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Abstract. We derive and analyze the alternating direction explicit (ADE) method for time evo-
lution equations with the time-dependent Dirichlet boundary condition and with the zero Neumann
boundary condition. The original ADE method is an additive operator splitting (AOS) method,
which has been developed for treating a wide range of linear and nonlinear time evolution equations
with the zero Dirichlet boundary condition. For linear equations, it has been shown to achieve the
second order accuracy in time yet is unconditionally stable for an arbitrary time step size. For the
boundary conditions considered in this work, we carefully construct the updating formula at grid
points near the boundary of the computational domain and show that these formulas maintain the
desired accuracy and the property of unconditional stability. We also construct numerical methods
based on the ADE scheme for two classes of fractional differential equations. We will give numerical
examples to demonstrate the simplicity and the computational efficiency of the method.
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1. Introduction. Time evolution equations are widely used in modeling physi-
cal phenomenon and chemical reactions. It is therefore important to develop efficient
and accurate numerical schemes to approximate the solution. This paper considers
the approximation of the evolution of some quantity u(x, t) on a bounded domain Ω
satisfying the following initial value problem{

∂u
∂t = L(u, t) ,
u(x, 0) = u0(x).

(1)

There are various finite difference schemes developed according to the choice of the
differential operator L [32]. The simplest approach is the explicit method given by

un+1
i = un

i +ΔtL(un, tn)

with un
i = u(xi, t

n). This scheme is developed based on the classical forward Euler
time marching and therefore is at best first order accurate in time. The accuracy in
space depends on the space discretization scheme used to approximate the differential
operator L(u, t). Relating to the stability of the method, these methods usually come
with a strict restriction on the time step chosen based on the mesh resolution. If the
differential operator L is complicated, the time step used in the numerical scheme
needs to be extremely small to maintain the numerical stability.

To relax the stability condition or to obtain a higher order accurate numerical
solution, it is usually more favorable to consider the implicit methods or semi-implicit
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methods. If L is linear, we can easily find the inverse operator, (I −ΔtL)−1, and can
directly update un+1 implicitly by un+1 = (I − ΔtL)−1(un). This implicit scheme
is first order accurate in time but unconditionally stable. For a nonlinear operator
L, however, it is usually not that straightforward how to obtain an unconditionally
stable numerical scheme. One possibility is to follow the regularization approach
as discussed in [31, 37]. A Laplacian term has been introduced in [31] as an extra
regularization for the initial value problem{

∂u
∂t = αΔu− αΔu+ L(u, t) ,
u(x, 0) = v(x).

The numerical scheme is

un+1 − un

Δt
= αΔun+1 − αΔun + L(un, tn) .

This scheme is first order in time and is unconditionally stable. But the choice of
α is in general an open problem. Following a similar idea, [37] has introduced an
extra curvature term in the level set equation for fast evolution of some curvature
dependent flows. We refer all readers to the references and thereafter for a more
detailed discussion of the approach.

Other than the regularization technique, another possible approach is to linearize
the nonlinear operator L by L(un)u and obtains the solution at the time level t = tn+1.
The Crank-Nicolson scheme is a famous approach to this linearized equation and the
method is written as

un+1 =

(
I − Δt

2
L

)−1 (
I +

Δt

2
L

)
un .

This scheme, as the average of the implicit scheme and the explicit scheme, is second
order accurate in time and unconditionally stable (at least to linear equations). But in
high dimensions, it might not be trivial to invert such a matrix

(
I − Δt

2 L
)
. Roughly

speaking, there are two general operator splitting approaches developed for inverting
the operator for a wide range of applications [9, 10, 11, 13, 12]. The first group is
the multiplicative operator splitting (MOS) methods which splits the complicated
operator into a product of some simple operators so that each of these subproblems
can be easily solved. Mathematically, we have

un+1 =

K∏
k=1

[I −ΔtLk(u
n)]

−1
un .

One famous example of the MOS methods is the alternating direction implicit scheme
(ADI). For example, when Lu = Δu, the ADI scheme reads as⎧⎨

⎩
2
Δt

(
un+ 1

2 − un
)
= δxxu

n+ 1
2 + δyyu

n ,

2
Δt

(
un+1 − un+ 1

2

)
= δxxu

n + δyyu
n+ 1

2

where δxx and δyy denotes the second derivative operators in the x- and the y-
directions, respectively. The ADI method is efficient since the method inverts only a
tridiagonal matrix in each sub-step. For two dimensional problems, the ADI scheme
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is unconditionally stable. But for higher dimensional problems, the trivial imple-
mentation becomes only conditionally stable. Special strategy is needed to keep the
unconditional stability.

Another group of splitting method is the additive operator splitting (AOS) meth-
ods [25, 26, 35]. Instead of approximating the inverse by a product of simpler opera-
tors, the AOS methods split the operator into a summation of some simple operators.
Mathematically, we can approximate the time evolution as

un+1 =
1

m

K∑
k=1

[I −ΔtLk(u
n)]

−1
un .

In general, the choice for the splitting might be equation-specific or might not be easy
to generalize in high dimensions. One general approach is the alternating direction
explicit (ADE) method. The ADE scheme was first introduced and analyzed in [19, 1]
for the linear heat equation. It has recently been extended to a much wider class of
nonlinear PDEs in [20]. For linear problems, the ADE method can be proved to be sec-
ond order accurate in both time and space and is unconditionally stable for arbitrary
time step size for both low dimensional and high dimensional problems. Using the
sweeping strategy in updating the solution sequentially, the ADE scheme can be im-
plemented in a fully explicitly fashion. In [20], the method has been carefully analyzed
in the operator form and has been extended to various nonlinear equations including
the fourth order diffusion equation, the Hamilton-Jacobi equation, the fourth order
nonlinear lubrication equation, and etc. More recently, the method has been coupled
with the fast Huygens sweeping method [21] for nematic liquid crystal modeling [17].
These discussions, however, concentrate only on the constant Dirichlet boundary con-
dition. In this work, we analyze the ADE method for the heat equation with the time
dependent Dirichlet boundary condition and also the Neumann boundary condition.
To demonstrate the effectiveness of the approach, we then apply the ADE scheme to
solve two kinds of fractional differential equations.

This paper is organized as follows. In Section 2, we first show some existing results
on the ADE method for problems with the constant Dirichlet boundary condition.
Then we derive and perform a truncation error analysis of the ADE method for
the heat equation with the time-dependent Dirichlet boundary condition and the
Neumann boundary condition. In Section 3.1, we apply our ADE method to two kinds
of fractional differential equations: the time distributed order super-diffusive equation
and the sub-diffusive diffusion-reaction system. Results of numerical experiments are
shown in Section 4. Finally in Section 5 we summarize and conclude the ADE method
and our results.

2. The alternating direction explicit (ADE) method. In this section, we
first give a brief introduction to the ADE scheme for problem with the zero Dirichlet
boundary condition. For a more detailed discussion on the numerical scheme, we
refer all readers to [20]. Then, we will extend the formulation to problems with the
time-dependent Dirichlet boundary condition and also the zero Neumann boundary
condition.

2.1. The ADE scheme for linear time dependent PDEs. We consider the
following linear time dependent PDE

∂u

∂t
= L(u) ,
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one first discretizes the right hand side to get

∂u

∂t
= Au+ b

where A is the discretization of the linear differential operator L, the vector u repre-
sents the discretization of the function u in space and b is a constant vector. We then
decompose A into the form

A = L+D + U

where L,D and U are the strictly lower part, diagonal part and strictly upper part
of A respectively. Defining

B = L+
1

2
D and C = U +

1

2
D ,

we can write the ADE scheme as the average of

(I −ΔtB)pn+1 = un +Δt Cun +Δt b (2)

and

(I −Δt C)qn+1 = un +ΔtBun +Δt b . (3)

In equations (2) and (3), the matrices (I −ΔtB) and (I −ΔtC) are simply lower tri-
angular and upper triangular, respectively. Therefore pn+1 and qn+1 can be updated
fully explicitly using Gauss-Seidel iterations. Since the ADE method updates un+1

by taking the average of solutions by (2) and (3), the updating formula of the ADE
scheme in operator form can be written as

un+1 =
1

2

[
(I −ΔtB)

−1
(I +ΔtC) + (I −ΔtC)

−1
(I +ΔtB)

]
un

+
1

2

[
(I −ΔtB)

−1
+ (I −ΔtC)

−1
]
b . (4)

Because of the triangular structure of the matrices B and C, the inverse of these
operators can be easily determined using the forward substitution and backward sub-
stitution. The overall algorithm is shown in Algorithm 1 for completeness.

Even though such algorithm was first introduced only for the linear heat equation,
the method is applicable to a much wider range of equations such as the first order
nonlinear Hamilton-Jacobi equation, a fourth order nonlinear equation and curvature
dependent flows [20]. The numerical scheme has various properties concerning the
numerical stability and accuracy. We simply quote the following theorems from [20].
For the detailed technical analysis, we refer readers to the reference thereafter.

Theorem 2.1 ([20]). The ADE scheme has the following properties.
1. If the diagonal elements of A are all non-positive, the ADE scheme (4) is

second order accurate in time.
2. If A is symmetric negative definite, the ADE scheme (4) is unconditionally

stable.
3. If A is lower-triangular with all diagonal elements negative, the ADE scheme

(4) is unconditionally stable.
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Algorithm 1: The ADE scheme for the general heat equation with the zero
Dirichlet boundary condition.

Initialization: n = 0 and u0;
while n < N do

n ← n+ 1 ;
Set pni = un

i and qni = un
i for i = 0, 1, · · · ,M where un

0 = un
M = 0 ;

Set pn+1
0 = pn+1

M = qn+1
0 = qn+1

M = 0 ;
For i = 1, 2, · · · ,M − 1, solve

pn+1
i − pni

Δt
=

pn+1
i−1 − pn+1

i − pni + pni+1

Δx2
+ b̃

n+ 1
2

i .

For i = M − 1,M − 2, · · · , 1, solve

qn+1
i − qni

Δt
=

qni−1 − qni − qn+1
i + qn+1

i+1

Δx2
+ b̃

n+ 1
2

i .

For i = M − 1,M − 2, · · · , 1, compute un+1
i = 1

2

(
pn+1
i + qn+1

i

)
.

end

2.2. The ADE scheme for the heat equation with a time dependent
Dirichlet boundary condition. In the original derivation of the numerical scheme,
one considers only the time-independent Dirichlet boundary condition such that the
solution is fixed (to be zero) on the boundary at all time. In this subsection, we derive
the ADE method for a general heat equation in one dimension given by⎧⎪⎨

⎪⎩
∂u
∂t = ∂2u

∂x2 + b(t) ,

u(0, t) = f(t), u(l, t) = g(t) ,

u(x, 0) = v(x) .

(5)

In equation (5), both the source term and the boundary conditions are now functions
of t. The corresponding derivation to higher dimensions is rather straightforward
and will not be discussed in the current work. Let Ω be discretized using xi’s for
i = 0, 1, · · · ,M such that xi = iΔx, x0 = 0 and xM = l. Using a time step Δt, we
denote tn = nΔt, for n = 0, 1, · · · , N such that tN = T . Furthermore, we introduce
the following notations given by

un
i = u(xi, tn) , u

n+ 1
2

i =
1

2
(un

i + un+1
i ) and ũ

n+ 1
2

i = u

(
xi,

1

2
(tn + tn+1)

)
.

Then, equation (5) can be discretized using the ADE scheme approach given by

⎧⎪⎨
⎪⎩

un+1−un

Δt = ADE(Δh, u
n, un+1) + b̃n+

1
2 ,

un
0 = fn, un

M = gn ,

u0
i = vi , i = 0, 1, · · · ,M and n = 0, 1, · · · , N ,

where the term ADE(Δh, u
n, un+1) denotes the ADE treatment of the discrete Lapla-

cian Δh involving both the directional sweepings and the averaging step which is
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Algorithm 2: The ADE scheme for the general heat equation with the time-
dependent Dirichlet boundary condition.

Initialization: n = 0 and u0;
while n < N do

n ← n+ 1 ;
Set pni = un

i and qni = un
i for i = 0, 1, · · · ,M where un

0 = fn and un
M = gn ;

Set pn+1
0 = fn+1 and qn+1

M = gn+1 satisfying the boundary conditions at
x = x0 and xM , respectively;
For i = 1, 2, · · · ,M − 1, solve

pn+1
i − pni

Δt
=

pn+1
i−1 − pn+1

i − pni + pni+1

Δx2
+ b̃

n+ 1
2

i . (6)

For i = M − 1,M − 2, · · · , 1, solve

qn+1
i − qni

Δt
=

qni−1 − qni − qn+1
i + qn+1

i+1

Δx2
+ b̃

n+ 1
2

i . (7)

For i = M − 1,M − 2, · · · , 1, compute

un+1
i =

1

2

(
pn+1
i + qn+1

i

)
. (8)

end

similar to that in the linear heat equation. To summarize, the method is given in
Algorithm 2.

The scheme (6)-(8) is similar to the original ADE method for the heat equation
with the time-independent Dirichlet boundary condition. The main difference is only
in the treatment to those grid points adjacent to the boundary. In equation (6), pni
is updated in the ascending direction from i = 1 to i = M − 1. For i = 1, since we
have the boundary condition un+1

0 = fn+1, equation (6) can be written as

pn+1
1 − pn1

Δt
=

fn+1 − pn+1
1 − pn1 + pn2
Δx2

+ b̃
n+ 1

2
i . (9)

Therefore, the quantity pn+1
1 is updated using the exact boundary condition fn+1 at

t = tn+1. For the grid point with the index i = M −1, we use the boundary condition
un
M = gn and write equation (6) as

pn+1
M−1 − pnM−1

Δt
=

pn+1
M−2 − pn+1

M−1 − pnM−1 + gn

Δx2
+ b̃

n+ 1
2

i . (10)

Therefore, the quantity pnM−1 is updated using the value of g at the previous time level
given by gn at t = tn. Although we have the exact boundary condition at t = tn+1,
we use its value at t = tn.

Similar consideration applies to the update of q according to equation (7) where
we sweep through the index in a descending direction from i = M − 1 to i = 1. For
the index i = M − 1, we have the boundary condition un+1

M = gn+1 so that equation
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(7) can be written as

qn+1
M−1 − qnM−1

Δt
=

qnM−2 − qnM−1 − qn+1
M−1 + gn+1

Δx2
+ b̃

n+ 1
2

i . (11)

The quantity qn+1
M−1, therefore, is updated using the exact boundary condition at the

new time level t = tn+1. For the left end point at the index i = 1, we impose the
boundary condition un

0 = fn for equation (7) and rewrite it as

qn+1
1 − qn1

Δt
=

fn − qn1 − qn+1
1 + qn+1

2

Δx2
+ b̃

n+ 1
2

i . (12)

This implies that the quantity qn+1
1 is updated using the boundary condition imposed

at the previous time level t = tn.

Now we analyze the numerical accuracy of the proposed ADE scheme with the
time-dependent boundary condition. One main property of this scheme is that the
above updating formulas (9)-(12) at grid points adjacent to the boundary are designed
to keep the symmetry of scheme (6)-(8). By Taylor expansion at (x = iΔx, t =
(n+ 1

2 )Δt), the leading order truncation error in p and q are given by

−Δt

Δx
ptx− 1

6
ΔtΔxptxxx− 1

24
Δt2

(
Δt

Δx

)
ptttx+Δt2

(
1

8
pttxx − 1

24
pttt

)
+

1

12
Δx2pxxxx

and

Δt

Δx
qtx +

1

6
ΔtΔxqtxxx +

1

24
Δt2

(
Δt

Δx

)
qtttx +Δt2

(
1

8
qttxx − 1

24
qttt

)
+

1

12
Δx2qxxxx ,

respectively. After the averaging step (8), the leading error of the overall scheme
(6)-(8) is therefore given by

Δt2
(
1

8
uttxx − 1

24
uttt

)
+

1

12
Δx2uxxxx .

In the above derivation, we assume that the function b can be evaluated at all

half-time level given by b̃
n+ 1

2
i . In some applications, however, when we can only

provide b at gridded levels t = nΔt for some integer n, we approximate the quantity

by b
n+ 1

2
i which is second order in time. Then the leading error of the scheme (6)-(8)

is therefore given by

Δt2
(

1

16
uttxx − 1

24
uttt +

1

4
btt

)
+

1

12
Δx2uxxxx ,

which is still O(Δt2,Δx2) accurate.

Now, we discuss the overall computational complexity. Since the updating for-
mulas involve only explicit operation at each individual grid point, the computational
complexity of obtaining un+1

i for all i from un
i is of O(M) with the total number of grid

points is given by M +1. This means that the complexity is in fact the same as typi-
cal explicit scheme for the heat equation. But because the method is unconditionally
stable, it takes less time steps to reach the final time of the simulation.
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2.3. The ADE scheme for the heat equation with the zero Neumann
boundary condition. In this subsection, we discuss the implementation of the Neu-
mann boundary condition. Even though we consider only the zero Neumann bound-
ary condition, the algorithm can be easily modified to solve problems with non-zero
Neumann boundary condition.

We consider the same problem given by equation (5) but replace the Dirichlet
boundary condition by the zero Neumann conditions given by ux(0) = 0 and ux(l) = 0.
We further assume that we have already obtained un and would like to use the ADE
scheme to get un+1. Numerically, the zero Neumann boundary condition is typically
approximated by standard finite difference and is given by un

1 = un
0 and un

M = un
M−1

for all n. In the first sub-problem of the ADE scheme where we sweep through the
solution in the ascending order, we need the boundary condition pn+1

0 at the updated
time level tn+1. We note that such value is actually an unknown value if we require
the solution satisfies pn+1

0 = pn+1
1 . However, if we substitute this constraint to the

updating formula of the ADE scheme for the first sub-problem, we can actually obtain

pn+1
0 =

(
1− Δt

Δx2

)
pn1 +

Δt

Δx2
pn2 +Δt b̃

n+ 1
2

1 . (13)

Such choice of the boundary condition will automatically lead to the zero Neumann
boundary condition at the left boundary. Similarly, for the second sub-problem when
we sweep through the index in the descending order, we impose the following boundary
condition at the right boundary given by

qn+1
M =

Δt

Δx2
qnM−2 +

(
1− Δt

Δx2

)
qnM−1 +Δt b̃

n+ 1
2

M . (14)

Such choice will automatically lead to qn+1
M = qn+1

M−1. To summarize, we give the overall
scheme in Algorithm 3. The scheme is extremely easy to implement. Comparing to
Algorithm 2, we only need to modify boundary conditions by imposing un

0 = un
1 and

un
M = un

M−1, setting pn+1
0 using (13) and qn+1

M using (14). The main part of the
numerical implementation remains exactly the same.

3. Applications to partial differential equations with fractional deriva-
tives. Because of the nice stability property of the ADE scheme, the method is
especially suitable to problems for which standard finite difference methods require
a restrictive time stability constraint. In this section, we discuss two applications of
the ADE scheme related to fractional derivatives. The first one is a time-distributed
order super-diffusive partial differential equation with the time dependent Dirichlet
boundary condition. The second one is a reaction-diffusion system in a sub-diffusive
regime with the zero Neumann boundary condition.

3.1. The time distributed order super-diffusive partial differential
equation. Fractional differential equation (FDE) is a powerful technique in modeling
an anomalous phenomena such as anomalous diffusion and anomalous transportation
[28, 36, 29]. In the diffusion process, the mean squared displacement (MSD) can be
written as an exponential function of the time t with a coefficient α. For the case
where α = 1, the diffusion process reduces back to the typical isotropic diffusion
modeled by the heat equation ut = Δu. The anomalous diffusion includes two types:
sub-diffusion and super-diffusion. The diffusion process is called sub-diffusion (diffuse
slower than normal) if 0 < α < 1, and is called super-diffusion (diffuse faster than
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Algorithm 3: The ADE scheme for the general heat equation with the zero
Neumann boundary condition.

Initialization: n = 0 and u0;
while n < N do

n ← n+ 1 ;
Set pni = un

i and qni = un
i for i = 0, 1, · · · ,M where un

0 = un
1 and

un
M = un

M−1 ;

Set pn+1
0 using (13) and qn+1

M using (14) ;
For i = 1, 2, · · · ,M − 1, solve

pn+1
i − pni

Δt
=

pn+1
i−1 − pn+1

i − pni + pni+1

Δx2
+ b̃

n+ 1
2

i .

For i = M − 1,M − 2, · · · , 1, solve

qn+1
i − qni

Δt
=

qni−1 − qni − qn+1
i + qn+1

i+1

Δx2
+ b̃

n+ 1
2

i .

For i = M − 1,M − 2, · · · , 1, compute un+1
i = 1

2

(
pn+1
i + qn+1

i

)
.

end

normal) if 1 < α < 2. Mathematically, these anomalous diffusion processes are mod-
eled using a time fractional order differential equation [6]. More recently, some efforts
are spent to solve more complicated problems where the diffusion process contains
diffusions in various time scales so that the diffusion speed is modeled by a range of
parameter α. This leads to the so-called time distributed order differential equations
[8]. In this section, we consider the following time distributed-order super-diffusive
problem given by⎧⎪⎨

⎪⎩
∫ 2

1
w(γ)C0D

γ
t u(x, y, t)dγ = Δu(x, y, t) + F (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T,

u(x, y, 0) = 0, ut(x, y, 0) = 0, (x, y) ∈ Ω ,

u(x, y, t) = ψ(x, y, t), (x, y) on ∂Ω, 0 ≤ t ≤ T ,

(15)

with Ω = {(x, y)|0 < x < L1, 0 < y < L2}, and ∂Ω being the boundary of Ω. The
functions F (x, y, t) and ψ(x, y, t) are given to model the time-dependent source term

and the initial condition, respectively. The function w(γ) ≥ 0 with
∫ 2

1
w(γ)dγ = c0 >

0 determines the weights among various diffusion speed scales. In equation (15), the
derivative C

0D
γ
t u(x, y, t) is the γ-th order time Caputo fractional derivative defined as

C
0D

γ
t u(x, y, t) =

⎧⎪⎨
⎪⎩
ut(x, y, t)− ut(x, y, 0), if γ = 1 ,

1
Γ(2−γ)

∫ t

0
(t− ξ)1−γ ∂2u

∂ξ2 (x, y, ξ)dξ, 1 < γ < 2,

utt(x, y, t), if γ = 2 .

(16)

Consider a rectangle domain Ω = {(x, y)|0 ≤ x ≤ L1, 0 ≤ y ≤ L2}. Let Δx and
Δy be the mesh size in the x- and the y-direction, respectively. Define xi = iΔx and
yj = jΔy for 0 ≤ i ≤ M1 and 0 ≤ j ≤ M2 such that xM1

= L1 and yM2
= L2. Denote

the set ω = {(i, j)|1 ≤ i ≤ M1 − 1, 1 ≤ j ≤ M2 − 1} and ω0 = {(i, j)|(xi, yj) ∈ ∂Ω}
and ωh = ω ∩ ω0. For any v ∈ Ωh, the discretization of Ω, we introduce the following
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difference notations:

δxvi− 1
2 j

=
1

Δx
(vij − vi−1j), δ2xvij =

1

Δx

(
δxvi+ 1

2 j
− δxvi− 1

2 j

)
,

δyvi− 1
2 j

=
1

Δy
(vij − vij−1), δ2yvij =

1

Δy

(
δxvij+ 1

2
− δyvij− 1

2

)
,

Δhvij = δ2xvij + δ2yvij .

In the time space, we use Δt to denote our time step. Define tn = nΔt, n =
0, 1, · · · , N such that tN = T . For the integral on the fractional derivative in time,
we divide the integration domain [1, 2] into J subintervals with length Δγ = 1

J and
define γl = 1 + lΔγ, l = 0, 1, · · · , J. Then the integration will be approximated using
Trapezoidal rule:

∫ 2

1

s(γ)dγ = Δγ

J∑
l=0

clsγl
+O(Δγ2)

with cl =
1
2 for l = 0 or J , and cl = 1 otherwise.

Following a similar strategy as in [8], for α ∈ [0, 1], we define g
(α)
k , λ

(α)
k and μ as

g
(0)
0 = 1, g

(0)
k = 0 , gα0 = 1, gαk =

(
1− α+ 1

k

)
g
(α)
k−1 , λ

(λ)
0 =

(
1 +

α

2

)
g
(α)
0 ,

λ
(α)
k =

(
1 +

α

2

)
g
(α)
k − α

2
g
(α)
k−1 , μ = Δγ

J∑
l=0

clw(γl)τ
−αlλ

(αl)
0 ,

for k ≥ 1 and 0 < α ≤ 1. Denote αl = γl−1, a simple finite difference scheme applied
to equation (15) is given by

⎧⎪⎨
⎪⎩
Δγ

J∑
l=0

clw(γl)Δt−αl

n∑
k=0

λ
(αl)
k δtu

n−k+ 1
2

ij = Δhu
n+ 1

2
ij + F

n+ 1
2

ij , (i, j) ∈ ω, 1 ≤ n ≤ N,

u0
ij = 0, (i, j) ∈ ω and un

ij = ψ(xi, yj , tn), (i, j) ∈ ω0, 0 ≤ n ≤ N − 1 ,

where Δhu
n+ 1

2
ij is an approximation of the Laplacian of the solution at the half time

level tn+ 1
2
using methods such as central difference. The main issue, however, is that

it is not easy to find an efficient solver to invert for un+1. In particular, ADI scheme is
not directly applicable. In a recent work, [8] has introduced an extra regularization to

the discretization by Δt2

4μ δ2xδ
2
yδtu

n+ 1
2

ij which also nicely coupled with the ADI scheme,

⎧⎪⎨
⎪⎩
Δγ

J∑
l=0

clw(γl)Δt
−αl

n∑
k=0

λ
(αl)
k δtu

n−k+ 1
2

ij +
Δt2

4μ
δ2xδ

2
yδtu

n+ 1
2

ij = Δhu
n+ 1

2
ij + F

n+ 1
2

ij ,

u0
ij = 0, (i, j) ∈ ω and un

ij = ψ(xi, yj , tn), (i, j) ∈ ω0, 0 ≤ n ≤ N − 1 .

(17)

This ADI scheme (17) as developed in [8] has been proven to give an approximation
to (15) with the error O(Δt2+Δx2+Δy2+Δγ2). In the derivation of (17), the extra

regularization term Δt2

4μ δ2xδ
2
yδtu

n+ 1
2

ij is manually incorporated into the equation. Such
term is necessary in the ADI scheme solely originated from the construction of the
numerical method but is unnecessary in our ADE approach.
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Our proposed ADE finite difference scheme is given by⎧⎪⎨
⎪⎩
Δγ

J∑
l=0

clw(γl)Δt−αl

n∑
k=0

λ
(αl)
k δtu

n−k+ 1
2

ij = ADE(Δh, u
n, un+1) + F

n+ 1
2

ij ,

u0
ij = 0, (i, j) ∈ ω and un

ij = ψ(xi, yj , tn), (i, j) ∈ ω0, 0 ≤ n ≤ N − 1 .

(18)

Note that this expression can be reorganized as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μδtu
n+ 1

2
ij = ADE(Δh, u

n, un+1)

+Δγ
J∑

l=0

clw(γl)Δt−αl

n∑
k=1

λ
(αl)
k δtu

n−k+ 1
2

ij + F
n+ 1

2
ij ,

u0
ij = 0, (i, j) ∈ ω and un

ij = ψ(xi, yj , tn), (i, j) ∈ ω0, 0 ≤ n ≤ N − 1

(19)

which is a diffusion equation of un+ 1
2 . Assume that we are given uk, for k = 0, 1, · · · , n

and want to compute un+1. In equation (19), the time derivative term δtu
k+ 1

2
ij can be

approximated by

δtu
k+ 1

2
ij =

uk+1
ij − uk

ij

Δt
, (20)

for k = 0, 1, · · · , n, with the second order accuracy in time. We can analytically

determine F
n+ 1

2
ij since the expression of F is given. Substituting the approximation

(20) to the equation (19) and applying the ADE method, we finally get the following
Algorithm 4.

To end this section, we present two theorems of the stability and convergence
of (18). The proofs are similar to those as shown in [8]. We recommend interested
readers to the reference and thereafter.

Theorem 3.1. Let {un+1
ij |(i, j) ∈ ωh, 0 ≤ N} be the solution of the following

difference scheme⎧⎪⎨
⎪⎩
Δγ

J∑
l=0

clw(γl)Δt−αl

n∑
k=0

λ
(αl)
k δtu

n−k+ 1
2

ij = ADE(Δh, u
n, un+1) +Gn+1

ij ,

u0
ij = φi,j , (i, j) ∈ ω and un

ij = 0, (i, j) ∈ ω0, 0 ≤ n ≤ N − 1,

then it holds

‖Δhu
n+1‖2 ≤ exp(T )

[
3‖Δhu

0‖2 + 4(‖G1‖2 + max
1≤k≤n+1

‖Gk‖2) + 4Δ

n∑
k=1

‖δtGk+ 1
2 ‖2

]

for 1 ≤ n ≤ N − 1 where

‖Gn‖2 = ΔxΔy

M1−1∑
i=1

M2−1∑
j=1

(Gn
ij)

2 and ‖δtGn+ 1
2 ‖2 = ΔxΔy

M1−1∑
i=1

M2−1∑
j=1

(δtG
n+ 1

2
ij )2 .

Theorem 3.2. Let u(x, y, t) be the C2-solution of the problem (15) and
{un

ij |(i, j) ∈ ωh, 0 ≤ n ≤ N} be the solution of (18). Denote enij = Un
ij − un

ij , (i, j) ∈
ωh, 0 ≤ n ≤ N . Then we have

‖en‖∞ ≤ 2C · exp(T/2)
√
(2 + T )L1L2(Δt2 +Δx2 +Δy2 +Δγ2) ,
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Algorithm 4: The ADE scheme for the two dimensional time distributed order
super-diffusive PDE.

Initialization: n = 0 and u0;
while n < N do

n ← n+ 1 ;

Given uk for k = 0, 1, · · · , n and also the function F ;

Compute δtu
n−k+ 1

2 , k = 1, 2, · · · , n and Fn+ 1
2 ;

For i = 1, 2, · · · ,M1 − 1 and j = 1, 2, · · · ,M2 − 1, compute

b̃
n+ 1

2
ij = −Δγ

J∑
l=0

clw(γl)Δt−αl

n∑
k=1

λ
(αl)
k δtu

n−k+ 1
2

ij + F
n+ 1

2
ij .

Set pnij = qnij = vnij = wn
ij = un

ij , for i = 1, 2, · · · ,M1 − 1 and

j = 1, 2, · · · ,M2 − 1;

Set pkij = ψk
ij , q

k
ij = ψk

ij , v
k
ij = ψk

ij , w
k
ij = ψk

ij , ∀(i, j) ∈ ω0, k = n+ 1, n;
For i = 1, 2, · · · ,M1 − 1, j = 1, 2, · · · ,M2 − 1, solve

pn+1
ij − pnij

Δt
=

pn+1
i−1j − pn+1

ij − pnij + pni+1j

Δx2
+
pn+1
ij−1 − pn+1

ij − pnij + pnij+1

Δy2
+b̃

n+ 1
2

i .

For i = 1, 2, · · · ,M1 − 1, j = M2 − 1,M2 − 2, · · · , 1, solve

qn+1
ij − qnij

Δt
=

qn+1
i−1j − qn+1

ij − qnij + qni+1j

Δx2
+
qnij−1 − qnij − qn+1

ij + qn+1
ij+1

Δy2
+b̃

n+ 1
2

i .

For i = M1 − 1,M1 − 2, · · · , 1, j = 1, 2, · · · ,M2 − 1, solve

vn+1
ij − vnij

Δt
=

vni−1j − vnij − vn+1
ij + vn+1

i+1j

Δx2
+
vn+1
ij−1 − vn+1

ij − vnij + vnij+1

Δy2
+b̃

n+ 1
2

i .

For i = M1 − 1,M1 − 2, · · · , 1, j = M2 − 1,M2 − 2, · · · , 1, solve

wn+1
ij − wn

ij

Δt
=

wn
i−1j − wn

ij − wn+1
ij + wn+1

i+1j

Δx2
+

wn
ij−1 − wn

ij − wn+1
ij + wn+1

ij+1

Δy2

+b̃
n+ 1

2
i .

Compute un+1
ij = 1

4

(
pn+1
ij + qn+1

ij + vn+1
ij + wn+1

ij

)
for (i, j) ∈ ω.

end

for 1 ≤ n ≤ N where C is some constant.

Indeed, numerical methods for solving fractional derivative equations grow
tremendously in recent years. For example, see [7, 4, 18, 24, 33, 23, 22, 3]. We
are not aiming to provide a complete review of the numerical approaches to the equa-
tion, nor to compare the efficiency or the accuracy of these numerical schemes. The
main purpose of this section is to show that it is straightforward to implement the
ADE scheme to solve this class of equations and to demonstrates the effectiveness
of the scheme. We leave it as a future work to investigate the performance among
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various numerical schemes.

3.2. A reaction-diffusion system in a sub-diffusive regime. In the sec-
ond application, we apply the ADE scheme to solve a sub-diffusive reaction-diffusion
system for pattern formation based on diffusion-driven instability. We consider the
Turing pattern [34] which has been a very successive model to explain the patterns on
various surfaces [16, 30], porous media flows [5], and biological systems [27]. One fa-
mous class of such reaction-diffusion systems is the so-called two-component activator-
inhibitor system. In this system under some conditions, one component stimulates
the growth rate of both components while the other one inhibits their productions. In
a recent work, [15] has generalized the standard activator-inhibitor system developed
in [2] by replacing the typical diffusion by sub-diffusion. The system reads as{

∂αu
∂tα = DδΔu+ a11u+ a12v − r2uv − (a11r1)uv

2 ,
∂βv
∂tβ

= δΔv + a21u+ a22v + r2uv + (a11r1)uv
2 ,

(21)

for 0 < α, β ≤ 1. The parameters D and δ are two coefficients governing the diffu-
sion associated to two components. The derivative ∂α

∂tα is the Caputo-type fractional
derivative of order α. For problems with finite domain, we impose the zero Neumann
boundary condition on the boundary of the computational domain.

To approximate the fractional derivative numerically, we follow the idea as intro-
duced in [14] by

∂αuij

∂tα

∣∣∣∣
tn+1

=

n+1∑
m=0

(−1)m
(
α

m

)
uij(tn+1−m)− uij(t0)

(Δt)α
. (22)

In our current implementation, we treat the terms related to v in the first equation
in (21) explicitly when updating the quantity u, while we take all u-related terms in
the second equation in (21) explicitly when updating v. Then equation (21) can be
discretized as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
ij − u0

ij

Δtα
= DδADE(Δh, u

n, un+1) + a11
un+1
ij + un

ij

2
+ a12v

n
ij − r2u

n
ijv

n
ij

−(a11r1)u
n
ij(v

n
ij)

2 −
n∑

m=1

(−1)m
(
α

m

)
un+1−m
ij − u0

ij

(Δt)α
,

vn+1
ij − v0ij
Δtβ

= δ ADE(Δh, v
n, vn+1) + a21u

n + a22
vn+1
ij + vnij

2
+ r2u

n
ijv

n
ij

+(a11r1)u
n
ij(v

n
ij)

2 −
n∑

m=1

(−1)m
(
β

m

)
vn+1−m
ij − v0ij

(Δt)β
.

Indeed, various other ADE forms are possible for this equation in treating the non-
linear terms. But we tend to concentrate only on the effectiveness of the simple ADE
discretization to complicated equation. More detailed studies on the ADE discretiza-
tion of a general nonlinear system of PDEs will be given in the future.

4. Numerical experiments. In this section, we test the accuracy of the ADE
algorithm. For one dimensional examples, we use Δx = 1/M such that there are
M + 1 grid points. For two dimensional examples, we consider a square domain and
use M + 1 grid points in each dimension to discretize the domain. We use T to
represent the final time and N is the number of time levels after the initial state (i.e.
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Δt = T/N). The computed solution and the exact solution at t = T will be denoted
by uT and u∗

T , respectively. The L2 and L∞ norms are computed at t = T defined
by ‖uT − u∗

T ‖2 and ‖uT − u∗
T ‖∞.

4.1. Heat equations with time-dependent Dirichlet boundary condi-
tion. In our first test, we solve the one dimensional heat equation (5). We consider
the source F = cos(x + t) − sin(x + t) with the initial condition v = cos(x). The
computational domain is Ω = [−π, π]. The boundary conditions are f(t) = cos(t− π)
and g(t) = cos(t+π) so that the exact solution is given as u = cos(x+ t). First we fix
our grid size, using M = 100, to check the accuracy order with respect to Δt. We set
T = 2. The errors and accuracy order for different N are shown in Table 1. Then we
fix the time step by using N = 105 and vary Δx to test the accuracy in space. The
final time T is set to be 0.5. The errors and accuracy orders are shown in Table 2.
We see from these tables that the accuracy in both time and space are approximately
second order defined using both the L2 norm and L∞ norm.

N ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
20 1.46×10−1 4.18×10−1

40 4.08×10−2 1.84 1.18 ×10−1 1.82
80 1.05×10−2 1.96 3.05×10−2 1.95
160 2.65×10−3 1.99 7.72 ×10−3 1.98

Table 1

(Example 4.1, one dimensional case) To test the convergence in time, we take T = 2 and
M = 100. The table shows the L2- and L∞-errors using different N .

M ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
10 1.85×10−2 1.57×10−2

20 2.88×10−3 2.68 3.53 ×10−3 2.15
40 4.78×10−4 2.59 8.42×10−4 2.07
80 8.19×10−5 2.55 2.05 ×10−4 2.04

Table 2

(Example 4.1, one dimensional case) To test the convergence in space, we take T = 0.5 and
N = 105. The table shows the L2- and L∞-errors using different M .

N ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
40 1.12×10−1 7.13×10−2

80 3.77×10−2 1.57 2.38×10−2 1.58
160 1.05×10−2 1.84 6.57 ×10−3 1.86
320 2.59×10−3 2.02 1.63 ×10−3 2.01

Table 3

(Example 4.1, two dimensional case) To test the convergence in time, we take T = 1 and
M = 50. The table shows the L2- and L∞-errors using different N .

Now we turn to a higher dimensional case where we solve the two dimensional
heat equation with the source term given by b(x, y, t) = 2(t + t2) sin(x + y), the
initial condition r(x, y) = 0 and the time dependent boundary condition h(x, y, t) =
t2 sin(x + y). The exact solution is given by u = t2 sin(x + y). We set the final time
T = 1. First we fix M = 50 to test the accuracy order in time. The L2 and L∞ errors
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M ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
10 5.20×10−3 3.09×10−3

20 1.18×10−3 2.14 7.22 ×10−4 2.10
40 2.81×10−4 2.07 1.73×10−4 2.06
80 6.83×10−5 2.04 4.21 ×10−5 2.04

Table 4

(Example 4.1, two dimensional case) To test the convergence in space, we take T = 1 and
N = 105. The table shows the L2- and L∞-errors using different M .

are shown in Table 3. We can see that the method is almost second order accurate
in time. Then we fix N = 105 and test the convergence in space. These results are
shown in Table 4. We observe also that the method gives approximately second order
accurate solution in space.

N ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
500 3.22×10−2 1.42×100

1000 1.73×10−2 0.90 7.62 ×10−1 0.90
2000 5.29×10−3 1.71 2.34×10−1 1.70
4000 1.42×10−3 1.90 6.36 ×10−2 1.88

Table 5

(Example 4.2) To test the convergence in time, we take T = 2 and M = 1000. The table shows
the L2- and L∞-errors using different N .

M ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
10 1.14×10−1 5.13×10−1

20 3.48×10−2 1.71 2.46 ×10−1 1.06
40 1.15×10−2 1.60 1.21×10−1 1.02
80 3.92×10−3 1.55 5.97 ×10−2 1.02

Table 6

(Example 4.2) To test the convergence in space, we take T = 2 and N = 105. The table shows
the L2- and L∞-errors using different M .

4.2. The one dimensional heat equation with the Neumann boundary
condition. In this example, we apply the ADE scheme to a problem with the Neu-
mann boundary condition. Consider the following problem{

ut = Δu+ cos(πx) + π2t cos(πx) ,

u(x, 0) = 0 and ux(0) = ux(1) = 0 .

The exact solution to this problem is given by u = t cos(πx). We consider the com-
putational domain Ω = [0, 1] and the final time T = 2. First, we fix M = 1000
and test the convergence in time using different time steps and N . The error in the
numerical solutions are shown in Table 5. We also fix N = 105 and vary M to see the
convergence in the spatial direction. The results are shown in Table 6.

4.3. The two dimensional time-distributed super-diffusive equation
with the time-dependent Dirichlet boundary condition. In this example, we
solve the time-distributed super-diffusive equation (15) using the formulation (19) by
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N ‖uT − u∗
T ‖2 rate ‖uT − u∗

T ‖∞ rate
10 5.60× 10−2 2.58× 10−2

20 1.66× 10−2 1.76 7.65× 10−3 1.76
40 4.50× 10−3 1.88 2.08× 10−3 1.88
80 1.17× 10−3 1.94 5.40× 10−4 1.95

Table 7

(Example 4.3) To test the convergence in time, we take T = 0.5, M = 100 and J = 200. The
table shows the L2- and L∞-errors using different N .

the ADE method. We consider the computation domain Ω = (0, π)2. The functions
are chosen as

w(γ) = Γ(7− γ) , F (x, y, t) = 128t4 sin(x+ y)

[
360(t− 1)

ln t
+ t2

]
,

ψ(x, y, t) = 64t6 sin(x+ y)

so that the exact solution to the problem can be analytically found and is given by
u∗(x, y, t) = ψ(x, y, t). First we fix M = 100 and J = 200 to test the accuracy order
in time. We set T = 0.5. The result is shown in Table 7. The L2 and L∞ norm are
both almost second order.

4.4. The two dimensional sub-diffusive activator-inhibitor system with
the zero Neumann boundary condition. In this example, we use the ADE
scheme to solve the sub-diffusive activator-inhibitor system using 100×100 grid points
with Δx = 1. The coefficient is chosen as a11 = 0.899, a22 = −0.91, a12 = 1,
a21 = −a11, δ = 2, D = 0.516, α = 0.92 and β = 0.88. With this setting, there is
only one fixed point for this system given by u = v = 0. For the initial condition,
we add some uniformly distributed noise ranging from -0.1 to 0.1. In equation (22)
when approximating the fractional derivative, we find that the number of terms in the
expression grows rapidly in time yet the magnitude of some of these terms are rather
small. To improve the computational efficiency, we follow the approach in [15] and
keep only the latest 800 terms whose binomial coefficient

(
α
m

)
or

(
β
m

)
is larger than

10−7. In our implementation, we use the time step Δt = 0.08. Our result is shown in
Figure 1. The method as stated in [15] requires approximately 3.8× 105 iterations to
reach the steady state, while our ADE scheme takes only 2× 104 iterations (roughly
1/20 of the former method) to obtain the final pattern since the unconditionally sta-
ble property in the ADE method allows us to use a significantly larger time step in
updating the solution.

5. Conclusion. The ADE scheme is an unconditionally stable fully explicit AOS
scheme and can efficiently solve time-evolution equations. We have extended the ADE
scheme to time evolution equations with the time dependent Dirichlet boundary con-
dition and the Neumann boundary condition. We also present various numerical
examples including the heat equation with the time dependent Dirichlet boundary
condition and the Neumann boundary condition, and two applications involving frac-
tional derivatives including the time-distributed order super-diffusive equation and
a reaction-diffusion system in the sub-diffusive regime. These numerical tests have
demonstrated that the numerical approach is simple to implement and is computa-
tional efficient for a wide range of applications.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. (Example 4.4) The initial condition is shown in (a). Turing pattern obtained after
(b) 2000 iterations, (c) 6000 iterations, (d) 12000 iterations, (e) 16000 iterations and (f) 20000
iterations.
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