ T

0
f(ω(t), η) dt. Consider

ωs-typical path ω(t) and a lift of ω into the universal cover ω̃ starting
at y such that ω̃(t) → e ∈ ∂M̃ , e �= ξ, e �= η; it is easy to see that
dω̃(t)((ω̃(t), ξ), (ω̃(t), η)) −→ 0(t → ∞). Thus by (I), (II)

∫
SM

f dσ =∫
SM

f dωs for all f ∈ C0(SM). So σ = ωs. �

2. A survey of recent results.

2.1. Some integral formulas.

Notations. In addition to the notations in (1.3), we fix some more notations
here.

m Liouville measure on SM
µ Bowen-Margulis measure on SM .
ν Harmonic measure on SM .

µx Patterson-Sullivan measure on ∂M̃ or SxM .
νx Harmonic measure on ∂M̃ or SxM .
ωs Harmonic measure dx dνx of the W s foliation.

ωss Harmonic measure dx dµx of the W ss foliation.
∆s(∆ss) Laplacian along the W s (resp. W ss) foliation.
∇s(∇ss) Gradient along the W s (resp. W ss) foliation.
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Proposition 2.1.1. ([L3], [Kn], [Y2])
∫

SM
[ϕ̇ + (h− trU)ϕ] dωss = 0.

Proof. It follows from the proof of theorem 1.9.4. �
Proposition 2.1.2. ([Y2])

∫
SM

[ϕ̇ + [τ(v)− trU(v)]ϕ] dωs = 0.

Proof. Consider Y (x) =
∫

SxM
ϕX(v) dνx(v). Then div Y (x) =

∫
SxM

[ϕ̇ +
ϕ(τ(v)− trU)] dνx. But by Green’s formula,

∫
M

div Y (x) d x = 0. �

Proposition 2.1.3. ([Y3])
∫

SM
[∆sϕ + 〈∇sϕ,∇s log g〉] dm = 0.

Proof. Here g is the density of the conditional measure ms of Liouville m
along the W s-foliation, characterized by

i) g(w)
g(v) = lim

t→∞
Jt

s(w)
Jt

s(v) , for w ∈W ss(v)

ii) g(gtv) = 1
Jt

s(v) where J t
s(v) � det(dgt

∣∣
W ss(v)

).

Consider the vector field ∇sϕ on SM and its flow Φt. For any small open
W s-flow box E we have d

dt

∣∣
t=0

vol(ΦtE) =
∫

E
(∆sϕ + 〈∇sϕ,∇s log g〉) dm.

Since this is true for all flow boxes E, the formula is also true for SM . Yet
d
dt

∣∣
t=0

vol(Φt(SM)) = 0. �
2.2. Some corollaries.

Proposition 2.2.1 ([L3], [Y2]). If ωs or ωss coincide with µ, m, or ν,
then M is asymptotically harmonic (i.e. trU ≡ h).

Proof. If ωss coincides with a gt-invariant measure, then (2.1.1) gives

∫
SM

(h− trU)ϕ dωss ≡ 0

for all ϕ ∈ C1(SM). Thus h ≡ trU . Similarly, if ωss coincides with a gt-
invariant measure, then (2.1.2) gives trU(v) ≡ τ(v) for all v ∈ SM . Then
by theorem A and lemma 3.2 of [Y1], trU ≡ h. �

Proposition 2.2.2. If for all x ∈ M̃ , µx = νx, µx = mx, or νx = mx,
then M is asymptotically harmonic.

Proof. 1) If µx = mx or νx = mx for all x ∈ M̃ , then, respectively ωss = m
or ωs = m. So the result follows from proposition 2.2.1.

2) If µx = νx for all x ∈ M̃ , then ωss = ωs. By the formulas (2.1.1)
and (2.1.2),

∫
SM

[h − τ(v)]ϕ dωs ≡ 0 for all ϕ ∈ C1(SM). It follows that
h ≡ τ(v). It follows that M is asymptotically harmonic: in fact, µx = νx

for all x ∈ M̃ implies that e−hρx,ξ(y) = K(x, y, ξ) (see (1.5), (1.6)). Thus
0 = ∆K(x, y, ξ) = ∆e−hρx,ξ(y) = h(h− trU)e−hρx,ξ(y). �
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2.3. Margulis function. Margulis [M] proved the existence of the fol-
lowing limit:

c(x) = lim
R→∞

vol(S(x, R))
ehR

,

where S(x, R) is a geodesic sphere in M̃ and h is the topological entropy
of the geodesic flow.

Proposition 2.3.0 ([Y3]). c(y)
c(x) =

∫
SxM

e−hρx,ξ(y)dµx(ξ). In particular
c(y) is a smooth function.

Proof. Look at the family of measures µR
x on ∂M̃ given by dµR

x � P ∗
x ·(

dy|Sx(R)

ehR

)
, i.e. the push forward by Px of the normalized Riemannian vol-

ume on S(x, R) where Px : S(x, R) → ∂M̃ is defined by y �→ the positive
asymptotic of the geodesic from x to y. Let µx = lim

Rk→∞
µRk

x be a weak limit

and let µy � lim
Rk→∞

µRk
y . Then it is easy to see that dµy

dµx
= e−hρx,ξ(y). By

the uniqueness of Patterson-Sullivan measure (see 1.9.4), the above limit is
unique and µx = c · µx for a constant c. Thus c(y), which is the total mass
of µy, must satisfy c(y)

c(x) =
∫

SxM
e−hρx,ξ(y)dµx(ξ). The smoothness of c(y)

follows from the smoothness of the Busemann function. �
Proposition 2.3.1 ([Y3]). If c(x) ≡ const., and dimM = 2, then M has
constant negative curvature.

Proof. By formula 2.1.1 if ϕ ≡ 1, we get h =
∫

SM
trUdωss and if ϕ ≡ trU ,

we get h2 =
∫

SM
[− tr U̇ +(trU)2] dwss. If dimM = 2, then by the Riccatti

equation, − tr U̇ + trU2 + K = 0, one has

h2 =

∫
M
−K(x)c(x) dx∫

M
c(x) dx

.

If c(x) ≡ const., then h2 =
∫

M
−K(x)dx

vol(M) = −2πE/ vol(M) where E is
the Euler characteristic number of M . (Gauss-Bonnet). By [K1], h2 =
−2πE/v(M) if and only if K ≡ const. �

Remark. In higher dimension, if c(x) ≡ const., then for all x ∈ M̃ , h ≡∫
SxM

trU(v) dµx.

Proposition 2.3.2 ([Y3], [Kn]). If M is a negatively curved closed man-
ifold, then

h2 =
∫

SM

[RH(v)−R(π(v)) + Ric(v)] dωss
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where RH(v) is the scalar curvature of the horosphere H(v) at v, R(π(v))
is the scalar curvature of M at π(v) and Ric(v) is the Ricci curvature of
M at v. If dimM = 3, then h2 =

∫
SM

[Ric(v)−R(π(v))] dωss.

Proof. Let KH be the sectional curvature of H(v) with respect to the
induced Riemannian metric. Then, for any orthonormal vectors X, Y in
Tπ(v)H(v), by the Gauss equation,

KH(X, Y ) = K(X, Y ) + 〈U(v)X, X〉〈U(v)Y, Y 〉 − 〈U(v)X, Y 〉〈U(v)Y, X〉

where U(v) is the second fundamental form. From this, one gets RH(v) =
R(π(v))+ (trU)2− trU2−2Ric(v). Combining this with the Ricatti equa-
tion, −U̇ +U2+Ric = 0 one gets RH(v) = R(π(v))+(trU)2−tr U̇−Ric(v).
Now using the identity h2 =

∫
SM

[− tr U̇+(trU)2]dωss we get the first state-
ment. If dimM = 3, by Conne’s leaf-wise version of Gauss-Bonnet theorem
[Co],

∫
SM

RH(v)dωss = 0. Therefore h2 =
∫

SM
(Ric(v)−R(π(v))dωss. �

2.4. Flip-invariance of the Patterson-Sullivan and harmonic mea-
sures µx, νx. Associated to the fibration {SxM}x∈M of SM , there exists
a canonical system of conditional measures {µx}x∈M and {νx}x∈M for the
Bowen-Margulis measure µ and harmonic measure ν.

Question. (Kifer and Ledrappier [KL]). Is µx (resp. νx) equivalent to the
Patterson-Sullivan measure µx (resp. harmonic measure νx)?

Proposition 2.4.1 ([Y5]). (1) µx = µx/c(x) for a.e. x ∈M (with respect
to the projected measure of µ onto M) if and only if M is asymptotically
harmonic. (2) The same result is true for νx. (3) If µx (resp. νx) is in the
same measure class as µx (resp. νx) for a.e. x ∈ M , then µ = m (resp.
ν = m).

The proof follows from the following lemmas.

Lemma 2.4.2. If m is a Borel probability measure on SM which is flip
invariant (i.e.invariant under the flip map f : SM → SM, v �→ −v),
then for m-a.e. x ∈ M , the conditional measure mx on SxM is also flip
invariant.

Proof. This follows from the flip invariance of the partition {SxM}
x∈M̃

and the uniqueness of conditional measures. �
Lemma 2.4.3. Both the Bowen-Margulis measure µ and the harmonic
measure ν are flip invariant.

Proof. This follows from the construction in section 1.7. �
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Lemma 2.4.4. If for all x ∈ M , µx (resp. νx) is flip-invariant, then
µ = m (resp. ν = m).

Proof. We need to prove that dmx

dµx
(ξ) is finite for all ξ ∈ ∂M̃ . Assume the

contrary, then there is at least one ξ ∈ ∂M̃ , such that

(∗) lim
ε→0

mx(Dx(ξ, ε))
µx(Dx(ξ, ε))

= 0.

For any other point η ∈ ∂M̃ and any point y on the geodesic
→
ξη, since µx

and µy (resp. mx and my) are equivalent with positive Radon-Nikodym
derivatives, one has

(∗∗) lim
ε→0

my(Dy(ξ, ε))
µy(Dy(ξ, ε))

= 0 by (∗).

Since my and µy are flip invariant, (∗∗) gives lim
ε→0

my(Dy(η,ε))
µy(Dy(η,ε)) = 0 for

any η ∈ ∂M̃ . Similarly if lim
ε→0

µx(Dx(ξ,ε))
mx(Dx(ξ,ε)) = ∞ for some ξ ∈ ∂M̃ then

lim
ε→0

µx(Dx(η,ε))
mx(Dx(η,ε)) =∞ for all η ∈ ∂M̃ .

Since both µx and mx are finite their Radon-Nykodym derivative must
be finite somewhere and hence everywhere. Thus µx is equivalent to vx for
all x and µ = m. �
Lemma 2.4.5 ([Y5]). If µx is flip invariant, then the Margulis function
c(x) ≡ const.

Proof. By (2.1.1),
∫

SM
[ϕ̇ + (h− trU)ϕ] dωss = 0 for all ϕ ∈ C2(SM). Let

ϕ be any C2 function on M and then lift it to a function on SM which
we denote by the same notation, since µx is flip-invariant,

∫
SM

ϕ̇ dωss =∫
M

(∫
SxM

ϕ̇ dµx

)
dx = 0. Thus

∫
SM

(h−trU)ϕ dωss = 0 for all ϕ ∈ C2(M).

It follows easily that
∫

SxM
(h − trU) dµx = 0 for all x ∈ M . But ∆c(x) =

h
∫

SxM
(h− trU) dµx, so ∆c(x) ≡ 0, c(x) ≡ constant. �

Proof of Proposition 2.4.1. If µx = µx for a.e. x ∈ M , then µx is flip
invariant by (2.4.2) and (2.4.3). By Lemma 2.4.4, µ = m. Therefore
µx = mx. By Lemma 2.4.5. c(x) ≡ const. Thus µx ≡ mx. Therefore
ωss = µ = m, and M is asymptotically harmonic (see 2.2.1). �
2.5. Entropy rigidity in dimension 2.

In dimM = 2 we have the following special result. For any metric g,
there exists a positive function ρ on M such that g = ρ g0 where g0 is a
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metric of constant curvature. The relationship between various operators
under this conformal transformation is the following

(1) Curvature: Kg = 1
ρ [K0 + 1

2∆g0(log ρ)].
(2) Volume element: dmg = ρ dmg0 .
(3) Laplacian: ∆g = 1

ρ∆g0 .

In particular, g and g0 have the same harmonic functions.

Proposition 2.5.1. ([L2]). If ν = µ, then Kg ≡ const.

Proof. If ν = µ, by the variational principle (see for example [PP]), there
exists a function f on SM such that hg − τ(v) = ḟ(v) (see (1.8.1) for
the definition of τ(v)), here hg is the topological entropy. It follows that
e−hgρx,ξ(y)+f(y,ξ)−f(x,ξ) = K(x, y, ξ). Therefore

∆gf + ‖∇gf‖2 + hg(hg − trU) + 2hg ḟ = 0.(1)
1
ρ

= ‖∇ log K‖2 = h2
g + 2hg ḟ + ‖∇f‖2.(2)

Combining these we get

(3) ∆gf − h trU = −1
ρ
.

Integrating both sides of (2) with respect to the Liouville measure mg

of g, one gets∫
1

ρ(y)
dmg(y) = h2

g +
∫

SM

‖∇f‖2 dmg ≥ h2
g. On the other hand,

∫
1

ρ(y)
dmg(y) =

∫
M

1
ρ(y)ρ(y) dx∫

M
ρ(y) dy

=
v0(M)∫

M
ρ(y) dy

=
v0(M)
vg(M)

,

But by [K1], this is only possible when ρ is constant. �

Other important invariants of a metric g are the Kamanovich entropy
βg, and the speed of Brownian motion αg,

βg
def=

∫
SM

‖∇g log Kg‖2 dωs
g, αg

def=
∫

SM

τg(v) dωs
g.

By [Kam1], [L1], [L2], 4λ1
g ≤ βg = hg

ν · αg ≤ h2
g, where hg

ν is the metric
entropy of the harmonic measure ν.
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Proposition 2.5.2. For any metric g = ρg0 of negative curvature, if g
and g0 have the same volume, then hg ≥ h0 and hg

ν ≥ h0 with equality iff
ρ ≡ 1. (Here h0 is the topological entropy of g0 and hg is the topological
entropy of g, hν

g is the metric entropy of the geodesic flow of g with respect
to its harmonic measure ν).

Proof. Observe that 1) ‖∇g log K‖2 = 1
ρ , and 2) τg(v) = d

dt

∣∣
t=0

log K(v(0),
v(t), v(∞) = 1√

ρ . It follows that

βg =
∫

SM

‖∇g log K‖2dωs
g =

∫
SM

1
ρ
dωs

g =
volg0(M)
volg(M)

and

αg =
∫

SM

τg(v) dωs
g =

∫
SM

1√
ρ
dωs

g =

∫
M

√
ρ dg0x∫

M
ρ dg0x

.

As volg0(M) = volg(M) = 1, we obtain βg = βg0 = h2
0, αg ≤ αg0 = h0.

But βg = hg
ν ·αg ≤ (hg)2. Therefore hg ≥ h0, hg

ν ≥ h0, with equality if and
only if ρ ≡ const. �

Re-interpretation of αg. . The quantity αg =
∫

M

√
ρ dg0x

volg(M) was first intro-
duced by Katok [K1] as a measurement of the deviation from constant
curvature. It turns out that it is the asymptotic speed of Brownian mo-
tions on M̃ : αg = lim

t→∞
1
t d(ω(t), x), for almost all Brownian motions ω(t).

Proposition 2.5.3 ([K1]). Let g1 be a metric of negative curvature on
a closed manifold M , ν be a Borel probability invariant measure of the
geodesic flow of g1. Then for any other metric g2, hg2 ≥ hg1

ν

σ(g2)
where

σ(g2) �
∫

Sg1M
‖v‖g2 dν. In particular, if g2 = ρg1 for some positive func-

tion ρ, then hg2 ≥ hg1
ν∫

Sg1M

√
ρ dν

.

Corollary 2.5.4 ([K1]). For any metric g = ρg0 on a closed surface
M where g0 is a metric of constant negative curvature, if volg(M) =
volg0(M) = 1, then hg

m ≤ h0, with equality iff ρ ≡ 1.

Corollary 2.5.5 ([K1]). If hg = hg
m (i.e., the Bowen-Margulis measure

coincides with the Liouville measure), then Kg ≡ const.

Proof. By corollary (2.5.4) and proposition (2.5.2), hg = hg
m implies that

hg = hg
m = h0. �

By the same argument, one can prove the following

Corollary 2.5.6. If hg
m = hg

ν (i.e., the Liouville measure coincides with
the Lebesgue measure), then Kg ≡ const.
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2.6. Entropy-like invariants and bottom of the Laplace spec-
trum. The purpose of this section is to collect all entropy like invari-
ants together and show their relationships, providing the simplest possible
proofs.

2.6.1. Bottom of spectrum λ1. Let λ1 be the bottom of the spectrum
of the Laplace operator −∆ on L2(M̃). By the Rayleigh’s principle, λ1 =

inf
f∈C1

0

∫
M̃

|∇f |2∫
M̃

f2 , where C1
0 is the set of all C1 functions on M̃ with compact

support.

Proposition 2.6.1 ([L1]). λ1 ≤ h2

4

Proof. For any s > h
2 , f(y) def= e−sd(x,y) ∈ L2(M̃). Therefore λ1 ≤∫

M̃
‖∇f |∫

M̃
f2 = s2. �

2.6.2. Kaimanovich entropy β. ([Kam1]) It is defined by

β
∆= lim

t→∞
−1

t
(nP (t, x, ω̃(t))

for almost all Brownian motion (see also section 2.5).

Proposition 2.6.2 ([L2]). λ1 ≤ β
4 with equality if and only if M is asymp-

totically harmonic.

Proof. (For more detail, see [Kam1] and [L2]).

β = lim
t→∞

(
−1

t

∫
M̃

P (t, x, y) log P (t, x, y) dy

)
([Kam1])

= lim
t→∞

− 1
t

∫ t

0

{∫
M̃

[1 + log P (s, x, y)]
∂

∂s
P (s, x, y) dy

}
ds

= lim
t→∞

− 1
t

∫ t

0

[∫
M̃

[1 + log P (s, x, y)]∆yP (s, x, y) dy

]
ds

= lim
t→∞

1
t

∫ t

0

(∫
M̃

‖∇P (s, x, y)‖2
P

dy

)
ds

= lim
t→∞

4 · 1
t

∫ t

0

(∫
M̃

∥∥∥∇√
P (s, x, y)

∥∥∥2

dy

)
ds

≥ 4λ1

(
∵

∫
M̃

P (t, x, y) dy = 1
)

.

In [L4] it is proved that β = 4λ1 if and only if M is asymptotically har-
monic. �
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2.6.3. Asymptotic speed of Brownian motion α. α is defined by α
∆=

lim
t→∞

1
t d(ω(t), x) for almost all Brownian path ω(t) starting from x ∈ M̃

([Kam1]).

Proposition 2.6.3 ([L1]). β = hνα.

Corollary 2.6.4. α ≤ hν .

Proof. By Kaimanovich [Kam1],

β =
∫

Sm

‖∇ log K‖2 dωs and α =
∫

SM

τ(ν) dωs.

Thus β ≥ α2. �

2.7. A problem of Green. Let M be a closed manifold of negative
sectional curvature. Then the mean curvature of horospheres trU is a well-
defined function on SM . In [G], L. Green proved that if trU(v) ≡ u(x) for
some positive function u(x) and for all v ∈ SxM , i.e. the mean curvature of
the horospheres depends only on the base point and dimM = 2, then M has
constant curvature. One can actually prove the following generalization.

Theorem 2.7 ([Y4]). Let M be a closed manifold of negative curvature
such that trU(v) ≡ u(x), for some positive function u(x) on M and for all
v ∈ SxM . Then

(1) M is asymptotically harmonic.
(2) The geodesic flow of M is C∞ conjugate to the geodesic flow of a

locally symmetric space.

Proof. (1) The first observation is that the Margulis function c(x) satisfies
a certain Laplace equation. By definition

c(y) =
∫

Sxm

e−hρx,ξ(y)dµx(ξ)

and so

∆c(y) = h

∫
SxM

(h− trU)e−hρx,ξ(y)dµx(ξ)

= h(h− u(y))c(y).(2.7.1)

Therefore ‖∇ log c(y)‖2 + ∆(log c(y)) = h(h − u(y)). Thus, by Green’s
formula and Pesin’s formula ([P]),

∫
M
‖∇ log c(y)‖2dy = h(h−hm) vol(M).
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(2) The argument of [FL] can be generalized to show that if trU(v) is
smooth on SM , then the geodesic flow of M is smoothly conjugate to the
geodesic flow of a locally symmetric space. Now if tr U(v) ≡ u(x), then by
(2.7.1), u(x) is smooth on M ; thus trU(v) is smooth on SM . By smooth
conjugacy, h = hm, and so ‖∇ log c(x)‖ ≡ 0, and c(x) is a constant. From
(2.7.1) again, h ≡ u(x). �
2.8. Some conjectures and open problems.

The first “Geometric Rigidity Conference” in 1984 at MSRI resulted
in among other things two problem lists [BK], [Hu]. The first one was
centered on manifolds of nonpositive curvature and the other one was about
the rigidity of group actions and cocycles. Since the appearance of [BK],
some problems on manifolds of nonpositive curvature were solved and some
new problems were also posed. I take this opportunity to cite some open
problems around manifolds of strictly negative curvature. Most of the
problems are well known among experts and some of the problems might
also have come across other persons’ minds. No originality is claimed by the
author. Throughout this section, M denotes a closed manifold of negative
sectional curvature.

Conjecture 2.8.1. Prove that if any two of the three measures µ (Bowen-
Margulis), ν (harmonic), m (Liouville) coincide, then M is asymptotically
harmonic. This conjecture is true in the 2-dimensional case. See section 2.5
and the references there.

Conjecture 2.8.2. Let M, N be two closed manifolds of negative curva-
ture. Prove that if there exists a continuous time-preserving conjugacy
ϕ : SM → SN of the geodesic flows, then ϕ is C1.

One would also hope that M and N were isometric. Again this is true
if dimM = 2 ([C] [O]). The higher dimensional cases are open even under
the additional assumption that ϕ is C∞ and N is locally symmetric. In
this case, if M is asymptotically harmonic and if dimM = 3 or 4, then
we know that M is a locally symmetric space (Ledrappier, Hamenstädt,
unpublished).

Conjecture 2.8.3. If the Margulis function is constant, then M is asymp-
totically harmonic. (This is true if dimM = 2 (see proposition 2.3.1).)

Conjecture 2.8.4. If the projection of the Bowen-Margulis measure µ on
SM to M coincides with the Riemannian volume then µ = m.

For background material, see [KKW]. This problem is closely related to
the study of critical points of the topological entropy. The conjecture is
true if dimM = 2.
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Problem 2.8.5. Study the variational property of various entropy-like in-
variants.

In dimension 2, one has a clear picture, namely, entropy-like invariants in
§2.6 attain a maximum or a minimum value at a metric of constant curva-
ture. The higher dimensional picture seems to be much more complicated.
See [BCG] for related results.

Problem 2.8.6. From the Laplacian spectrum, one can read the volume and
total scalar curvature of M , and also the length spectrum. If M is locally
symmetric, then by the trace formula, the knowledge of Laplacian spectrum
is equivalent to the knowledge of length spectrum. This is no longer true
for a general manifold of negative curvature. Is it possible to read the
volume and total scalar curvature from the marked length spectrum? This
is probably easy to show for asymptotically harmonic manifolds. If this
were true, then it would imply that an asymptotically harmonic manifold
homotopic to a manifold of constant negative curvature must also have
constant curvature.

Problem 2.8.7. By [M], [Y2], one knows that the volume of a geodesic ball
B(x, R) satisfies

vol(B(x, R)) = c(x)
ehR

h
+ ε(x, R)

where c(x) is in general non constant. What is the asymptotic behavior
of the error term ε(x, R)? Is it true that in general, lim

R→∞
log |ε(x,R)|

R < h?

This is actually a problem of the correlation coefficients for the mixing of
the geodesic flow. If M is locally symmetric, the answer is yes ([Mo]).

Problem 2.8.8. Is there any connection between the (local) Einstein condi-
tion of a Einstein manifold M and the (global) dynamical invariants of the
geodesic flow?

Problem 2.8.9. If M is a closed manifold of negative curvature and N is
a closed manifold of constant negative curvature. If f : M → N is a C2-
diffeomorphism which maps the geodesics in M into curves in N which are
reparameterizations of geodesics in N , then the author can prove that there
must exist a C2 time-preserving conjugacy between the geodesic flows of
M and N . In particular, this implies that if dimM = 2, then M and N
must be isometric. Is this true if both M and N have variable negative
curvature?
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