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TRANSVERSALITY THEOREMS ON GENERIC LINEARLY
PERTURBED MAPPINGS*
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In memory of John Mather

Abstract. In his celebrated paper “Generic projections”, John Mather has given a striking
transversality theorem and its applications on generic projections. On the other hand, in this paper,
two transversality theorems on generic linearly perturbed C" mappings are shown (r > 1). Moreover,
some applications of the two theorems are also given.
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1. Introduction. Throughout this paper, let £, m and n stand for positive inte-
gers. In this paper, unless otherwise stated, all manifolds and mappings are assumed
to be of class C” (r > 1) and all manifolds are assumed to be without boundary and
to have countable bases.

Let F : U — R’ be a C" mapping from an open subset U of R™. Then, for any
linear mapping 7 : R™ — RY, set

F,=F+m.

Here, the mapping 7 in F, = F + 7 is restricted to U.

Let £(R™, RY) be the space consisting of all linear mappings of R™ into R’. Notice
that we have the natural identification £(R™,R?) = (R™)’. By N, we denote a C"
manifold of dimension n. For given C" mappings f : N — U and F : U — Rf,
a property of mappings Fy o f : N — R’ (resp., 7o f : N — RY) will be said
to be true for a generic linearly perturbed mapping (resp., a generic projection) if
there exists a subset ¥ with Lebesgue measure zero of £(R™,R?) such that for any
7w € L(R™,RY) — ¥, the mapping Fr o f : N — R (resp., 7o f : N — RY) has the
property.

In his celebrated paper [5], for a given C*° embedding f : N — R™, John Mather
has given a striking transversality theorem on a generic projection mof : N — R* (m >
), where N is a C* manifold (for details on this result, see [5, Theorem 1 (p. 229)]).
Moreover, in [5], as an application of this result, he has also shown that if f : N — R™
is a C*° embedding and (n, ) is in the nice range of dimensions (for the definition of
nice rage of dimensions, refer to [4]), then a generic projection o f : N — R? (m > /)
is stable, where N is a compact C'*° manifold.

In [3], an improvement of the transversality theorem of [5] is given by replacing
generic projections by generic linear perturbations. Namely, in [3], for a given C'*°
embedding f : N — U and a given C* mapping F : U — R’, a transversality theorem
on a generic linearly perturbed mapping Fy o f : N — R’ is given, where N is a C™
manifold and £ is an arbitrary positive integer which may possibly satisfy m < /.

Moreover, in [2], for a given C° immersion or a given C*° injection f : N — U,
transversality theorems on a generic linearly perturbed mapping Fy o f : N — R are
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given, where N is a C* manifold, F : U — R’ is a C° mapping and ¢ is an arbitrary
positive integer which may possibly satisfy m < /.

On the other hand, in this paper, as improvements of some results in [2], two
main transversality theorems (Theorems 1 and 2 in Section 2) and their applications
on generic linearly perturbed mapping are given in the case where manifolds and
mappings are not necessarily of class C*°.

The first main theorem (Theorem 1) is as follows. Let f: N — U (resp., F : U —
R?) be a O™ immersion (resp., a C” mapping), where N is a C™ manifold (for the value
of r, see Theorem 1). Then, generally, the composition F'o f does not necessarily yield
a mapping transverse to the subfiber-bundle of the jet bundle J'(N,R?) with a fiber
¥* where k is a positive integer satisfying 1 < k < min{n, ¢} and

¥k = {j9(0) € J'(n,¢) | corank Jg(0) =k} .

Nevertheless, Theorem 1 asserts that a generic linearly perturbed mapping F, o f
yields a mapping transverse to the subfiber-bundle of J* (N, R?) with ¥*. The second
main theorem (Theorem 2) is a specialized transversality theorem on crossings of a
generic linearly perturbed mapping F; o f, where N is a C" manifold, f : N — U is
a given C" injection and F : U — R’ is a given C" mapping (for the value of r, see
Theorem 2).

For a given C? immersion (resp., C! injection) f : N — U and a given C?
mapping (resp., C* mapping) F : U — R, the following (1) and (2) (resp., (3)) are
obtained as applications of Theorem 1 (resp., Theorem 2), where N is a C? manifold
(resp., a C! manifold).

(1) If (n,£) = (n,1), then a generic linearly perturbed function Fro f : N — R

is a Morse function.

(2) If £ > 2n, then a generic linearly perturbed mapping Fr o f : N — R’ is an

immersion.

(3) If £ > 2n, then a generic linearly perturbed mapping Fy o f : N — R’ is an

injection.
Furthermore, by combining the assertions (2) and (3), for a given C? embedding
f: N — U and a given C? mapping F : U — R, we get the following assertion (4),
where N is a C'? manifold.

(4) If £ > 2n and N is compact, then a generic linearly perturbed mapping

F.of:N — Ris an embedding.

In Section 2, some definitions are prepared, and the two main transversality the-
orems (Theorems 1 and 2) are stated. Section 3 (resp., Section 4) is devoted to the
proof of Theorem 1 (resp., Theorem 2). In Section 5, the above assertions (1)—(4)
are shown. In Section 6, the important lemma for the proofs of Theorems 1 and 2
(Lemma 1 in Section 2) is shown as an appendix.

2. Preliminaries and the statements of Theorems 1 and 2. Firstly, the
definition of transversality is given.

DEFINITION 1. Let N and P be C" manifolds, and Z be a C" submanifold of P
(r>1). Let g: N — P be a C' mapping.
(1) We say that g : N — P is transverse to Z at q if g(q) € Z or in the case of
9(q) € Z, the following holds:

dge(TyN) + Ty Z = Ty(q) P
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(2) We say that g : N — P is transverse to Z if for any ¢ € N, the mapping g is
transverse to Z at q.

For the statement and the proof of Theorem 1, some definitions are prepared.
Let N be a C" manifold (r > 2) and J'(N,R?) be the space of 1-jets of mappings of
N into RY. Then, note that J'(N,R?) is a C"~! manifold. For a given C" mapping
g: N — R (r > 2), the mapping jlg : N — J'(N,RY) is defined by q — jlg(q).
Then, notice that the mapping j'g : N — J'(N,R) is of class C"~!. For details on
the space J'(N,RY) or the mapping jlg : N — J"(N,R?), see for example, [1].

Now, let {(Ux,¢x)}rea be a coordinate neighborhood system of N. Let II :
JYN,RY)— N x R’ be the natural projection defined by I1(j'g(q)) = (¢,9(q)). Let
@y YUy x RY) — o (Uy) x R x J*(n, ) be the homeomorphism defined by

@, (5'9(a)) = (ox(),9(q), 5" (b, 0 go ' 0 Er)(0)),

where J(n,¢) = {j'g(0) | g : (R",0) — (R’ 0)} and 5y : R® — R™ (resp., ¥y :
R™ — R™) is the translation given by ©x(0) = ¢a(q) (resp., ¥x(g(q)) = 0). Then,
{71 (Uy x RY), CI))\)}AE/\ is a coordinate neighborhood system of J'(N,R). Set

{j g(0 EJl(n £) | corank Jg(0 _k;}
where corank Jg¢(0) = min{n, ¢} — rank Jg(0) and k = 1,2,..., min{n, ¢}. Set

FINRY) = [ @31 (ea(Un) xR x TF) .
AEA

Then, the set ¥*(N,R?) is a submanifold of J!(N,R?) satisfying

codim YF(N,RY) = dim J*(N,R’) — dim $*(N,R")
=Mn—-v+k)({—v+Ek),

where v = min{n,¢}. (For details on ¥* and X*(N,R?), see for instance [1], pp.
60-61).

Then, the first main theorem in this paper is the following.

THEOREM 1. Let f be a C" immersion of N into an open subset U of R™, where

N is a C" manifold of dimension n. Let F : U — R’ be a C" mapping and k be a
positive integer satisfying 1 < k < min{n, ¢}. If

r > max{dim N — codim X*(N,R%), 0} + 1,

then there exists a subset ¥ with Lebesque measure zero of L(R™,RY) such that for
any © € LR™,RY) — %, the mapping 7 (Fr o f) : N — JY(N,R") is transverse to the
submanifold YF(N,RY).

Now, in order to state the second main theorem (Theorem 2), we will prepare
some definitions. Let N be a C” manifold (r > 1). Set

N ={(q1,q2,-..,qs) € N* | qi # q; (i # j)}-

Note that N() is an open submanifold of N°. For any mapping g : N — R¢, let
g N = (RY)* be the mapping given by

(S)(

9 (q1,q2,---,4s) = (9(q1),9(q2), - - -, 9(gs))-
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Set Ay = {(y,...,y) € (RY)® | y € R}. Then, A is a submanifold of (RY)® satisfying
codim Ay = dim(R%)* — dim A, = £(s — 1).
DEFINITION 2. Let g be a C! mapping of N into R?, where N is a C" manifold

(r > 1). Then, g is called a mapping with normal crossings if for any positive integer
s (s > 2), the mapping ¢ : N®) — (RY)*® is transverse to A,.

As in [2], for any injection f: N — R™, set

Sf = max{s

Since the mapping f is an injection, we have 2 < s;. Since f(q1), f(q2),--., f(qs,)
are points of R™, it follows that s < m + 1. Hence, we get

V(Q1>Q27-~-aq5) S N(S)7d1m ZRf(QI)f(Qz; =S5 — 1} .
=2

2<sy<m+ 1L

Moreover, in the following, for a set X, we denote the number of its elements (or its
cardinality) by |X|. Then, the second main theorem in this paper is the following.

THEOREM 2. Let f be a C” injection of N into an open subset U of R™, where
N is a C" manifold of dimension n. Let F : U — R® be a C" mapping. If

r > max{sg, 0},

then there exists a subset ¥ of L(R™,R¥) with Lebesque measure zero such that for
any ™ € LR™ RY) — %, and for any s (2 < s < sy), the C" mapping (Fr o f)©) :
NG — (RY)* is transverse to the submanifold A, where

so =max{s(n—{)+{|2<s<ss}.

Moreover, if the mapping F,. satisfies that |F1(y)| < sy for anyy € R, then Fro f :
N — R is a C" mapping with normal crossings.

REMARK 1.

(1) There is an advantage that the domain of the mapping F' is an arbitrary open
set. Suppose that U = R. Let F : R — R be the function defined by x — |z|.
Since F' is not differentiable at x = 0, we cannot apply Theorems 1 and 2 to
F:R—R.

On the other hand, if U = R — {0}, then Theorems 1 and 2 can be applied
to the restriction F|y.

(2) As in [2], there is a case of sy = 3 as follows. If n4+1 < m, N = S™ and
f 8" — R™ is the inclusion f(z) = (z,0,...,0), then we get sy = 3.
Indeed, suppose that there exists a point (qi,qa,q3) € (S™)® satisfying
dim 2?22 Rf(q1)f (qZ) = 1. Then, since the number of the intersections
of f(S™) and a straight line of R™ is at most two, this contradicts the as-
sumption. Thus, we have sy > 3. From S x {0} C f(S"), we get sy < 4,
where 0 = (0,...,0). Therefore, it follows that s; = 3.

———

(m—2)-tuple
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(3) The essential idea for the proofs of Theorems 1 and 2 is to apply Lemma 1,
and it is similar to the idea of the proofs of [2, Theorems 1 and 2]. Note that
in the special case r = oo, from some results in [2], the results in this paper
(Theorems 1 and 2 in this section and Corollaries 1 to 7 in Section 5) can be
obtained.

The following well known result is important for the proofs of Theorems 1 and 2.
In [1], the proof of Lemma 1 in the case r = oo is given. Hence, for the sake of readers’
convenience, the proof of Lemma 1 is given in Section 6 as an appendix.

LEMMA 1 ([1]). Let N, A, P be C" manifolds, Z be a C" submanifold of P and
I''NxA— P beaC" mapping. If

r > max{dim N — codim Z, 0},

and T' is transverse to Z, then there ewists a subset ¥ of A with Lebesgue measure
zero such that for any a € A — X, the C" mapping I'y : N — P is transverse to Z,
where codim Z = dim P — dim Z and T'y(q) =T'(q, a).

3. Proof of Theorem 1. In this proof, for a positive integer n, we denote the
7 X n unit matrix by Ex. Let (ayj)1<i<s,1<j<m b€ a representing matrix of a linear
mapping 7 : R™ — Rf. Set F,, = F,. Then, we have

F,(z) = (Fl(:r) + Z a2, Fy(z) + Z Q2 %5, ..., Fyp(x) + Z agjmj>7 (3.1)
j=1 j=1

Jj=1

where F = (Fi, Fa, ..., Fy), & = (011,012, -+, Qmy -+ -5 Qg1 Q2 - - -5 Q) € (R™)¢
and = (21,%2,...,%y,). For a given C” immersion f : N — U, the C" mapping
F,of:N — R’ is given as follows:

Foof= (FlOf+za1jfjaF2Of+za2jfj7~-wFlOf"‘zaljfj)v (3.2)
j=1 Jj=1

j=1

where f = (f1, f2,...,fm). Since we have the natural identification £L(R™ R?) =
(R™), for the proof, it is sufficient to show that there exists a subset ¥ with Lebesgue
measure zero of (R™)¢ such that for any o € (R™)* — %, the mapping j'(F, o f) :
N — JY(N,RY) is transverse to ©*(N,R").

Now, let I' : N x (R™) — J'(N,R?) be the C"~! mapping defined by

I(q, @) = j'(Fa o f)(q).

Note that r — 1 > max{dim N — codim ¥*(N,R*),0}. Thus, if T' is transverse to
YF(N,R?), then from Lemma 1, there exists a subset ¥ of (R™)¢ with Lebesgue
measure zero such that for any o € (R™)*—3, the C"~! mapping I',, : N — J(N,R?)
(Do = jH(F, o f)) is transverse to X¥(N,R?). Therefore, for the proof, it is sufficient
to show that if I'(¢, @) € X*¥(N,R?), then the following holds:

dl' .3 (Tg.a) (N x (R™)") + Trga E"(N,RY) = TrgaJ " (N, RY). (3.3)
As in Section 2, let {(Ux, ©x)}aea (resp., {(IT7H(Uy x R?),®,)}rea) be a coordinate

neighborhood system of N (resp., J'(NN,R?)). There exists a coordinate neighborhood
(Uz x (R™)¥, 5 x id) containing the point (g, &) of N x (R™)*, where id is the identity
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mapping of (R™)* into (R™)*, and the mapping @5 xid : Uz x (R™)* — o5 (Uz) x (R™)*
(C R"x (R™))is given by (g5 x id) (¢, @) = (¢5(q),id(a)). There exists a coordinate
neighborhood ( LUz x RY),®5) containing the point I'(g,&) of J*(N,R*). Let
t = (t1,t2,...,t,) € R" be a local coordinate on o5 (Us) containing ¢5(g). Then, the
mapping I' is locally given by the following:

(@5 0T o (5 x id) ') (t, @)
= (504 (Fao f)ows)(t)
= (t,(Fao fopi")(®),

a( alofonp h 6(Fa,10fonp§1) 8(Fa,10fo<p;\1)
8t1 (t)7 at2 (t)’ trt 8tn (t)7
Fapofop') = O(Fanofopl') d(Fazofopl')
oy, B O ), T,
Fapofops') — O(Farofops') I(Faofops)
), Tt Dy, T <t>>
= (t, (Faof oapil)(t),
OF) o o9 iy aF o 9 ' OF; o of;
81t1 f Z 90, f ) altg f Za“ f 81tnf(t)+za”£(t)’
8Fgo e 8 j 8FQO e 8 j 8Fgo 8 i
2ol e 20 2520+ S 80 220+ S

oot +i O 8F‘°f<t>+iaegafﬂ<t> : 8onft)+zo‘fﬂat] )

Yot ) Otz Ot2
where F = (FalyFa,Qa“wFa,Z) and f = (ﬁaﬁ77fm) = (f10@§1af20
gp)\ N H=fo <p§1. The Jacobian matrix of I' at (g, &) is the following:
E, 0 0
* . *
(I f3) 0
q
JlGay = | « (Jfz) ’
0
t -
(/) (t,0)=(¢5(@).)

where J f7 is the Jacobian matrix of f at g. Notice that !(.Jf3) is the transpose of
J f7 and that there are ¢ copies of !(.Jf3) in the above description of JI'(G,5). Since
Yk (N,R?) is a subfiber-bundle of J!(N,R*) with the fiber $*, in order to show (3.3),
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it is sufficient to prove that the matrix M; given below has rank n + £ + nt:

En—&-[‘ * *

(Jfz) 0
M, = 0 Jfa)

0

1, '
1) 7 (tor=(ox @@

Notice that there are ¢ copies of i(.J f7) in the above description of M;. Note that for
any 7 (1 <i < mf), the (n+£¢41)-th column vector of M; coincides with the (n+1i)-th
column vector of JI'G 5. Since f is an immersion (n < m), the rank of M, is equal
to n + ¢ + nl. Therefore, we get (3.3). O

4. Proof of Theorem 2. As in the proof of Theorem 1, set F,, = F,., where F,
is given by (3.1) in Section 3. For a given C" injection f : N — U, the C" mapping
F,of: N — R’is given by the same expression as (3.2). Since we have the natural
identification £(R™,R?) = (R™), in order to prove that there exists a subset % of
L(R™,R*) with Lebesgue measure zero such that for any 7 € £(R™,R) — ¥, and for
any s (2 < s < sy), the C" mapping (Fy o f)®) : N(®) — (R)* is transverse to A,
it is sufficient to prove that there exists a subset ¥ of (R™)¢ with Lebesgue measure
zero such that for any o € (R™)* — ¥, and for any s (2 < s < s¢), the C" mapping
(Fyo £)®) : N — (RY)*® is transverse to the submanifold A,.

Now, let s be a positive integer satisfying 2 < s < s5. Let I : NG x (R™)¢ —
(Rf)* be the C™ mapping given by

F(Ql,fh,n-,%,a) = ((Foéof)(QI)’(Fa Of)(QQ),"'a(Faof)(qs))'

Note that from r > max{sg, 0}, we have

r > max{s(n — )+ ¢,0}
= max{dim N®) — codim Ay, 0}

for any positive integer s (2 < s < sy). Thus, if for any positive integer s (2 < s < sy),
the mapping I is transverse to Ag, then from Lemma 1, for any positive integer s
(2 < s < sy), there exists a subset ¥ of (R™)* with Lebesgue measure zero such
that for any o € (R™)’ — ¥, the mapping T, : N — (R)* (T, = (Fy 0 f)®)) is
transverse to A,. Then, ¥ = [JIZ, ¥, is a subset of (R™)’ with Lebesgue measure
zero. Thus, for any a € (R™)! — %, and for any s (2 < s < s¢), the C" mapping
To: NG — (RY® (T, = (F, 0 f)®) is transverse to A,.

Therefore, for this proof, it is sufficient to prove that for any positive integer s
(2<s<sy),ifI(q,a) € As (¢=(q1,G2,---,Gs)), then the following holds:

L g3 (Tg.a (N® x (R™) + Trga As = Trg.a) (RY)*. (4.1)

Let {(Ux, pa)}rea be a coordinate neighborhood system of N. There exists a co-
ordinate neighborhood (U5 x Uz, x - x U X (Rm)g,cpxl X g3, X X 5, X id)
containing (¢, @) of N x (R™)¢, where id : (R™)! — (R™)" is the identity mapping,
and g5 X5, X X5 xid Uy xUs, x---xUx_ x (R™)¢ — (R™)* x (R™)* is defined
by (5, X5, X xp5, Xid)(q1, 92, - - -, a5, @) = (o5, (q1) 5, (42), - - -, 5, (45), id()).
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Let t; = (ti1,ti2,- .., tin) be alocal coordinate around ?3, (¢:) (1 <i<s). Then, T'is
locally given by the following:
To ((p;\l X p3, X X g5, X id) Tt tay . ts, @)
= ((Fao fo i) (tr), (Fao fo@s!)(t2), . (Fao fo o3 M) (ts))
(Fl o f(t1) ialjfj (t1), Fz o f(t1) —|—ia2]f] (t), ..., Foo f(t1) iae]fj (t1),

Jj=1 Jj=1

Frof(t2) + ) a1 fi(ta), Fao f(t2) + > s fi(te),. ., Feo f(t2) + Za“fj(tg),

=1 j=1 j=1

Flof Zaljf] F2°f Za2jfj Ffof Zaéjfj >a

where F(t) = (Fi(t). Jolti)s -, Fn(t)) = (Fr 005 (8), fo0 95 (1), frn00T (1))
(I < i < s). For simplicity, set ¢ = (t1,2,...,t5) and 2 = (p5, X 5, X X
@XS)(ZI&)&?"'%ZI’S)-

The Jacobian matrix of I at (g, &) is the following:

* B(ty)

B(ts)
JlGa = : 7
* B(ts) (t,a)=(z,a)
where
b(t;) 0
b(ti)
B(ti) _ . { rows
0 -
b(t;)

and b(t;) = (f1(t:), f2(t:), ..., fm(t:)). By the construction of Tr(g,a)As, in order to
prove (4.1), it is sufficient to prove that the rank of the following matrix Ms is equal
to Is:

E, B(t1)
E, B(ts)
My = ) )
Ey B(ts) i

There exists an s x £s regular matrix @; satisfying

E, B(tl)
OuM, = ? B(tz)TB(tl)
0 | B(t) - Bt)

t==z
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There exists an (£ + mf) x (£ + m/l) regular matrix Q2 satisfying

E, 0
0 | B(t) — B(t1
Q1 M2Q2 = : ) : 2
0 | Bt - B(t) ) ,_.
Eg O
=
f(t1) f(te) . 0
0 f(t1)f(t2) { rows
0 | ==
= f(t1) f(t2) ;
%
Fenfe) 0
0 f(t)f(ts) { rows
0 | ==
f(t) f(ts)
DRI

where f(t1)f(t:) = (f1(t:) = fi(t), fo(t:) = Fa(tr), -, Fon(t:) = Fin(t2)) 2 <0 < s)

and t = z. From s — 1 < sy — 1 and the definition of sy, we have

S, =———=—
dim ) Rf(0)f(t:) =s—1,

=2

where t = z. Hence, by the construction of Q1 M>@Qs and s — 1 < m, the rank of
Q1 M>Q)> is equal to £s. Therefore, the rank of My must be equal to £s. Hence, we get
(4.1). Therefore, there exists a subset X of £(R™,Rf) with Lebesgue measure zero
such that for any 7 € L(R™,R?) — 3, and for any s (2 < s < s¢), the C" mapping
(Fro £)®) : NG — (RY)* is transverse to A,.

Moreover, suppose that the C" mapping F satisfies that |F ' (y)| < sy for any
y € RY. Since f : N — R™ is injective, it follows that |(F o f)~1(y)| < sy for any y €
R?. Thus, for any positive integer s with s > s;+1, we have (Frof)®)(N®)) N A, = 0.
Namely, for any positive integer s with s > s¢ 4+ 1, the C” mapping (F; o £ s
transverse to A,. Hence, Fr o f : N — R’ is a C" mapping with normal crossings. 0

5. Applications of Theorems 1 and 2. In Section 5.1 (resp., Section 5.2),
applications of Theorem 1 (resp., Theorem 2) are stated and proved. In Section 5.2,
applications obtained by combining Theorems 1 and 2 are also given.

5.1. Applications of Theorem 1. A C? function g : N — R is called a Morse
function if all of the critical points of ¢ are nondegenerate, where N is a C'? manifold
of dimension n (for details on Morse functions, see for instance, [1, p. 63]). In the
case of (n,¢) = (n, 1), we have the following.
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COROLLARY 1. Let f be a C? immersion of N into an open subset U of R™,
where N is a C? manifold of dimension n. Let F : U — R be a C? function. Then,
there exists a subset ¥ of L(R™ R) with Lebesque measure zero such that for any
7€ LIR™ R) — %, the C? function Fy o f: N — R is a Morse function.

Proof. We have dim N — codim L}(V,R) = 0. Therefore, from Theorem 1,
there exists a subset ¥ with Lebesgue measure zero of £(R™,R) such that for any
7 € L(R™ R) — 3, the mapping j1(Fyo f) : N — J(N,R) is transverse to X1 (N, R).
Therefore, if ¢ € N is a critical point of the function Fj o f, then the point ¢ is
nondegenerate. 0

In the case of £ > 2n, we have the following.

COROLLARY 2. Let f be a C? immersion of N into an open subset U of R™,
where N is a C? manifold of dimensionn. Let F': U — R’ be a C? mapping (£ > 2n).
Then, there exists a subset ¥ of L(R™,RY) with Lebesgue measure zero such that for
any ™ € L(R™,RY) — X, the mapping Fy o f : N — R? is a C? immersion.

Proof. Tt is clearly seen that Fr o f : N — R’ is an immersion if and only
if j1(Fr o f)(N)NUp—; ZF(NV,RY) = 0. From ¢ > 2n, for any positive integer k
(1 <k <n), we have

dim N — codim S%(N,R*) =n — k({ —n + k) < 0.

Thus, for any positive integer k (1 < k < n), from Theorem 1, there exists a subset f]k
of L(R™,RY) with Lebesgue measure zero such that for any 7 € L(R™,R?) — ik, the
mapping j'(Fy o f) : N = JY(N,RY) is transverse to S#(N,R). Set ¥ = J;_, Zs.
Note that ¥ has Lebesgue measure zero. Let 7 € L(R™,Rf) — ¥ be an arbitrary
element. Then, suppose that there exists a point ¢ € N and a positive integer k
(1 < k < n) such that j1(Fy o f)(q) € SF(N,R?). Since j'(F, o f) is transverse to
YF(N,R?), we have the following:

A (Fr o ))q(TyN) + Tji ooy ZF (N, RY) = Tji(popy(g) (N, RY).
Hence, we have

dim d(j" (Fx 0 f))g(TyN) > dim Tj1 (g oy J (N, RY) — dim Ty (0 5y () " (N, RY)
= codim Tj1 (g0 ) () =" (N, RY).

Thus, we get n > k(¢ — n + k). This contradicts the assumption ¢ > 2n. Therefore,
we get j1(Fro f)(N)NUje; SF(N,RY) = 0. 0

A C' mapping g : N — R? has singular points of corank at most k if
sup {corank dg, | ¢ € N} <k,

where corank dg, = min{n, ¢} — rank dg,.

COROLLARY 3. Let f be a C" immersion of N into an open subset U of R™,
where N is a C" manifold of dimension n. Let F : U — R! be a C" mapping. Let ko
be the mazimum integer satisfying (n — v + ko)(¢ — v + ko) < n (v =min{n,l}). If

r > max{dim N — codim ©!(N,R%),0} + 1,
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then there exists a subset ¥ of L(R™,RY) with Lebesque measure zero such that for
any © € LR™ RY) — %, the C" mapping Fr o f : N — R’ has singular points of
corank at most k.

Proof. For any positive integer k (1 < k <), we have

7 > max{dim N — codim X*(N,R*),0} + 1
> max{dim N — codim =*(N,R%), 0} + 1.

From Theorem 1, for any positive integer k satisfying 1 < k < v, there exists a
subset ¥y of L(R™, R*) with Lebesgue measure zero such that for any 7 € L(R™, R?)—
Sk, the mapping j'(Fy o f) : N — JY(N,RY) is transverse to ©¥(N,RY). Then,
% = Up_, Ek has Lebesgue measure zero. Hence, there exists a subset 3 of £(R™, RY)
with Lebesgue measure zero such that for any 7 € L(R™,Rf) — ¥, the mapping
jYFr o f) : N — JY(N,R’) is transverse to *(N,R’) for any positive integer k
satisfying 1 < k < v.

In the case of £ = 1, we have kg = 1. Thus, in this case, the assertion clearly
holds.

Now, we will consider the case of £ > 2. In this case, note that ko +1 < v. Indeed,
suppose that v < kg. Then, by (n—v+ko)({—v+ko) < n, we get nl < n. This contra-
dicts the assumption ¢ > 2. For the proof of Corollary 3, it is sufficient to show that
the mapping j!(Fyo f) : N — JY(N,R?) satisfies that j!(Fyr o f)(N) N ZF(N,RY) =0
for any positive integer k satisfying ko+1 < k < v. Suppose that there exist a positive
integer k (ko +1 < k < v) and a point ¢ € N such that j1(F, o f)(q) € *(N,R").
Since the mapping j!'(Fro f) : N — JY(N,R?) is transverse to £* (N, R?) at the point
q, the following holds:

d(j* (Fr 0 )g(TeN) + Tji(e,0 )@ (N RY) = Ti(p,0p) ()T (VL R).
Hence, we have
dim d(j' (Fr o I)q(TgN)
> dim Ty (p,of)(q) )" (N, RY) = dim T (5, o)) 2" (N, RY)
= codim le(Fﬂof)(q)Zk(N, Rg).
Thus, we get n > (n — v+ k)({ — v + k). Since the given integer k¢ is the maximum

integer satisfying n > (n—v+ko)({ —v+ ko), it follows that k& < kq. This contradicts
the assumption kg +1 < k. O

5.2. Applications of Theorem 2.

COROLLARY 4. Let f be a C" injection of N into an open subset U of R™, where
N is a C" manifold of dimension n. Let F : U — R? be a C" mapping. If

(s — 1) > nsy and r > max{2n — ¢, 0},

then there exists a subset ¥ of L(R™,R*) with Lebesque measure zero such that for
any ™ € LR™RY) — %, Frof: N — R is a C" mapping with normal crossings
satisfying (Fr o f)ED(NED)N A, = 0.

Proof. From (sy — 1) > nsy, we have n — ¢ < 0. Thus, we get

so =max{s(n—{)+{|2<s<ss}
=2n— /L.



334 S. ICHIKI

Hence, note that r» > max{sgp,0}. From Theorem 2, there exists a subset % of
L(R™ RY) with Lebesgue measure zero such that for any 7 € L(R™ Rf) — 3, and
for any s (2 < s < s;), the mapping (F, o f)(®) : N — (Rf)® is transverse to A.
Therefore, for this proof, it is sufficient to prove that for any = € £(R™,R?) — X, the
mapping (Fy o f)©7) satisfies that (F o f)/)(NGIYNA,, = 0.

Suppose that there exists an element 7 € £L(R™,R?) — ¥ such that there exists a
point ¢ € N) satisfying (F o f)4)(q) € Ag,. Since (Fir o f)#) is transverse to

A, we have the following:
s s Ly\s
d((Fr o f)( ‘f))q(TqN( f)) + T(Fwof)(sf)(q)ASf - T(Fwof)(sf)(q)(R )%
Thus, we get

dim d((FTr o f)(sf))q(TqN(sj))

>dim T, (RY)*7 — dim T,

(Frof)5(q) A
A,

Frof)*#) (q) =57

= codim T(Fﬂof)@f)(q)

Hence, we have nsy > (sy — 1)¢. This contradicts the assumption (sy —1)¢ > nsy. O
In the case of £ > 2n, we have the following.

COROLLARY 5. Let f be a C' injection of N into an open subset U of R™, where
N is a C' manifold of dimension n. Let F : U — R be a C* mapping. If ¢ > 2n,
then there exists a subset ¥ of L(R™, R¥) with Lebesque measure zero such that for
any © € LR™,RY) — %, the C* mapping Fy o f : N — R’ is injective.

Proof. Since sy > 2 and ¢ > 2n, it is easily seen that the dimension pair (n, /)
satisfies the assumption (s; — 1)¢ > nsy of Corollary 4. Indeed, from ¢ > 2n, we get
(sf —1)¢>2n(sy —1). From sy > 2, it follows that 2n(sy — 1) > nsy.

Since max{2n — ¢,0} = 0, from Corollary 4, there exists a subset > of L(R™, R")
with Lebesgue measure zero such that for any 7 € L(R™,R) — ¥, the mapping
(Fro )@ N® — (RY)? is transverse to Ay. For this proof, it is sufficient to prove
that the mapping (Fy o f)(? satisfies that (Fy o f)(N®@)N Ay = 0.

Suppose that there exists a point ¢ € N such that (Fy o f)®)(q) € A,. Then,
we get the following:

A((Fr o £)D)o(TN®) + Tipopyn B2 = Tiropyo o) (R
Thus, we have
dim d((Fr o £)®)(T,N®)
= dim Tip, o @ (q) (RY)? = dim T oy () A2
= codim T(F,\.of)(Q)(q)AQ'
Hence, we have 2n > ¢. This contradicts the assumption £ > 2n. O
By combining Corollaries 2 and 5, we have the following.

COROLLARY 6. Let f be an injective immersion of N into an open subset U of
R™, where N is a C? manifold of dimension n and f is of class C?. Let F : U — R*
be a C% mapping. If £ > 2n, then there exists a subset X of L(R™,RY) with Lebesque
measure zero such that for any m € L(R™, RY) — X, the C? mapping Fyo f : N — R’
18 an injective immersion.
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From Corollary 6, we get the following.

COROLLARY 7. Let N be a compact C? manifold of dimension n. Let f be a C?
embedding of N into an open subset U of R™. Let F : U — R? be a C? mapping. If
¢ > 2n, then there exists a subset ¥ of L(R™,RY) with Lebesque measure zero such
that for any ™ € L(R™,RY) — %, the C? mapping Fyr o f : N — R’ is an embedding.

6. Proof of Lemma 1.

6.1. Preliminaries for the proof of Lemma 1. Let N and P be C” manifolds,
and let g : N — P be a C! mapping (r > 1). A point x € N is called a critical point
of ¢ if it is not a regular point, i.e., the rank of dg, is less than the dimension of P.
We say that a point y € P is a critical value if it is the image of a critical point. A
point y € P is called a reqular value if it is not a critical value. The following is Sard’s
theorem.

THEOREM 3 ([6]). If N and P are C" manifolds, g : N — P is a C" mapping,
and r > max{dim N — dim P,0}, then the set of critical values of g has Lebesgue
measure zero.

6.2. Proof of Lemma 1. In this proof, by 7 : N x A — A, we denote the
natural projection defined by m(z,a) = a.
Since T is transverse to Z, the set [ ~1(Z) is a C" submanifold of N x A satisfying

dim N + dim A — dimI'"*(Z) = dim P — dim Z. (1)

Firstly, suppose that dimI'~1(Z) = 0. Then, since I'"}(Z) is a countable set,
7(I'71(Z)) has Lebesgue measure zero in A. It is clearly seen that for any a €
A—7(T7Y(Z)), the mapping I',, is transverse to Z.

Finally, we will consider the case dimT'~!(Z) > 0. It is not hard to see that if
a € Ais a regular value of 7|p-1(z), then I'y is transverse to Z, where 7T|1"—1(Z) is
the restriction of 7 to I'"*(Z). Let X be the set of critical values of 7|p-1(zy. From
r > max{dim N +dim Z—dim P,0} and (1), we have r > max{dim '"1(Z)—dim 4, 0}.
From Theorem 3, ¥ has Lebesgue measure zero in A. Therefore, if a € A — 3, then
I', is transverse to Z. O
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