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LI-YAU GRADIENT ESTIMATES FOR CURVATURE FLOWS IN
POSITIVELY CURVED MANIFOLDS∗

PAUL BRYAN† , HEIKO KRÖNER‡ , AND JULIAN SCHEUER§

Abstract. We prove differential Harnack inequalities for flows of strictly convex hypersurfaces
by powers p, 0 < p < 1, of the mean curvature in Einstein manifolds with a positive lower bound
on the sectional curvature. We assume that this lower bound is sufficiently large compared to
the derivatives of the curvature tensor of the ambient space and that the mean curvature of the
initial hypersurface is sufficiently large compared to the ambient geometry. We also obtain some
new Harnack inequalities for more general curvature flows in the sphere, as well as a monotonicity
estimate for the mean curvature flow in non-negatively curved, locally symmetric spaces.
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1. Introduction. In a seminal paper, Li and Yau [20] presented a new method
to deduce a Harnack inequality for positive solutions of the heat equation

∂tu−∆u = 0

on a compact Riemannian manifold of non-negative Ricci curvature, by proving the
gradient estimate

∂tu

u
− |∇u|

2

u2
+
n

2t
≥ 0. (1.1)

Using an integration over space-time paths, from here it is possible to deduce a classi-
cal Harnack estimate, which gives an estimate between the spatial maxima and min-
ima of the solution at different times. Hence (1.1) is also called a differential Harnack
estimate. After this work appeared, the study of differential Harnack estimates for
curvature flows of convex hypersurfaces in Euclidean space was initiated at about the
same time by Chow [9] for the Gauss curvature flow, Hamilton [13, 14] for the Ricci-
and the mean curvature flow and by Andrews [2] for more general curvature flows
in the Euclidean space. It became apparent that the appropriate generalization to
positivity of solutions of the heat equation is some sort of positivity of curvature, such
as convexity in the case of hypersurface flows. For example, for the mean curvature
flow the differential Harnack estimate reads

∂tH − b(∇H,∇H) +
1

2t
H ≥ 0,

where b is the inverse of the second fundamental form, H is its trace and ∇ the Levi-
Civita connection of the induced metric of the flow hypersurfaces. Here the condition
of convexity ensures that b is defined.
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Several other similar results followed, see [18, 21, 25, 26]. The first differential
Harnack estimates for flows in non-Euclidean ambient space were proven by PB and
Ivaki for the mean curvature flow in the sphere [4], followed up by a generalization
of the speed function in this setting due to PB, Ivaki and JS [6]. The most general
ambient spaces, in which the deduction of a differential Harnack estimate was possible
so far, are locally symmetric Einstein spaces of non-negative sectional curvatures, cf.
[7].

The object of this paper is to investigate to what extent these assumptions can
be relaxed.

In Theorem 1.1, we prove Harnack inequalities for flows by powers, 0 < p < 1, of
the mean curvature in Einstein manifolds where we do not assume that the ambient
space is locally symmetric but instead a lower bound for its sectional curvatures and
a relation between the mean curvature and the ambient geometry.

We also prove Harnack inequalities in the sphere, Theorem 1.2, for flows by powers
F p, p > 1, of a convex, 1-homogeneous curvature function F . These are completely
new, but with the added restriction that the solutions satisfy a certain pinching.

Finally, when the Einstein condition is dropped, we can still get a monotonicity
estimate for the so called Harnack quadratic in Theorem 1.4.

We introduce our results more precisely, after fixing the relevant notation. Let n ≥
2. In an (n+1)-dimensional Riemannian manifold (N, ḡ) with Levi-Civita connection
∇̄ and Riemannian curvature

Rm(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z

we consider curvature flows, i.e. time-dependent families of immersions

x : (0, T )×M → N

of a closed, connected and orientable smooth manifold Mn, which satisfy

ẋ = −fν,

where the flow hypersurfaces

Mt = x(t,M)

with induced metric g and Levi-Civita connection ∇ will always assumed to be strictly
convex, i.e. the second fundamental form

h = −ḡ(∇̄2x, ν)

is positive definite with a particular choice of a smooth normal field ν. The function
f ∈ C∞(Γ+) with

Γ+ = {κ ∈ Rn : κi > 0 ∀1 ≤ i ≤ n}

is in increasing dependence on the principal curvatures of the flow hypersurfaces and
by well known methods may also be viewed as a function of the second fundamental
form and the metric or as a function of the Weingarten operator W,

f = f(g, h), f = f(W), (1.2)
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[3, 12, 23]. Due to the positivity of h, the twice contravariant tensor b = (bij) given
by

bikhkj = δij

is well defined, where we have used a coordinate representation of the respective
quantities in a local frame (ei).

Our first main result provides the first estimate of this kind in non-locally sym-
metric ambient spaces for flows by small powers of the mean curvature.

Theorem 1.1. Let n ≥ 2 and (Nn+1, ḡ) be a Riemannian Einstein manifold
with lower bound c1 > 0 on the sectional curvatures. Let 0 < p < 1. Then along any
strictly convex solution

x : (0, T )×Mn → N

to

ẋ = −Hpν, (1.3)

which satisfies

H ≥ 2np

min(1− p, 2p)
‖∇̄Rm‖, (1.4)

the following Harnack inequality holds:

∂tH
p − b(∇Hp,∇Hp) +

p

(p+ 1)t
Hp ≥ 0.

At a first glance, the assumption (1.4) seems quite strong and rather technical.
However, in general ambient spaces a differential Harnack inequality is unlikely to
hold, since the property of a flow hypersurface to be of constant mean curvature is
generally not preserved under the flow (1.3). Such a failure of preservation would
violate comparison of the mean curvature at different space time points obtained by
integrating the differential Harnack inequality over space-time paths. The interaction
of the ambient curvature and the flow thus makes an assumption like (1.4) essential.
Also note that in order to obtain convergence results in general manifolds, similar
assumptions had to be made in earlier works, e.g. [1, 16].

As to the sphere, originally treated in [4] for the mean curvature flow and in [6]
for powers 0 < p ≤ 1 of a convex curvature function, here we prove a first result
of this kind for powers p > 1 after assuming a certain kind of pinching condition.
Furthermore we improve the result in [6] by obtaining a bonus term in case of a
convex F and p = 1:

Theorem 1.2. Let N = Sn+1 and F ∈ C∞(Γ+)∩C0(Γ̄+) be a strictly monotone,
1-homogeneous and convex curvature function with F (1, . . . , 1) = n.

(i) If 1 < p <∞ and if the flow is pinched in the sense that the flow hypersurfaces
satisfy

n−1∑
i=1

∂F

∂κi
(κ1, . . . , κn)κi ≥

p− 1

p+ 1

∂F

∂κn
(κ1, . . . , κn)κn (1.5)
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with ordered principal curvatures

κ1 ≤ · · · ≤ κn,

then along any strictly convex solution of

ẋ = −F pν

the following Harnack inequality is valid:

∂tF
p − b(∇F p,∇F p) +

p

(p+ 1)t
F p ≥ 0.

(ii) Any strictly convex solution to

ẋ = −Fν

satisfies the Harnack inequality with bonus term

∂tF − b(∇F,∇F )− F (0, . . . , 0, 1)F +
1

2t
F ≥ 0.

Remark 1.3. The pinching condition (1.5) is fulfilled for example when the flow
hypersurfaces are pinched in the sense

κ1 ≥ εκn,

since in this case we have

cgij ≤ F ij ≤ Cgij

for suitable C > c > 0 and hence

∂F

∂κi
≥ c

C

∂F

∂κn
,

leading to

n−1∑
i=1

∂F

∂κi
κi ≥ (n− 1)

c

C
ε
∂F

∂κn
κn.

Since c/C → 1 as ε → 1, condition (1.5) can be satisfied in this situation. However,
(1.5) also allows other conditions: For example suppose

F =
√
n|A|2,

then

∂F

∂κi
=
nκi
F

and hence

n−1∑
i=1

∂F

∂κi
κi ≥

nκn−1
F

κn−1 ≥ ε2
nκn
F

κn = ε2
∂F

∂κn
κn,
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provided the solution is only ε-(n− 1)-pinched, i.e.

κn−1 ≥ εκn.

With a suitable ε condition, (1.5) can be satisfied.

In Theorem 5.1 we use this result to show that under the assumptions of The-
orem 1.2 any ancient and strictly convex solution satisfying the pinching condition
(1.5) must a shrinking family of spheres.

Finally we obtain the following pointwise monotonicity estimate, if we drop the
Einstein condition while imposing local symmetry.

Theorem 1.4. Let n ≥ 2 and (Nn+1, ḡ) be a locally symmetric Riemannian
manifold with non-negative sectional curvature. Then along any convex solution of
the mean curvature flow in N , for each ξ ∈M the quantity

u(·, ξ) =
∂tH

H
(·, ξ)− 1

H
b(∇H(·, ξ),∇H(·, ξ))

is non-decreasing.

This estimate is not as strong as a classical differential Harnack inequality, because
the lower bound one may deduce for u depends on its initial value, while the classical
Harnack is independent of any initial values. However, the statement in Theorem 1.4
gives a pointwise estimate which is stronger than the estimate one gets for minH
from the standard evolution equation

∂tH = ∆H + ‖A‖2H + tr
(
Rm(·, ν, ν, ·)H

)
. (1.6)

To begin, in Section 2 we use the quite general framework from [7] to state a key
evolution equation derived therein and adapt some estimates. The sphere case is then
treated in Section 3 and the Einstein case in Section 4. In Section 5 we present some
applications to ancient solutions. Lastly in Appendix A we derive the monotonicity
of the smallest principal curvature under the flow by adapting the corresponding
Euclidean case from [24] to the Riemannian manifold setting.

2. Evolution of the Harnack quadratic. As explained in the introduction,
we are interested in the derivation of Harnack inequalities for curvature flows of the
form

ẋ = −fν,

where f = f(hij) is a curvature function. In most of the previous works on this topic
(except for [2, 7]) for this purpose the evolution of the so-called Harnack quadratic

Q =
1

f

(
ḟ − bij∇if∇jf

)
was studied. Directly studying Q is a tedious project, since the evolution of bij is
complicated, especially in general backgrounds, and ∇ is time dependent, cf. [6,
9, 14, 21, 25, 26]. Inspired by Andrews’ use of the Gauss map parametrization of
convex hypersurfaces in the Euclidean space [2], in [7] a tangential reparametrisation
of the flow, mimicking the behavior of the Gauss map, was used to circumvent these
difficulties in general backgrounds. Namely, under the flow

ẋ = −fν − x∗(gradh f), (2.1)
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where

h(gradh f,X) = df(X) ∀X ∈ TM,

it can easily be calculated that the normal is parallel,

∇̄
dt
ν = 0.

This leads to the additional nice property, that the Harnack quadratic simplifies to
∂tlog f in the new parametrization, making computations a lot easier. In [7] this
was the gateway to obtain the evolution of the Harnack quadratic in general Rie-
mannian and Lorentzian manifolds. Let us fix some more specific notation and
conventions before we state this evolution equation.

We will usually omit the mapping x∗ when it is clear that a tangent vector X ∈
TM has to be understood as its push-forward x∗(X) to TN . Define

u =
ḟ

f
,

compare [2, 7, 20]. Let ∇̃ denote the Levi-Civita connection of

g̃ =
h

f
.

Referring to (1.2), we will denote by dWf = (f ij) the derivative of f with respect to

W and by dhf = (f ij) we denote the partial derivative of f when understood as a
function of the pair (g, h). Note that

f ij = gikf jk

in a local frame, compare for example [12] or [23, Prop. 3.3].
Define A ∈ T 1,1(M) by

x∗(A(X)) = −∇̄X ẋ,

where we note that ∇̄X ẋ is tangential [7, equ. (3.2)], and define the T 0,2-tensor Λ

Λ(X,Y ) = Rm(ẋ, x∗X, ν, x∗Y )

for X,Y ∈ TM and its associated representation Λ] as T 1,1-tensor by raising its last
index with the metric g. Then the evolution of the Weingarten tensor W is given by

Ẇ = A ◦W + Λ], (2.2)

cf. [7, equ. (3.6)]. The evolution equation from [7, Lemma 3.7] for u adapted to our
setting can be stated as

Lu := u̇− dhf(∇̃2u)− dhf(g̃(D(·) gradg̃ u, ·)) +
1

f
dhf(Rm(gradg̃ u, ·, ν, ·))

=
1

f
d2Wf(Ẇ, Ẇ) +

2

f
dhf(h(A(·), A(·))) +

2

f
dWf(A ◦ Λ] − Λ] ◦A)

+

(
1− dWf(W)

f

)
Rm(ẋ, ν, ν, ẋ) +

2

f
dhf(Rm(·, ẋ, ẋ,W(·)))

+
1

f
dhf(∇̄Rm(ẋ, ·, ν, ·, ẋ) + ∇̄Rm(ẋ, ·, ν, ẋ, ·)),

(2.3)
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where D is the difference tensor

DXY = ∇̂XY − ∇̃XY

and ∇̂ is defined via the decomposition

∇̄XY = x∗(∇̂XY ) + g̃(X,Y )ẋ,

see [7, p. 19].
Following [7] we want to estimate u from below by using (2.3) and the parabolic

maximum principle in order to prove our main result. Therefore we need to deal with
the first two terms on the right hand side of (2.3). We assume

f = F p, p > 0,

with a 1-homogeneous, strictly monotone and convex curvature function F ∈ C∞(Γ+),
where F = H if N is not a spaceform.

Lemma 2.1. Suppose that
(i) F ∈ C∞(Γ+) is 1-homogeneous, strictly monotone, convex and satisfies

F (1, . . . , 1) = n, if N is a spaceform and
(ii) F = H, otherwise.

Then along any strictly convex solution to (2.1) with f = F p, 0 < p <∞, we have

Lu ≥ p+ 1

p
u2 − 4

p

dWf(Λ])

f
u+

2

p

(
dWf(Λ])

f

)2

+
2

f
dWf(A ◦ Λ] − Λ] ◦A) +

(
1− dWf(W)

f

)
Rm(ẋ, ν, ν, ẋ)

+
2

f
dhf(Rm(·, ẋ, ẋ,W(·)))

+
1

f
dhf(∇̄Rm(ẋ, ·, ν, ·, ẋ) + ∇̄Rm(ẋ, ·, ν, ẋ, ·)).

(2.4)

Proof. For completeness we present the proof from [7] with the necessary adap-
tions. We prepare some auxiliary estimates for terms appearing on the right-hand
side of (2.3). Referring to [7, Theorem 2.3], there exists a linear map, denoted f ′(W)
commuting with W and such that for any B,

dWf(B) = Tr(f ′(W) ◦B).

Then commuting f(W) with W and using that the trace is invariant under cyclic
permutation we have

dWf(W ◦A) = Tr(f ′(W) ◦W ◦A) = Tr(W ◦ f ′(W) ◦A)

= Tr(f ′(W) ◦A ◦W) = dWf(A ◦W).

Using this, that W is self-adjoint so that ad(W) = W, the fact that (see [7, Remark
2.10])

dWf(ad(W ◦A) ◦W−1 ◦W ◦A) ≥ 1

p
f−1(dWf(W ◦A))2,
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and the evolution of W from equation (2.2), we estimate

dhf(h(A(·), A(·))) = dhf(g(A(·),W ◦A(·)))
= dhf(g(·, ad(A) ◦W ◦A(·)))
= dWf(ad(A) ◦W ◦A)

= dWf(ad(W ◦A) ◦W−1 ◦W ◦A)

≥ 1

p
f−1(dWf(W ◦A))2

=
1

p
f−1

(
dWf(Λ] − Ẇ)

)2
=

1

pf

((
dWf(Ẇ)

)2
− 2dWf(Ẇ)dWf(Λ]) +

(
dWf(Λ])

)2)
.

For the second derivative term, in the case F = H and f = Hp, by [23, (2.17)] we see
that when p = 1,

d2Wf(Ẇ, Ẇ) = 0.

For general p we have

dWf(Ẇ) = pHp−1 tr(Ẇ)

and

d2Wf(Ẇ, Ẇ) = p(p− 1)Hp−2
(

tr(Ẇ)
)2

=
p− 1

p
f−1

(
dWf(Ẇ)

)2
.

In the case that F is convex and f = F p we obtain from [7, Lemma 5.1] that

d2Wf(Ẇ, Ẇ) ≥ p− 1

p
f−1

(
dWf(Ẇ)

)2
.

In all cases, together with ḟ = fu = dWf(Ẇ), we conclude

2

f
dhf(h(A(·), A(·))) +

1

f
d2Wf(Ẇ, Ẇ)

≥ p+ 1

p
f−2

(
dWf(Ẇ)

)2
− 4

p
f−2dWf(Ẇ)dWf(Λ]) +

2

p
f−2

(
dWf(Λ])

)2
=

p+ 1

p
u2 − 4

p

dWf(Λ])

f
u+

2

p

(
dWf(Λ])

f

)2

.

Inserting this into (2.3) gives the result.

For convenience of notation, let

S =
dWf(Λ])

f
(2.5)



HARNACK INEQUALITIES IN RIEMANNIAN MANIFOLDS 349

and

R =
2

f
dWf(A ◦ Λ] − Λ] ◦A) +

(
1− dWf(W)

f

)
Rm(ẋ, ν, ν, ẋ)

+
2

f
dhf(Rm(·, ẋ, ẋ,W(·)))

+
1

f
dhf(∇̄Rm(ẋ, ·, ν, ·, ẋ) + ∇̄Rm(ẋ, ·, ν, ẋ, ·)).

(2.6)

Using the evolution equation satisfied by u, we show general conditions, under which
we can obtain a Harnack inequality.

Theorem 2.2. Let F ∈ C∞(Γ+) be 1-homogeneous, strictly monotone and con-
vex with F (1, . . . , 1) = n if N is a spaceform and F = H otherwise. Let x be a strictly
convex solution to (2.1) with f = F p, 0 < p <∞. Let β ∈ R satisfy{

β ≤ 2
p+1S

β /∈ (β−, β+)

throughout (0, T )×M , where β±(t, ξ) are the roots of

p(β) =
p+ 1

p
β2 − 4

p
Sβ +

2

p
S2 +R,

and where we take it that the second condition, β /∈ (β−, β+) is satisfied for all β in
case there is at most one root. Then

u− β +
p

p+ 1

1

t
≥ 0.

Equivalently, transforming back to the standard parametrization,

∂tF
p − b(∇F p,∇F p)− βF p +

p

p+ 1

1

t
F p ≥ 0.

Proof. We write the estimate (2.4) with the help of (2.5) and (2.6) more compactly
as

Lu− p+ 1

p
u2 +

4

p
Su ≥ 2

p
S2 +R. (2.7)

For any β ∈ R consider the function

η(t) = − p

p+ 1

1

t
+ β.

We seek conditions on β so that

Lu− p+ 1

p
u2 +

4

p
Su ≥ Lη − p+ 1

p
η2 +

4

p
Sη.

By equation (2.7), it’s sufficient that

Lη − p+ 1

p
η2 +

4

p
Sη ≤ 2

p
S2 +R.
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Since η depends only on t, we have Lη = ∂tη and hence

Lη − p+ 1

p
η2 +

4

p
Sη = 2

(
β − 2

p+ 1
S

)
1

t
+

4

p
Sβ − p+ 1

p
β2.

Then

Lη − p+ 1

p
η2 +

4

p
Sη ≤ 2

p
S2 +R

if and only if

2

(
β − 2

p+ 1
S

)
1

t
+

4

p
Sβ − p+ 1

p
β2 ≤ 2

p
S2 +R.

That is,

2

(
2

p+ 1
S − β

)
1

t
+
p+ 1

p
β2 − 4

p
Sβ +

2

p
S2 +R ≥ 0.

Since we require this inequality to hold for all t > 0, the coefficient of the 1/t term
must be non-negative. For the remainder, at each (t, ξ) ∈ (0, T ) ×M let β± denote
the roots of

p(β) =
p+ 1

p
β2 − 4

p
Sβ +

2

p
S2 +R,

given by

β± =
2

p+ 1

(
S ±

√
1− p

2
S2 − p(p+ 1)

4
R

)
.

The conditions on β are then {
β ≤ 2S

p+1

β /∈ (β−, β+),

where we take it that the second condition is satisfied for all β in case there is at most
one root, since then p(β) ≥ 0 for all β. To summarize then, for β as in the hypothesis
of the theorem we have

Lu− p+ 1

p
u2 +

4

p
Su ≥ Lη − p+ 1

p
η2 +

4

p
Sη

and η(0) = −∞. Then the maximum principle implies u ≥ η for all t > 0 which is
precisely the required conclusion.

Remark 2.3. Note that if S and β− are bounded below, then we may take

β ≤ min

{
2S

p+ 1
, β−

}
and obtain a Harnack inequality. However, in this case β may be negative and the
Harnack is weaker than typically obtained.
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In the case that R ≥ 0, we may discard that term and be a little more explicit
replacing β± with the roots of p+1

p β2 − 4
pSβ + 2

pS
2:

β± =
2

p+ 1

(
S ±

√
1− p

2
|S|

)
.

In particular, if p > 1, the roots are complex and any

β ≤ 2S
p+1

suffices. If 0 < p ≤ 1, then

β− ≤ 2S
p+1 ≤ β+

and so the only option is to take β ≤ β−. If S ≤ 0, then β− ≤ 0 and we get a weak
Harnack. If on the other hand, S ≥ 0, then

0 ≤ β− =
2

p+ 1

(
1−

√
1− p

2

)
S ≤ 2S

p+ 1

and the Harnack includes a good non-negative bonus term that is strictly positive
when S ≥ c > 0.

3. The spherical case. We use Theorem 2.2 and Remark 2.3 to prove Theo-
rem 1.2. On the sphere,

Rm(X,Y, Z,W ) = g(X,W )g(Y, Z)− g(X,Z)g(Y,W )

and hence

S =
dWf(Λ])

f
=

p

F
F ijRm(ẋ,∇ix, ν,∇jx) = − p

F
F ij ḡ(ẋ, ν)gij = pF p−1F ijgij ≥ 0,

According to Remark 2.3, to prove Theorem 1.2 part (i) it then suffices to show that
R ≥ 0. Recalling the Euler identity for degree 1 homogeneous functions,

F ikhjkgij = F ikhik = F

we have

R = (1− p)Rm(ẋ, ν, ν, ẋ) +
2p

F
F ikhjkRm(∇ix, ẋ, ẋ,∇jx)

= (1− p)(‖ẋ‖2 − 〈ẋ, ν〉2) +
2p

F
F ikhjk

(
‖ẋ‖2gij − 〈ẋ,∇ix〉 〈ẋ,∇jx〉

)
≥ (1 + p)(‖ẋ‖2 − 〈ẋ, ν〉2)− 2p

F
F ikhjkb

ml∇mfglib
rs∇rfgsj

= (1 + p)bljb
jk∇kf∇lf −

2p

F
F ikbmi ∇mf∇kf

=
1

F

(
(1 + p)Fbjk − 2pF jk

)
blj∇kf∇lf.



352 P. BRYAN, H. KRÖNER AND J. SCHEUER

We use the assumed pinching condition to estimate

(1 + p)
F

κj
− 2p

∂F

∂κj
≥ (1 + p)

F

κn
− 2p

∂F

∂κj

= (1 + p)
∂F

∂κn
+ (1 + p)

n−1∑
i=1

∂F

∂κi

κi
κn
− 2p

∂F

∂κj

≥ (1 + p)

(
1 +

p− 1

p+ 1

)
∂F

∂κn
− 2p

∂F

∂κj

≥ 0

due to the convexity of F , which implies

∂F

∂κ1
≤ · · · ≤ ∂F

∂κn
≤ n.

Hence R ≥ 0, given the proposed pinching. In view of Remark 2.3, Theorem 1.2(i)
follows.

For part (ii), we have p = 1 and we may improve the non-negativity of S to the
following positive lower bound:

S = F ijgij ≥ κ−1n F ijhij = F

(
κ1
κn
, . . . , 1

)
≥ F (0, . . . , 0, 1).

Hence the choice

β = F (0, . . . , 0, 1)

yields a Harnack estimate with bonus term and the proof is complete.

4. More general ambient spaces.

Proof of Theorem 1.1. Again, to prove the Harnack inequality, we use Theo-
rem 2.2 and Remark 2.3. For Einstein manifolds, we have

Rc =
R

n+ 1
g.

We calculate

S =
dWf(Λ])

f
=

p

H
tr
(
Rm(ẋ, ·, ν, ·)

)
= − p

H
Rc(ẋ, ν) = pHp−1 R̄

n+ 1

and

R = (1− p)Rm(ẋ, ν, ν, ẋ) +
2p

H
hijRm(∇ix, ẋ, ẋ,∇jx)

+
p

H
gij
(
∇̄Rm(ẋ,∇ix, ν,∇jx, ẋ) + ∇̄Rm(ẋ,∇ix, ν, ẋ,∇jx).

)
Writing

ẋ = −fν − V

and using the positive lower bound c1 on the sectional curvatures we estimate

Rm(ẋ, ν, ν, ẋ) ≥ c1(‖ẋ‖2 − f2) = c1‖V ‖2
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and in normal coordinates

hijRm(∇ix, ẋ, ẋ,∇jx) =

n∑
i=1

κiRm(∇ix, ẋ, ẋ,∇ix)

≥ c1
n∑

i=1

κi(‖ẋ‖2 − 〈∇ix, ẋ〉2)

≥ c1Hf2.

Hence

R ≥ (1− p)c1‖V ‖2 + 2pc1f
2 − 2np

H
‖∇̄Rm‖‖ẋ‖2

≥
(

min(1− p, 2p)c1 −
2np

H
‖∇̄Rm‖

)
‖ẋ‖2

≥ 0

under the present assumptions. Due to p < 1, S is not uniformly under control from
below and we complete the proof of Theorem 1.1 by choosing β = 0.

Proof of Theorem 1.4. We use Lemma 2.1 to prove that

u =
∂tH

H

is bounded from below by its initial values in the parametrization

ẋ = −Hν − V.

Reverting to the standard parametrization then gives the result. (2.4) gives

Lu ≥ 2

(
u− dWf(Λ])

f

)2

+
2

H
hijRm(∇ix, ẋ, ẋ,∇jx) ≥ 0.

The result follows using the maximum principle.

5. Ancient solutions to curvature flows in the sphere. A solution x to a
curvature flow equation is called ancient, if it is defined on (−∞, 0)×M , i.e. for all
times of its existence, it has been existing forever.

Convex ancient solutions for flows in the Euclidean space arise as singularity
models after a suitable space-time blow up around some singularity. Hence it is
important and has been a widely studied field to find conditions which allow to classify
convex ancient solutions. In the Euclidean space there is a full classification for
the curve shortening flow as shrinking spheres or so called Angenent ovals, cf. [10],
while for the mean curvature flow in higher dimensions there are various equivalent
characterizations of when a convex ancient solution must be a family of shrinking
spheres, e.g. [15, 17, 19]. Maybe the simplest characterization is in terms of a uniform
pinching of the form

κn ≤ cκ1.

For flows in the sphere the situation is much more rigid, and such a strong pinching
condition is unnecessary for a wide range of flows. The study of ancient solutions



354 P. BRYAN, H. KRÖNER AND J. SCHEUER

to curvature flows in the sphere was initiated by PB and Louie in [8] for the curve
shortening flow and in [4, 17] for the mean curvature flow. The outcome in these
papers were that all convex ancient solutions are shrinking spheres. There is a deep
geometric reason behind this result: Roughly, a sufficiently regular convex hypersur-
face of the sphere can not be too large to fit into an open hemisphere without being
an equator, cf. [22]. So if the backwards solution has a uniform curvature bound
(or equivalently satisfies a uniform interior ball condition with a uniformly positive
radius), the backwards limit already must be an equator. With this at hand, it is a
standard Alexandrov reflection argument to show that the symmetry of the equator
carries over to the solution. In the paper [5] this argument is made rigorous in order
to classify ancient solutions for a wide range of speed functions, a range that by far
exceeds the class typically considered in such problems. The only assumption on the
flow is due to the above argument: One needs a uniform interior ball condition back-
wards in time to conclude the backwards limit to be an equator. Therefore a bound
on the mean curvature is assumed.

In many particular situations, for example when there is a Li-Yau estimate avail-
able, such a backwards bound can be provided and hence a full classification follows.
In this section we apply this method for the flows in Sn+1 we have considered in
section 3 and obtain the following application of our Harnack inequality.

Theorem 5.1. Let N = Sn+1 and F ∈ C∞(Γ+)∩C0(Γ̄+) be a strictly monotone,
1-homogeneous and convex curvature function and let 1 < p <∞. If a strictly convex,
ancient solution to

ẋ = −F pν

is pinched in the sense that

n−1∑
i=1

∂F

∂κi
(κ1, . . . , κn)κi ≥

p− 1

p+ 1

∂F

∂κn
(κ1, . . . , κn)κn

with ordered principal curvatures

κ1 ≤ · · · ≤ κn,

it is a family of shrinking spheres.

Remark 5.2. Note that when looking at speeds which are not homogeneous of
degree one, the anomaly can occur that there are no non-equatorial ancient solutions
at all. For example, when p < 1, the shrinking sphere solution to the power mean
curvature flow

ẋ = −Hpν (5.1)

only needs a finite time TS from the equator to a point. In this case ancient solutions
are thus trivially classified and thus in [5] we introduced the notion of quasi-ancient
solutions to (5.1), which are solutions that exist on the interval (−TS , 0) and clas-
sified these under the discussed assumptions. For the case p > 1 however, the next
lemma shows the shrinking sphere solution is ancient and hence the formulation of
Theorem 5.1 is justified. The proof is a simple ODE comparison argument and is
omitted.
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Lemma 5.3. Let F ∈ C∞(Γ+) be a strictly monotone and 1-homogeneous curva-
ture function. For p > 1 any shrinking sphere solution to

ẋ = −F pν

exists on (−∞, 0) with limit an equator as t→ −∞ and collapsing to the central point
as t→ 0.

Proof of Theorem 5.1. Under the present assumptions we know that for every
T > 0 and at each (t, ξ) ∈ (−T, 0)×M the Harnack inequality

∂tF
p − b(∇F p,∇F p) +

p

(p+ 1)(t− T )
F p ≥ 0

is valid and hence, fixing a point (t, ξ) while letting T →∞, we obtain

∂tF
p(t, ξ) ≥ 0 ∀(t, ξ) ∈ (−∞, 0)×M.

Hence F is bounded backwards in time. Due to the convexity of F we have

H ≤ F,

compare [12, Lemma 2.2.20]. Hence the assumptions of [5, Thm. 1.2] are satisfied and
we conclude that the solution must be a family of shrinking spheres.

Appendix A. Lower bound on the smallest principal curvature. We
deduced the estimate in Theorem 1.1 under the assumption that the mean curvature
is large enough and the hypersurfaces are convex. In order to apply this result forward
in time, it is of interest whether these properties are preserved along the flow. From
the evolution of Hp, which looks similar to (1.6) for the case p = 1, it is clear that the
minimum of the mean curvature is non-decreasing. Where convexity is concerned, in
this appendix we prove that the smallest principal curvature remains above a certain
threshold if this is the case initially. We prove this in a setting more general than in
Theorem 1.1.

Theorem A.1. Let n ≥ 2 and (Nn+1, ḡ) be a Riemannian manifold with bounded
geometry and 0 < p < 1. Let x be a solution to

ẋ = −Hpν.

Then there exists a constant c > 0, such that

min
M

κ1(0, ·) ≥ c ⇒ min
M

κ1(t, ·) ≥ c

n
∀t > 0.

Proof. It suffices to prove that

H̃ = tr(b) =

n∑
i=1

1

κi

remains small, if it is small initially. The evolution equation of b is related to the one
of W via

ḃrs − pHp−1∆brs = −bri bjs
(
ḣij − pHp−1∆hij

)
− 2pHp−1hlm∇kb

r
l∇kbms .
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Now we can use the evolution of the Weingarten operator for flows in general Rie-
mannian spaces, cf. [11, Lemma 2.4.1], to deduce

∂tH̃ ≤ pHp−1∆H̃ − pHp−1‖W‖2H̃ + n(p− 1)Hp

− p(p− 1)Hp−2∇iH∇jHb
r
i b

j
r + cHp‖Rm‖H̃2 + cHp−1‖∇̄Rm‖H̃2

− 2pHp−1hlm∇kb
r
l∇kbmr .

(A.1)

There holds in normal coordinates

hlm∇kb
r
l∇kbmr = κm∇kb

r
m∇kbmr ≥ H̃−1‖∇b‖2.

Due to the Codazzi equation there holds in normal coordinates

∇iH∇jHb
r
i b

j
r ≤ ∇lh

i
kg

kl∇mh
m
j b

r
i b

j
r + Rm ?∇H ? b2 + Rm ? Rm ? b2

= hikh
m
j g

kl∇lb
r
i∇mb

j
r + Rm ?∇b ? b2 ? b2 + Rm ? Rm ? b2

= κiκj∇ib
ri∇jb

j
r + Rm ?∇b ? b2 ? b2 + Rm ? Rm ? b2.

Together we obtain

p(1− p)Hp−2∇iH∇jHb
r
i b

j
r − 2pHp−1hlm∇kb

r
l∇kbmr

≤ p(1− p)Hp−2
(
κiκj∇ib

ri∇jb
j
r −

2

1− p
Hκm∇kb

r
m∇kbmr

)
+ cHp−2‖Rm‖‖∇b‖H̃4 + cHp−2‖Rm‖2H̃2

≤ p(1− p)Hp−2

∑
i,j,r

κiκj∇ib
2
ri −

2

1− p
H
∑
i,j,r

κi∇jbri∇jbri


+ cHp−2‖Rm‖‖∇b‖H̃4 + cHp−2‖Rm‖2H̃2

≤ p(p− 1)Hp−1
∑
i,j,r

κi∇jbri∇jbri + cHp−2‖Rm‖‖∇b‖H̃4 + cHp−2‖Rm‖2H̃2

≤ p(p− 1)Hp−1H̃−1‖∇b‖2 + cHp−2‖Rm‖‖∇b‖H̃4 + cHp−2‖Rm‖2H̃2.

Hence using Cauchy-Schwarz, every term can be absorbed into either the good term
involving ‖∇b‖2 or into the negative terms of (A.1), provided H̃ is small enough. This
completes the proof.
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