The full text of this article is unavailable through your IP address: 172.17.0.1
Contents Online
Mathematics, Computation and Geometry of Data
Volume 2 (2022)
Number 1
Graph Laplacians, Riemannian manifolds, and their machine-learning
Pages: 1 – 48
DOI: https://dx.doi.org/10.4310/MCGD.2022.v2.n1.a1
Authors
Abstract
Graph Laplacians as well as related spectral inequalities and (co-)homology provide a foray into discrete analogues of Riemannian manifolds, providing a rich interplay between combinatorics, geometry and theoretical physics.We apply some of the latest techniques in data science such as supervised and unsupervised machine-learning and topological data analysis to the Wolfram database of some 8000 finite graphs in light of studying these correspondences. Encouragingly, we find that neural classifiers, regressors and networks can perform, with high efficiency and accuracy, a multitude of tasks ranging from recognizing graph Ricci-flatness, to predicting the spectral gap, to detecting the presence of Hamiltonian cycles, etc.
Y.-H. H. is indebted to the Science and Technology Facilities Council, UK, for grant ST/J00037X/1, as well as the Chang-Jiang chair professorship from Nankai University where this work began.
The work of S.-T. Y. is supported in part by a grant from the Simons Foundation in Homological Mirror Symmetry
Received 9 August 2020
Published 21 October 2022