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TRANSVERSALITY THEOREMS ON GENERIC LINEARLY
PERTURBED MAPPINGS∗

SHUNSUKE ICHIKI†

In memory of John Mather

Abstract. In his celebrated paper “Generic projections”, John Mather has given a striking
transversality theorem and its applications on generic projections. On the other hand, in this paper,
two transversality theorems on generic linearly perturbed Cr mappings are shown (r ≥ 1). Moreover,
some applications of the two theorems are also given.

Key words. generic linear perturbation, transversality, immersion, injection.

Mathematics Subject Classification. 57R45, 57R42.

1. Introduction. Throughout this paper, let �, m and n stand for positive inte-
gers. In this paper, unless otherwise stated, all manifolds and mappings are assumed
to be of class Cr (r ≥ 1) and all manifolds are assumed to be without boundary and
to have countable bases.

Let F : U → R
� be a Cr mapping from an open subset U of Rm. Then, for any

linear mapping π : Rm → R
�, set

Fπ = F + π.

Here, the mapping π in Fπ = F + π is restricted to U .
Let L(Rm,R�) be the space consisting of all linear mappings of Rm into R�. Notice

that we have the natural identification L(Rm,R�) = (Rm)�. By N , we denote a Cr

manifold of dimension n. For given Cr mappings f : N → U and F : U → R
�,

a property of mappings Fπ ◦ f : N → R
� (resp., π ◦ f : N → R

�) will be said
to be true for a generic linearly perturbed mapping (resp., a generic projection) if
there exists a subset Σ with Lebesgue measure zero of L(Rm,R�) such that for any
π ∈ L(Rm,R�) − Σ, the mapping Fπ ◦ f : N → R

� (resp., π ◦ f : N → R
�) has the

property.
In his celebrated paper [5], for a given C∞ embedding f : N → R

m, John Mather
has given a striking transversality theorem on a generic projection π◦f : N → R

� (m >
�), where N is a C∞ manifold (for details on this result, see [5, Theorem 1 (p. 229)]).
Moreover, in [5], as an application of this result, he has also shown that if f : N → R

m

is a C∞ embedding and (n, �) is in the nice range of dimensions (for the definition of
nice rage of dimensions, refer to [4]), then a generic projection π◦f : N → R

� (m > �)
is stable, where N is a compact C∞ manifold.

In [3], an improvement of the transversality theorem of [5] is given by replacing
generic projections by generic linear perturbations. Namely, in [3], for a given C∞

embedding f : N → U and a given C∞ mapping F : U → R
�, a transversality theorem

on a generic linearly perturbed mapping Fπ ◦ f : N → R
� is given, where N is a C∞

manifold and � is an arbitrary positive integer which may possibly satisfy m ≤ �.
Moreover, in [2], for a given C∞ immersion or a given C∞ injection f : N → U ,

transversality theorems on a generic linearly perturbed mapping Fπ ◦ f : N → R
� are
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given, where N is a C∞ manifold, F : U → R
� is a C∞ mapping and � is an arbitrary

positive integer which may possibly satisfy m ≤ �.
On the other hand, in this paper, as improvements of some results in [2], two

main transversality theorems (Theorems 1 and 2 in Section 2) and their applications
on generic linearly perturbed mapping are given in the case where manifolds and
mappings are not necessarily of class C∞.

The first main theorem (Theorem 1) is as follows. Let f : N → U (resp., F : U →
R

�) be a Cr immersion (resp., a Cr mapping), where N is a Cr manifold (for the value
of r, see Theorem 1). Then, generally, the composition F ◦f does not necessarily yield
a mapping transverse to the subfiber-bundle of the jet bundle J1(N,R�) with a fiber
Σk, where k is a positive integer satisfying 1 ≤ k ≤ min{n, �} and

Σk =
{
j1g(0) ∈ J1(n, �) | corank Jg(0) = k

}
.

Nevertheless, Theorem 1 asserts that a generic linearly perturbed mapping Fπ ◦ f
yields a mapping transverse to the subfiber-bundle of J1(N,R�) with Σk. The second
main theorem (Theorem 2) is a specialized transversality theorem on crossings of a
generic linearly perturbed mapping Fπ ◦ f , where N is a Cr manifold, f : N → U is
a given Cr injection and F : U → R

� is a given Cr mapping (for the value of r, see
Theorem 2).

For a given C2 immersion (resp., C1 injection) f : N → U and a given C2

mapping (resp., C1 mapping) F : U → R
�, the following (1) and (2) (resp., (3)) are

obtained as applications of Theorem 1 (resp., Theorem 2), where N is a C2 manifold
(resp., a C1 manifold).

(1) If (n, �) = (n, 1), then a generic linearly perturbed function Fπ ◦ f : N → R

is a Morse function.
(2) If � ≥ 2n, then a generic linearly perturbed mapping Fπ ◦ f : N → R

� is an
immersion.

(3) If � > 2n, then a generic linearly perturbed mapping Fπ ◦ f : N → R
� is an

injection.
Furthermore, by combining the assertions (2) and (3), for a given C2 embedding
f : N → U and a given C2 mapping F : U → R

�, we get the following assertion (4),
where N is a C2 manifold.

(4) If � > 2n and N is compact, then a generic linearly perturbed mapping
Fπ ◦ f : N → R

� is an embedding.

In Section 2, some definitions are prepared, and the two main transversality the-
orems (Theorems 1 and 2) are stated. Section 3 (resp., Section 4) is devoted to the
proof of Theorem 1 (resp., Theorem 2). In Section 5, the above assertions (1)–(4)
are shown. In Section 6, the important lemma for the proofs of Theorems 1 and 2
(Lemma 1 in Section 2) is shown as an appendix.

2. Preliminaries and the statements of Theorems 1 and 2. Firstly, the
definition of transversality is given.

Definition 1. Let N and P be Cr manifolds, and Z be a Cr submanifold of P
(r ≥ 1). Let g : N → P be a C1 mapping.

(1) We say that g : N → P is transverse to Z at q if g(q) �∈ Z or in the case of
g(q) ∈ Z, the following holds:

dgq(TqN) + Tg(q)Z = Tg(q)P.
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(2) We say that g : N → P is transverse to Z if for any q ∈ N , the mapping g is
transverse to Z at q.

For the statement and the proof of Theorem 1, some definitions are prepared.
Let N be a Cr manifold (r ≥ 2) and J1(N,R�) be the space of 1-jets of mappings of
N into R

�. Then, note that J1(N,R�) is a Cr−1 manifold. For a given Cr mapping
g : N → R

� (r ≥ 2), the mapping j1g : N → J1(N,R�) is defined by q �→ j1g(q).
Then, notice that the mapping j1g : N → J1(N,R�) is of class Cr−1. For details on
the space J1(N,R�) or the mapping j1g : N → Jr(N,R�), see for example, [1].

Now, let {(Uλ, ϕλ)}λ∈Λ be a coordinate neighborhood system of N . Let Π :
J1(N,R�)→ N × R

� be the natural projection defined by Π(j1g(q)) = (q, g(q)). Let
Φλ : Π−1(Uλ × R

�)→ ϕλ(Uλ)× R
� × J1(n, �) be the homeomorphism defined by

Φλ

(
j1g(q)

)
=

(
ϕλ(q), g(q), j

1(ψ
λ
◦ g ◦ ϕ−1

λ ◦ ϕ̃λ)(0)
)
,

where J1(n, �) = {j1g(0) | g : (Rn, 0) → (R�, 0)} and ϕ̃λ : Rn → R
n (resp., ψλ :

R
m → R

m) is the translation given by ϕ̃λ(0) = ϕλ(q) (resp., ψλ(g(q)) = 0). Then,
{(Π−1(Uλ × R

�),Φλ)}λ∈Λ is a coordinate neighborhood system of J1(N,R�). Set

Σk =
{
j1g(0) ∈ J1(n, �) | corank Jg(0) = k

}
,

where corank Jg(0) = min{n, �} − rank Jg(0) and k = 1, 2, . . . ,min{n, �}. Set

Σk(N,R�) =
⋃
λ∈Λ

Φ−1
λ

(
ϕλ(Uλ)× R

� × Σk
)
.

Then, the set Σk(N,R�) is a submanifold of J1(N,R�) satisfying

codim Σk(N,R�) = dim J1(N,R�)− dim Σk(N,R�)

= (n− v + k)(�− v + k),

where v = min{n, �}. (For details on Σk and Σk(N,R�), see for instance [1], pp.
60–61).

Then, the first main theorem in this paper is the following.

Theorem 1. Let f be a Cr immersion of N into an open subset U of Rm, where
N is a Cr manifold of dimension n. Let F : U → R

� be a Cr mapping and k be a
positive integer satisfying 1 ≤ k ≤ min{n, �}. If

r > max{dimN − codimΣk(N,R�), 0}+ 1,

then there exists a subset Σ with Lebesgue measure zero of L(Rm,R�) such that for
any π ∈ L(Rm,R�)−Σ, the mapping j1(Fπ ◦ f) : N → J1(N,R�) is transverse to the
submanifold Σk(N,R�).

Now, in order to state the second main theorem (Theorem 2), we will prepare
some definitions. Let N be a Cr manifold (r ≥ 1). Set

N (s) = {(q1, q2, . . . , qs) ∈ Ns | qi �= qj (i �= j)}.
Note that N (s) is an open submanifold of Ns. For any mapping g : N → R

�, let
g(s) : N (s) → (R�)s be the mapping given by

g(s)(q1, q2, . . . , qs) = (g(q1), g(q2), . . . , g(qs)).
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Set Δs = {(y, . . . , y) ∈ (R�)s | y ∈ R
�}. Then, Δs is a submanifold of (R�)s satisfying

codimΔs = dim(R�)s − dimΔs = �(s− 1).

Definition 2. Let g be a C1 mapping of N into R
�, where N is a Cr manifold

(r ≥ 1). Then, g is called a mapping with normal crossings if for any positive integer
s (s ≥ 2), the mapping g(s) : N (s) → (R�)s is transverse to Δs.

As in [2], for any injection f : N → R
m, set

sf = max

{
s

∣∣∣∣∣ ∀(q1, q2, . . . , qs) ∈ N (s), dim

s∑
i=2

R
−−−−−−−→
f(q1)f(qi) = s− 1

}
.

Since the mapping f is an injection, we have 2 ≤ sf . Since f(q1), f(q2), . . . , f(qsf )
are points of Rm, it follows that sf ≤ m+ 1. Hence, we get

2 ≤ sf ≤ m+ 1.

Moreover, in the following, for a set X, we denote the number of its elements (or its
cardinality) by |X|. Then, the second main theorem in this paper is the following.

Theorem 2. Let f be a Cr injection of N into an open subset U of Rm, where
N is a Cr manifold of dimension n. Let F : U → R

� be a Cr mapping. If

r > max{s0, 0},

then there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such that for
any π ∈ L(Rm,R�) − Σ, and for any s (2 ≤ s ≤ sf ), the Cr mapping (Fπ ◦ f)(s) :
N (s) → (R�)s is transverse to the submanifold Δs, where

s0 = max{s(n− �) + � | 2 ≤ s ≤ sf}.

Moreover, if the mapping Fπ satisfies that |F−1
π (y)| ≤ sf for any y ∈ R

�, then Fπ ◦f :
N → R

� is a Cr mapping with normal crossings.

Remark 1.
(1) There is an advantage that the domain of the mapping F is an arbitrary open

set. Suppose that U = R. Let F : R→ R be the function defined by x �→ |x|.
Since F is not differentiable at x = 0, we cannot apply Theorems 1 and 2 to
F : R→ R.
On the other hand, if U = R − {0}, then Theorems 1 and 2 can be applied
to the restriction F |U .

(2) As in [2], there is a case of sf = 3 as follows. If n + 1 ≤ m, N = Sn and
f : Sn → R

m is the inclusion f(x) = (x, 0, . . . , 0), then we get sf = 3.
Indeed, suppose that there exists a point (q1, q2, q3) ∈ (Sn)(3) satisfying

dim
∑3

i=2 R
−−−−−−−→
f(q1)f(qi) = 1. Then, since the number of the intersections

of f(Sn) and a straight line of Rm is at most two, this contradicts the as-
sumption. Thus, we have sf ≥ 3. From S1 × {0} ⊂ f(Sn), we get sf < 4,
where 0 = (0, . . . , 0)︸ ︷︷ ︸

(m−2)-tuple

. Therefore, it follows that sf = 3.
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(3) The essential idea for the proofs of Theorems 1 and 2 is to apply Lemma 1,
and it is similar to the idea of the proofs of [2, Theorems 1 and 2]. Note that
in the special case r = ∞, from some results in [2], the results in this paper
(Theorems 1 and 2 in this section and Corollaries 1 to 7 in Section 5) can be
obtained.

The following well known result is important for the proofs of Theorems 1 and 2.
In [1], the proof of Lemma 1 in the case r =∞ is given. Hence, for the sake of readers’
convenience, the proof of Lemma 1 is given in Section 6 as an appendix.

Lemma 1 ([1]). Let N , A, P be Cr manifolds, Z be a Cr submanifold of P and
Γ : N ×A→ P be a Cr mapping. If

r > max{dimN − codimZ, 0},
and Γ is transverse to Z, then there exists a subset Σ of A with Lebesgue measure
zero such that for any a ∈ A − Σ, the Cr mapping Γa : N → P is transverse to Z,
where codimZ = dimP − dimZ and Γa(q) = Γ(q, a).

3. Proof of Theorem 1. In this proof, for a positive integer ñ, we denote the
ñ × ñ unit matrix by Eñ. Let (αij)1≤i≤�,1≤j≤m be a representing matrix of a linear
mapping π : Rm → R

�. Set Fα = Fπ. Then, we have

Fα(x) =

(
F1(x) +

m∑
j=1

α1jxj , F2(x) +

m∑
j=1

α2jxj , . . . , F�(x) +

m∑
j=1

α�jxj

)
, (3.1)

where F = (F1, F2, . . . , F�), α = (α11, α12, . . . , α1m, . . . , α�1, α�2, . . . , α�m) ∈ (Rm)�

and x = (x1, x2, . . . , xm). For a given Cr immersion f : N → U , the Cr mapping
Fα ◦ f : N → R

� is given as follows:

Fα ◦ f =

(
F1 ◦ f +

m∑
j=1

α1jfj , F2 ◦ f +

m∑
j=1

α2jfj , . . . , F� ◦ f +

m∑
j=1

α�jfj

)
, (3.2)

where f = (f1, f2, . . . , fm). Since we have the natural identification L(Rm,R�) =
(Rm)�, for the proof, it is sufficient to show that there exists a subset Σ with Lebesgue
measure zero of (Rm)� such that for any α ∈ (Rm)� − Σ, the mapping j1(Fα ◦ f) :
N → J1(N,R�) is transverse to Σk(N,R�).

Now, let Γ : N × (Rm)� → J1(N,R�) be the Cr−1 mapping defined by

Γ(q, α) = j1(Fα ◦ f)(q).
Note that r − 1 > max{dimN − codimΣk(N,R�), 0}. Thus, if Γ is transverse to
Σk(N,R�), then from Lemma 1, there exists a subset Σ of (Rm)� with Lebesgue
measure zero such that for any α ∈ (Rm)�−Σ, the Cr−1 mapping Γα : N → J1(N,R�)
(Γα = j1(Fα ◦ f)) is transverse to Σk(N,R�). Therefore, for the proof, it is sufficient
to show that if Γ(q̃, α̃) ∈ Σk(N,R�), then the following holds:

dΓ(q̃,α̃)(T(q̃,α̃)(N × (Rm)�)) + TΓ(q̃,α̃)Σ
k(N,R�) = TΓ(q̃,α̃)J

1(N,R�). (3.3)

As in Section 2, let {(Uλ, ϕλ)}λ∈Λ (resp., {(Π−1(Uλ × R
�),Φλ)}λ∈Λ) be a coordinate

neighborhood system of N (resp., J1(N,R�)). There exists a coordinate neighborhood(
U
˜λ × (Rm)�, ϕ

˜λ × id
)
containing the point (q̃, α̃) ofN×(Rm)�, where id is the identity
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mapping of (Rm)� into (Rm)�, and the mapping ϕ
˜λ×id : U

˜λ×(Rm)� → ϕ
˜λ(U˜λ)×(Rm)�

(⊂ R
n×(Rm)�) is given by

(
ϕ
˜λ × id

)
(q, α) =

(
ϕ
˜λ(q), id(α)

)
. There exists a coordinate

neighborhood
(
Π−1(U

˜λ × R
�),Φ

˜λ

)
containing the point Γ(q̃, α̃) of J1(N,R�). Let

t = (t1, t2, . . . , tn) ∈ R
n be a local coordinate on ϕ

˜λ(U˜λ) containing ϕ
˜λ(q̃). Then, the

mapping Γ is locally given by the following:

(Φ
˜λ ◦ Γ ◦ (ϕ

˜λ × id)−1)(t, α)

= (Φ
˜λ ◦ j1(Fα ◦ f) ◦ ϕ−1

˜λ
)(t)

=
(
t, (Fα ◦ f ◦ ϕ−1

˜λ
)(t),

∂(Fα,1 ◦ f ◦ ϕ−1
˜λ
)

∂t1
(t),

∂(Fα,1 ◦ f ◦ ϕ−1
˜λ
)

∂t2
(t), . . . ,

∂(Fα,1 ◦ f ◦ ϕ−1
˜λ
)

∂tn
(t),

∂(Fα,2 ◦ f ◦ ϕ−1
˜λ
)

∂t1
(t),

∂(Fα,2 ◦ f ◦ ϕ−1
˜λ
)

∂t2
(t), . . . ,

∂(Fα,2 ◦ f ◦ ϕ−1
˜λ
)

∂tn
(t),

· · · · · · · · · ,

∂(Fα,� ◦ f ◦ ϕ−1
˜λ
)

∂t1
(t),

∂(Fα,� ◦ f ◦ ϕ−1
˜λ
)

∂t2
(t), . . . ,

∂(Fα,� ◦ f ◦ ϕ−1
˜λ
)

∂tn
(t)

)
=

(
t, (Fα ◦ f ◦ ϕ−1

˜λ
)(t),

∂F1 ◦ f̃
∂t1

(t) +

m∑
j=1

α1j
∂f̃j
∂t1

(t),
∂F1 ◦ f̃
∂t2

(t) +

m∑
j=1

α1j
∂f̃j
∂t2

(t), . . . ,
∂F1 ◦ f̃
∂tn

(t) +

m∑
j=1

α1j
∂f̃j
∂tn

(t),

∂F2 ◦ f̃
∂t1

(t) +

m∑
j=1

α2j
∂f̃j
∂t1

(t),
∂F2 ◦ f̃
∂t2

(t) +

m∑
j=1

α2j
∂f̃j
∂t2

(t), . . . ,
∂F2 ◦ f̃
∂tn

(t) +

m∑
j=1

α2j
∂f̃j
∂tn

(t),

· · · · · · · · · ,

∂F� ◦ f̃
∂t1

(t) +
m∑

j=1

α�j
∂f̃j
∂t1

(t),
∂F� ◦ f̃
∂t2

(t) +
m∑

j=1

α�j
∂f̃j
∂t2

(t), . . . ,
∂F� ◦ f̃
∂tn

(t) +
m∑

j=1

α�j
∂f̃j
∂tn

(t)

)
,

where Fα = (Fα,1, Fα,2, . . . , Fα,�) and f̃ = (f̃1, f̃2, . . . , f̃m) = (f1 ◦ ϕ−1
˜λ

, f2 ◦
ϕ−1
˜λ

, . . . , fm ◦ ϕ−1
˜λ

) = f ◦ ϕ−1
˜λ

. The Jacobian matrix of Γ at (q̃, α̃) is the following:

JΓ(q̃,α̃) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

En 0 · · · · · · 0
∗ · · · · · · ∗

t(Jfq̃) 0∗ t(Jfq̃)

0
. . .

t(Jfq̃)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(t,α)=(ϕ

˜λ
(q̃),α̃)

,

where Jfq̃ is the Jacobian matrix of f at q̃. Notice that t(Jfq̃) is the transpose of
Jfq̃ and that there are � copies of t(Jfq̃) in the above description of JΓ(q̃,α̃). Since

Σk(N,R�) is a subfiber-bundle of J1(N,R�) with the fiber Σk, in order to show (3.3),
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it is sufficient to prove that the matrix M1 given below has rank n+ �+ n�:

M1 =

⎛⎜⎜⎜⎜⎜⎝
En+� ∗ · · · · · · ∗

t(Jfq̃) 0
0

t(Jfq̃)

0
. . .

t(Jfq̃)

⎞⎟⎟⎟⎟⎟⎠
(t,α)=(ϕ

˜λ
(q̃),α̃)

.

Notice that there are � copies of t(Jfq̃) in the above description of M1. Note that for
any i (1 ≤ i ≤ m�), the (n+�+i)-th column vector of M1 coincides with the (n+i)-th
column vector of JΓ(q̃,α̃). Since f is an immersion (n ≤ m), the rank of M1 is equal
to n+ �+ n�. Therefore, we get (3.3).

4. Proof of Theorem 2. As in the proof of Theorem 1, set Fα = Fπ, where Fα

is given by (3.1) in Section 3. For a given Cr injection f : N → U , the Cr mapping
Fα ◦ f : N → R

� is given by the same expression as (3.2). Since we have the natural
identification L(Rm,R�) = (Rm)�, in order to prove that there exists a subset Σ of
L(Rm,R�) with Lebesgue measure zero such that for any π ∈ L(Rm,R�)−Σ, and for
any s (2 ≤ s ≤ sf ), the Cr mapping (Fπ ◦ f)(s) : N (s) → (R�)s is transverse to Δs,
it is sufficient to prove that there exists a subset Σ of (Rm)� with Lebesgue measure
zero such that for any α ∈ (Rm)� − Σ, and for any s (2 ≤ s ≤ sf ), the Cr mapping
(Fα ◦ f)(s) : N (s) → (R�)s is transverse to the submanifold Δs.

Now, let s be a positive integer satisfying 2 ≤ s ≤ sf . Let Γ : N (s) × (Rm)� →
(R�)s be the Cr mapping given by

Γ(q1, q2, . . . , qs, α) = ((Fα ◦ f)(q1), (Fα ◦ f)(q2), . . . , (Fα ◦ f)(qs)) .

Note that from r > max{s0, 0}, we have

r > max{s(n− �) + �, 0}
= max{dimN (s) − codimΔs, 0}

for any positive integer s (2 ≤ s ≤ sf ). Thus, if for any positive integer s (2 ≤ s ≤ sf ),
the mapping Γ is transverse to Δs, then from Lemma 1, for any positive integer s
(2 ≤ s ≤ sf ), there exists a subset Σs of (Rm)� with Lebesgue measure zero such
that for any α ∈ (Rm)� − Σs, the mapping Γα : N (s) → (R�)s (Γα = (Fα ◦ f)(s)) is
transverse to Δs. Then, Σ =

⋃sf
s=2 Σs is a subset of (Rm)� with Lebesgue measure

zero. Thus, for any α ∈ (Rm)� − Σ, and for any s (2 ≤ s ≤ sf ), the Cr mapping
Γα : N (s) → (R�)s (Γα = (Fα ◦ f)(s)) is transverse to Δs.

Therefore, for this proof, it is sufficient to prove that for any positive integer s
(2 ≤ s ≤ sf ), if Γ(q̃, α̃) ∈ Δs (q̃ = (q̃1, q̃2, . . . , q̃s)), then the following holds:

dΓ(q̃,α̃)(T(q̃,α̃)(N
(s) × (Rm)�)) + TΓ(q̃,α̃)Δs = TΓ(q̃,α̃)(R

�)s. (4.1)

Let {(Uλ, ϕλ)}λ∈Λ be a coordinate neighborhood system of N . There exists a co-
ordinate neighborhood (U

˜λ1
× U

˜λ2
× · · · × U

˜λs
× (Rm)�, ϕ

˜λ1
× ϕ

˜λ2
× · · · × ϕ

˜λs
× id)

containing (q̃, α̃) of N (s)× (Rm)�, where id : (Rm)� → (Rm)� is the identity mapping,
and ϕ

˜λ1
×ϕ

˜λ2
×· · ·×ϕ

˜λs
×id : U

˜λ1
×U

˜λ2
×· · ·×U

˜λs
×(Rm)� → (Rn)s×(Rm)� is defined

by (ϕ
˜λ1
×ϕ

˜λ2
×· · ·×ϕ

˜λs
×id)(q1, q2, . . . , qs, α) = (ϕ

˜λ1
(q1), ϕ˜λ2

(q2), . . . , ϕ˜λs
(qs), id(α)).
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Let ti = (ti1, ti2, . . . , tin) be a local coordinate around ϕ
˜λi
(q̃i) (1 ≤ i ≤ s). Then, Γ is

locally given by the following:

Γ ◦
(
ϕ

˜λ1
× ϕ

˜λ2
× · · · × ϕ

˜λs
× id

)
−1(t1, t2, . . . , ts, α)

=
(
(Fα ◦ f ◦ ϕ−1

˜λ1
)(t1), (Fα ◦ f ◦ ϕ−1

˜λ2
)(t2), . . . , (Fα ◦ f ◦ ϕ−1

˜λs
)(ts)

)
=

(
F1 ◦ f̃(t1) +

m∑
j=1

α1j f̃j(t1), F2 ◦ f̃(t1) +
m∑

j=1

α2j f̃j(t1), . . . , F� ◦ f̃(t1) +
m∑

j=1

α�j f̃j(t1),

F1 ◦ f̃(t2) +
m∑

j=1

α1j f̃j(t2), F2 ◦ f̃(t2) +
m∑

j=1

α2j f̃j(t2), . . . , F� ◦ f̃(t2) +
m∑

j=1

α�j f̃j(t2),

· · · · · · · · · ,

F1 ◦ f̃(ts) +
m∑

j=1

α1j f̃j(ts), F2 ◦ f̃(ts) +
m∑

j=1

α2j f̃j(ts), . . . , F� ◦ f̃(ts) +
m∑

j=1

α�j f̃j(ts)

)
,

where f̃(ti) = (f̃1(ti), f̃2(ti), . . . , f̃m(ti)) = (f1 ◦ϕ−1
˜λi

(ti), f2 ◦ϕ−1
˜λi

(ti), . . . , fm ◦ϕ−1
˜λi

(ti))

(1 ≤ i ≤ s). For simplicity, set t = (t1, t2, . . . , ts) and z = (ϕ
˜λ1
× ϕ

˜λ2
× · · · ×

ϕ
˜λs
)(q̃1, q̃2, . . . , q̃s).
The Jacobian matrix of Γ at (q̃, α̃) is the following:

JΓ(q̃,α̃) =

⎛⎜⎜⎜⎝
∗ B(t1)
∗ B(t2)
...

...
∗ B(ts)

⎞⎟⎟⎟⎠
(t,α)=(z,α̃)

,

where

B(ti) =

⎛⎜⎜⎜⎝
b(ti) 0

b(ti)

0
. . .

b(ti)

⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ � rows

and b(ti) = (f̃1(ti), f̃2(ti), . . . , f̃m(ti)). By the construction of TΓ(q̃,α̃)Δs, in order to
prove (4.1), it is sufficient to prove that the rank of the following matrix M2 is equal
to �s:

M2 =

⎛⎜⎜⎜⎝
E� B(t1)
E� B(t2)
...

...
E� B(ts)

⎞⎟⎟⎟⎠
t=z

.

There exists an �s× �s regular matrix Q1 satisfying

Q1M2 =

⎛⎜⎜⎜⎝
E� B(t1)
0 B(t2)−B(t1)
...

...
0 B(ts)−B(t1)

⎞⎟⎟⎟⎠
t=z

.
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There exists an (�+m�)× (�+m�) regular matrix Q2 satisfying

Q1M2Q2 =

⎛⎜⎜⎜⎝
E� 0
0 B(t2)−B(t1)
...

...
0 B(ts)−B(t1)

⎞⎟⎟⎟⎠
t=z

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E� 0 ⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
� rows

−−−−−−−→
f̃(t1)f̃(t2) 0

0
−−−−−−−→
f̃(t1)f̃(t2)

0
. . . −−−−−−−→

f̃(t1)f̃(t2)
...

...
...

...
... ⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

� rows

−−−−−−−→
f̃(t1)f̃(ts) 0

0
−−−−−−−→
f̃(t1)f̃(ts)

0
. . . −−−−−−−→

f̃(t1)f̃(ts)

,

where
−−−−−−→
f̃(t1)f̃(ti) = (f̃1(ti) − f̃1(t1), f̃2(ti) − f̃2(t1), . . . , f̃m(ti) − f̃m(t1)) (2 ≤ i ≤ s)

and t = z. From s− 1 ≤ sf − 1 and the definition of sf , we have

dim

s∑
i=2

R

−−−−−−→
f̃(t1)f̃(ti) = s− 1,

where t = z. Hence, by the construction of Q1M2Q2 and s − 1 ≤ m, the rank of
Q1M2Q2 is equal to �s. Therefore, the rank of M2 must be equal to �s. Hence, we get
(4.1). Therefore, there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero
such that for any π ∈ L(Rm,R�) − Σ, and for any s (2 ≤ s ≤ sf ), the Cr mapping
(Fπ ◦ f)(s) : N (s) → (R�)s is transverse to Δs.

Moreover, suppose that the Cr mapping Fπ satisfies that |F−1
π (y)| ≤ sf for any

y ∈ R
�. Since f : N → R

m is injective, it follows that |(Fπ ◦f)−1(y)| ≤ sf for any y ∈
R

�. Thus, for any positive integer s with s ≥ sf+1, we have (Fπ◦f)(s)(N (s))
⋂
Δs = ∅.

Namely, for any positive integer s with s ≥ sf + 1, the Cr mapping (Fπ ◦ f)(s) is
transverse to Δs. Hence, Fπ ◦ f : N → R

� is a Cr mapping with normal crossings.

5. Applications of Theorems 1 and 2. In Section 5.1 (resp., Section 5.2),
applications of Theorem 1 (resp., Theorem 2) are stated and proved. In Section 5.2,
applications obtained by combining Theorems 1 and 2 are also given.

5.1. Applications of Theorem 1. A C2 function g : N → R is called a Morse
function if all of the critical points of g are nondegenerate, where N is a C2 manifold
of dimension n (for details on Morse functions, see for instance, [1, p. 63]). In the
case of (n, �) = (n, 1), we have the following.
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Corollary 1. Let f be a C2 immersion of N into an open subset U of Rm,
where N is a C2 manifold of dimension n. Let F : U → R be a C2 function. Then,
there exists a subset Σ of L(Rm,R) with Lebesgue measure zero such that for any
π ∈ L(Rm,R)− Σ, the C2 function Fπ ◦ f : N → R is a Morse function.

Proof. We have dimN − codimΣ1(N,R) = 0. Therefore, from Theorem 1,
there exists a subset Σ with Lebesgue measure zero of L(Rm,R) such that for any
π ∈ L(Rm,R)−Σ, the mapping j1(Fπ ◦ f) : N → J1(N,R) is transverse to Σ1(N,R).
Therefore, if q ∈ N is a critical point of the function Fπ ◦ f , then the point q is
nondegenerate.

In the case of � ≥ 2n, we have the following.

Corollary 2. Let f be a C2 immersion of N into an open subset U of Rm,
where N is a C2 manifold of dimension n. Let F : U → R

� be a C2 mapping (� ≥ 2n).
Then, there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such that for
any π ∈ L(Rm,R�)− Σ, the mapping Fπ ◦ f : N → R

� is a C2 immersion.

Proof. It is clearly seen that Fπ ◦ f : N → R
� is an immersion if and only

if j1(Fπ ◦ f)(N)
⋂⋃n

k=1 Σ
k(N,R�) = ∅. From � ≥ 2n, for any positive integer k

(1 ≤ k ≤ n), we have

dimN − codimΣk(N,R�) = n− k(�− n+ k) ≤ 0.

Thus, for any positive integer k (1 ≤ k ≤ n), from Theorem 1, there exists a subset Σ̃k

of L(Rm,R�) with Lebesgue measure zero such that for any π ∈ L(Rm,R�)− Σ̃k, the

mapping j1(Fπ ◦ f) : N → J1(N,R�) is transverse to Σk(N,R�). Set Σ =
⋃n

k=1 Σ̃k.
Note that Σ has Lebesgue measure zero. Let π ∈ L(Rm,R�) − Σ be an arbitrary
element. Then, suppose that there exists a point q ∈ N and a positive integer k
(1 ≤ k ≤ n) such that j1(Fπ ◦ f)(q) ∈ Σk(N,R�). Since j1(Fπ ◦ f) is transverse to
Σk(N,R�), we have the following:

d(j1(Fπ ◦ f))q(TqN) + Tj1(Fπ◦f)(q)Σ
k(N,R�) = Tj1(Fπ◦f)(q)J

1(N,R�).

Hence, we have

dim d(j1(Fπ ◦ f))q(TqN) ≥ dimTj1(Fπ◦f)(q)J
1(N,R�)− dimTj1(Fπ◦f)(q)Σ

k(N,R�)

= codimTj1(Fπ◦f)(q)Σ
k(N,R�).

Thus, we get n ≥ k(� − n + k). This contradicts the assumption � ≥ 2n. Therefore,
we get j1(Fπ ◦ f)(N)

⋂⋃n
k=1 Σ

k(N,R�) = ∅.
A C1 mapping g : N → R

� has singular points of corank at most k if

sup {corank dgq | q ∈ N} ≤ k,

where corank dgq = min{n, �} − rank dgq.

Corollary 3. Let f be a Cr immersion of N into an open subset U of Rm,
where N is a Cr manifold of dimension n. Let F : U → R

� be a Cr mapping. Let k0
be the maximum integer satisfying (n− v + k0)(�− v + k0) ≤ n (v = min{n, �}). If

r > max{dimN − codimΣ1(N,R�), 0}+ 1,
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then there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such that for
any π ∈ L(Rm,R�) − Σ, the Cr mapping Fπ ◦ f : N → R

� has singular points of
corank at most k0.

Proof. For any positive integer k (1 ≤ k ≤ v), we have

r > max{dimN − codimΣ1(N,R�), 0}+ 1

≥ max{dimN − codimΣk(N,R�), 0}+ 1.

From Theorem 1, for any positive integer k satisfying 1 ≤ k ≤ v, there exists a
subset Σ̃k of L(Rm,R�) with Lebesgue measure zero such that for any π ∈ L(Rm,R�)−
Σ̃k, the mapping j1(Fπ ◦ f) : N → J1(N,R�) is transverse to Σk(N,R�). Then,

Σ =
⋃v

k=1 Σ̃k has Lebesgue measure zero. Hence, there exists a subset Σ of L(Rm,R�)
with Lebesgue measure zero such that for any π ∈ L(Rm,R�) − Σ, the mapping
j1(Fπ ◦ f) : N → J1(N,R�) is transverse to Σk(N,R�) for any positive integer k
satisfying 1 ≤ k ≤ v.

In the case of � = 1, we have k0 = 1. Thus, in this case, the assertion clearly
holds.

Now, we will consider the case of � ≥ 2. In this case, note that k0+1 ≤ v. Indeed,
suppose that v ≤ k0. Then, by (n−v+k0)(�−v+k0) ≤ n, we get n� ≤ n. This contra-
dicts the assumption � ≥ 2. For the proof of Corollary 3, it is sufficient to show that
the mapping j1(Fπ ◦f) : N → J1(N,R�) satisfies that j1(Fπ ◦f)(N)

⋂
Σk(N,R�) = ∅

for any positive integer k satisfying k0+1 ≤ k ≤ v. Suppose that there exist a positive
integer k (k0 + 1 ≤ k ≤ v) and a point q ∈ N such that j1(Fπ ◦ f)(q) ∈ Σk(N,R�).
Since the mapping j1(Fπ ◦f) : N → J1(N,R�) is transverse to Σk(N,R�) at the point
q, the following holds:

d(j1(Fπ ◦ f))q(TqN) + Tj1(Fπ◦f)(q)Σ
k(N,R�) = Tj1(Fπ◦f)(q)J

1(N,R�).

Hence, we have

dim d(j1(Fπ ◦ f))q(TqN)

≥ dim Tj1(Fπ◦f)(q)J
1(N,R�)− dim Tj1(Fπ◦f)(q)Σ

k(N,R�)

= codim Tj1(Fπ◦f)(q)Σ
k(N,R�).

Thus, we get n ≥ (n− v + k)(�− v + k). Since the given integer k0 is the maximum
integer satisfying n ≥ (n− v+k0)(�− v+k0), it follows that k ≤ k0. This contradicts
the assumption k0 + 1 ≤ k.

5.2. Applications of Theorem 2.

Corollary 4. Let f be a Cr injection of N into an open subset U of Rm, where
N is a Cr manifold of dimension n. Let F : U → R

� be a Cr mapping. If

(sf − 1)� > nsf and r > max{2n− �, 0},
then there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such that for
any π ∈ L(Rm,R�) − Σ, Fπ ◦ f : N → R

� is a Cr mapping with normal crossings
satisfying (Fπ ◦ f)(sf )(N (sf ))

⋂
Δsf = ∅.

Proof. From (sf − 1)� > nsf , we have n− � < 0. Thus, we get

s0 = max{s(n− �) + � | 2 ≤ s ≤ sf}
= 2n− �.
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Hence, note that r > max{s0, 0}. From Theorem 2, there exists a subset Σ of
L(Rm,R�) with Lebesgue measure zero such that for any π ∈ L(Rm,R�) − Σ, and
for any s (2 ≤ s ≤ sf ), the mapping (Fπ ◦ f)(s) : N (s) → (R�)s is transverse to Δs.
Therefore, for this proof, it is sufficient to prove that for any π ∈ L(Rm,R�)−Σ, the
mapping (Fπ ◦ f)(sf ) satisfies that (Fπ ◦ f)(sf )(N (sf ))

⋂
Δsf = ∅.

Suppose that there exists an element π ∈ L(Rm,R�)−Σ such that there exists a
point q ∈ N (sf ) satisfying (Fπ ◦ f)(sf )(q) ∈ Δsf . Since (Fπ ◦ f)(sf ) is transverse to
Δsf , we have the following:

d((Fπ ◦ f)(sf ))q(TqN
(sf )) + T

(Fπ◦f)(sf )(q)
Δsf = T

(Fπ◦f)(sf )(q)
(R�)sf .

Thus, we get

dim d((Fπ ◦ f)(sf ))q(TqN
(sf ))

≥ dim T
(Fπ◦f)(sf )(q)

(R�)sf − dim T
(Fπ◦f)(sf )(q)

Δsf

= codim T
(Fπ◦f)(sf )(q)

Δsf .

Hence, we have nsf ≥ (sf − 1)�. This contradicts the assumption (sf − 1)� > nsf .

In the case of � > 2n, we have the following.

Corollary 5. Let f be a C1 injection of N into an open subset U of Rm, where
N is a C1 manifold of dimension n. Let F : U → R

� be a C1 mapping. If � > 2n,
then there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such that for
any π ∈ L(Rm,R�)− Σ, the C1 mapping Fπ ◦ f : N → R

� is injective.

Proof. Since sf ≥ 2 and � > 2n, it is easily seen that the dimension pair (n, �)
satisfies the assumption (sf − 1)� > nsf of Corollary 4. Indeed, from � > 2n, we get
(sf − 1)� > 2n(sf − 1). From sf ≥ 2, it follows that 2n(sf − 1) ≥ nsf .

Since max{2n− �, 0} = 0, from Corollary 4, there exists a subset Σ of L(Rm,R�)
with Lebesgue measure zero such that for any π ∈ L(Rm,R�) − Σ, the mapping
(Fπ ◦ f)(2) : N (2) → (R�)2 is transverse to Δ2. For this proof, it is sufficient to prove
that the mapping (Fπ ◦ f)(2) satisfies that (Fπ ◦ f)(2)(N (2))

⋂
Δ2 = ∅.

Suppose that there exists a point q ∈ N (2) such that (Fπ ◦ f)(2)(q) ∈ Δ2. Then,
we get the following:

d((Fπ ◦ f)(2))q(TqN
(2)) + T(Fπ◦f)(2)(q)Δ2 = T(Fπ◦f)(2)(q)(R

�)2.

Thus, we have

dim d((Fπ ◦ f)(2))q(TqN
(2))

≥ dim T(Fπ◦f)(2)(q)(R
�)2 − dim T(Fπ◦f)(2)(q)Δ2

= codim T(Fπ◦f)(2)(q)Δ2.

Hence, we have 2n ≥ �. This contradicts the assumption � > 2n.

By combining Corollaries 2 and 5, we have the following.

Corollary 6. Let f be an injective immersion of N into an open subset U of
R

m, where N is a C2 manifold of dimension n and f is of class C2. Let F : U → R
�

be a C2 mapping. If � > 2n, then there exists a subset Σ of L(Rm,R�) with Lebesgue
measure zero such that for any π ∈ L(Rm,R�)−Σ, the C2 mapping Fπ ◦ f : N → R

�

is an injective immersion.
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From Corollary 6, we get the following.

Corollary 7. Let N be a compact C2 manifold of dimension n. Let f be a C2

embedding of N into an open subset U of Rm. Let F : U → R
� be a C2 mapping. If

� > 2n, then there exists a subset Σ of L(Rm,R�) with Lebesgue measure zero such
that for any π ∈ L(Rm,R�)− Σ, the C2 mapping Fπ ◦ f : N → R

� is an embedding.

6. Proof of Lemma 1.

6.1. Preliminaries for the proof of Lemma 1. LetN and P be Cr manifolds,
and let g : N → P be a C1 mapping (r ≥ 1). A point x ∈ N is called a critical point
of g if it is not a regular point, i.e., the rank of dgx is less than the dimension of P .
We say that a point y ∈ P is a critical value if it is the image of a critical point. A
point y ∈ P is called a regular value if it is not a critical value. The following is Sard’s
theorem.

Theorem 3 ([6]). If N and P are Cr manifolds, g : N → P is a Cr mapping,
and r > max{dimN − dimP, 0}, then the set of critical values of g has Lebesgue
measure zero.

6.2. Proof of Lemma 1. In this proof, by π : N × A → A, we denote the
natural projection defined by π(x, a) = a.

Since Γ is transverse to Z, the set Γ−1(Z) is a Cr submanifold of N×A satisfying

dimN + dimA− dimΓ−1(Z) = dimP − dimZ. (1)

Firstly, suppose that dimΓ−1(Z) = 0. Then, since Γ−1(Z) is a countable set,
π(Γ−1(Z)) has Lebesgue measure zero in A. It is clearly seen that for any a ∈
A− π(Γ−1(Z)), the mapping Γa is transverse to Z.

Finally, we will consider the case dimΓ−1(Z) > 0. It is not hard to see that if
a ∈ A is a regular value of π|Γ−1(Z), then Γa is transverse to Z, where π|Γ−1(Z) is
the restriction of π to Γ−1(Z). Let Σ be the set of critical values of π|Γ−1(Z). From
r > max{dimN+dimZ−dimP, 0} and (1), we have r > max{dimΓ−1(Z)−dimA, 0}.
From Theorem 3, Σ has Lebesgue measure zero in A. Therefore, if a ∈ A − Σ, then
Γa is transverse to Z.
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