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1. Introduction. The main purpose of Computational Mechanics research is
not to obtain more efficient computational methods on existing cases (or more accu-
rate, which is somewhat equivalent). This purpose is to perform new computations
which were not affordable before. Future researchers will hopefully be able to face the
many challenges of the century (global change, health, energy). This remark holds (to
a lesser extend) for mesh adaptation research. The purpose is to be able to compute
new phenomena and also to master the numerical uncertainties which have been up
to now unsufficiently controlled.

Many phenomena in continuum mechanics real world involve multiple scales
or/and singularities and cannot be computed with uniform meshes. Designing non
uniform meshes will become so complex that automatic adaptation will be mandatory.

Second-order accurate anisotropic mesh adaptation has demonstrated that phe-

nomena which were impossible to compute with non-adaptive meshes become com-
putable even on medium size computers. The first section of this paper shows an
example. But adaptive or not second-order methods are limited to routine compu-
tation for a low accuracy, typically with a 1% relative error. In many cases this is
sufficient for applications and coherent with the accuracy of available models (e.g.
basic statistical turbulence modeling). When a smaller error tolerance (0.1%,0.01%)
is necessary, second-order accurate methods become quite inefficient.
Also, second-order accurate methods are definitively inefficient for many unsteady
phenomena (e.g. wave propagation or with instability) The error accumulates while
time is advanced. Due to multiple scales, explicit time-stepping can be prohibitive.
Implicit time-stepping deteriotates the fastest waves. Then higher-order adaptive
methods must be developed in order to efficiently adress the accuracy question.

To sum up this first discussion, there is a class of computations which are not
possible without an increase of efficiency. Efficiency generally results from accuracy,
algorithmics, and computers. We concentrate here on the increase of accuracy of
approximation through mesh adaptation.
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Since we need to improve the efficiency of mesh adaptation, we need to have tools
to measure and predict it, replacing human intuition and heuristics by mathematical
concepts. The existing mathematical roadmap for error control is the result of many
scientific contributions. A mathematical definition of the mesh adaptation purpose
was proposed by the introduction of goal-oriented formulations [12] dealing with the
accuracy in the evaluation of a prescribed scalar output. But reducing the error of
solely a scalar output is not always sufficient for the engineer who wants to increase
its understanding by looking at the computed flow, or wants to use it for building
reduced order models. Thanks to norm-oriented formulations [13, 14], error control
applies to solution fields and Banach norms. At the other end of the process, namely
the mathematical definition of the control parameter, the replacement of the mesh
by a Riemannian metric allowed for transforming the mesh adaptation issue into a
well-posed optimization problem. Finally we have the optimal mesh (according to
our preferences) and, at least for the norm-oriented option described in the sequel,
we have an idea of the numerical error.

This paper presents a review of recent theoretical advances together with exam-
ples of applications. In particular the mesh adaptation roadmap which we define
extends to higher-order accurate approximation and to unsteady phenomenas. This
review is accompanied by new insights. Among others, we revisit the application
of a mathematical analysis predicting the asymptotic accuracy of the higher-order
adaptation algorithm when the solution field contains singularities.

2. Feature-, goal-, and norm-oriented formulations. The three formula-
tions are presented for the second-order accurate particular case of P! approximations
on triangles and tetrahedra.

2.1. Feature-based (FB) adaptation. The feature-based anisotropic mesh
adaptation criterion is inspired by the classical finite-element a priori estimate. It
assumes that a good mesh for the interpolation of the unknown (or of one or several
sensors depending on it) is a good mesh for a Partial Differential Equation (PDE)
approximation based on the same interpolation. This method is generally defined in
a continuous framework by replacing the local interpolation error by the application
of the Hessian of the exact solution times a local mesh size defined by a continuous
metric, see [1, 2, 4, 5, 6, 7, 8]. It can be also defined on a discrete basis as in [28].

Given a numerical solution W}, a solution of higher regularity Rp,(W}3) is recov-
ered, so that the following interpolation error estimate [9, 11] holds:

2p+3
3p

|Ru(Wh) — Ty R (Wil o < N~ ( / det(|HRh<wh,)>W) |
Q

where Hpg, (w,) is the Hessian of the recovered solution and N an estimate of the
desired number of nodes. Notation II;, holds for the usual elementwise affine inter-
polation relying on values at vertices. When working in the continuous mesh frame-
work [10, 11], we also have the optimal metric field leading to the previous error
estimate:

My = KL1(|HRh(Wh,)’) = Dy» (det’HRh(Wh,)’)ﬁ ‘HRh(Wh,)"

If anisotropic mesh prescription is naturally deduced in this context, interpolation-
based methods do not take into account the features of the PDE. However, in some
simplified context and assumptions (elliptic PDE, specific recovery operator Ry,), we
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F1G. 1. Lowboom C25 Geometry (left) and typical computational domain, around this geometry,
aligned with Mach cone, used for the “tailored mesh” (right).

have:
1 .
W = Wh| < m”Rh(Wh) Ry (Wh)|| with 0 <a <1,

so that a good convergence to the exact solution may be observed [15]. Indeed, if
R, (W) is a better approximate of W in the following sense:

1 .
W —W,| < m”Rh(Wh)_WhH with 0 <a <1,

and if the reconstruction operator Rj has the property:
Uy Ry (Wh) = Wh,

then we can bound the approximation error of the solution by the interpolation error
of the reconstructed function Ry, (W5):

1
W = Wil < 7= [1Ra(Wh) = b R (W) -

Note that from a practical point of view, Ry, (W},) is never recovered, only its first and
second derivatives are estimated. Standard recovery techniques include least-square,
L2-projection, Green formula or the Zienkiewicz-Zhu recovery operator. For all the
numerical examples, the L? norm is used with the L2-projection to recover derivatives.
These estimates are very efficient to capture anisotropic physical phenomenon.
A typical example is the prediction of the sonic boom signature of a supersonic
aircraft. Indeed, in the case, every singularities of the geometry generates a shock
waves that propagates down to the ground. All physical variables (density, pressure,
..) are discontinuous accross the shock. Special features dedicated to sonic boom
mesh adaptation are discussed in [2]. To illustrate the use of FB mesh adaptation,
we consider the C25D geometry of the 2nd Sonic-Boom Prediction Workshop [32]
represented in Figure 1. We use the Mach number as sensor. The sequence of
generated meshes is reported in Table 1. Several cuts in the volume mesh and the
imprint of the adapted mesh in the symmetry plane are depicted in Figure 2.
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F1G. 2. Lowboom C25 example: Cut plane x = 30 (top left) and x = 50 (top right) and meshes
on the symmetry plane (bottom left) and close view mear the inlet (bottom right).

TABLE 1
Lowboom C25 example: Statistics for the sequence of adapted meshes. Ratio holds for the
aspect ratio defined on any element as maxih;/min;h;. Quotient is defined on any element as
ma:pih?/(m hahs) and measures the gain with respect to an isotropic mesh.

# vertices # tetrahedra mean ratio mean quotient
1946 918 11093 526 10 97
5529916 32726736 18 297

12953271 77497813 18 325

27644 454 166148 147 19 400

The feature-based approach is particularly attractive due to its simplicity and to
the interest in taking into account physical aspects through the choice of the sensors.
However, for systems, the choice of sensors is extremely sensitive. Some additional
mathematics for defining the best choice, through the goal-oriented approach, are
required for most complex applications.

2.2. The goal-oriented formulation. The goal-oriented (GO) mesh adapta-
tion, as stated before, focuses on deriving the optimal mesh for computing a prescribed
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scalar quantity of interest (Qol). This method is a priori different from the optimal
mesh for a field/state. It is particulary suitable for a large class of problems in com-
putational mechanics where one wants to better understand /compute such a quantity
of interest (e.g. drag, lift coefficients, vorticity in a wake, a mass flow across a surface,
etc,) while maintaining a reasonable cost. Such GO methods require however the com-
putation of an adjoint state. Adjoint-based methods were known to be particulary
useful in optimal control/design, where the computational cost for evaluating sensitiv-
ities can be importantly reduced using the adjoint-state. It has been also proved for a
few years that using an adjoint is efficient for improving by a correction the accuracy
of the evaluation of a quantity of interest ([17]). As GO mesh adaptation is concerned,
a remarkable quantity of papers deals with a posterior: goal-based error formulation
to drive adaptivity, using adjoint formulations or gradients (see for example [19, 18]).
Our group is investigating GO formulations for steady and unsteady problems in an
a priori context. Loseille et al. [14] derived the goal-based error estimate in a steady
context for Euler flows, showing that the Qol error estimate is expressed as a weighted
interpolation error on solution flow fields. This leads to an optimal metric computed
as a sum of Hessians of Euler flux fields weighted by gradient components of the
adjoint state.

A short description of our goal-based a priori error estimation for the compressible
Navier-Stokes system is now presented.

For simplicity, the Qol j is assumed to be the scalar product of the state solution
W by a given field g, j(w) = (g,W) where W is the exact state solution to the
continuous model ¥(W) = 0. We denote by W}, the solution of a discretisation,
Uy, (W) = 0. Let W* be the adjoint state, satisfying (0W/OW)W* = g. Under adhoc
regularity assumptions concerning W, ¥, W and W*, we have ([14]) the following
compact form for our a priori error estimate:

(E(W) = W (I, ), IL, 7))
< [ 32 GV o (W) [S() = TS (W) a2, @
k

where A < B holds for a majoration asymptotically valid, i.e. A < B+ 0(A) when
mesh size tends to zero. Expression | pg () | holds for spectral radius of the Hessian
of . The interest of such an estimate is that the error model is a sum of interpolation
errors weighted by algebraic functions of state and adjoint.

Let us consider the example of the Navier-Stokes system:

U(W)=0 on Q, with ¥(W)=V.-FEW)+Vv.-F'(W) (2)

where W = *(p, pu, pE) is the conservative flow variables vector and vector F¥
represents the Euler fluxes, and FV the viscous fluxes defined hereafter:

2
Frw) = (0.0, ~(@-u-0)]" i o=p(Vutval)—ZuV ul

with p representing the constant viscosity. The heat flux q is given by Fourier’s law
q = —AVT, where A is the heat conduction (assumed here to be constant). We
have noted p the density, u = (u1,u9,us) the velocity vector, H = E + p/p is the

total enthalpy, £ =T + % the total energy and p = (y — 1)pT the pressure with
v = 1.4 the ratio of specific heat capacities, T' the temperature, and (e, eq, €3) the
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canonical basis. Expliciting Formulation (1) for the Navier-Stokes equations leads to
the following developement:

[(T(W) — U, (I, W), II,W")| = &
with:

o= oWt o - s
Q
1 d
+@+Qf@§;4uwmm»wiﬂwmm
+ - KdZZ/,U|pH puq

i=1 j=1
J#i

+Kd/x|pH< T =TT d2
Q

) u; — Ipu,| dQ

d
1 *
) Ka 3 [ om0l s T

+1QZZ/MM )l s — T | a2

i=1 j=1
J#i

+2 Zz/ ’ (I, W )<(uj_HhUj)gzz—(ui—Hhuz)gZZNdQ

=1 j=1
J#i

in which K; = 3 in two dimensions, K; = 6 in three dimensions. Taking into account
all the terms in &£ is a sufficient condition for an efficient GO adaptation. These
terms are computed only once for each mesh considered in the adaptation loop.

As illustration, we consider the 3D computation of a turbulent shock-boundary
layer interaction problem. A similar problem was addressed with FB mesh adaptation
in [3]. The shock is initiated by a diamond shape obstacle in side a rectangular channel.
The zone of interest is the region where the shock hits the bottom of the channel. The
incoming flow field is defined such that: M., = 1.4, the angle of attack & = 0 and
Re = 3.6 x 10%. The Qol is the drag on the bottom flate plate. A mesh adaptation
loop has been applied for a total number of vertices of 1.5 million.

The complex shock waves pattern is accurately captured by the adaptive process
in all the regions where it impacts the flat plate. We observe that at the end of the
domain, the mesh is rather coarse. In contrast, the boundary layer is highly refined.
A close-up view of the shock boundary-layer interaction region shows that we capture
accurately the separation bubble and the lift off of the boundary layer due to the
impact of the oblique shock. We also capture the reflected shock in front of the
bubble and the expansion fan at the foot of the oblique shock. All these waves are
visible in the mesh.

REMARK 1. During the presentation of this work at the conference, O. Pironneau
raised some paradox in the proposed goal-oriented adaptation algorithm. The question
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Fic. 3. Goal Oriented mesh adaptation of the viscous flow in a channel with diamond-shape
obstacle. Global mesh (top), global pressure solution (middle) and zoom on the beginning and thick-

ening of the bottom boundary layer (bottom).
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was: how can you adequately adapt with a criterion expressed in terms of the state
and adjoint state if you do not adapt for a better state and a better adjoint?

This question is related to a particular step in the design of the mesh adaptation
algorithm. Indeed, the first step in our theory is to apply a continuous metric analysis,
which produces a continuous optimality system involving continuous state, continuous
adjoint and continuous stationarity with respect to the metric.

In a second step, we have to discretize the whole optimality system. For this, an
option could be to use a sequence of uniformly refined meshes. State and adjoint would
be well refined. This option would finally produce (with a prohibitive computational
cost) the optimal metric.

Once we have a good approximation of the optimal metric, we can generate unit
adapted meshes based on it. By construction, these meshes are adequate for the
evaluation of the functional, through the evaluation of the state. In other words the
state computed with an unit mesh of the metric is a good mesh for the functional
evaluation. At the same time, with this adapted mesh, the state is not well computed
since only its features influencing the functional are supposed to be well computed.
Adapting for a better state would then be not optimal.

Adapting for a better adjoint is a somewhat second-order approach, since it does
not influence directly the quality of the approximation of the functional, but solely
how close is the metric from the perfectly optimal one : formally, an e-large deviation
of the (unconstrained) quasi-optimum provokes an e2-large deviation of the (smooth)
functional value. A similar argument applies to an adaptation for the stationarity
equation. 0

REMARK 2. The GO method (as explained here) shows the following limitations:
- It allows to minimize the error on a functional, but does not give an idea of the
effective error on this functional, but the corrector of [17] can be used as an approxi-
mation of it.
- In many cases the engineer needs a good evaluation of the fields themselves.
The norm-oriented technology described in next section addresses these two issues. O

2.3. Numerical corrector. Given a discrete problem, a mesh (of metric) My,
and the discrete solution W}, computed with the mesh, we call “numerical corrector” a
discrete field W} such that the sum W}, + W is a significantly more accurate approx-
imation of the exact solution than Wj. In other words, W] is a good approximation
of the error. Clearly, W} is useful for estimating the error, for correcting it, and by
the way for building the norm-oriented mesh adaptation algorithm defined in Section
24.

A trivial way to compute W, could be to first compute an extremely accurate
and extremely costly W}, or (k large) solution computed on a mesh My, or obtained
by dividing k times the elements of M, , and finally to put W = W}, jos — Wj,. But
the interesting feature of a numerical corrector should be that its computational cost
is not much higher than the computational cost of W};,. We describe now a corrector
evaluation of low computational cost relying on the application of a Defect Correction
principle and working on the initial mesh My:

_ 4 _
U (Wh + Wy pe) = =Rij2—nVhy2(Rusn2Wh); Wi pe = gWﬁ,Dc — (T Wh — W)
where the 7w, W), — W}, is a recovery-based evaluation of the interpolation error (see

[14] for details). The notation Rj o5 holds for the transfer (extension by linear
interpolation) operator from the twice finer mesh M, 5 to the initial mesh M.
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The notation Rj,_,,/2 holds for the transfer (restriction) operator from the the initial
mesh My, to the twice finer mesh My, /5. The finer-mesh residual ¥y, ,5(W}) can be
assembled by defining the sub-elements of M}, /o only locally around any vertex of
My,

Applications of this method to the Navier-Stokes model can be found in [27].
We present an application with the Euler model used for sonic boom prediction. We
consider again the C25 geometry. The important input is the pressure signature at
one-body length below the aircraft.

Figures 4,5 depict the pressure signal and the local error bar, from the non lin-
ear corrector, for a sequence of tailored meshes (meshes aligned with the Mach cone,
Figurel) and for adapted meshes. The pressure perturbation on axis (z = 0) con-
centrates between abscissa = 40 and x = 90. Mesh convergence does not clearly
hold after x = 60 for both series of calculations. This is probably explained by the
extreme complexity of the many shocks interacting in this region, which are captured
in details with the adapted meshes (see Figure2). Let us concentrate on the interval
40 < x < 60. The left-side calculations seem converged as values are concerned but
the corrector remains large. The right-side show a more coherent convergence, with
a corrector also getting smaller.

2.4. The norm-oriented (NO) formulation. In order to obtain a good eval-
uation of a solution field, the user has to specify the field and also in which norm
the approximated field should close to the exact one. Of course the choice of this
norm is constrained by an admissibility statement: typically, a second-order accurate
unstructured scheme will generally not provide a convergent prediction of the third-
order derivative of the solution. Another important output of NO is an evaluation of
the approximation error.

We describe now a norm-oriented approach relying on the L? norm. It consists
in the minimization of the following expression with respect to the mesh M:

JM) =W = W72 0)- (3)

where the state Wy is solution of the discretised PDE on a unit mesh for M:

Ypm(Wa) =0 (4)
Introducing g = W —W, we get a formulation similar to a goal-oriented formulation:
JM) = (g, W = Wn). (5)

The central idea of NO is to replace g by a numerical corrector W/ as defined in
previous section. The rest of the NO process, follows the GO algorithm with g = W7.
The whole NO adaptation algorithm finally writes:

Step 1: solve state equation

Step 2. solve corrector equation

Step 3: solve adjoint equation

Step 4: evaluate optimal metric

Step 5: generate unit mesh for Mp norm and go to Step 1.

In order to give an idea of how this NO works, we consider as benchmark a test case
from [20] featuring a 2D boundary layer (Figure 6) for comparing a feature-oriented
calculation with a norm-oriented one. The Laplace equation is solved with a RHS
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Fic. 4. Lowboom C25 example: Pressure levels (red) and non-linear corrector (black) predic-
tions of the pressure on tailored meshes.
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F1a. 6. Elliptic test case of a 2D boundary layer. A comparison between uniform refinement
(“FMG?”), feature/Hessian-based, and norm-oriented mesh adaptation methods: error |u—up|r2 in
terms of number of vertices.

inducing the boundary layer depicted in the figure. When the feature-based method
is applied, a tremendous improvement of the error is obtained with 128 vertices,
then a uniform element division and a feature-oriented adaptation are applied in
alternance. The L? error norm (ordinates) is measured from the analytic solution.
While the element division is applied, the error is as expected divided by 4. In
contrast, for 512, 2048,... vertices (abscissae), the effect of feature-oriented adaptation
is to increase the error. This illustrates the fact that asymptotically the direction of
a better interpolation deviates from the direction of a better approximation. As a
consequence, with a feature-based adaptation, the second-order convergence can be
lost. At the contrary, with this test case, each NO mesh-adaptation phase improves
(even slightly) the error norm, producing an asymptotic numerical convergence of
order two. When 30,000 vertices are used, the error is more than two orders of
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magnitude lower than with the uniform refinement.

3. High-order and unsteady schemes. Due to their error size and charac-
teristics (dispersion, dissipation), second-order accurate approximations are unable to
compute many phenomena. For smooth contexts, high-order methods bring crucial
improvements. But, as soon as singularities are involved in the model, they fail in
producing a sufficient numerical convergence. Typical real life examples are sound
propagation in media containing cracks, or flow with interfaces. Relative errors less
than two-three orders of magnitude in continuous media with singularities is a chal-
lenge for computational mechanics. To address this challenge, high-order (HO) mesh
adaptation methods extending to singular cases need be defined.

3.1. High-order estimates. Main existing HO schemes satisfy the so-called
k—exactness property expressing the fact that if the exact solution is a polynomial of
order k then the approximation scheme will give the exact solution as answer. Inside
these schemes is involved a step of polynomial reconstruction (e.g. ENO schemes),
or of polynomial interpolation (e.g. Continuous/discontinuous Galerkin). The main
part of the error can then be expressed in terms of a (k + 1)-th term of Taylor series
where the spatial increment is related with local mesh size.

We want to stress that this is the key of an easy extension of metric-based adap-
tation to HO schemes. We illustrate this with the computation of 2D Euler flows.
Considering a triangulation of the computational domain and its dual cells C; built
with triangle medians, the exact solution W of Euler equations verifies:

B(W, Vo) =0, V Vo €Vy={Vy constant by cell},

with (omitting initial conditions):

B(W, V) = /OT{ZEJ(WM))}dtJF/OT 8F]-'F(W)-nV0dth

omW 1
E;(W,Ve) — / 0™ dQ+§/ Vo(F(W)loc, + F(W)lac,) - ndo

where we denote by my the operator replacing a function by its mean on each cell. Let
us define a quadratic Central-ENO scheme [21, 22]. The computational cost of this
scheme is rather large but acceptable for 2D calculations (its extension to 3D is even
more computationally expansive). This scheme is based on a quadratic reconstruction
on any integration cell C; using the means of the variable on cells around C;. Let us
denote RY the global reconstruction operator mapping the constant-by-cell discrete
field into its quadratic-by-cell reconstruction. The CENO scheme writes in short:

Find Wy constant by cell s.t. B(RIWo,Vy) =0, V Vy constant by cell.
A representative functional of goal-oriented error is:
§j = (g9, RomoW — R3W).
LEMMA [23]. Introducing the adjoint state Wi € Vo, solution of:

0B
Sy (B2Wo) (R2Vo, W5) = (9, B3Vo), ¥ Vo € Vo (6)
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we have the following equivalence:

0B
(g, R9moW — ROW,) ~ %(W)(R(Q)WOW —W,W{§) as mesh size tends to zero. O

This estimate is typical of a k-exact variational scheme and permits to express
the error §j as a Taylor term of rank k + 1, rank 3 in our case, with respect to mesh
size 0x:

57 < supT(0x)® as mesh size tends to zero. (7)
ox

In [23] an equivalent pseudo-Hessian H; is evaluated by least squares

3
sup T(6x)? = (sup5x|m(5x)2) * Wox e R (8)
ox
Then an optimal metric can be obtained in a similar way to the second-order accurate
case. An a priori better option, not tested here, is proposed in [26].

3.2. High-order accurate unsteady mesh adaptation. We illustrate the use
of the above estimate (7), (8) with an application to an unsteady flow. For some typ-
ical propagation phenomenon, the discretisation grid (space and time) necessary for a
complete representation is very heavy. We consider here an acoustic wave propagation
based on the Euler equations.

In order to apply an unsteady mesh adaptation, we adopt the so-called Global-
Fixed-Point (GFP) algorithm, [16]. In short, the time interval is divided in ngqqp
sub-intervals. After a computation of state and adjoint on the whole time interval, an
optimal space-time metric is evaluated as a the ng,qqp-uple of optimal spatial metrics
for each of the time sub-intervals.

In Figure 7, the propagation of a noise from a road (bottom left) to a balcony
(near top, right) around an anti-noise wall (middle of bottom) is computed. The
functional is the pressure integral on an interval of the balcony. Since a few wave-
lengths are emitted at the noise source, the mesh adaptation process will concentrate
on the part of the wave train which will hit the balcony. This dramatically reduces
the region of the computational domain which needs to be refined. With 30980
vertices (mean of the 20 meshes used over the time interval) the error on the integral
of pressure on the balcony is about 1%. The local resolution is about 10 points per
half wave and a uniform mesh with same resolution would involve 5 millions vertices.

With this GFP algorithm, we have maximized the safety by always choosing
meshes as fine as or finer than necessary. The GFP involves a delicate compromise
between efficiency and accuracy. Indeed, if the number of meshes during the time-
interval is low, then each mesh is adapted to the evolution of solution over a large
interval and is therefore heavier than with a smaller time-interval and of course even
still heavier than a mesh adapted to a precise time step. This disadvantage amplifies
if a thin detail (a discontinuity for example) in the solution is traveling, since the mesh
will be extremely refined over the whole region swept by the detail. Conversely, if
many adapted meshes are used in the time-interval, then there will be many transfers
from a previous mesh to the next one. Now these transfers have been identified as
deteriorating the solution, in an extent which justifies to avoid hundreds transfers in
a computation. A way to partly avoid this compromise may be to move the mesh.
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FiGc. 7. Goal Oriented unsteady calculation of nonlinear acoustics propagation with third-order
goal-oriented adaptation. Pressure at three different time levels and the corresponding meshes.

Then mesh admissibility would be accounted by local repairing at some instant. It is
anticipated that these repairings would bring less inaccuracy that global mesh-to-mesh
transfers.

4. A discussion of singularity capturing. The sign of a complete success for
a mesh adaptive algorithm is that for singular cases the numerical convergence order
« is as high as the numerical convergence order agcpeme On smooth cases, according
to:

(o3
|lu —uy| < const. Na@im |« = Qscheme

where N is the total number of nodes representing the approximate PDE solution and
dim the computational dimension (space dimension for steady, space-time dimension
for unsteady). Unfortunately, this convergence for singular cases faces many barriers
related to the family of meshes considered in the adaptation step, rather independantly
of the underlying approximation. Let us mention two important examples of such
barriers. In the steady (2D/3D) case, mesh adaptation cannot converge at second-
order on a discontinuity if it does not involve anisotropy in arbitrary direction. In the
unsteady case (N being the total space-time nodes), convergence at second order is
not obtained when time stepping uses a (spatially) uniform time step. For this second
issue, some progress should be expected from multi-rate time stepping (see [24, 25]).
The next two subsections concentrate on the high-order singularity capturing issue
for steady calculations. The third one on unsteady case.

4.1. Low order interpolation error (1D). When a second-order approxima-
tion is applied to a singular variable, the output generally show a more or less devel-
oped oscillatory zone close the the singularity. About one decade of research around
the 80’s produced TVD/LED schemes which are thought as fully second-order accu-
rate far from the singularity and first-order near the singularity and non-oscillatory.
This accuracy statement is true for local approximations like the interpolation of a
given function. But the global error is at most of first order for example in L' norm
(order zero in L) for a series of uniform meshes. For the approximate solution of
a PDE, this accuracy statement is also false: in many case it will be globally first-
order accurate, in particular in L'. It is interesting to analyse how the above FB,
GO, NO mesh adaptation technologies behave in presence of a singularity (typically
a discontinuity through a smooth surface in 3D).
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To discuss the feature-based option we consider the basic problem of mesh-
adaptive interpolation of the sum of a quadratic function with a Heaviside 1D function
h(z) = 1/2(sign(x) + 1). The derivative of h at zero is a Dirac dg and its Hessian
is a d(. Looking at the P; interpolation on a regular mesh, the absolute value of the
Hessian is proportional to 1/Ax? on the two points close to zero, that is on a support
of O(Az) width. After a short calculation of the optimal metric for L! interpola-
tion, the optimal strategy divides by four the interval containing zero and by two the
other ones, which produces a second-order accurate convergence. This illustrates that
although the interpolation error analysis defining the Hessian term as a representa-
tive main term of the error is not rigorous, keeping this Hessian in the feature-based
adaptation makes a reasonable job.

Let us mention that this analysis extends to the multi-dimensional context and to
the goal /norm-oriented approach, and that second-order convergence also holds with
curved singularity supports. Let us give an example (Figure 8). A typical problem
in multiphase flow is the discontinuity of pressure gradient along an interface. Our
model problem is a Poisson problem with a discontinuous coefficient. We apply a uni-
form refinement, a feature-based adaptation and a norm-oriented mesh adaptation,
converging them by increasing the number of vertices. With both mesh adaptive
approaches, second-order convergence is obtained. In contrast, uniform mesh refine-
ment produces a disastrous first-order convergence with still a 10% error when using
a 300 x 300 mesh.

4.2. Higher order interpolation error. In the case of an approximation of
order 3, like a quadratic central ENO scheme (]23]), a discontinuity has influence on
a thick set of approximation molecules. Our 1D estimate involves a third-order finite
difference, weighted by 1/Ax3 also with a support width of a few Ax. It is interesting
to use limiters which return to first order through the discontinuity in order to show
a thin shock structure, easier to capture with a small number of nodes.

Passing to multidimensional case, let us examine the configuration where the exact
solution involves a discontinuity aligned with a rather regular surface. Geometrically,
the discontinuity can be put between two lines(2D) /surfaces(3D) of nodes.. This re-
sults in a too large number of nodes if the mesh is isotropic, but a smaller number
of nodes (allowing second-order convergence) if the mesh is with straight edges and
anisotropic, and finally a reasonable number of nodes (allowing higher-order conver-
gence) if the mesh is anisotropic and the edges are curved.

Due to (k + 1)-th order accuracy far from the singularity, a sequence of mesh
which divide by two the regular part of the mesh should divide by at least 281 the
elements crossed by the discontinuity where convergence accuracy is less or equal unity.
Now, according to the type of high-order approximation, the numerical capturing
will be spread over one or several high-order elements. Then a refinement region
covering a time interval may cover several times 2¥! elements. It may become fairly
computational cost consuming. Again an evident way to reduce this cost is to use an
approximation with one cell per element, like the above refered ENO scheme ([23]),
and combine with a shock capturing mechanism which reduce locally the order to one
and essentially limits the numerical shock to be spread between only two continguous
lines(2D) /surfaces(3D) of cells.

This strategy is applied for obtaining a steady scram jet flow (Figure 9) with
adaptive capturing of the shocks as thin (in terms of width and of cells) as possible.
This test case does not involve curved discontinuities for which our adapted mesh with
straight edges would face an accuracy barrier (accuracy limited to two). From this
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F1G. 8. Mesh-adaptive calculation of a pressure with discontinuous gradient due to an interface.
The second order mesh convergence (in terms of number of vertices) of a feature-based adaptation
and a norm-oriented adaptation are compared with the first-order uniform refinement.

standpoint, the path for third-order mesh adaptation indeed involves the mastering
of curved elements, see for example [29].

4.3. Complexity analysis for the CENO-based Global Fixed Point. The
space-wise third-order capture of the singularity can be addressed by spatial mesh
adaptation: for each time level, we apply a metric-based anisotropic spatial mesh
adaptation. Mesh size normal to the discontinuity will be reduced by a factor 8§,
solely in the vicinity of the discontinuity. In other directions near discontinuity and in
any direction in other regions of the computational domain, the mesh size is divided
by only 2. Then the increment in number of nodes near the discontinuity is asymp-
totically negligible and in the total, passing from N spatial degrees of freedom to 4N
leads to a eight times reduction of the spatial error.
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Fic. 9. Mesh-adaptive third-order accurate calculation of a scramjet flow, Mach contours, global
view, and zoom around the bottom leading edge (improved palette).

Unfortunately, the unsteady case is more difficult. In 2D, for decreasing accord-
ingly time discretization error, the time step also needs to be reduced by a factor 8,
leading to a total number of degrees of freedom multiplied by 32. Thus:

1
l[u — uzan|| 1 @x(o, 1) < ZHU —un|Lr@x[o,17) - (9)

By comparing i with 327%/™ this time with n = 3 (space-time dimension), we get a
space time convergence order o = 8/5.

In 3D, with this strategy, passing from N spatial degrees of freedom to 8N leads
to a eight times reduction of the spatial error. Unfortunately, the time step also needs
to be reduced by a factor 8, leading to a total number of degrees of freedom multiplied
by 64. Thus:

1
llu — ugan || L1 (@xo,17) < leu —un||zr(@xo,1) - (10)

By comparing § with 64~°/™ this time with n = 4 (space-time dimension), we get
a = 4/3 which is even smaller.

LeEmMA (Barrier of convergence order for time stepping CENO3 discretization).
for a time-stepping third-order flow solver coupled with an unsteady goal-oriented mesh
adaptation at each time level applied to a traveling discontinuity, the space-time con-
vergence rate is at most o = 8/5 for 2D unsteady calculations and and o = 4/3 for
3D unsteady calculations.
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This analysis extends to our Global Fixed Point if the number of time steps is
kept constant while the adapted mesh is frozen. In other words, in 3D for example,
when we pass from N space-time nodes to 64N, the number of meshes over the time
interval must be multiplied by 8, which may fastly amplify the mesh-to-mesh transfer
error.

As already mentioned, this barrier can be overcome with a full space-time adaptive
time stepping (with space-time elements) or by applying a multirate strategy.

5. Conclusions. This review of recent progress in mesh adaptation has validated
the many promises made by this numerical technology. The promises concern the
calculation of new complex (singular/multi-scale, coupled) phenomenas in continuum
mechanics, which were not affordable before. This is conditioned by the design of
algorithms which show a numerical convergence for non-reqular phenomenas (in terms
of number of nodes used) really better than shown by existing ones. For this purpose,
we are increasing our knowledge of the conditions under which mesh adaptive steady
high-order methods will enjoy high numerical convergence order.

Simultaneously, correctors are derived in order to improve our control on error
level.

Clearly, for steady calculations, things are progressing rather fastly. The optimal
order of convergence can be obtained and this results in the success of computations,
like sonic boom, which were not possible without automatic mesh adaptation. But
the highest expectation concerns unsteady phenomena. Some preliminary successes
show that much can be expected in this direction. At the same time, many difficulties
remain to be solved before unsteady mesh adaptation methods show the maximal
numerical convergence order.

The roadmap for being able to compute new phenomenas includes of course the
further development of efficient unstructured higher-order approximations. This issue,
not discussed here, is progressing (see an interesting discussion in [30]).

Once the number of nodes for the expected accuracy is made small, it remains to
reduce the number of arithmetic operations to solve the discrete PDE system. Novel
solution algorithms should be combined with the mesh-adaptation loop in order to
produce the most performing global mesh-adaptation/system resolution algorithms.
Algorithms combining O(NV) complexity and parallel scalability are compulsory. Also,
the iterative PDE solver should be a good corrective solver, that is a solver which leads
efficiently from a rather good initial field to a better/just as necessary converged
solution field. The steady case is again an easier case and we refer to [31] for a
FMG-adaptive proposal.
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