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OPTIMAL METRIC REGULARITY IN GENERAL RELATIVITY
FOLLOWS FROM THE RT-EQUATIONS BY ELLIPTIC

REGULARITY THEORY IN LP -SPACES∗

MORITZ REINTJES† AND BLAKE TEMPLE‡

Abstract. Shock wave solutions of the Einstein equations have been constructed in coordinate
systems in which the gravitational metric is only Lipschitz continuous, but the connection Γ and
curvature Riem(Γ) are both in L∞, the curvature being one derivative smoother than the curvature
of a general Lipschitz metric. At this low level of regularity, the physical meaning of such gravitational
metrics remains problematic. In fact, the Einstein equations naturally admit coordinates in which Γ
has the same regularity as Riem(Γ) because the curvature transforms as a tensor, but the connection
does not. Here we address the mathematical problem as to whether the condition that Riem(Γ) has
the same regularity as Γ, or equivalently the exterior derivatives dΓ have the same regularity as Γ,
is sufficient to allow for the existence of a coordinate transformation which perfectly cancels out
the jumps in the leading order derivatives of δΓ, thereby raising the regularity of the connection
and the metric by one order–a subtle problem. We have now discovered, in a framework much
more general than GR shock waves, that the regularization of non-optimal connections is determined
by a nonlinear system of elliptic equations with matrix valued differential forms as unknowns, the
Regularity Transformation equations, or RT-equations. In this paper we establish the first existence
theory for the nonlinear RT-equations in the general case when Γ,Riem(Γ) ∈ Wm,p, m ≥ 1, n <
p < ∞, where Γ is any affine connection on an n-dimensional manifold. From this we conclude that
for any such connection Γ(x) ∈ Wm,p with Riem(Γ) ∈ Wm,p, m ≥ 1, n < p < ∞, given in x-
coordinates, there always exists a coordinate transformation x → y such that Γ(y) ∈ Wm+1,p. This
implies all discontinuities in m′th derivatives of δΓ cancel out, the transformation x → y raises the
connection regularity by one order, and Γ exhibits optimal regularity in y-coordinates. The problem
of optimal regularity for the hyperbolic Einstein equations is thus resolved by elliptic regularity theory
in Lp-spaces applied to the RT-equations.
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1. Introduction. Existence theorems for the Einstein equations are established
in coordinate systems in which the equations take on a solvable form. In such coordi-
nates the metric may not exhibit its optimal regularity, that is, two degrees smoother
than its Riemann curvature tensor, or may lose its optimal regularity under time
evolution [9]. In this paper we give the first proof of existence of solutions to the
Regularity Transformation equations, (RT-equations), equations derived in [17] for
the Jacobian and transformed connection of the coordinate transformations that map
a gravitational metric in General Relativity (GR) to coordinates in which the metric
displays its optimal regularity.1 This is a new approach to optimal metric regularity
in GR because, rather than imposing an apriori coordinate ansatz, (like harmonic
coordinates [6, 2] or Gaussian normal coordinates [11, 22]), and trying to establish

∗Received May 8, 2019; accepted for publication October 7, 2020.
†Fachbereich für Mathematik und Statistik, Universität Konstanz, D-78467, Germany (moritz

reintjes@gmail.com). M. Reintjes is currently supported by the German Research Foundation,
DFG grant FR822/10-1, and was supported by FCT/Portugal through (GPSEinstein) PTDC/MAT-
ANA/1275/2014 and UID/MAT/04459/2013 from January 2017 until December 2018.

‡Department of Mathematics, University of California, Davis, CA 95616, USA (temple@math.
ucdavis.edu).

1The results in this paper and [16, 17, 19] are summarized in the RSPA paper [18]. The meth-
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compactness for L∞ connections in [19], and for Lp connections on vector bundles in [20].
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regularity of solutions of the Einstein equations in those coordinates, our premise here
is that, in general, the coordinate systems of optimal regularity are too difficult to
guess apriori, or the Einstein equations too difficult to solve, and to find them, one
has to discover and solve equations for the coordinates themselves. In [17] the authors
accomplished their goal of deriving such a system of equations, the RT-equations. The
RT-equations are a system of elliptic PDE’s derived from a geometric principle, the
Riemann-flat condition, which the authors introduced in [16]. Authors’ motivation to
study optimal metric regularity in GR began by asking whether shock wave solutions
with Lipschitz continuous metric, proven to exist in Standard Schwarzschild coordi-
nates, might actually be one order smoother in other coordinate systems in which
the Einstein equations are too complicated to solve, [13, 14, 15, 16, 17]. This has led
us to a much more general theory of optimal regularity for solutions of the Einstein
equations based on the RT-equations. In Section 8 below we conjecture that without
resolving the problem of optimal regularity, the existence theory for the initial value
problem in GR is incomplete in each Sobolev Space, an issue at the foundation of the
initial value problem in General Relativity.

In this paper we apply elliptic regularity theory in Lp spaces to give the first
proof of existence of solutions to the RT-equations. From this we deduce the following
theorem for geometry:

Theorem 1.1. Let Γ be a connection and Riem(Γ) its curvature tensor given by
components Γi

jk and Ri
jkl in some coordinate system x defined in an open set Ω ⊂ R

n.

Assume all components satisfy Γi
jk, R

i
jkl ∈ Wm,p(Ω) for m ≥ 1, n < p < ∞, n ≥ 2.

Then for each point q ∈ Ω there exists a neighborhood Ωq ⊂ Ω containing q, and

a coordinate transformation x → y with Jμ
i ≡ ∂yμ

∂xi ∈ Wm+1,p(Ωq), such that, in
y-coordinates, the components of Γ are bounded in Wm+1,p(Ωq).

Theorem 1.1 applies to general connections, including metric connections of arbi-
trary metric signature, and is applicable to solutions of the Einstein equations with
arbitrary sources. The result does not rely on special properties of the Einstein equa-
tions. It establishes that no regularity singularities exist when the curvature is in
W 1,p (c.f. [14]). Authors’ current research program is to extend this existence theory
for the RT-equations to Lipschitz continuous metrics, when Γ,Riem(Γ) ∈ L∞, and
by this resolve the problem as to whether regularity singularities can be created by
shock wave interaction in General Relativity.2

Theorem 1.1 introduces a new point of view on solutions of the Einstein equations
of General Relativity: It tells us that it is sufficient to solve the Einstein equations in
coordinates in which the metric is only one order smoother than the curvature, allow-
ing for equations which are only first order in metric components. Then by Theorem
1.1 we know local coordinate transformations always exist which smooth the metric by
one order, to optimal regularity, two derivatives smoother than the curvature. Since
first order equations can be simpler than second order equations, Theorem 1.1 estab-
lishes that it is sufficient to solve the Einstein equations in coordinates in which the
equations are simpler, and the solutions are weaker, and conclude in general that once
the existence of weaker solutions is established, the stronger solutions with optimal
regularity are guaranteed. Indeed, the Einstein equations naturally allow for solutions
in which the metric regularity is only one level higher than that of its Riemann curva-
ture, and hence not optimal. For example, given a solution of the Einstein equations

2Since the writing of this paper, the L∞ case has been resolved in [19] by extending the existence
theory for the RT-equations in this paper to the case of L∞ connections.
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of optimal regularity, say with metric in Wm+2,p and its curvature in Wm,p, m ≥ 0,
then applying a coordinate transformation with Jacobian in Wm+1,p, the resulting
metric is no longer optimal, being in Wm+1,p, with connection dropping to Wm,p,
and curvature remaining in Wm,p, [17]. Theorem 1.1 establishes that this can always
be reversed in the case m ≥ 1, n < p < ∞, which is essentially one derivative above
the GR shock wave case Riem(Γ) ∈ L∞. Theorem 1.1 guarantees that if in the time
evolution of any such GR solution of optimal smoothness, the regularity breaks down
by the metric losing one derivative relative to its curvature tensor, then this is only
a breakdown in the coordinate system, not in the geometry. This can be taken as a
new regularity principle for the numerical simulation of solutions in GR. In particu-
lar, excluding non-optimal solutions from the initial value problem when they exist
would lead to an incomplete picture of the solution space of the Einstein equations
in every regularity class, and hence an incomplete picture of the underlying physics,
(c.f. Section 8 below).

As an application, Theorem 1.1 resolves the problem of optimal regularity for
spherically symmetric solutions constructed in Standard Schwarzschild Coordinates
(SSC) in the case m ≥ 1, n < p < ∞ (c.f. Section 8). Non-optimal shock wave
solutions constructed by the Glimm scheme in SSC, [9, 21], have Γ, Riem(Γ) ∈ L∞,
and solving the RT-equations in this case of lower regularity remains an open problem.
The example of SSC tells us that the spacetime metric can be expressed in a simpler,
and more comprehensible form, within an atlas of coordinate systems in which the
gravitational metric is one order less regular than optimal. The RT-equations provide
an explicit algorithm, amenable to numerics, for constructing coordinate systems
which display the optimal regularity of such metrics. In the case of shock waves,
such transformations to coordinates of optimal regularity convert weak solutions of
G = κT , to strong solutions.

Theorem 1.1 resolves the problem of optimal metric regularity at the level of
connections and curvatures in Wm,p, m ≥ 1, one order larger than the case L∞ (or
Lp), applicable to shock wave theory in GR, [9, 13, 14, 15, 16, 17]. The case of L∞

(or Lp) curvature is the threshold between weak and strong solutions of the Einstein
equations, c.f. [14, 17]. However, even in the L∞ case, the equivalence between
the existence of coordinate systems of optimal metric regularity and the existence of
solutions of the RT-equations still applies. There are two main obstacles to extending
Theorem 1.1 to the case of L∞ curvature. First is the problem of Calderon-Zygmund
singularities, the central issue in the L∞ case of elliptic regularity theory [17], and
second, the problem of handling nonlinear products in Lp. Obstacles to solving the
RT-equations in the case of GR shock waves could lead to the discovery of new kinds
of regularity singularities in GR [14, 15]. The L∞ case is the setting most intriguing to
the authors, and the problem of extending solutions of the RT-equations to the lower
regularity of L∞ (and Lp) will be addressed in forthcoming publications. Theorem
1.1 demonstrates for the first time that determining optimal metric regularity by the
RT-equations works and the RT-equations bring elliptic regularity theory to bear on
the problem of optimal regularity in General Relativity.

The point of departure for this paper is Theorem 1.2 below, proven in [17], which
establishes the equivalence of the Riemann-flat condition with the solvability of the
RT-equations when Γ and dΓ ∈ Wm,p, for m ≥ 1, n < p < ∞, (and hence Riem(Γ) ∈
Wm,p by Morrey’s inequality (2.9) applied to the identity Riem(Γ) = dΓ + Γ ∧ Γ,
c.f. Section 2 below). By this we mean the components of Γ and dΓ are functions in
Wm,p in some given, but otherwise arbitrary, coordinate system x. The Riemann-flat
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condition was derived in [16] as a condition on a given connection Γ equivalent to the
existence of a local coordinate transformation which smooths the connection by one
order. The Riemann-flat condition states that there should exist a tensor Γ̃, one order
smoother than Γ, such that Riem(Γ− Γ̃) = 0. It applies to connections down to the
lowest regularity Γ, dΓ ∈ L∞, and in this case the theorem in [16] states that there
exists a coordinate transformation with Jacobian J which smooths the components
of Γ to C0,1 if and only if there exists a tensor Γ̃ ∈ C0,1 such that Riem(Γ− Γ̃) = 0.
It turns out that Γ̃ agrees with the smoothed connections in the new coordinates.

The RT-equations, equations (1.1) - (1.4) below, were derived in [17]. The J and
Γ̃ components of the RT-equations come from two equivalent forms of the Riemann-
flat condition, namely, Riem(Γ− Γ̃) = 0 and dJ = J(Γ− Γ̃). In the derivation, these
two first order equations are converted into the RT-equations by use of the identity
Δ ≡ dδ+ δd to re-express the first order equations as second order Poisson equations
in the Laplacian Δ of the Euclidean coordinate metric. These two equations are aug-
mented by a system of first order equations in auxiliary variables A to arrange for the
integrability condition Curl(J) ≡ ∂jJ

μ
i −∂iJ

μ
j = 0, c.f. [17]. The resulting unknowns

in the RT-equations are then the matrix valued differential forms (Γ̃, J, A) which have
the following meaning: J ≡ Jμ

ν is the Jacobian of the sought after coordinate trans-
formation which smooths the connection, viewed as a matrix valued 0-form; Γ̃ is the
unknown tensor one order smoother than Γ such that Riem(Γ− Γ̃) = 0, viewed as a
matrix valued 1-form, Γ̃ ≡ Γ̃μ

νkdx
k; and A ≡ Aμ

ν is an auxiliary matrix valued 0-form

introduced to impose Curl(J) = 0. Also, �A ≡ Aμ
i dx

i and �J ≡ Jμ
i dx

i are vector valued

1-forms, the vectorizations of A and J , introduced so that Curl(J) = d �J and the inte-

grability condition takes the form d �J = 0, which allows us to augment the above two
Riemann-flat conditions by an equation for A, resulting in the RT-equations, c.f. [17].
(Authors find the interplay between the interpretation of the Jacobian as a matrix
valued 0-form J , to re-express the Riemann-flat condition, and its interpretation as a
vector valued 1-form �J , required to incorporate the integrability condition and close
the RT-equations at the correct regularity, very interesting.) The point of departure
for this paper is the following theorem, proven in [17].

Theorem 1.2. Assume Γ is defined in a fixed coordinate system x on Ω, where
Ω ⊂ R

n is a bounded open set with smooth boundary. Assume that Γ ∈ Wm,p(Ω) and
dΓ ∈ Wm,p(Ω) for m ≥ 1, n < p < ∞. Then the following equivalence holds:

If there exists a coordinate transformation x → y with Jacobian J = ∂y
∂x ∈ Wm+1,p(Ω)

such that the components of Γ in y-coordinates are in Wm+1,p(Ω), then there exists
Γ̃ ∈ Wm+1,p(Ω) and A ∈ Wm,p(Ω) such that (J, Γ̃, A) solve the elliptic system

ΔΓ̃ = δd
(
Γ− J−1dJ

)
+ d(J−1A), (1.1)

ΔJ = δ(J ·Γ)− 〈dJ ; Γ̃〉 −A, (1.2)

d �A =
−→
div

(
dJ ∧ Γ

)
+
−→
div

(
J dΓ

)− d
(−−−−→〈dJ ; Γ̃〉), (1.3)

δ �A = v, (1.4)

with boundary data

d �J = 0 on ∂Ω. (1.5)

Here v ∈ Wm−1,p(Ω) is a vector valued 0-form free to be chosen.

Conversely, if there exists J ∈ Wm+1,p(Ω) invertible, Γ̃ ∈ Wm+1,p(Ω) and A ∈
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Wm,p(Ω) which solve (1.1) - (1.5) in Ω, then for each q ∈ Ω, there exists a neighbor-
hood Ωq ⊂ Ω of q such that J is the Jacobian of a coordinate transformation x → y
on Ωq, and the components of Γ in y-coordinates are in Wm+1,p(Ωq).

We call system (1.1) - (1.4) the Regularity Transformation equations, or RT-
equations. The principal parts are the Laplacian Δ = ∂2

x1 + ... + ∂2
xn , the exterior

derivative d, and the co-derivative δ, all taken with respect to the Euclidean metric
in x-coordinates as an auxiliary Riemannian structure. By this, the RT-equations are

elliptic. The operations�·, −→div and 〈· , ·〉 are introduced in [17] as special operations on
matrix valued differential forms, c.f. (2.1) - (2.5) below. Note that the vector valued
0-form v (which is free to be chosen) has been introduced in (1.4) so that (1.3)-(1.4)

takes the Cauchy-Riemann form d �A = f , δ �A = g. The consistency condition df = 0
is met in (1.3) because the derivation of the RT-equations shows the right hand side
is exact, (equation (1.3) is obtained by setting d of the “vectorized” right hand side
of (1.2) equal to zero, c.f. equation (3.40) in [17]), and δg = 0 holds in (1.4) because
δv = 0 is an identity for vector valued 0-forms v.

The RT-equations apply to connections of arbitrary metric signature, and in par-
ticular to solutions of the Einstein equations with arbitrary sources. In this paper
we establish the first existence theory for the RT-equations by proving existence of
solutions when Γ, dΓ ∈ Wm,p, m ≥ 1, n < p < ∞. The proof is based on a new
iteration scheme which applies the linear theory of elliptic PDE’s at each stage, to
obtain solutions of the nonlinear RT-equations in the limit. The iteration scheme
approximates the first two RT-equations (1.1) and (1.2) component-wise by Poisson
equations and the third and fourth RT-equations (1.3) - (1.4) as Cauchy-Riemann

type equations (of form d �A = f and δ �A = g) by replacing the unknowns on the right
hand side of the RT-equations by the previous iterates; linear elliptic PDE theory
applies to both equations and provided the estimates required to prove converegence,
c.f. Section 2 below. A key insight for the proof was to augment the RT-equations by
ancillary elliptic equations in order to convert the non-standard boundary condition
Curl(J) = 0, which is of neither Neumann nor Dirichlet type, into Dirichlet data for J
at each stage of the iteration, c.f. Section 3. By this, each iterate can be constructed
by applying standard existence theorems and elliptic regularity in Lp spaces for the
linear Poisson equation. Our main existence theorem is the following:

Theorem 1.3. Assume the components of Γ, dΓ ∈ Wm,p(Ω) for m ≥ 1, n < p <
∞, n ≥ 2 in some coordinate system x. Then for each q ∈ Ω there exists a solution
(Γ̃, J, A) of the RT-equations (1.1) - (1.5) defined in a neighborhood Ωq of q such that

Γ̃ ∈ Wm+1,p(Ωq), J ∈ Wm+1,p(Ωq), A ∈ Wm,p(Ωq).

Theorem 1.1 follows directly from Theorem 1.2 together with Theorem 1.3, and
requires no further proof. (Observe that dΓ ∈ Wm,p is equivalent to Riem(Γ) ∈ Wm,p,
whenm ≥ 1, n < p < ∞ by Morrey’s inequality (2.9) applied to Riem(Γ) = dΓ+Γ∧Γ,
c.f. [17].) The proof of Theorem 1.3 is the subject of the remainder of this paper.
This is a new application of the theory of elliptic regularity in Lp spaces developed by
Agmon, Nierenberg and others in the ′50, at the time connecting the new theory of
distributions to solutions of PDE’s [1]. Interestingly, the analysis of the RT-equations
requires Lp spaces, and this cannot be replaced by the simpler L2 theory because of
non-linear products, nor by a Green’s function approach which would require higher
regularity. Most interesting to us is that one can address the problem of optimal
regularity of solutions of the hyperbolic Einstein equations by elliptic regularity theory
alone.
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The structure of this paper is as follows: In Section 2 we give preliminaries and
state the results we require from elliptic regularity theory in Lp spaces. In Section 3
we show how to augment the RT-equations by ancillary equations in order to reduce
the boundary condition (1.5) to standard Dirichlet data. In Section 4 we set up the
iteration scheme and we introduce a small parameter ε into the RT-equations to handle
the non-linearities. In Section 5 we outline the proof of convergence of our iteration
scheme for the ε rescaled RT-equations. Section 6 contains the detailed proofs of
the technical lemmas stated in Section 5 from which the proof of convergence of the
iteration scheme is deduced. In Section 7 we complete the proof of Theorem 1.3, by
proving that the ε rescaled RT-equations can always be obtained by restricting to small
neighborhoods. In Section 8 we discuss the initial value problem, and an application of
Theorem 1.1 to spherically symmetric solutions of the Einstein equations in Standard
Schwarzschild Coordinates.

2. Preliminaries. The point of departure for this paper is authors’ prior paper
[17], and we refer the reader to this for more details on notation, motivation, and
background. We now recall several definitions and identities from Section 2.1 in [17].
To begin, recall that we work in a fixed (but arbitrary) coordinate system x defined
on n-dimensional bounded open set Ω ⊂ R

n with smooth boundary. The unknowns in
the RT-equations are matrix valued differential forms. By a matrix valued differential
k-form A we mean an (n× n)-matrix whose components are k-forms, and we write

A = A[i1...ik]dx
i1 ∧ ... ∧ dxik ≡

∑
i1<...<ik

Ai1...ikdx
i1 ∧ ... ∧ dxik , (2.1)

for (n × n)-matrices Ai1...ik that are totally anti-symmetric in the indices i1, ..., ik ∈
{1, ..., n}. We define the wedge product of a matrix valued k-form A with a matrix
valued l-form B = Bj1...jldx

j1 ∧ ... ∧ dxjl as

A ∧B ≡ 1

l!k!
Ai1...ik ·Bj1...jl dx

i1 ∧ ... ∧ dxik ∧ dxj1 ∧ ... ∧ dxjl , (2.2)

where the dot denotes standard matrix multiplication. Note the wedge product of a
matrix valued k-form with itself is non-zero unless the component matrices commute,
which is the main difference between matrix valued and scalar valued differential
forms. The exterior derivative d and its co-derivative δ are defined component-wise
on matrix-components, with respect to the Euclidean metric in x-coordinates, so all
properties of d and δ on scalar forms carry over to matrix valued forms. In particular
the Laplacian Δ ≡ dδ+δd acts component-wise on matrix- and on k-form components
and, in fact, Δ is identical to the Laplacian of the Euclidean metric in x-coordinates,
Δ = ∂2

x1 + ...+ ∂2
xn . The exterior derivative satisfies the product rule

d(A ∧B) = dA ∧B + (−1)kA ∧ dB, (2.3)

where A ∈ W 1,p(Ω) is a matrix valued k-form and B ∈ W 1,p(Ω) is a matrix valued
j-form, (c.f. Lemma 3.3 of [17]), which implies for a matrix valued 0-form J that

d
(
J−1·dJ) = d(J−1) ∧ dJ = −J−1dJ ∧ J−1dJ. (2.4)

Regarding the co-derivative δ, we require the following product rule

δ(J ·w) = J ·δw + 〈dJ ;w〉 (2.5)
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where J ∈ W 2,p(Ω) is a matrix valued 0-form, w ∈ W 2,p(Ω) a matrix valued 1-form,
and where 〈· ; ·〉 is the matrix valued inner product defined on matrix valued k-forms
A and B by,

〈A ;B〉μν ≡
∑

i1<...<ik

Aμ
σ i1...ik

Bσ
ν i1...ik

. (2.6)

So 〈A ;B〉 converts two matrix valued k-forms into a matrix valued 0-form. As
shown in [17], the Riemann curvature tensor is a matrix valued 2-form and is given
by Riem(Γ) = dΓ + Γ ∧ Γ in x-coordinates.

The two operations which convert matrix valued differential forms to vector valued
forms on the right hand side of (1.4) are vec and vec−divergence. First, vec converts
matrix valued 0-forms into vector valued 1-forms by the operation, (c.f. (2.20) of
[17]),

�Aμ = Aμ
i dx

i. (2.7)

The operation vec− divergence converts matrix valued k-forms A into vector valued

k-forms
−→
div(A) by the operation

−→
div(A)α ≡

n∑
l=1

∂l
(
(Aα

l )i1...ik
)
dxi1 ∧ ... ∧ dxik .

For a matrix valued 1-form w and a matrix valued 0-form J , Lemma 2.4 of [17] gives
the important identity

d
(−−−−→
δ(J ·w)) = −→

div
(
dJ ∧ w

)
+
−→
div

(
J ·dw)

, (2.8)

which is crucial for the regularity to close in the RT-equations, c.f. Section 1 in [17].
We denote by ‖ · ‖Wm,p(Ω) the standard Wm,p-norm, defined as the sum of the

Lp-norms of derivatives up to order m [7]. (We often write ∂m for such derivatives in
place of multi-index notation.) When applied to matrix valued differential forms ω,
‖ω‖Wm,p(Ω) denotes the sum of the Wm,p-norm applied to all matrix- and differential
form-components of ω. Theorems 1.2 and 1.3 apply to connections in the space Wm,p

for m ≥ 1, p > n, because for these parameter values, Sobolev’s theorem implies that
W 1,p(Ω) is embedded in the space of Hölder continuous functions C0,α(Ω). Namely,
for p > n Morrey’s inequality gives

‖f‖C0,α(Ω) ≤ CM‖f‖W 1,p(Ω), (2.9)

where α ≡ 1− n
p and CM > 0 is a constant only depending on n, p and Ω [7]. Morrey’s

inequality (2.9) extends unchanged to components of matrix valued differential forms.
We finally summarize the estimate we use from elliptic theory. We assume

throughout that m ≥ 1, 1 < p < ∞, n ≥ 2 and that Ω ⊂ R
n is a bounded domain,

simply connected and with smooth boundary. In fact, one could assume without loss
of essential generality that Ω is a ball in R

n. Our estimates are based on the follow-
ing theorems, which extend to matrix valued and vector valued differential forms by
component-wise application.

Theorem 2.1 (Elliptic Regularity). For m ≥ 1, 1 < p < ∞, let f ∈ Wm−1,p(Ω)
and u0 ∈ Wm+1,p(Ω), which we both assume to be scalar functions. Assume u ∈
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Wm+1,p(Ω) solves the Poisson equation Δu = f with Dirichlet data u0 in the sense
that u − u0 ∈ W 1,p

0 (Ω).3 Then there exists a constant C > 0 depending only on Ω,
m,n, p such that

‖u‖Wm+1,p(Ω) ≤ C
(
‖f‖Wm−1,p(Ω) + ‖u0‖Wm+1,p(Ω)

)
. (2.10)

Equation (2.10) is the basic estimate of elliptic regularity theory in Lp spaces, c.f.
Lemma 9.17 in [8] for a special case (m = 1, u0 = 0) which we extend in Section A to
prove (2.10). Estimate (2.10) is required to prove convergence of our iteration scheme
introduced in Section 4.2 below. Our analysis of the iteration scheme also requires an
existence theory for Dirichlet problems for the Poisson-type equations (1.1) - (1.2),
which we apply component-wise. This is provided by the following existence theorem
by component-wise application to the equations for Γ̃ and J , c.f. Theorems 9.15 and
9.19 in [8].

Theorem 2.2. For m ≥ 1, 1 < p < ∞, let f ∈ Wm−1,p(Ω) and u0 ∈ Wm+1,p(Ω)
both be scalar functions. Then there exists a unique solution u ∈ Wm+1,p(Ω) which
solves the Poisson equation

Δu = f in Ω,

with Dirichlet data u = u0 on ∂Ω in the sense that u− u0 ∈ W 1,p
0 (Ω).

The estimate corresponding to (2.10) for first order equations is given by Gaffney’s
inequality, (c.f. Theorem 5.21 in [5]), needed to address the first order equations (1.3)-
(1.4) in the proof of convergence of our iteration scheme.

Theorem 2.3 (Gaffney Inequality). Let u ∈ Wm+1,p(Ω) be a scalar valued k-
form, m ≥ 0, 1 ≤ k ≤ n− 1, n ≥ 2, 1 < p < ∞. Then there exists a constant C > 0
depending only on Ω, m,n, p, such that4

‖u‖Wm+1,p(Ω) ≤ C
(
‖du‖Wm,p(Ω) + ‖δu‖Wm,p(Ω) + ‖u‖

W
m+

p−1
p

,p
(∂Ω)

)
. (2.11)

Our analysis of an iteration scheme below requires an existence theory for the
first order Cauchy-Riemann type equations (1.3) and (1.4) of the RT-equations (1.1)

- (1.4), the case when �A is a 1-form. For this we are free to impose whatever boundary
conditions are sufficient for a suitable existence theory. The following special case of
Theorem 7.4 in [5] provides the existence theorem required to address the first order
system, equations (1.3) - (1.4), in our iteration scheme.

Theorem 2.4. (i) Let f ∈ Wm,p(Ω) be a 2-form with df = 0, m ≥ 0, n ≥ 2,
1 < p < ∞. For simplicity, assume further that f = dv for some 1-form v ∈ Wm,p(Ω).
Then there exists a 1-form u = ui dx

i ∈ Wm+1,p(Ω) which solves

du = f and δu = 0 in Ω, (2.12)

3The space W 1,p
0 (Ω) denotes the closure of C∞

0 (Ω), the space of smooth functions with compact
support, with respect to the W 1,p-norm.

4Note that the boundary term in (2.11) can be further estimated by the trace theorem as
‖u‖

W
m+1− 1

p
,p

(∂Ω)
≤ C‖u‖Wm+1,p(Ω), providing an estimate closer in form to (2.10).
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together with the boundary condition

u ·N = 0 on ∂Ω, (2.13)

where N is the unit normal on ∂Ω and u·N ≡ uiN
i. Moreover, there exists a constant

C > 0 depending only on Ω, m,n, p, such that

‖u‖Wm+1,p(Ω) ≤ C‖f‖Wm,p(Ω). (2.14)

(ii) Let f ∈ Wm,p(Ω) be a 1-form with df = 0. Then there exists a 0-form u ∈
Wm+1,p(Ω) such that du = f and u satisfies estimate (2.14).

Proof. Part (i) is a special case of Theorem 7.4 in [5] for 1-forms with zero
boundary conditions. Namely, our assumption df = 0 together with zero boundary
data, (ω0 = 0, following notation in [5]), directly gives condition (C1) of [5, Thm
7.4]. The first equation of condition (C2) of [5, Thm 7.4] follows trivially from our
assumptions, (g = 0 and ω0 = 0 in the notation of [5]). The second equation in (C2),
that

∫
Ω
〈f ; Ψ〉 = 0 for any harmonic form Ψ (i.e. δΨ = 0) with vanishing normal

components (i.e. N ·Ψ = 0) on the boundary (Ψ ∈ HN in the notation of [5]), follows
by application of the integration by parts formula [5, Thm 3.28] for differential forms
to f = dv, ∫

Ω

〈f ; Ψ〉L2 = −
∫
Ω

〈v; δΨ〉L2 +

∫
∂Ω

〈v;N ·Ψ〉 = 0.

Theorem 7.4 in [5] now yields the existence of a solution u ∈ Wm+1,p(Ω) to (2.12) -
(2.13) satisfying estimate (2.14).

Part (ii) of Theorem 2.4, can be thought of as a version of Theorem [5, Thm 7.4],
in the special case of 0-forms, which does not require condition (C2) by abandoning
boundary data. That is, we seek a 0-form u solving the gradient equation du = f
such that estimate (2.14) holds. (No boundary data is required for our purposes). To
begin the proof, observe that a solution u ∈ Wm+1,p(Ω) of du = f , in the case m ≥ 1,
is given by the path integral

u(x) =

∫ x

x0

f · d�r + u0 (2.15)

along any differentiable curve connecting x0 and x, where x0 ∈ Ω is some point we
fix, and the constant u0 is the value of u at x0, which is free to be chosen. Note, since
df = 0, the integral (2.15) is path independent, as can be shown by applying Stokes
Theorem to integration of df over the region enclosed by two curves connecting x0

and x. To prove the sought after estimate we choose u0 such that the average of u is
zero, then Poincaré’s inequality [8, Eqn. (7.45)] implies that ‖u‖Lp(Ω) ≤ C‖f‖Lp(Ω)

for a suitable constant C > 0. Thus, since ‖du‖Lp(Ω) = ‖f‖Lp(Ω) follows directly from
du = f , we have

‖u‖W 1,p(Ω) ≤ C‖f‖Lp(Ω). (2.16)

Estimate (2.14) follows by suitable differentiation of du = f and application of esti-
mate (2.16). Existence of a solution u to du = f in the case m = 0 follows again
from (2.15) by mollifying f , and using that this mollification is controlled by estimate
(2.16). This completes the proof of Theorem 2.4.
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3. Reduction to standard Dirichlet boundary data. To prove Theorem
1.3 we introduce an iteration scheme to construct approximate solutions of the RT-
equations (1.1)-(1.5), introduce a small parameter to handle the nonlinearities, and
apply standard results on elliptic regularity in Lp spaces to obtain convergence to-
gether with the sought after levels of smoothness. One of the main technical issues is
how to handle the non-standard boundary condition (1.5), which is neither standard
Neumann nor Dirichlet data for the PDE (1.2) which determines J . We now intro-
duce a reformulation of the boundary condition (1.5) for the J equation (1.2), (the
only boundary condition specified by the RT-equations), as an equivalent implicit
boundary condition, which has the advantage that it reduces to standard Dirichlet
conditions for J at each level of our iteration scheme introduced in Section 4.2.

So assume (Γ̃, J, A) is a solution of the RT-equations, and write (1.1) - (1.4) using
the following compact notation:

ΔΓ̃ = F̃ (Γ̃, J, A), (3.1)

ΔJ = F (Γ̃, J)−A, (3.2)

d �A = d�F (Γ̃, J) (3.3)

δ �A = v, (3.4)

where �F (Γ̃, J) is the vectorized version of F (Γ̃, J), so that d�F (Γ̃, J) is identical to the
right hand side of (1.3), c.f. the derivation leading to equation (3.40) in [17]. Now
(3.3) implies the consistency condition

d
(
�F (Γ̃, J)− �A

)
= 0,

so that we can solve {
dΨ = �F (Γ̃, J)− �A,

δΨ = 0,
(3.5)

for a vector valued function Ψ, (c.f. Theorem 7.4 in [5]). Let y then be any solution
of

Δy = Ψ. (3.6)

Now we claim that in place of the Poisson equation (1.2) for J with the boundary
condition (1.5), it suffices to solve the boundary value problem5

ΔJ = F (Γ̃, J)−A in Ω, (3.7)

�J = dy on ∂Ω. (3.8)

To see this, observe that

Δdy = dΔy = dΨ = �F − �A = Δ �J, (3.9)

which uses that, after taking vec on both sides of the J-equation (3.7), the opera-
tion vec commutes with Δ on the left hand side (3.7) because the Laplacian acts
component-wise. Thus,

Δ( �J − dy) = 0 in Ω,

�J − dy = 0 on ∂Ω, (3.10)

5Assigning �J on ∂Ω is the same as assigning J on ∂Ω because both contain the same component
functions, and as in theorem 2.2 boundary data is assigned in the sense that �J − dy ∈ W 1,p

0 (Ω).
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which implies by uniqueness of solutions of the Laplace equation that �J = dy in Ω.
Since second derivatives commute, we conclude that

d �J = Curl( �J) = 0 in Ω, (3.11)

on solutions of (3.7) - (3.8), as claimed. The point of using (3.8) in place of (1.5)
is that dy can be determined at the k-th step of an iteration scheme in which the
(k+ 1)-st iterate is determined by (3.7) - (3.8), c.f. Section 4. In this setting, (3.8) is
standard Dirchlet data for J . The equivalence between the boundary conditions (1.5)
and (3.8) is recorded in the following theorem.

Proposition 3.1. Assume J ∈ Wm+1,p(Ω) is invertible, and assume J , Γ̃ ∈
Wm+1,p(Ω) and A ∈ Wm,p(Ω) solve (1.1) - (1.4), where m ≥ 1, p > n. Then the
boundary condition (1.5) holds if and only if

�J = dy on ∂Ω, (3.12)

for some y satisfying (3.6).

Proof. The argument between equations (3.1) and (3.11) proves that the boundary

data (3.12) implies that d �J = 0 holds everywhere in Ω. By Sobolev imbedding (for

p > n), d �J is Hölder continuous on the closure of Ω, (c.f. (2.9) below), so that we

can restrict d �J to the boundary ∂Ω which gives the sought after boundary condition
(1.5).

To prove the inverse implication, assume that (J, Γ̃, A) solves the RT-equations

(1.1) - (1.4) with boundary data (1.5). Lemma 3.7 in [17] then implies that d �J = 0

in Ω so that one can integrate J to some coordinate function y, i.e. dy = �J . Defining
Ψ ≡ Δy, it follows from J solving (3.7) that

dΨ = dΔy = Δdy = Δ �J =
−→
ΔJ

(3.7)
= �F − �A.

Thus Ψ satisfies (3.5), while (3.6) holds by the above definition of Ψ. So restriction of

dy = �J to ∂Ω gives the sought after boundary data (3.12). This completes the proof
of Proposition 3.1.

4. The iteration scheme. In this section we introduce our iteration scheme for
approximating solutions of the RT-equations. We begin by setting up our iteration
scheme in terms of the extended RT-equations (1.1) - (1.4) and (3.5) - (3.6) with
standard Dirichlet data (3.8) in a non-technical way. In Section 4.1, we introduce
a small parameter ε > 0 into the RT-equations, (by smallness of the coordinate
neighborhood), which allows us to estimate the non-linearities on the right hand side
of the RT-equations and prove convergence of the iterates for sufficiently small ε > 0 in
Section 5. In Section 4.2, we introduce our iteration scheme in terms of the ε-rescaled
RT-equations and prove its well-posedness. Throughout the remainder of this paper
we take

v ≡ 0

in (1.4), fixing the freedom to choose v ∈ Wm−1,p(Ω). We assume a given connection
Γ of suitable regularity, defined in a given coordinate system x in an open and bounded
set Ω ⊂ R

n with smooth boundary. To define the iteration by induction, it suffices to
start with given (Γ̃0, J0), show how to construct A1, Γ̃1 and J1 from (Γ̃0, J0). This
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then tells us how to construct (Ak+1, Γ̃k+1, Jk+1) from (Γ̃k, Jk) for each k ≥ 1 by
recursion.

So assume Γ̃k and Jk are given for some k ≥ 0. Define Ak+1 as the solution of{
d �Ak+1 = d�F (Γ̃k, Jk),

δ �Ak+1 = 0,
(4.1)

for Ak+1·N = 0 on ∂Ω, where N is the unit normal vector of ∂Ω which is multiplied to
the matrix Ak+1. Our iteration does not require to assume Ak, since Ak+1 is defined
in terms of Γ̃k and Jk alone. Note, our choice of boundary data in (4.1) and v = 0
was made so that Theorem 2.4 applies to give existence.

To introduce the Dirichlet data for Jk+1, we first define the auxiliary variables
ψk+1 and yk+1, for which we again do not require the previous iterates ψk and yk. So

use the identity d(�F (Γ̃k, Jk)−−−−→
Ak+1) = 0 of (4.1) to solve{

dΨk+1 = �F (Γ̃k, Jk)−−−−→
Ak+1,

δΨk+1 = 0,
(4.2)

and then solve

Δyk+1 = Ψk+1, (4.3)

where for (4.2) and (4.3) any convenient boundary condition can be implemented; we
only require the boundary data for the elliptic estimates (2.10) and (2.11).

Now, define Jk+1 to be the solution of the following standard Dirichlet boundary
problem,

ΔJk+1 = F (Γ̃k, Jk)−−−−→
Ak+1, (4.4)

−−→
Jk+1 = dyk+1 on ∂Ω, (4.5)

and, to obtain Γ̃k+1, solve

ΔΓ̃k+1 = F̃ (Γ̃k, Jk, Ak+1), (4.6)

where the boundary data for Γ̃k+1 is free to be chosen.
The implicit boundary condition (3.12) reduced to (4.5), which is standard Dirich-

let data at each step of the iteration. As in Proposition 3.1, the iterates so defined
imply Curl(Jk+1) = 0 for each k ≥ 0, as proven below in Lemma 4.3 for the iterates of
the rescaled RT-equations. We defined here an iteration scheme for the RT-equations
in terms of solutions of the Dirichlet problem for the linear Poisson equation and
Cauchy-Riemann equations.

4.1. The rescaled equations. We now introduce a small parameter ε > 0 and
derive an ε-rescaled version of the RT-equations, which allows us to handle the non-
linearities. To introduce a small parameter ε, assume the components of Γ are given in
x-coordinates in an open and bounded set Ω ⊂ R

n with smooth boundary, and assume
Γ and dΓ are both bounded in Wm,p(Ω). Let Γ∗ be a connection in x-coordinates
satisfying

‖Γ∗‖Wm,p(Ω) + ‖dΓ∗‖Wm,p(Ω) < C0, (4.7)
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for m ≥ 1 and C0 a fixed constant. Now, we assume without loss of generality that Γ
scales with ε > 0 according to the definition

Γ = εΓ∗. (4.8)

The assumptions (4.7) and (4.8) can be made without loss of generality regarding
the local problem of optimal metric regularity. Namely, given any connection Γ′ ∈
Wm,p(Ω) with dΓ′ bounded inWm,p(Ω), we define Γ∗ as the restriction of Γ′ to the ball
of radius ε with its components transformed as scalars to the ball or radius 1 (which
we take to be Ω), while Γ is taken to be the connection resulting from transforming Γ′

as a connection under the same coordinate transformation, c.f. the proof of Theorem
1.3 in Section 7.

We further assume the scaling ansatz

J = I + ε J∗, Γ̃ = ε Γ̃∗, A = εA∗. (4.9)

Since we only need to prove existence of a solution for our purposes, assumption 4.9
is again made without loss of generality for the problem of optimal metric regularity.
Now, to derive the RT-equations tuned to the ε-scaling, substitute (4.8) and (4.9) into
the RT-equations (1.1) - (1.4) for v ≡ 0 and divide by ε, we then obtain an equivalent
set of equations as recorded in the following lemma.

Lemma 4.1. Let u ≡
(
Γ̃∗

J∗

)
and a ≡ A∗, and define

Fu(u, a) ≡
(

δdΓ∗ − δd
(
J−1·dJ∗)+ d(J−1a)

δΓ∗ + ε δ(J∗·Γ∗)− ε 〈dJ∗; Γ̃∗〉 − a

)
, (4.10)

Fa(u) ≡ −→
div

(
dΓ∗)+ ε

−→
div

(
J∗·dΓ∗)+ ε

−→
div

(
dJ∗ ∧ Γ∗)− ε d

(−−−−−−→〈dJ∗; Γ̃∗〉). (4.11)

Then, substituting (4.8) and (4.9) into the RT-equations (1.1) - (1.4) for v ≡ 0 and
dividing by ε, we obtain the equivalent set of equations

Δu = Fu(u, a), (4.12){
d�a = Fa(u)

δ�a = 0.
(4.13)

Proof. Substituting (4.8) and (4.9) into the RT-equations (1.1) - (1.4) with v ≡ 0,
and dividing by ε, we obtain

ΔΓ̃∗ = δdΓ∗ − δd
(
J−1·dJ∗)+ d(J−1A∗), (4.14)

ΔJ∗ = δ(J ·Γ∗)− ε 〈dJ∗; Γ̃∗〉 −A∗ (4.15)

d �A∗ = ε
−→
div

(
dJ∗ ∧ Γ∗)+−→

div
(
J ·dΓ∗)− ε d

(−−−−−−→〈dJ∗; Γ̃∗〉). (4.16)

δ �A∗ = 0. (4.17)

Now, equations (4.14) - (4.17) together with the definitions of u, a and (4.10) - (4.11)
imply the sought after equations (4.12) - (4.13).

We often refer to (4.12) - (4.13) as the “rescaled RT-equations”. We further
introduce the following useful notation,

FΓ̃(u, a) ≡ δdΓ∗ + da− δd
(
J−1·dJ∗)+ d(J−1a)
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FJ(u) ≡ δΓ∗ + ε δ(J∗·Γ∗)− ε 〈dJ∗; Γ̃∗〉, (4.18)

so that Fu(u, a) = (FΓ̃(u, a), FJ(u)−a) and by equation (3.40) in [17] we have Fa(u) =

d
−→
FJ . The rescaled RT-equations (4.12) - (4.13) can then be written equivalently as

Δu =

(
FΓ̃(u, a)
FJ(u)− a

)
, (4.19){

d�a = d
−−−→
FJ(u)

δ�a = 0.
(4.20)

We use the alternative form (4.19) - (4.20) to set up the iteration scheme below. As
proven in Section 7, Theorem 1.3 now follows from the following theorem, the proof
of which is the topic of Sections 4.2 - 6.

Theorem 4.2. Let Γ∗, dΓ∗ ∈ Wm,p(Ω) satisfy (4.7) and let m ≥ 1, p > n ≥ 2.
Then there exists ε∗ such that, if ε < ε∗, then there exists u ∈ Wm+1,p(Ω) and
a ∈ Wm,p(Ω) which solve the RT-equation (4.12) - (4.13) with boundary data (1.5).

In Section 5 we summarize the proof of Theorem 4.2 which is based on the iteration
scheme in Section 4.2. The details of the proof are postponed to Section 6.

4.2. The Iteration scheme for the rescaled equations. In this section we
define the iteration scheme (uk, ak), k ≥ 0, for approximating solutions of (4.12)-
(4.13), and set up the framework for proving convergence of the scheme in the ap-
propriate Sobolev spaces for ε sufficiently small. Define (uk+1, ak+1) by induction as
follows. Start the induction by assuming

u0 = a0 = 0.

Then, given uk ∈ Wm+1,p(Ω) and ak ∈ Wm,p(Ω) for k ≥ 0, we define ak+1 ∈ Wm,p(Ω)
by solving {

d(−−→ak+1) = Fa(uk),

δ(−−→ak+1) = 0,
(4.21)

with Dirichlet boundary data

ak+1·N = 0, (4.22)

where N is the unit normal on the boundary ∂Ω, and ak+1 is a matrix valued 0-
form. (Our boundary data (4.22) and the equation δ(−−→ak+1) = 0 are chosen so that
the existence theory in [5] applies.) Next, in order to arrange for the non-standard
boundary condition (1.5), we introduce the vector valued 0-form ψk+1 ∈ Wm,p(Ω) as
a solution of

dψk+1 =
−−−−→
FJ(uk)−−−→ak+1, (4.23)

which satisfies the estimate ‖ψk+1‖Wm,p ≤ C‖−−−−→FJ(uk)−−−→ak+1‖Wm−1,p for some constant
C > 0 independent of k, c.f. estimate (2.14) of Theorem 2.4; no boundary data
is required.6 In terms of ψk+1 we next define the vector valued function yk+1 ∈

6Recall that d
−−−−→
FJ (uk) = Fa(uk), as explained below (4.18), which is required for solvability as

explained in the proof of Lemma 4.4 below.
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Wm+2,p(Ω) as the solution of {
Δyk+1 = ψk+1,

yk+1

∣∣
∂Ω

= 0.
(4.24)

The vector valued functions ψk+1 and yk+1 are auxiliary variables which we introduce
to assign standard Dirichlet data for the Poisson equation which defines uk+1 =
(J∗

k+1, Γ̃k+1). Namely, we define uk+1 ∈ Wm+1,p(Ω) as the solution of

Δuk+1 = Fu(uk, ak+1), (4.25)

with Dirichlet boundary data

Γ̃∗
k+1 = 0 on ∂Ω, (4.26)

J∗
k+1 = dyk+1 on ∂Ω. (4.27)

Equations (4.21) - (4.27) define the iteration scheme underlying our existence theory
for the RT-equations. The next lemma shows that the standard Dirichlet data (4.26)
- (4.27) suffices to impose the non-standard boundary condition (1.5) and obtain
integrability of the Jacobian at each step of the iteration.

Lemma 4.3. Any solution uk+1 = (J∗
k+1, Γ̃

∗
k+1) ∈ Wm+1,p(Ω) of (4.25) with

boundary data (4.26) - (4.27) satisfies

d
−−→
J∗
k+1 ≡ Curl(J∗

k+1) = 0 (4.28)

in Ω, which automatically implies the boundary condition (1.5). Then Jk+1 ≡ I +
εJ∗

k+1 is integrable and defines the Jacobian of the coordinate transformation x →
x+ εyk+1(x), where yk+1 is defined in (4.24).

Proof. We compute that

Δ(dyk+1) = d(Δyk+1)
(4.24)
= dψk+1

(4.23)
= FJ(uk)− ak+1

(4.25)
= ΔJ∗

k+1,

which implies that

Δ
(
J∗
k+1 − dyk+1

)
= 0. (4.29)

Now, since J∗
k+1 − dyk+1 vanishes on ∂Ω by (4.27), we conclude that J∗

k+1 = dyk+1 in
Ω. This implies (4.28), and since

d(x+ εyk+1) = I + εJ∗
k+1 = Jk+1,

we conclude that Jk+1 is the Jacobian of the coordinate transformation x → x +
εyk+1(x). This completes the proof.

Our strategy for completing the proof of Theorem 4.2 is to first state the main
technical lemmas in Lemmas 4.4 - 5.2 together with Proposition 5.3 to follow, use
them to prove Theorem 4.2, and postpone the proofs of these lemmas to Sections 6.1
- 6.5. We end this section by stating the first technical lemma which addresses the
well-posedness of the iteration scheme (4.21) - (4.27).
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Lemma 4.4. Assume uk ∈ Wm+1,p(Ω) is given, for m ≥ 1, p > n ≥ 2, and that
ε > 0 satisfies

ε ≤ ε(k) ≡ 1

4CM‖uk‖Wm+1,p

, (4.30)

where CM > 0 is the constant from Morrey’s inequality (2.9). Then there exists
ak+1 ∈ Wm,p(Ω) which solves (4.21) - (4.22), there exists the auxilliary iterates
ψk+1 ∈ Wm,p(Ω) and yk+1 ∈ Wm+2,p(Ω) which solve (4.23) - (4.24), and there exists
uk+1 ∈ Wm+1,p(Ω) which solves (4.25) with boundary data (4.26) - (4.27). Moreover,
these iterates satisfy the elliptic estimates

‖ak+1‖Wm,p(Ω) ≤ Ce ‖Fa(uk)‖Wm−1,p(Ω), (4.31)

‖uk+1‖Wm+1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖Wm−1,p(Ω), (4.32)

and the auxiliary iterates satisfy

‖ψk+1‖Wm,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖Wm−1,p(Ω), (4.33)

‖yk+1‖Wm+2,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖Wm−1,p(Ω), (4.34)

for some constant Ce > 0 depending only on m,n, p and Ω.

The proof of Lemma 4.4, given in Section 6.2, is based solely on the Lp elliptic
estimate (2.10) and Gaffney’s inequality (2.11).

5. Convergence of Iterates and Proof of Theorem 4.2. In this section we
state the main lemmas and propositions required for the proof of Theorem 4.2, and
assuming these, give the proof of Theorem 4.2. Proofs of the supporting lemmas and
propositions are postponed until Section 6 below. The proof of Theorem 4.2 follows
directly from the existence result of Lemma 4.4 together with Proposition 5.3 alone,
the latter providing estimates for the differences between subsequent iterates. The
main steps in the proof of Proposition 5.3 are contained in Lemmas 5.1 and 5.2. To
outline the proof here we state these lemmas in this section, and their proofs are given
in Sections 6.3 - 6.4.

To begin, observe that Lemma 4.4 yields a sequence of iterates (uk, ak)k∈N. In
order to establish convergence of this sequence in Wm+1,p(Ω)×Wm,p(Ω), we require
estimates on the differences

ak ≡ ak − ak−1,

uk ≡ uk − uk−1,
(5.1)

in terms of the corresponding differences of source terms,

Fa(uk) ≡ Fa(uk)− Fa(uk−1),

Fu(uk, ak+1) ≡ Fu(uk, ak+1)− Fu(uk−1, ak).
(5.2)

The next technical lemma provides estimates of (5.1) in terms of (5.2). The proof of
Lemma 5.1 is given in Section 6.3.

Lemma 5.1. Assume 0 < ε ≤ min
(
ε(k), ε(k − 1)

)
, that is, ε satisfies (4.30) in

terms of uk and uk−1. Then

‖Fu(uk, ak+1)‖Wm−1,p ≤ Cu(k)
(
ε ‖uk‖Wm+1,p + ‖ak+1‖Wm,p

)
, (5.3)

‖Fa(uk)‖Wm−1,p ≤ ε Ca(k) ‖uk‖Wm+1,p , (5.4)
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where

Cu(k) ≡ Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p + ‖ak+1‖Wm,p

)
, (5.5)

Ca(k) ≡ Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p

)
, (5.6)

where Cs is a constant that only depends on m,n, p,Ω and the constant C0 of (4.7).

The next lemma establishes the induction step for our proof that the iteration
scheme converges in the appropriate spaces, by bounding Cu and Ca independent of
k for ε > 0 sufficiently small. Recall, C0 is the constant bounding Γ∗ and dΓ∗ in
(4.7) and Ce is the constant introduced in Lemma 4.4. We assume from now on and
without loss of generality that Ce > 1, which allows us to simplify the ε-bound (5.8)
below. The proof of Lemma 5.2 is given in Section 6.4.

Lemma 5.2. Assume the induction hypothesis

‖uk‖Wm+1,p(Ω) ≤ 4C0C
2
e , (5.7)

for some k ∈ N and let Ce > 1. If

ε ≤ ε1 ≡ min
(

1
4C2

eCs(1+2CeC0+4C2
eC0)

, 1
16CMC0C2

e

)
, (5.8)

then 0 < ε1 ≤ ε(k + l) for all l ∈ N, (c.f. (4.30)), and the subsequent iterates satisfy
the bounds

‖ak+l‖Wm,p ≤ 2C0Ce, ∀ l ∈ N, (5.9)

‖uk+l‖Wm+1,p ≤ 4C0C
2
e , ∀ l ∈ N. (5.10)

In Section 6.5, we prove the following proposition, which is based on combining
Lemmas 5.1 and 5.2 together with the elliptic estimates (4.31) - (4.32). This is the
main step needed to prove convergence of the iteration scheme.

Proposition 5.3. Assume the induction hypothesis (5.7) and Ce > 1. If 0 <
ε ≤ ε1, so ε satisfies (5.8), then there exists a constant Cd > 0 such that

‖ak+1‖Wm,p ≤ ε Cd ‖uk‖Wm+1,p , (5.11)

‖uk+1‖Wm+1,p ≤ ε Cd ‖uk‖Wm+1,p , (5.12)

and Cd > 0 depends only on m, n, p, Ω and C0.

At this stage of the argument it is important to note that the auxiliary iterates ψk

and yk are not coupled to the equations for ak and uk, except through the boundary
data (4.27). The only purpose of the auxiliary variables ψk and yk is to impose that
the Jacobian Jk = I + εJ∗

k be curl free in each step of the iteration, and this only
requires that dyk as the boundary data to uk satisfies the estimated

‖yk+1 − yk‖Wm+2,p(Ω) ≤ C‖Fu(uk, ak+1)‖Wm−1,p(Ω),

where C > 0 depends only on m, n, p, Ω; which is established in the proof of Propo-
sition 5.3 below.7

7Convergence of dyk would follow directly from the convergence of ak and uk and could be proven
easily by our methods, but this is not needed for the proof of Theorem 4.2 and is therefore omitted.
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Assuming Lemmas 4.4 - 5.2 and Proposition 5.3, we now prove the following
theorem which gives convergence of the iteration scheme. This directly implies, and
hence completes, the proof of Theorem 4.2.

Theorem 5.4. Let Γ∗, dΓ∗ ∈ Wm,p(Ω) satisfy (4.7) for m ≥ 1, p > n ≥ 2.
Assume ε > 0 satisfies

ε < ε2 ≡ min
(
ε1,

1

Cd

)
, (5.13)

where ε1 is defined in (5.8) and Cd > 0 is the constant in (5.11) - (5.12). Then the
sequence of iterates (uk, ak)k∈N defined by (4.21) - (4.27) converges in Wm+1,p(Ω)×
Wm,p(Ω), and the corresponding limits

u ≡ lim
k→∞

uk ∈ Wm+1,p(Ω),

a ≡ lim
k→∞

ak ∈ Wm,p(Ω),

solve the RT-equations (4.12) - (4.13) with boundary data (1.5).

Proof. Assume Lemma 4.4 and Proposition 5.3 hold. Then, given two iterates
uk, ul ∈ Wm+1,p(Ω), (k ≥ l), estimate (5.12) implies

‖uk − ul‖Wm+1,p ≤
k∑

j=l+1

‖uj‖Wm+1,p ≤
k∑

j=l+1

(εC)j . (5.14)

By (5.13), the above geometric series converges as k → ∞. This implies that (uk)k∈N

is a Cauchy sequence in the Banach space Wm+1,p(Ω). Therefore, (uk)k∈N converges
to some u in Wm+1,p(Ω). Similarly, (5.11) implies

‖ak − al‖Wm,p ≤
k∑

j=l+1

‖aj‖Wm,p ≤
k∑

j=l+1

(εC)j , (5.15)

which in light of (5.13) is also a convergent geometric series. This implies convergence
of (ak)k∈N to some a in Wm,p(Ω).

Now the limit (u, a) solves (4.12) and (4.13) because each term in the equations
(4.21) and (4.25) converge to the corresponding terms in (4.12) and (4.13) in the
Lp-norm on Ω. By Lemma 4.3, (u, a) satisfies the boundary condition (1.5), since
Curl(J∗

k ) = 0 in Ω for all k ∈ N, and this property is maintain under the limit.
Thus the limit satisfies Curl(J∗) = 0 in Ω which implies the sought after boundary
condition (1.5) by restriction to the boundary.

Theorem 5.4 is a refined restatement of Theorem 4.2, so this completes the proof
of Theorem 4.2. It remains to give the proofs of Lemmas 4.4 - 5.2 and Proposition
5.3, which is accomplished in Sections 6.1 - 6.3.

6. Proofs of technical Lemmas and Propositions.

6.1. Estimates on the non-linear sources. In this section we prove the basic
estimates for the non-linear sources on the right hand side of equations (4.13) - (4.12),
which are required for the proofs of Lemmas 4.4 and 5.2. Our main tool is Morrey’s
inequality (2.9), which allows us to bound the supremum norm of (scalar) functions
f ∈ W 1,p(Ω,R) by

‖f‖L∞(Ω) ≤ CM‖f‖W 1,p(Ω), (6.1)
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when p > n. Below, we use (6.1) together with the boundedness of Ω to estimate
Lp-norms of products of functions f ∈ W 1,p(Ω,R) and g ∈ Lp(Ω,R) by

‖fg‖Lp(Ω) ≤ ‖f‖L∞(Ω)‖g‖Lp(Ω) ≤ CM‖f‖W 1,p(Ω)‖g‖Lp(Ω).

In fact, W 1,p(Ω) is closed under multiplication for p > n. That is,

‖fg‖W 1,p(Ω) ≤ ‖fg‖Lp + ‖gDf‖Lp + ‖fDg‖Lp

≤ ‖fg‖Lp + ‖Df‖Lp‖g‖L∞ + ‖Dg‖Lp‖g‖L∞
≤ 3CM‖f‖W 1,p(Ω)‖g‖W 1,p(Ω),

where f, g ∈ W 1,p(Ω,R). Before we derive the basic source estimates in Lemma 6.2,
we establish bounds on the inverse Jacobian for ε > 0 sufficiently small.

Lemma 6.1. Let J = I + εJ∗ for some J∗ ∈ Wm+1,p(Ω), where m ≥ 0 and
p > n. Assume ε > 0 satisfies the bound

ε ≤ 1

2CM‖J∗‖Wm+1,p

, (6.2)

where CM > 0 is the constant from Morrey’s inequality (6.1). Then J is invertible
and there exists a matrix valued 0-form J−∗ ∈ Wm+1,p(Ω) such that

J−1 = I + εJ−∗ (6.3)

and such that

‖J−∗‖Wm+1,p ≤ C− ‖J∗‖Wm+1,p , (6.4)

where C− > 0 is a constant depending only on m,n, p, and Ω.

Note that in our iteration scheme ε ≤ ε(k) always guarantees for (6.2), because
‖J∗

k‖Wm+1,p(Ω) ≤ ‖uk‖Wm+1,p(Ω), c.f. (4.30).

Proof. The ε-bound (6.2) implies that J = I + εJ∗ is invertible, since the
supremum-norm of the Hilbert Schmidt norm of J (taken point-wise) is bounded
below by

‖J‖L∞ = ‖I + εJ∗‖L∞ ≥ ‖I‖L∞ − ε‖J∗‖L∞
(6.1)

≥ 1− ε CM‖J∗‖W 1,p

(6.2)
>

1

2
,

keeping in mind that ‖I‖L∞ = 1. Now, since J ∈ Wm+1,p(Ω) for p > n, Morrey’s
inequality implies that J is Hölder continuous, so J−1 is Hölder continuous as well.
Substituting ansatz (6.3) into JJ−1 = I and solving for J−∗, we obtain that

J−∗ = −J−1J∗, (6.5)

which implies existence and continuity of J−∗.
To prove estimate (6.4), that J−∗ ∈ Wm+1,p(Ω), we proceed by induction in

m ≥ 0. To derive (6.4) in the case m = 0, we first use (6.3) to write (6.5) equivalently
as

J−∗ = −J∗ − εJ−∗J∗.

We now apply Morrey’s inequality (6.1) and the ε-bound (6.2) to estimate

‖J−∗‖L∞ ≤ ‖J∗‖L∞ + ε ‖J∗‖L∞‖J−∗‖L∞
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(6.1)

≤ ‖J∗‖L∞ + ε CM‖J∗‖W 1,p‖J−∗‖L∞
(6.2)

≤ ‖J∗‖L∞ +
1

2
‖J−∗‖L∞ .

Subtraction of the last term gives

‖J−∗‖L∞ ≤ 2‖J∗‖L∞ ≤ 2 CM‖J∗‖W 1,p , (6.6)

where we used Morrey’s inequality (6.1) in the last step. Since Ω is bounded, we
conclude with the estimate

‖J−∗‖Lp ≤ ‖J−∗‖L∞vol(Ω)
(6.6)

≤ 2CMvol(Ω) ‖J∗‖W 1,p , (6.7)

which proves (6.4) for the case m = 0 for C− = 2 vol(Ω)CM .
We now show that J−∗ ∈ W 1,p(Ω) and derive estimate (6.4) for m = 1. To begin,

let Dh denote the difference quotient in xj-direction, (so that Dh(f) converges to ∂jf
as h → 0 for f ∈ W 1,p(Ω)). Now, since

0 = Dh(J
−1J)|x = Dh(J

−1)|x · J(x+ h) + J−1(x) ·Dh(J)|x, (6.8)

we have

Dh(J
−1)|x = −J−1(x) ·Dh(J)|x · J−1(x+ h). (6.9)

The right hand side of (6.9) converges to ∂jf in Lp(Ω) as h → 0, since∥∥J−1
(
Dh(J)− ∂jJ

)
J(·+ h)

∥∥
Lp ≤ ‖J−1‖2L∞

∥∥Dh(J)− ∂jJ
∥∥
Lp

converges to zero as h → 0 by Lp-convergence of Dh(J) to ∂jJ for J ∈ W 1,p(Ω) and
by boundedness of ‖J−1‖L∞ independent of h in light of (6.6). Thus the left hand
side of (6.9) converge in Lp(Ω) and the limit function is indeed the weak derivative
of J−1, which is given explicitly by

∂jJ
−1 = −J−1 · ∂j(J) · J−1. (6.10)

This implies that J−1 ∈ W 1,p(Ω) and, in light of (6.3), J−∗ ∈ W 1,p(Ω).
To derive estimate (6.4) for m = 1, substitute J−1 = I + εJ−∗ on the left hand

side of (6.10) and J = I + εJ∗ on the right hand side, which gives

ε∂jJ
−∗ = εJ−1∂j(J

∗) J−1,

so dividing by ε and substituting J−1 = I + εJ−∗ yields

∂jJ
−∗ = ∂jJ

∗ + ε J−∗∂j(J∗) + ε ∂j(J
∗) J−∗ + ε2J−∗∂j(J∗) J−∗. (6.11)

This leads to the estimate

‖∂jJ−∗‖Lp ≤ (
1 + ε ‖J−∗‖L∞

)2‖∂jJ∗‖Lp

(6.6)

≤ (
1 + 2ε ‖J∗‖L∞

)2‖∂jJ∗‖Lp

(6.1)

≤ (
1 + 2CM ε ‖J∗‖W 1,p

)2‖∂jJ∗‖Lp

(6.2)

≤ 4 ‖∂jJ∗‖Lp ,
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which in combination with (6.7) implies the sought after estimate

‖J−∗‖W 1,p ≤ C−‖J∗‖W 1,p ,

where C− ≡ 4 + vol(Ω)CM . This proves (6.4) in the case m = 1.
To prove the general case, let k ≥ 1, and assume that J ∈ W k+1,p(Ω), J−∗ ∈

W k,p(Ω) and that (6.4) holds for m = k − 1, i.e.,

‖J−∗‖Wk,p ≤ C ′
− ‖J∗‖Wk,p . (6.12)

For the induction step, we need to show that (6.4) holds for k + 1. For this, we take
k-th order derivatives of (6.11) and find that

∂k+1(J−∗) = ∂k+1(J∗) + ε ∂k
(
J−∗∂(J∗) + ∂(J∗) J−∗

)
+ ε2∂k

(
J−∗∂(J∗) J−∗), (6.13)

where ∂k denotes k − th order partial derivatives, not necessarily all in the same
direction. (Note that the right hand side of (6.11) contains no derivatives of J−∗ so
that we do not need to use difference quotients in (6.13).) From (6.13), it follows that
‖∂k+1(J−∗)‖Lp is bounded by ‖∂k+1(J∗)‖Lp , by terms linear in ε which are of the
form

ε‖∂k(J−∗)∂(J∗)‖Lp ≤ ε‖∂k(J−∗)‖Lp‖∂(J∗)‖L∞
(6.12)

≤ C ′
−ε‖(J∗)‖Wk,p‖∂(J∗)‖L∞

(6.2)

≤ C ′
−

1

2CM
‖∂(J∗)‖L∞

(6.1)

≤ 1

2
C ′

−‖J∗‖Wk+1,p ,

or of the form

ε‖J−∗∂k+1(J∗)‖Lp ≤ ε‖J−∗‖L∞‖∂k+1(J∗)‖Lp

(6.6)

≤ ε‖J∗‖L∞‖∂k+1(J∗)‖Lp

(6.1)

≤ ε CM‖(J∗)‖W 1,p‖∂k+1(J∗)‖Lp

(6.2)

≤ 1

2
‖J∗‖Wk+1,p ,

or the more regular terms containing mixed derivatives, and by ε2-term in (6.13) which
can be bounded in a similar fashion. Namely, denoting with L the Lp-norm of terms
not containing the critical derivative ∂kJ−∗, the ε2-term in (6.13) can be estimated
by

ε2‖∂k
(
J−∗∂(J∗) J−∗)‖Lp(Ω)

≤ ε2‖∂kJ−∗‖Lp(Ω)‖∂(J∗)‖L∞(Ω)‖J−∗‖L∞(Ω) + L
(6.1)

≤ ε2C2
M‖∂kJ−∗‖Lp(Ω)‖∂(J∗)‖W 1,p(Ω)‖J−∗‖W 1,p(Ω) + L

(6.12)

≤ ε2C2
M‖J∗‖3Wk,p(Ω) + L

(6.2)

≤ ‖J∗‖Wk,p(Ω) + L,
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while the term L can be estimated similarly by using (6.1), (6.12) and (6.2). In
summary, we showed that

‖∂k+1(J−∗)‖Lp ≤ C−‖J∗‖Wk+1,p(Ω),

from which we conclude that (6.4) holds for k + 1, taking C− as the largest constant
that appears in the above estimates (for m ≥ 1 fixed). Recursion of the above
argument proves (6.4) in the general case m ≥ 1. This completes the proof of Lemma
(6.1).

We now prove the basic estimates for the non-linear source terms on the right
hand side of equations (4.12) - (4.13), which are required for the proofs of Lemmas
4.4 and 5.2.

Lemma 6.2. Let Γ∗, dΓ∗ ∈ Wm,p(Ω) for m ≥ 1 and p > n, bounded by C0 as
in (4.7), and assume u ∈ Wm+1,p(Ω) and a ∈ Wm,p(Ω). Then, if ε > 0 satisfies the
bound (6.2), then there exists a constant Cs > 0 depending only on C0, m, p and Ω,
such that

‖Fu(u, a)‖Wm−1,p ≤ ε Cs

(
1 + ‖a‖Wm,p + ‖u‖Wm+1,p

)‖u‖Wm+1,p

+ C0 + ‖a‖Wm,p (6.14)

‖Fa(u)‖Wm−1,p ≤ C0 + ε Cs

(
1 + ‖u‖Wm+1,p

)‖u‖Wm+1,p . (6.15)

Proof. We focus on proving the lemma in the case m = 1, since higher derivative
estimates for m > 1 then follow by an analogous argument. Note that, because ε > 0
is assumed to satisfy (6.2), Lemma 6.1 applies and yields the existence of the inverse
J−1 = I + εJ−∗ together with the estimate (6.4) on J−∗.

We first derive (6.14) in the case m = 1. From (4.10) we find that

‖Fu(u, a)‖Lp ≤ ‖δdΓ∗‖Lp + ‖δΓ∗‖Lp + ‖a‖Lp + ‖da‖Lp + ε‖δ(J∗·Γ∗)‖Lp

+ ε ‖d(J−∗a)‖Lp + ε‖〈dJ∗; Γ̃∗〉‖Lp + ‖δd(J−1·dJ∗)‖Lp , (6.16)

where we used that d(J−1a) = εd(J−∗a)+da by (6.3). We now estimate the right hand
side term by term. By our incoming assumption (4.7) on the spacetime connection
we have

‖δdΓ∗‖Lp + ‖δΓ∗‖Lp ≤ ‖dΓ∗‖W 1,p + ‖Γ∗‖W 1,p ≤ C0, (6.17)

and clearly we have

‖a‖Lp + ‖da‖Lp ≤ ‖a‖W 1,p . (6.18)

Applying the Leibniz-rule (2.3), we find that

δ(J∗·Γ∗) = 〈dJ∗; Γ∗〉+ J ·δΓ∗,

which leads to the bound

‖δ(J∗·Γ∗)‖Lp ≤ ‖dJ∗‖L∞‖Γ∗‖Lp + ‖J‖L∞‖δΓ∗‖Lp

(6.1)

≤ CM

(
‖dJ∗‖W 1,p‖Γ∗‖Lp + ‖J‖W 1,p‖δΓ∗‖Lp

)
≤ CM‖Γ∗‖W 1,p‖J∗‖W 2,p , (6.19)
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where the Hölder continuity of J∗ ∈ W 2,p(Ω) allowed us to estimate the Lp-norm of
products in terms of the L∞-norm on dJ∗ and J∗, which we further estimated using
Morrey’s inequality (6.1). Similarly, the Hölder continuity of a ∈ W 1,p(Ω) and of J−∗

together with the bound (6.4) on J−∗ lead to

‖d(J−∗a)‖Lp ≤ ‖d(J−∗)‖L∞‖a‖Lp + ‖J−∗‖L∞‖da‖Lp

(6.1)

≤ CM ‖a‖W 1,p

(
‖d(J−∗)‖W 1,p + ‖J−∗‖W 1,p

)
(6.4)

≤ C− CM ‖a‖W 1,p ‖J∗‖W 2,p . (6.20)

In a similar fashion, we obtain

‖〈dJ∗; Γ̃∗〉‖Lp ≤ ‖dJ∗‖Lp‖Γ̃∗‖L∞ ≤ CM ‖J∗‖W 1,p‖Γ̃∗‖W 1,p , (6.21)

where we applied again Morrey’s inequality (6.1). For the last term in (6.16), use the
Leibniz rule (2.4) together with d2 = 0 and formula (6.3) for J−1, to compute

d
(
J−1·dJ∗) = ε dJ−∗ ∧ dJ∗, (6.22)

which leads to the estimate

‖δd(J−1·dJ∗)‖Lp ≤ ε ‖δ(dJ−∗ ∧ dJ∗)‖Lp

≤ ε ‖J−∗‖W 2,p‖dJ∗‖L∞ + ε ‖dJ−∗‖L∞‖J∗‖W 2,p

≤ ε 2C−CM ‖J∗‖W 2,p‖J∗‖W 2,p , (6.23)

where we applied Morrey’s inequality (6.1) together with the bound (6.4) on J−∗ in
the last step. Combing now the estimates (6.17) - (6.23) to bound the right hand side
in (6.16), we obtain the sought after estimate (6.14).

Estimate (6.14) for the general casem ≥ 1 follows by a straightforward adaptation
of the argument (6.16) - (6.23) to the Wm−1,p-norm, using Hölder continuity of m−1-
derivatives of u, a, Γ∗ or dΓ∗ to estimate products in terms of products of the Lp-norm
and the L∞-norm of such derivatives. For instance, estimate (6.23) extends as follows:

‖δd(J−1·dJ∗)‖Wm−1,p

(6.22)

≤ ε ‖δ(dJ−∗ ∧ dJ∗)‖Wm−1,p

(∗)
≤ ε ‖dJ−∗‖Wm,p CM‖dJ∗‖Wm,p + ε CM‖dJ−∗‖Wm,p ‖dJ∗‖Wm,p

(6.4)

≤ ε 2C−CM ‖J∗‖Wm+1,p‖J∗‖Wm+1,p , (6.24)

where in the first term in (∗) results from applying Morrey’s inequality (6.1) to esti-
mate derivatives of order less than m− 1 of dJ∗ (which are Hölder continuous), while
the second term in (∗) results from applying (6.1) to derivatives of order less than
m−1 of dJ−∗. Extending (6.16) - (6.21) analogously to (6.24) proves the sought after
estimate (6.14) for the general case m ≥ 1.

We now prove (6.15) in the case m = 1. From our definition of Fa in (4.11) we
find that

‖Fa(u)‖Lp ≤ ‖−→div(dΓ∗)‖Lp + ε ‖−→div(J∗·dΓ∗)‖Lp

+ ε ‖−→div(dJ∗ ∧ Γ∗)‖Lp + ε ‖d(−−−−−−→〈dJ∗; Γ̃∗〉)‖Lp . (6.25)

We now estimate each term on the right hand side of (6.25) separately. Our incoming
assumption (4.7) immediately gives

‖−→div(dΓ∗)‖Lp ≤ ‖dΓ∗‖W 1,p ≤ C0. (6.26)
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Applying Morrey’s inequality (6.1) to bound the supremum-norm of J∗ and dΓ∗ leads
to

‖−→div(J∗·dΓ∗)‖Lp ≤ ‖J∗‖W 1,p‖dΓ∗‖L∞ + ‖J∗‖L∞‖dΓ∗‖W 1,p

(4.7)

≤ 2CM C0 ‖J∗‖W 1,p

≤ 2CM C0 ‖J∗‖W 2,p . (6.27)

Likewise, using (6.1) to bound the supremum-norm of dJ∗ and Γ∗, we obtain

‖−→div(dJ∗ ∧ Γ∗)‖Lp ≤ ‖dJ∗‖W 1,p‖Γ∗‖L∞ + ‖dJ∗‖L∞‖Γ∗‖W 1,p

(6.1)

≤ CM

(‖dJ∗‖W 1,p‖Γ∗‖W 1,p + ‖dJ∗‖W 1,p‖Γ∗‖W 1,p

)
(4.7)

≤ 2 CM C0 ‖J∗‖W 2,p . (6.28)

Finally, we estimate the non-linear term by

‖d(−−−−−−→〈dJ∗; Γ̃∗〉)‖Lp ≤ ‖dJ∗‖W 1,p‖Γ̃∗‖L∞ + ‖dJ∗‖L∞‖Γ̃∗‖W 1,p

(6.1)

≤ CM

(‖dJ∗‖W 1,p‖Γ̃∗‖W 1,p + ‖dJ∗‖W 1,p‖Γ̃∗‖W 1,p

)
≤ 2 CM‖u‖2W 2,p , (6.29)

recalling that u ≡ (J∗, Γ̃∗). Combing (6.26) - (6.29) to bound the right hand side in
(6.25) we obtain the sought after estimate (6.15) in the case m = 1.

Estimate (6.15) for the general case m ≥ 1 follows by extending (6.25) - (6.29)
to the Wm−1,p-norm in a fashion similar to (6.24). Taking Cs > 0 as the maximum
over all constants in (6.17) - (6.29) and the constants arising from higher derivatives
estimates completes the proof.

6.2. Well-posedness of iteration scheme - Proof of Lemma 4.4. We now
prove Lemma 4.4, which gives well-posedness of the iteration scheme and the basic
elliptic estimates (4.31) - (4.34). For this, assume uk ∈ Wm+1,p(Ω) is given, for
m ≥ 1, p > n ≥ 2, and assume ε satisfies (4.30), that is 0 < ε ≤ ε(k). Lemma
4.4 states that there exists ak+1 ∈ Wm,p(Ω) which solves (4.21) - (4.22), there exists
ψk+1 ∈ Wm,p(Ω) and yk+1 ∈ Wm+2,p(Ω) which solve (4.23) - (4.24), and there exists
uk+1 ∈ Wm+1,p(Ω) which solves (4.25) with boundary data (4.26) - (4.27), and these
solutions satisfy the elliptic estimates (4.31) - (4.34).

Proof of Lemma 4.4. First note that assumption (4.30), that 0 < ε ≤ ε(k) implies
that ε satisfies the bound (6.2), so that the source estimates of Lemma 6.2 apply and
yield Fa(uk) ∈ Wm−1,p(Ω) and Fu(uk, ak+1) ∈ Wm−1,p(Ω).

We begin the proof by proving existence of a solution ak+1 to the first order
system (4.21) - (4.22) by applying Theorem 2.4 (i). For this, first note that the
conditions of Theorem 2.4 (i) are met. In particular, the condition df = 0 of Theorem
2.4 (i) is satisfied by (4.21), since Fa(uk) is the exterior derivative d of a vector valued
differential form, namely,

Fa(u) = d
(−−−−→
δ(J ·Γ))− d

(−−−−→〈dJ ; Γ̃〉), (6.30)

c.f. equation (3.40) in [17]. This shows that (4.21) - (4.22) satisfies the assumption
of Theorem 2.4 (i). Regarding regularity, our incoming assumption uk ∈ Wm+1,p(Ω)
together with the source estimates of Lemma 6.2 show that Fa(uk) ∈ Wm−1,p(Ω).
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We conclude that Theorem 2.4 applies to (4.21) - (4.22) and yields the existence of
a solution ak+1 ∈ Wm,p(Ω). Moreover, by Gaffney’s inequality (2.14), this solution
satisfies

‖�ak+1‖Wm,p(Ω) ≤ C ‖Fa(uk)‖Wm−1,p(Ω),

for some constant C > 0 depending only on Ω, m,n, p, which is the sought after
estimate (4.31); (note that the range of m in Theorem 2.4 starts at m = 0, while here
we assume m ≥ 1).

To prove the existence of a ψk+1 solving dψk+1 =
−−−−→
FJ(uk) − −−→ak+1, i.e., equation

(4.23), we first show the consistency condition that the exterior derivative on the right
hand side of (4.23), interpreted as a vector valued 1-form, vanishes. For this recall

from (4.18) that Fa(u) = d
−→
FJ , so that equation (4.21) for ak+1 implies the sought

after consistency condition

d
(−−−−→
FJ(uk)−−−→ak+1

)
= Fa(u)− d−−→ak+1

(4.21)
= 0. (6.31)

Moreover, the source estimate (6.14) in combination with ak+1 ∈ Wm,p(Ω) imply that−−−−−−−−−→
Fu(uk, ak+1) =

−−−−→
FJ(uk)−−−→ak+1 ∈ Wm−1,p(Ω). Thus, Theorem 2.4 (ii) yields existence

of a vector valued 0-form ψk+1 ∈ Wm,p(Ω) solving (4.23) such that estimate (4.33)
holds,

‖ψk+1‖Wm,p(Ω) ≤ C ‖Fu(uk, ak+1)‖Wm−1,p(Ω),

keeping in mind that Fu(uk, ak+1) = FJ(uk)− ak+1.
The existence of a solution yk+1 ∈ Wm+2,p(Ω) to (4.24) follows from the existence

theorem for the Dirichlet problem of the Poisson equation with Lp sources, Theorem
2.2, keeping in mind that Fu(uk, ak+1) ∈ Wm−1,p(Ω) by Lemma 6.2. We now prove
estimate (4.34). Applying the elliptic estimate (2.10) component-wise, Δyk+1 = ψk+1

and yk+1 = 0 on ∂Ω, c.f. (4.24), we obtain

‖yk+1‖Wm+2,p(Ω) ≤ C ‖ψk+1‖Wm,p(Ω)

(4.33)

≤ C ‖Fu(uk, ak+1)‖Wm−1,p(Ω), (6.32)

where we absorbed the constant from the estimate on ‖ψk+1‖Wm,p into the universal
constant C > 0. This is the sought after estimate (4.34).

Finally, we prove existence of a solution uk+1 ∈ Wm+1,p(Ω) of (4.25) with
boundary data (4.26) - (4.27). Since Fu(uk, ak+1) ∈ Wm−1,p(Ω), existence of a solu-
tion uk+1 ∈ Wm+1,p(Ω) of the Poisson equation (4.25) with the Dirichlet boundary
data (4.26) - (4.27) follows from Theorem 2.2. To prove estimate (4.32), we ap-
ply the basic elliptic estimate (2.10) to Δuk+1 = Fu(uk, ak+1) with Dirichlet data
(Γ̃∗

k+1, J
∗
k+1 − dyk+1) ∈ W 1,p

0 (Ω), and thereby obtain

‖uk+1‖Wm+1,p(Ω) ≤ C
(
‖Fu(uk, ak+1)‖Wm−1,p(Ω) + ‖dyk+1‖Wm+1,p(Ω)

)
. (6.33)

Using estimate (6.32) to bound ‖dyk+1‖Wm+1,p(Ω) in (6.33), we finally obtain

‖uk+1‖Wm+1,p(Ω) ≤ Ce ‖Fu(uk, ak+1)‖Wm−1,p(Ω),

which is the sought after estimate (4.32), where we take Ce as the maximum over all
constants in the above estimates. This completes the proof.
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6.3. Estimates on Differences of Iterates - Proof of Lemma 5.1. We
introduce the notation

Γ̃∗
k ≡ Γ̃∗

k − Γ̃∗
k−1,

J∗
k ≡ J∗

k − J∗
k−1,

so uk = (J∗
k , Γ̃

∗
k). Let J

−1
k be the inverse of Jk ≡ I + εJ∗

k and let J−1
k−1 be the inverse

of Jk−1 ≡ I + εJ∗
k−1, and denote with J−∗

k the matrix valued 0-form that satisfies

J−1
k = I + εJ−∗

k and likewise J−1
k−1 = I + εJ−∗

k−1. We begin by deriving a bound on

J−∗
k ≡ J−∗

k − J−∗
k−1.

Lemma 6.3. Assume uk, uk−1 ∈ Wm+1,p(Ω) for m ≥ 0, p > n, and assume
0 < ε ≤ min

(
ε(k), ε(k − 1)

)
, so ε satisfies (4.30) in terms of uk and uk−1. Then Jk

and Jk−1 are invertible with J−1
k = I + εJ−∗

k ∈ Wm+1,p(Ω) and J−1
k−1 = I + εJ−∗

k−1 ∈
Wm+1,p(Ω), and there exists a constant C ′

− > 0 depending only on m, n, p, Ω, such
that

‖J−∗
k ‖Wm+1,p ≤ C ′

−‖J∗
k‖Wm+1,p . (6.34)

Proof. To begin, note that the ε-bound (4.30), 0 < ε ≤ ε(k), implies that ε satisfies
(6.2) for J∗ = J∗

k , so that Lemma 6.1 implies that Jk is invertible with J−1
k = I+εJ−∗

k

and J−∗
k ∈ Wm+1,p(Ω). Likewise, the ε-bound (4.30) for uk−1 implies that Jk−1 is

invertible with J−1
k−1 = I + εJ−∗

k−1 ∈ Wm+1,p(Ω).

Now, substituting Jk = I + εJ∗
k and J−1

k = I + εJ−∗
k into the identity

0 = JkJ
−1
k − Jk−1J

−1
k−1,

and solving for J−∗
k ≡ J−∗

k − J−∗
k−1, we find after dividing by ε that

J−∗
k = −J∗

k − ε
(
J∗
kJ

−∗
k − J∗

k−1J
−∗
k−1

)
= −J∗

k − ε
(
J∗
k · J−∗

k + J∗
k−1 · J−∗

k

)
. (6.35)

Thus, taking the Lp norm of (6.35) and applying Morrey’s inequality (6.1), gives

∥∥J−∗
k

∥∥
Lp ≤ ∥∥J∗

k

∥∥
Lp + ε

∥∥J∗
kJ

−∗
k

∥∥
Lp + ε

∥∥J∗
k−1J

−∗
k

∥∥
Lp

≤ ∥∥J∗
k

∥∥
Lp + ε

∥∥J∗
k

∥∥
Lp‖J−∗

k ‖L∞ + ε ‖J∗
k−1‖L∞

∥∥J−∗
k

∥∥
Lp

(6.1)

≤ ∥∥J∗
k

∥∥
Lp + ε CM

∥∥J∗
k

∥∥
Lp‖J−∗

k ‖W 1,p + ε CM‖J∗
k−1‖W 1,p

∥∥J−∗
k

∥∥
Lp .

Using for the last term that the ε-bound (4.30) for uk−1 implies that

ε CM‖J∗
k−1‖W 1,p ≤ 1

2
,

we find after subtraction of 1
2

∥∥J−∗
k

∥∥
Lp that

1

2

∥∥J−∗
k

∥∥
Lp ≤ (

1 + ε CM‖J−∗
k ‖W 1,p

)∥∥J∗
k

∥∥
Lp

(6.4)

≤ (
1 + ε C−CM‖J∗

k‖W 1,p

)∥∥J∗
k

∥∥
Lp . (6.36)
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Now, using the ε-bound (4.30) for uk, we find that

ε CM‖J∗
k‖W 1,p ≤ 1

2
,

which in light of (6.36) gives

∥∥J−∗
k

∥∥
Lp ≤ (2CM + C−)

∥∥J∗
k

∥∥
Lp . (6.37)

To prove (6.34) for m = 1, we first differentiate (6.35) and find

∂jJ
−∗
k = −∂jJ∗

k − ε
(
∂jJ∗

k ·J−∗
k + ∂jJ

∗
k−1·J−∗

k + J∗
k ∂jJ

−∗
k + J∗

k−1∂jJ
−∗
k

)
, (6.38)

which implies for the gradient dJ−∗
k the estimate

‖dJ−∗
k ‖Lp ≤ ‖dJ∗

k‖Lp + ε ‖J−∗
k ‖L∞‖J∗

k‖W 1,p + ε ‖J∗
k−1‖W 1,p‖J−∗

k ‖L∞
+ε ‖J−∗

k ‖W 1,p‖J∗
k‖L∞ + ε ‖J∗

k−1‖L∞‖J−∗
k ‖W 1,p ,

where we bounded undifferentiated terms by their L∞-norm and differentiated terms
by their W 1,p-norm. Applying Morrey’s inequality (6.1) we obtain the further esti-
mate

‖dJ−∗
k ‖Lp ≤ ‖dJ∗

k‖Lp + ε 2CM

(
‖J−∗

k ‖W 1,p‖J∗
k‖W 1,p + ‖J∗

k−1‖W 1,p‖J−∗
k ‖W 1,p

)
,

and applying the bound (6.4) on J−∗
k and J−∗

k−1 yields

‖dJ−∗
k ‖Lp ≤ ‖dJ∗

k‖Lp + 2ε CM C−‖J∗
k‖W 1,p‖J∗

k‖W 1,p

+2ε CM‖J∗
k−1‖W 1,p‖J−∗

k ‖W 1,p

so that the ε-bound (4.30) for uk and uk−1 implies

‖dJ−∗
k ‖Lp ≤ ‖dJ∗

k‖Lp +
1

2
C−‖J∗

k‖W 1,p +
1

2
‖J−∗

k ‖W 1,p . (6.39)

Adding ‖J−∗
k ‖Lp to both sides of (6.39) and using estimate (6.37) to bound ‖J−∗

k ‖Lp

on the right hand side, we find

‖J−∗
k ‖W 1,p ≤ 3(CM + C− + 1)‖J∗

k‖W 1,p +
1

2
‖J−∗

k ‖W 1,p .

So subtraction of the second term on the right hand side finally yields

‖J−∗
k ‖W 1,p ≤ 6(CM + C− + 1)‖J∗

k‖W 1,p ,

which is the sought after bound (6.34) for m = 1 and C ′
− = 6(CM + C− + 1).

To derive (6.34) for m ≥ 2, we proceed by induction. For this, assume (6.34)
holds for some 1 ≤ l ≤ m, i.e.

‖J−∗
k ‖W l,p ≤ C ′

−‖J∗
k‖W l,p , (6.40)

and assume J−1
k = I + εJ−∗

k ∈ Wm+1,p(Ω) and J−1
k−1 = I + εJ−∗

k−1 ∈ Wm+1,p(Ω),
(c.f. Lemma 6.1). We need to show that (6.40) holds for l + 1. For this, denote
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with ∂l+1 a combination of partial derivatives of l+1-st order (not necessarily in the
same direction), i.e. ∂l+1 denotes partial differentiation corresponding to a specific
multi-index. Now, taking ∂l+1 of (6.35), we obtain

∂l+1J−∗
k = −∂l+1J∗

k − ε ∂l+1
(
J∗
k · J−∗

k

)− ε ∂l+1
(
J∗
k−1 · J−∗

k

)
,

which gives the estimate

‖∂l+1J−∗
k ‖Lp ≤ ‖∂l+1J∗

k‖Lp + ε‖∂l+1
(
J∗
k ·J−∗

k

)‖Lp + ε‖∂l+1
(
J∗
k−1·J−∗

k

)‖Lp . (6.41)

The first term on the right hand side is bounded by the W l+1,p-norm of J∗
k . Using

Morrey’s inequality (6.1) to estimate product terms and using (6.4) to bound the
W l+1,p-norm of J−∗

k , we estimate the second term on the right hand side of (6.41) by

ε ‖∂l+1
(
J∗
k · J−∗

k

)‖Lp

(6.1)

≤ εCM (l + 1)! ‖J∗
k‖W l+1,p‖J−∗

k ‖W l+1,p

(6.4)

≤ εCMC− (l + 1)! ‖J∗
k‖W l+1,p‖J∗

k‖W l+1,p

(4.30)

≤ C− (l + 1)! ‖J∗
k‖W l+1,p , (6.42)

where the factor (l + 1)! takes account for repeated lower derivative terms resulting
form the product rule on the left hand side and is non-optimal. Similarly, using in
addition the induction assumption (6.40), we obtain

ε‖∂l+1
(
J∗
k−1 · J−∗

k

)‖Lp

(∗)
≤ εCM (l + 1)! ‖J∗

k−1‖W l+1,p‖J−∗
k ‖W l,p + ε‖J∗

k−1‖L∞‖∂l+1J−∗
k ‖Lp

(6.1)

≤ εCM (l + 1)! ‖J∗
k−1‖W l+1,p‖J−∗

k ‖W l,p + εCM‖J∗
k−1‖W 1,p‖∂l+1J−∗

k ‖Lp

(4.30)

≤ (l + 1)! ‖J−∗
k ‖W l,p +

1

2
‖∂l+1J−∗

k ‖Lp

(6.40)

≤ (l + 1)!C ′
− ‖J∗

k‖W l,p +
1

2
‖∂l+1J−∗

k ‖Lp (6.43)

where the second term in (∗) results form the contribution of (l+1)-st order derivatives

on J−∗
k . Now, estimating the right hand side in (6.41) by (6.42) and (6.43), we find

‖∂l+1J−∗
k ‖Lp ≤ ‖J∗

k‖W l+1,p + 2C− (l + 1)! ‖J∗
k‖W l+1,p +

1

2
‖∂l+1J−∗

k ‖Lp

so that subtraction of the last term yields

‖∂l+1J−∗
k ‖Lp ≤ 2‖J∗

k‖W l+1,p + 4C− (l + 1)! ‖J∗
k‖W l+1,p . (6.44)

Repeating the argument (6.41) - (6.44) for each multi-index ∂l+1 gives a suitable
estimate on the Lp-norm of all combinations of (l + 1)-st order derivatives. Adding

then the W l,p-norm of J−∗
k to both sides of that estimate, and applying the induction

assumption (6.40) to bound the W l,p-norm of J−∗
k on the resulting right hand side,

the sought after estimate (6.34) for l + 1 follows. This completes the induction and
the proof of Lemma 6.3.
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Proof of Lemma 5.1. We now estimate the difference of the source functions and
thereby prove Lemma 5.1, which states that, if

0 < ε ≤ min
(
ε(k), ε(k − 1)

)
,

(that is, (4.30) holds), then there exists a constant Cs > 0 depending only onm,n, p,Ω
and C0 > 0, such that (5.3) - (5.4) hold, i.e.

‖Fu(uk, ak+1)‖Wm−1,p ≤ Cu(k)
(
ε ‖uk‖Wm+1,p + ‖ak+1‖Wm,p

)
,

‖Fa(uk)‖Wm−1,p ≤ ε Ca(k) ‖uk‖Wm+1,p ,

where

Cu(k) ≡ Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p + ‖ak+1‖Wm,p

)
,

Ca(k) ≡ Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p

)
.

We only prove Lemma 5.1 for the critical case m = 1, since the cases m ≥ 2
follow by an analogous reasoning, (see also (6.24) for an example of extending source
estimate to higher derivatives). Note that, because ε > 0 is assumed to satisfy (4.30),

Lemma 6.3 applies and gives estimate (6.4) on J−∗
k .

We begin by proving (5.4). From the definition of Fa in (4.11), using that the
source term dΓ∗ cancels out in Fa(uk), we obtain

∥∥Fa(uk)
∥∥
Lp ≤ ε

∥∥−→div(dJ∗
k ∧Γ∗)∥∥

Lp +ε
∥∥−→div(J∗

k ·dΓ∗)∥∥
Lp +ε

∥∥d(−−−−−−→〈dJ∗
k ; Γ̃

∗
k〉
)∥∥

Lp . (6.45)

We estimate the linear terms using Morrey’s inequality (6.1) and resulting Hölder
continuity, and obtain∥∥−→div(dJ∗

k ∧ Γ∗)∥∥
Lp ≤ ‖dJ∗

k‖W 1,p‖Γ∗‖L∞ + ‖dJ∗
k‖L∞‖Γ∗‖W 1,p

(6.1)

≤ CM ‖J∗
k‖W 2,p‖Γ∗‖W 1,p

(4.7)

≤ CM C0 ‖uk‖W 2,p (6.46)

and ∥∥−→div(J∗
k ·dΓ∗)∥∥

Lp ≤ ‖J∗
k‖W 1,p‖dΓ∗‖L∞ + ‖J∗

k‖L∞‖dΓ∗‖W 1,p

(6.1)

≤ CM ‖J∗
k‖W 1,p‖dΓ∗‖W 1,p

(4.7)

≤ CM C0 ‖uk‖W 2,p . (6.47)

For the non-linear term we first compute

d
(−−−−−−→〈dJ∗

k ; Γ̃
∗
k〉
)
= d

(−−−−−−−−−−−−−→〈d(J∗
k − J∗

k−1); Γ̃
∗
k〉
)
+ d

(−−−−−−−−−−−−−−−→〈dJ∗
k−1; (Γ̃

∗
k − Γ̃∗

k−1)〉
)

= d
(−−−−−−→〈dJ∗

k ; Γ̃
∗
k〉
)
+ d

(−−−−−−−−→〈dJ∗
k−1; Γ̃

∗
k〉
)

and then estimate∥∥d(−−−−−−→〈dJ∗
k ; Γ̃

∗
k〉
)∥∥

Lp ≤ ‖dJ∗
k‖W 1,p‖Γ̃∗

k‖L∞ + ‖dJ∗
k‖L∞‖Γ̃∗

k‖W 1,p

(6.1)

≤ CM ‖Γ̃∗
k‖W 1,p‖J∗

k‖W 2,p ,
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∥∥d(−−−−−−−−→〈dJ∗
k−1; Γ̃

∗
k〉
)∥∥

Lp ≤ ‖dJ∗
k−1‖W 1,p‖Γ̃∗

k‖L∞ + ‖dJ∗
k−1‖L∞‖Γ̃∗

k‖W 1,p

(6.1)

≤ CM ‖J∗
k−1‖W 2,p‖Γ̃∗

k‖W 1,p ,

which combined yields

∥∥d(−−−−−−→〈dJ∗
k ; Γ̃

∗
k〉
)∥∥

Lp ≤ CM

(
2C0 + ‖uk−1‖W 2,p + ‖uk‖W 2,p

)‖uk‖W 2,p . (6.48)

Combining (6.46) - (6.48) with (6.45) yields the sought after bound (5.4).
We now prove (5.3). From definition (4.10), using that the source terms δdΓ∗ and

δΓ∗ cancel and substituting d(J−1
k ak) = dak + εd(J−∗

k ak), we find that

‖Fu(uk, ak+1)‖Lp ≤ ‖ak+1‖W 1,p + ε ‖δ(J∗
k ·Γ∗)‖Lp + ε ‖d(J−∗

k ak+1)‖Lp

+ε ‖〈dJ∗
k ; Γ̃

∗
k〉‖Lp + ε ‖δd(J−∗

k ·dJ∗
k

)‖Lp , (6.49)

where we used for the last term that d2 = 0 gives

d
(
J−1
k ·dJ∗

k

)
= ε d

(
J−∗
k ·dJ∗

k

)
.

Now, for the linear term in (6.49) we obtain

‖δ(J∗
k ·Γ∗)‖Lp ≤ ‖J∗

k‖W 1,p‖Γ∗‖L∞ + ‖J∗
k‖L∞‖Γ∗‖W 1,p

(6.1)

≤ CM ‖J∗
k‖W 1,p‖Γ∗‖W 1,p

(4.7)

≤ CM C0 ‖uk‖W 1,p . (6.50)

For the first non-linear term we compute

J−∗
k · ak+1 = J−∗

k · ak+1 + J−∗
k−1 · ak+1,

so that

d(J−∗
k · ak+1) = d(J−∗

k ) · ak+1 + J−∗
k · dak+1 + d(J−∗

k−1) · ak+1 + J−∗
k−1 · d(ak+1),

from which we obtain the estimate

‖d(J−∗
k ak+1)‖Lp ≤‖d(J−∗

k ) · ak+1‖Lp + ‖J−∗
k · d(ak+1)‖Lp

+ ‖d(J−∗
k−1) · ak+1‖Lp + ‖J−∗

k−1 · d(ak+1)‖Lp

≤‖d(J−∗
k )‖Lp‖ak+1‖L∞ + ‖J−∗

k ‖L∞‖d(ak+1)‖Lp

+ ‖d(J−∗
k−1)‖Lp‖ak+1‖L∞ + ‖J−∗

k−1‖L∞‖d(ak+1)‖Lp , (6.51)

so that Morrey’s inequality (6.1) and (6.34), (the bound on J−1
k ), yield

‖d(J−∗
k ak+1)‖Lp

(6.1)

≤ CM

(‖J−∗
k ‖W 1,p‖ak+1‖W 1,p + ‖J−∗

k−1‖W 1,p‖ak+1‖W 1,p

)
(6.34)

≤ CM

(‖J∗
k‖W 1,p‖ak+1‖W 1,p + C ‖J∗

k−1‖W 1,p‖ak+1‖W 1,p

)
≤ CM

(‖ak+1‖W 1,p + C‖uk−1‖W 1,p

)(‖uk‖W 1,p + ‖ak+1‖W 1,p

)
. (6.52)
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For the second non-linear term, similar to the argument leading to (6.48), we first
compute

〈dJ∗
k ; Γ̃

∗
k〉 = 〈dJ∗

k ; Γ̃
∗
k〉+ 〈dJ∗

k−1; Γ̃
∗
k〉

and then estimate

‖〈dJ∗
k ; Γ̃

∗
k〉‖Lp

(6.1)

≤ CM

(‖J∗
k‖W 1,p‖Γ̃∗

k‖W 1,p + ‖J∗
k−1‖W 1,p‖Γ̃∗

k‖W 1,p

)
≤ CM

(‖uk‖W 1,p + ‖uk−1‖W 1,p

)‖uk‖W 1,p . (6.53)

For the last non-linear term we first compute

J−∗
k ·dJ∗

k = J−∗
k · dJ∗

k + J−∗
k−1 · dJ∗

k ,

so that the Leibniz rule (2.4) and d2 = 0 yield

d
(
J−∗
k ·dJ∗

k

)
= dJ−∗

k ∧ dJ∗
k + dJ−∗

k−1 ∧ dJ∗
k .

From this, we obtain the (higher derivative) estimate

‖δd(J−∗
k ·dJ∗

k

)‖Lp ≤ ‖dJ−∗
k ‖W 1,p‖dJ∗

k‖L∞ + ‖dJ−∗
k ‖L∞‖dJ∗

k‖W 1,p

+‖dJ−∗
k−1‖L∞‖dJ∗

k‖W 1,p + ‖dJ−∗
k−1‖W 1,p‖dJ∗

k‖L∞
(6.1)

≤ 2CM

(‖dJ−∗
k ‖W 1,p‖dJ∗

k‖W 1,p + ‖dJ−∗
k−1‖W 1,p‖dJ∗

k‖W 1,p

)
≤ 2CM

(‖J−∗
k ‖W 2,p‖J∗

k‖W 2,p + C ‖J−∗
k−1‖W 2,p‖J∗

k‖W 2,p

)
(6.34)

≤ 2CMC
(‖J∗

k‖W 2,p + ‖J∗
k−1‖W 2,p

)‖J∗
k‖W 2,p

≤ 2CMC
(‖uk‖W 2,p + ‖uk−1‖W 2,p

)‖uk‖W 2,p . (6.54)

Combining (6.50) - (6.54) with (6.49) yields the sought after estimate (5.3). Taking
Cs > 0 as the maximum over all constants (6.45) - (6.54) and the constant in (6.15)
and (6.14), completes the proof of Lemma 5.1.

6.4. Consistency of Induction Assumption - Proof of Lemma 5.2. We
now prove Lemma 5.2, which shows that the induction assumption (5.7) is maintained
in each step of the iteration. Lemma 5.2 states that, if

0 < ε ≤ ε1,

i.e. (5.8) holds, and if the induction assumption (5.7) holds, namely

‖uk‖Wm+1,p(Ω) ≤ 4C0C
2
e ,

then (5.9) - (5.10) holds, that is,

‖ak+l‖Wm,p ≤ 2C0Ce, (6.55)

‖uk+l‖Wm+1,p ≤ 4C0C
2
e , (6.56)

for all l ∈ N, and the induction assumption (5.7) holds for each subsequent iterate.

Proof. To begin observe that the ε-bound (5.8), i.e.

0 < ε ≤ ε1 ≡ min
(

1
4C2

eCs(1+2CeC0+4C2
eC0)

, 1
16CMC0C2

e

)
,
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together with the induction assumption (5.7) imply

ε ≤ 1

4CM · 4C0C2
e

(5.7)

≤ 1

4CM‖uk‖Wm+1,p(Ω)
= ε(k), (6.57)

which is the ε bound (4.30) of Lemma 4.4, so that existence of iterates and the elliptic
estimates (4.31) - (4.32) hold. Moreover, since ‖J∗

k‖Wm+1,p(Ω) ≤ ‖uk‖Wm+1,p(Ω), (6.57)
implies that

ε ≤ ε(k) ≤ 1

2CM‖J∗
k‖Wm+1,p(Ω)

, (6.58)

which is the ε-bound (6.2) of Lemma 6.2 in terms of J∗ = J∗
k . Thus the source

estimates (6.14) - (6.15) of Lemma 6.2 apply and yield that the right hand sides of
the elliptic estimates (4.31) - (4.32) are indeed finite.

We now derive the uniform bound (6.55). From the elliptic estimate (4.31) to-
gether with the source estimate (6.15), we find that

‖ak+1‖Wm,p

(4.31)

≤ Ce‖Fa(uk)‖Wm−1,p

(6.15)

≤ Ce

(
C0 + ε Cs(1 + ‖uk‖Wm+1,p)‖uk‖Wm+1,p

)
,

so application of the induction assumption (5.7) gives

‖ak+1‖Wm,p ≤ CeC0 + ε 4C2
eCs

(
1 + 4C2

eC0

)
CeC0. (6.59)

Now, by the ε-bound (5.8), we have

ε ≤ 1

4C2
eCs(1 + 2CeC0 + 4C2

eC0)
≤ 1

4C2
eCs(1 + 4C2

eC0)
,

so that substituting the above ε-bound into (6.59) yields

‖ak+1‖Wm,p ≤ 2C0Ce,

which is the sought after bound (6.55) for l = 1.
We now derive (5.10). From the elliptic estimate (4.32) together with the source

estimate (6.14), we obtain that

‖uk+1‖Wm+1,p

(4.32)

≤ Ce‖Fu(uk, ak+1)‖Wm−1,p

(6.14)

≤ CeC0 + Ce‖ak+1‖Wm,p

+ ε CeCs

(
1 + ‖ak+1‖Wm,p + ‖uk‖Wm+1,p

)‖uk‖Wm+1,p

(5.7)

≤ CeC0 + 2C2
eC0 + ε 4C2

eCs

(
1 + 2CeC0 + 4C2

eC0

)
CeC0, (6.60)

where we substituted ‖ak+1‖Wm,p ≤ 2CeC0 and the induction assumption
‖uk‖Wm+1,p ≤ 4C0C

2
e to obtain the last inequality. By (5.8), we have

ε ≤ 1

4C2
eCs(1 + 2CeC0 + 4C2

eC0)
,
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so that applying the above bound to ε in (6.60) gives

‖uk+1‖Wm+1,p ≤ 2C0Ce(1 + Ce) ≤ 4C0C
2
e ,

where the last inequality holds since we chose Ce > 1 initially. This is the sought
after bound (6.56) for l = 1.

The bound ε ≤ ε(k + l) for l ∈ N together with (6.55) and (6.56) for l ∈ N follow
now recursively, which completes the proof of Lemma 5.2.

6.5. Decay of the difference of iterates - Proof of Proposition 5.3. We
now prove Proposition 5.3, which completes the proof of Theorem 5.4. Proposition
5.3 states that, if 0 < ε ≤ ε1, (i.e. (5.8) holds), then there exists a constant Cd > 0
depending only on m, n, p, Ω such that (5.11) and (5.12) hold, i.e.,

‖ak+1‖Wm,p ≤ ε Cd ‖uk‖Wm+1,p ,
‖uk+1‖Wm+1,p ≤ ε Cd ‖uk‖Wm+1,p .

Proof of Proposition 5.3. We first establish estimate (5.11) on ‖ak+1‖Wm,p . By
linearity of the Laplacian it is straightforward to extend the elliptic estimate (4.31)
to ak+1 and obtain

‖ak+1‖Wm,p ≤ Ce‖Fa(uk)‖Wm−1,p ,

for the same constant Ce > 0 as in (4.31). Applying the non-linear source estimate
(5.4), we further find that

‖ak+1‖Wm,p ≤ ε CeCa(k) ‖uk‖Wm+1,p , (6.61)

where Ca(k) is defined in (5.6) as

Ca(k) = Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p

)
. (6.62)

Applying the induction hypothesis (5.7) we bound Ca(k) by

Ca(k) ≤ Cs

(
1 + 8C0C

2
e

)
, (6.63)

which in combination with (6.61) implies the sought after estimate (5.11).
We now prove estimate (5.12) on ‖uk+1‖Wm+1,p . By linearity of the Laplacian,

the elliptic estimate (4.32) extends to uk+1,

‖uk+1‖Wm+1,p ≤ Ce

(
‖Fu(uk, ak+1)‖Wm−1,p + ‖dyk+1‖Wm+1,p

)
,

where we substituted the boundary conditions (4.26) - (4.27) for the second term
which we bound further by ‖yk+1‖Wm+2,p ; (all norms are taken over Ω). The source
estimate (5.3) now implies

‖uk+1‖Wm+1,p ≤ Ce

(
Cu(k)

(
ε ‖uk‖Wm+1,p + ‖ak+1‖Wm,p

)
+ ‖yk+1‖Wm+2,p

)
, (6.64)

where Cu(k) is defined in (5.5) as

Cu(k) = Cs

(
1 + ‖uk‖Wm+1,p + ‖uk−1‖Wm+1,p + ‖ak+1‖Wm,p

)
.
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Using now induction assumption (5.7) together with ‖ak+1‖Wm,p ≤ 2C0Cs, the bound
from Lemma 5.2, we obtain the uniform bound

Cu(k) ≤ Cs

(
1 + 8C0C

2
e + 2C0Ce

)
. (6.65)

Substituting (6.65) together with estimate (5.11) on ‖ak+1‖Wm,p in (6.64) gives us

‖uk+1‖Wm+1,p ≤ εC‖uk‖Wm+1,p + Ce ‖yk+1‖Wm+2,p(Ω). (6.66)

It remains to estimate the second term in (6.66). For this, observe that by linearity
of the Laplacian, (4.24) implies that yk+1 solves{

Δyk+1 = ψk+1,

yk+1

∣∣
∂Ω

= 0,
(6.67)

so that the elliptic estimate (2.10) yields

‖yk+1‖Wm+2,p(Ω) ≤ Ce‖ψk+1‖Wm,p(Ω). (6.68)

Since the elliptic estimate (4.33) extends to ψk+1, we can bound the right hand side
in (6.68) and find

‖yk+1‖Wm+2,p(Ω)

(4.33)

≤ C2
e‖Fu(uk, ak+1)‖Wm−1,p(Ω)

(5.3)

≤ C2
eCu(k)

(
ε ‖uk‖Wm+1,p + ‖ak+1‖Wm,p

)
. (6.69)

Substituting (6.69) back into (6.67), and bounding Cu(k) by (6.65) and ‖ak+1‖Wm,p

by (5.11), we obtain

‖yk+1‖Wm+2,p(Ω) ≤ ε C ‖uk‖Wm+1,p(Ω), (6.70)

for some suitable constant C > 0. Finally, using (6.70) to estimate the second term
in (6.66), we obtain for some suitable constant Cd > 0 that

‖uk+1‖Wm+1,p(Ω) ≤ ε Cd ‖uk‖Wm+1,p(Ω),

which is the sought after estimate (5.12). This completes the proof.

7. Proof of Theorem 1.3. The proofs in Sections 6.1 - 6.5 complete the proof of
Theorem 5.4. We now prove our main theorem regarding existence of solutions of the
RT-equations (1.1) - (1.5), Theorem 1.3, which follows from Theorem 5.4 together
with a rescaling argument to arrange for the smallness assumption (4.8), that is,
Γ = ε Γ∗, and the uniform bound (4.7), i.e.

‖Γ∗‖Wm,p(Ω) + ‖dΓ∗‖Wm,p(Ω) < C0,

which are the incoming assumptions of Theorem 5.4. In more detail, given any con-
nection Γ′ ∈ Wm,p(Ω) with dΓ′ bounded in Wm,p(Ω), we define Γ∗ as the restriction
of Γ′ to the ball of radius ε, but with its components transformed as scalars to the ball
or radius 1 (which we take to be Ω), while Γ is taken to be the connection resulting
from transforming Γ′ as a connection. The proof below shows that this construction
suffices to arrange for assumptions (4.7) and (4.8).
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Proof of Theorem 1.3. By Theorem 5.4, for any connection Γ satisfying (4.8) for
ε < min(ε1, ε2) together with the Wm,p-bound (4.7), there exists (Γ̃∗, J∗, A∗) which
solve the rescaled RT-equations (4.12) - (4.13) with boundary data (1.5). Defining
(Γ̃, J, A) by (4.9) as

J = I + ε J∗, Γ̃ = ε Γ̃∗, A = εA∗,

Lemma 4.1 implies that (Γ̃, J, A) solves the RT-equations (1.1) - (1.4) with boundary
data (1.5). It remains to show that, for any connection Γ ∈ Wm,p(Ω) with dΓ ∈
Wm,p(Ω), one can arrange for the hypotheses of Theorem 4.2, that is, the scaling
Γ = ε Γ∗ together with the uniform bound (4.7) on Γ∗ as well as the ε-bounds (5.8)
and (5.13), i.e., ε < min(ε1, ε2).

We now show that, given a connection Γ ∈ Wm,p(Ω) with dΓ ∈ Wm,p(Ω), one
can first restrict Γ to a small region and then scale the restriction of Γ to a large
region (which we take to be Ω) such that the resulting Γ satisfies the hypotheses of
Theorem 4.2. For this, we assume without loss of generality that Ω ≡ B1(0) is the
ball of radius 1 and we denote with Bε(0) the ball of radius ε, for 0 < ε ≤ 1. Under a
coordinate transformation x → y ≡ εx, (which maps B1(0) in x-coordinates to Bε(0)
in y-coordinates), a connection Γ(y) given in y-coordinates transforms as [10, 25]

Γ(x)σμν =
∂xσ

∂yγ

(∂yα
∂xμ

∂yβ

∂xν
Γ(y)γαβ +

∂2yγ

∂xμ∂xν

)
which for the transformation x → y ≡ εx reduces to the scaling

Γ(x)σμν = ε Γ(y)σμν . (7.1)

We now arrange for conditions (4.7) and (4.8) on Ω = B1(0) in x-coordinates
and we assume that the connection Γ we start with is given in coordinates y on Ω.
For this, take Γ(y) to be the restriction of Γ to Bε(0) in y-coordinate, and define
Γ∗(x) ≡ Γ(y(x)). That is, Γ∗ is the connection Γ(y) in x-coordinates, defined on
Ω ≡ B1(0), but with the components of Γ(y) transformed as scalar functions—not
as connection components. Moreover, the connection Γ(x) that results from trans-
forming the restriction of Γ to Bε(0) in y-coordinate to x-coordinates according to
the connection transformation law (7.1) satisfies the sought after scaling (4.8). Thus,
taking Γ(x) as the (initial) connection assumed in Theorem 5.4, we only need to show
that Γ∗ satisfies the uniform Wm,p-bound (4.7) in order to verify the hypotheses of
Theorem 5.4.

To show that Γ∗ satisfies (4.7) for the case m = 1, we now study the ε-scaling
of the W 1,p-norm when the ball of radius ε is scaled up to the unit ball. For this,
let u ∈ W 1,p(Bε(0)) be a scalar function, p > n. By Morrey’s inequality (2.9), u is
Hölder continuous, so the Lp-norm of u scales as

‖u‖Lp(Bε(0)) ≤ ‖u‖L∞vol(Bε(0))

≤ ‖u‖L∞vol(B1(0)) ε
n
p = o

(
ε

n
p
)
, (7.2)

while we have by assumption

‖Du‖Lp(Bε(0)) = o(1), (7.3)

i.e., bounded by a constant and tending to zero as ε → 0. Now under the transfor-
mation y → x = y

ε , (which maps the ball of radius ε > 0 in y-coordinates to the unit
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ball in x-coordinate), we have

‖u‖Lp(B1(0)) = ε−
n
p ‖u‖Lp(Bε(0))

(7.2)

≤ vol(B1(0))‖u‖L∞ , (7.4)

and, since the scaling of first order derivatives cancels the scaling of the measure on
R

n within an error of order εα, for α ≡ 1− n
p > 0, we further have

‖Du‖Lp(B1(0)) =
(∫

B1(0)

|Dxu|pdx
) 1

p

=
(∫

B1(0)

εp|Dεxu(x)|pε−nd(εx)
) 1

p

= ε
p−n
p ‖Dyu‖Lp(Bε(0))

≤ ‖Dyu‖Lp(Bε(0)), (7.5)

for all 0 < ε ≤ 1, where Dx denotes differentiation with respect to x. Combining (7.4)
- (7.5) we obtain

‖u‖W 1,p(B1(0)) ≤ C
(‖u‖L∞ + ‖Dyu‖Lp(Bε(0))

)
, (7.6)

where C > 0 is a constant independent of ε.
Applying now (7.6) to Γ∗ component-wise, we find for Γ∗(x) = Γ(y(x)), where

x ∈ Ω = B1(0), that

‖Γ∗‖W 1,p(Ω) = ‖Γ(y(·))‖W 1,p(B1(0))

(7.6)

≤ C
(‖Γ(y)‖L∞ + ‖DyΓ(y)‖Lp(Bε(0))

)
where ‖Γ(y)‖L∞ is the supremum of Γ in y-coordinates over Bε(0), so that we can
bound the right hand side further by taking the supremum and Lp-norm over Ω,
namely,

‖Γ∗‖W 1,p(Ω) ≤ C
(‖Γ(y)‖L∞(Ω) + ‖DyΓ(y)‖Lp(Ω)

)
(6.1)

≤ 2CCM‖Γ(y)‖W 1,p(Ω), (7.7)

by Morrey’s inequality. Defining now C0 in terms of the initial connection in y-
coordinates as

C0 ≡ 2CCM

(‖Γ(y)‖W 1,p(Ω) + ‖dΓ(y)‖W 1,p(Ω)

)
, (7.8)

which is independent of ε, (7.7) implies that

‖Γ∗‖W 1,p(Ω) ≤ C0.

Likewise, applying (7.6) component-wise to dΓ∗, we obtain

‖dΓ∗‖W 1,p(Ω) ≤ ‖dΓ‖W 1,p(Ω) ≤ C0. (7.9)

Combining (7.7) with (7.9) gives the sought after bound (4.7) for m = 1.
The general case m ≥ 1, follows similarly by applying (7.6) component-wise to

higher derivatives, ∂lΓ∗ and ∂l(dΓ∗) for l = 0, ...,m− 1, (keeping in mind that these
terms are Hölder continuous, where ∂l shall be understood as standard multi-index
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notation), and defining C0 in (7.8) in terms of the Wm,p-norm of Γ and dΓ. To
summarize, we proved that one can always arrange for the smallness assumption (4.8)
- (4.7) required in Theorem 5.4, by first restricting a given connection to a ball of
radius ε, and taking the transformation of this connection to the ball of radius 1 as
the starting connection in Theorem 5.4, while taking for Γ∗ the scalar transformed
components of the restricted connection.

Finally, observe that the ε-bounds (5.8) and (5.13) depend only on the constants
CM , C0, Cs and Ce, which in turn depend only on m,n, p and Ω. Since Ω = B1(0)
is kept fixed throughout the argument, we can first choose some ε small enough to
satisfy the bounds (5.8) and (5.13), and then arrange for the scaling (4.8) for Γ by
applying the argument (7.2) - (7.9). In summary, we proved that the hypotheses of
Theorem 5.4 are satisfied, which completes the proof of Theorem 1.3.

8. Applications to the Initial Value Problem in General Relativity.

8.1. Optimal Regularity and the Initial Value Problem. The Einstein
equations G = κT of General Relativity are covariant tensorial equations defined
independent of coordinates. The unknowns in the equations are the metric tensor g,
and these are coupled to the variables which determine the sources in T . For example,
in the case of a perfect fluid, the unknowns are gij , ρ, p, ui, where [10, 4]

T = (ρ+ p)uiuj + pgij .

The existence of solutions of the Einstein equations are established by PDE methods
in coordinate systems in which the Einstein equations take on a solvable form. The
coordinate systems are typically specified by an ansatz for the metric, for example,
SSC coordinates for spherically symmetric spacetimes, or harmonic coordinates, wave-
gauge coordinates, etc., for the general initial value problem in four dimensions, [10, 4].
Since solutions typically only exist locally in GR, it is important to know whether
the breakdown is simply a breakdown of the coordinate system. This is important
both to the theory of the initial value problem in GR, and to numerical relativity.
The question we ask here is: how do we know the gravitational metric, which is the
solution of the equations in a given coordinate system, exhibits its optimal smoothness
in the coordinate system in which it is constructed?

For example, assume that one were to construct a solution to the Einstein equa-
tions G = κT in a given coordinate system x in which the equations produce unique
solutions (locally) within a given smoothness class, starting from initial data. To
make the point, assume the equations produce solutions of optimal smoothness with
metric g ∈ Wm+2,p, connection Γ ∈ Wm+1,p, and Riem(Γ) ∈ Wm,p. Then appli-
cation of a transformation x → y with Jacobian J ∈ Wm+1,p will in general lower
the regularity of the whole solution space, lowering the regularity of the metric and
its connection Γ by one order, but the transformation will preserve the regularity of
the curvature tensor Riem(Γ) ∈ Wm,p, because the connection involves derivatives of
the Jacobian of the coordinate transformation, but the metric and Riemann curva-
ture tensor, being tensors, involve only the undifferentiated Jacobian.8 Therefore, if
one were to then express the Einstein equations in the transformed coordinates y in
which the metric is one order less smooth than optimal, the resulting existence the-
ory posed in y-coordinates, by construction, would produce the unique transformed

8Alternatively, the anti-symmetric operator d applied to the symmetric leading order term in
the formula for the transformed connection, kills the highest order derivatives in the formula for the
transformed curvature tensor.
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solution g ∈ Wm+1,p, Γ ∈ Wm,p, and Riem(Γ) ∈ Wm,p. Therefore, and this is the
main point, if we were to construct our solutions in the y-coordinates in the first
place, then we would not know that our unique solution was one order below optimal
smoothness without knowing about the existence of the inverse transformation y → x.
It is precisely the existence of this transformation from y back to x that is guaranteed
by Theorem 1.1, because its existence follows from existence for the RT-equations
for Γ ∈ Wm,p, dΓ ∈ Wm,p, m ≥ 1, p > n. Theorem 1.1 tells us that it is sufficient
to solve the Einstein equations in a weaker sense than optimal, by stating that it is
sufficient to solve a version of the Einstein equations which only produce metrics and
connections one order less smooth than optimal. If Γ and dΓ are in L∞, then this is
the difference between weak and strong solutions in the true sense of the theory of
distributions, [14].

With this in mind, consider as an alternative to solving the RT-equations,
the problems one would encounter in trying to prove that a non-optimal metric is
smoothed by one order via application of hyperbolic PDE methods to the standard
3 + 1 framework for the initial value problem in GR; an approach we believe to be
too complicated in comparison to establishing optimal regularity via the (elliptic)
RT-equations.9 The 3 + 1 framework is based on foliating spacetime into spatial
slices parameterized by a time variable. We now argue that the 3 + 1 framework
replaces the problem of smoothing non-optimal metrics in spacetime, to the problem
of smoothing the restrictions of the metric and second fundamental form by one or-
der on space-like hypersurfaces as a necessary condition. To make the point, recall
that in wave coordinates the spacetime metric evolves from initial data surfaces by
semi-linear wave equations and inherits its spacetime regularity from the regularity
of the initial data, c.f. [4, 23]. By this, the current 3 + 1 hyperbolic PDE methods
for the Einstein equations require the assumption that the induced metric be one
derivative more regular than the second fundamental form, and deduce from this that
the spacetime metric has the regularity of the induced metric on the Cauchy surface.
For this to yield optimal regularity, the second fundamental form must be in addition
one order more regular than the curvature as a necessary condition. Now the formula
for the second fundamental form accounts for the embedding of the induced metric,
and correspondingly its formula involves the connection coefficients from the ambient
spacetime, so the second fundamental form, in general, inherits the regularity of the
spacetime connection. Thus without a procedure for finding a gauge condition and a
Cauchy surface such that the induced metric and induced second fundamental form
both have one more order of regularity than they exhibited in the original non-optimal
spacetime coordinate system, the 3 + 1 framework will estimate a non-optimal solu-
tion as being one order less regular than it really is. Fixing this within the 3 + 1
framework appears to us to be a formidable problem. The difficulty is that although
the induced metric on a 3-surface is positive definite, and might be regularized using
harmonic coordinates for that metric as in [6],10 the fact that the formula for the
second fundamental form involves the spacetime connection, means the problem of
regularizing the second fundamental form on a Cauchy hypersurface in a coordinate

9See [12] for another example where the hyperbolic approach appears not feasible, and con-
struction of an auxiliary Riemannian metric is central for extending results on the prescribed scalar
curvature problem to Semi-Riemannian smooth manifolds; the results and methods in [12] are not
further related to ours.

10Note that (positive definite) Riemannian metrics always exhibit optimal regularity in harmonic
coordinates [6], because the regularity for the Laplacian can be deduced from the source terms,
without requiring boundary data.
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gauge that also regularizes the metric on that surface is as formidable as the prob-
lem of regularizing non-optimal spacetime metrics in the first place. The main point
is this: Without a procedure for simultaneously regularizing the metric and second
fundamental form on Cauchy surfaces, or a proof demonstrating that this holds on a
Cauchy surface under the gauge condition assumed for a 3 + 1 analysis, the Cauchy
problem estimates non-optimal solutions as one order less regular than they really
are, and in this sense, the Cauchy problem is incomplete in each Sobolev space.

8.2. Application of the RT-equations in Spherically Symmetric Space-
times. We apply Theorem 1.1 to give a new theorem establishing the optimal smooth-
ness of spherically symmetric solutions generated by the Einstein equations G = κT
in Standard Schwarzschild Coordinates (SSC) with arbitrary source terms T . The is-
sues around optimal regularity addressed by the RT-equations are represented nicely
in SSC coordinates because three of the four Einstein equations G = κT are first
order in the metric, and thus metric solutions are only one order smoother than the
curvature tensor. We begin with a discussion of the central issue involved.

The fact that the Einstein equations admit coordinate systems in which the metric
is one degree less smooth than optimal, leads one to anticipate that the Einstein
equations might be easier to solve at this lower level of smoothness.11 In certain
cases, the Einstein equations might actually take their simplest form in coordinate
systems which produce only one metric derivative above the curvature tensor–because
in coordinates where the metric is one order less smooth, the equations need impose
fewer constraints. We now show that this is precisely what happens in spherically
symmetric spacetimes in SSC, the example we now discuss in detail.

Consider then the case of time dependent spherically symmetric spacetimes in
which the gravitational metric takes the general form

ds2 = −B(t, r)dt2 +
dr2

A(t, r)
+ E(t, r)dtdt+ C(t, r)dΩ2, (8.1)

where

dΩ2 = dθ2 + sin2 θdθ2

is the standard line element on the unit sphere. Then generically, when Cr �= 0, (the
most general case is not of interest here), there exists a coordinate transformation to
coordinates in which the metric takes the Standard Schwarzschild Coordinate form
[25]

ds2 = −B(t, r)dt2 +
dr2

A(t, r)
+ r2dΩ2, (8.2)

and this represents the coordinates in which the Einstein equations (arguably) take
their simplest form.12 In SSC, the Einstein equations reduce to a “locally inertial”
formulation derived by Groah and Temple in [9] as follows.

11Indeed, for elliptic equations, the Lax-Milgram Theorem is an example in which it is easier to
establish the gain of one derivative in u over f in Δu = f , but the second derivative gain requires
the development of elliptic regularity theory, [7].

12The authors invite the reader to put the metric ansatz into MAPLE to compute the Einstein
equations in general case (8.1), to see that the equations are significantly more complicated in general
coordinate systems than in SSC.
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According to [9], three of the four Einstein equations determined by G = κT
are first order in A and B, and one is second order. The first order equations are
equivalent to,13

{
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}
=
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and the the two conservation laws Div T = 0 are equivalent to
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}
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where Tαβ
M is the Minkowski stress tensor defined by, (c.f. [9]),

T 00
M = BT 00, T 01

M =

√
B

A
T 01, T 11

M =
1

A
T 11, T 22

M = T 22,

and we employ the standard notation

∂

∂t
{·} = {·},0 = {·},t ,

∂

∂r
{·} = {·},1 = {·},r .

By the Bianchi identities, equations (8.3) - (8.7) follow from Div T = 0 which follows
as an identity from G = κT . In [9] it was shown that the Einstein equations G = κT
for metrics in SSC are equivalent to the system (8.3), (8.5), (8.6), (8.7), in the weak
sense when T ∈ L∞. In addition, the system closes when an equation of state p = p(ρ)
is imposed, and the first order equation (8.4) follows as an identity, (c.f. [9]).

The SSC equations (8.3), (8.5), (8.6), (8.7) were introduced in [9] to prove the first
existence theorem for shock wave solutions of the Einstein equations using the Glimm
scheme, (c.f.[22, 11, 14, 24, 3]). Groah and Temple remarked that the equations
could only be solved in coordinates in which the metric appeared to be singular
at shock waves, (in the sense that, although no delta function sources appear in
the L∞ curvature tensor, the metric is only Lipschitz continuous, and this is only
one derivative smoother than the curvature). It is still an open question whether
these C0,1 metric solutions of G = κT can always be smoothed one order to C1,1 by
coordinate transformation, and based on this, authors in [14, 15], posed the problem
of Regularity Singularities.

13In [9], the SSC metric ansatz is taken to be ds2 = A(t, r)dt2+B(t, r)dr2+ r2dΩ2, so to recover
the formulas from [9], make the substitutions A → 1

B
, B → A
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As an application of Theorem 1.1, note that if T ∈ Wm,p, m ≥ 1, p > n = 4, then
solutions of (8.3), (8.5), (8.6), (8.7), would in general have (A,B) ∈ Wm+1,p, Γ ∈
Wm,p, and since G = κT , also G ∈ Wm,p. Putting the full Riemann curvature tensor
into a computer algebra system (MAPLE or Mathematica) one sees by inspection that
the terms of lowest regularity in G match the terms of lowest regularity in Riem(Γ),
so in general, Riem(Γ) ∈ Wm,p. For such solutions of the SSC equations, we have
that Γ and dΓ have the same regularity Wm,p, and the metric g ∈ Wm+1,p is only one
derivative more regular. Thus solutions of the SSC equations with T ∈ Wm,p, m ≥ 1,
p > 4, is an example that fits the assumptions of Theorem 1.1. The result is a new
regularity result for solutions of the SSC equations which we record in the following
theorem:

Theorem 8.1. Assume T ∈ Wm,p, m ≥ 1, p > 4, and let g ≡ (A,B) be a
solution of the SSC equations (8.3), (8.5), (8.6), (8.7) satisfying

g ∈ Wm+1,p, Γ ∈ Wm,p, dΓ ∈ Wm,p,

in an open set Ω. Then for each q ∈ Ω there exists a coordinate transformation x → y
defined in a neighborhood of q, such that, in y-coordinates, g ∈ Wm+2,p, Γ ∈ Wm+1,p,
Riem(Γ) ∈ Wm,p.

Appendix A. Proof of elliptic estimate (2.10). For completeness, we now
give a proof of estimate (2.10) of Theorem 2.1 stated in Section 2.

Theorem 2.1 (Elliptic Regularity). For m ≥ 1, 1 < p < ∞, let f ∈ Wm−1,p(Ω)
and u0 ∈ Wm+1,p(Ω), which we assume to both be scalar functions. Assume u ∈
Wm+1,p(Ω) solves the Poisson equation Δu = f with Dirichlet data u0 in the sense
that u − u0 ∈ W 1,p

0 (Ω).14 Then there exists a constant C > 0 depending only on Ω,
m,n, p such that

‖u‖Wm+1,p(Ω) ≤ C
(
‖f‖Wm−1,p(Ω) + ‖u0‖Wm+1,p(Ω)

)
. (A.1)

Proof. Assume that w ∈ Wm+1,p(Ω) ∩W 1,p
0 (Ω) solves Δw = f , Lemma 9.17 in

[8] then gives us the estimate

‖w‖W 2,p(Ω) ≤ C‖f‖Lp(Ω) (A.2)

for some constant C > 0 depending only on Ω, m,n, p. Estimate (A.2) directly extends
to higher derivatives by differentiation. Namely, using that Dαw solves ΔDαw =
Dαf , where α is a muti-index and Dα the corresponding derivative, we obtain

‖w‖Wm+1,p(Ω) ≤
∑

0≤|α|≤m−1

‖Dαw‖W 2,p(Ω)

≤ C
∑

0≤|α|≤m−1

‖Dαf‖Lp(Ω)

= C‖f‖Wm−1,p(Ω), (A.3)

which proves (A.1) in the special case u0 = 0.

14The space W 1,p
0 (Ω) denotes the closure of C∞

0 (Ω), the space of smooth functions with compact
support, with respect to the W 1,p-norm.
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To extend this to general Dirichlet data, u0 �= 0, let v be the solution of the
Laplace equation with Dirichlet data u0, that is, v solves Δv = 0 and v−u0 ∈ W 1,p

0 (Ω)
and can be constructed via Green’s representation formula. By uniqueness of solutions
to the Poisson equation it follows that u = w + v, since Δu = Δw = f together with
the correct Dirichlet data u− u0 ∈ W 1,p

0 (Ω). Now, using the triangle inequality twice
gives us

‖u‖Wm+1,p ≤ ‖w‖Wm+1,p + ‖v − u0‖Wm+1,p + ‖u0‖Wm+1,p . (A.4)

We can apply estimate (A.3) to the first two terms, since w and v − u0 both vanish
on the boundary in the sense that w, v − u0 ∈ W 1,p(Ω), which gives us

‖w‖Wm+1,p ≤ C‖f‖Wm−1,p(Ω), (A.5)

and

‖v − u0‖Wm+1,p(Ω) ≤ C‖Δ(v − u0)‖Wm−1,p(Ω)

≤ C‖u0‖Wm+1,p(Ω), (A.6)

where Δ(v−u0) = Δu0 and ‖Δu0‖Wm−1,p(Ω) ≤ ‖u0‖Wm+1,p(Ω) imply the last inequal-
ity. Substitution of estimates (A.5) and (A.6) into (A.4) yields now the sought after
estimate (A.1) and completes the proof.

Conclusions. Authors began the study of Regularity Singularities by asking
whether Lipschitz shock waves proven to exist in Standard Schwarzschild coordinates,
might actually be one order smoother in other coordinate systems in which the Ein-
stein equations are too complicated to solve. This has led us to a much more general
theory of non-optimal solutions of the Einstein equations, and the authors now con-
jecture that without resolving the problem of optimal regularity, the existence theory
for the initial value problem in GR is incomplete in each Sobolev Space. Although
fundamental to the theory of the Einstein equations, this appears to be a new point of
view on the initial value problem for the Einstein equations. Extending this theory to
the case of shock waves in which the gravitational metric is only Lipschitz continuous,
is the topic of authors current research.
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