METHODS AND APPLICATIONS OF ANALYSIS. (© 2017 International Press
Vol. 24, No. 4, pp. 445-476, December 2017 002

PARTIAL REGULARITY OF SOLUTIONS TO THE SECOND
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EQUATIONS*
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Abstract. We prove that outside of a closed singular set of measure zero solutions to the second
boundary value problem for generated Jacobian equations are smooth.
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1. Introduction. In this paper, we begin the development of a partial regularity
theory for solutions to the second boundary value problem for a class of prescribed Ja-
cobian equations called generated Jacobian equations. A prescribed Jacobian equation
(PJE) takes the form

det(Vy[T(z,u(z), Vu(z))]) = ¢(z,u(z), Vu(z)) (1.1)

where T = T(z,u,p) : domT C OQXRxR™ — R™ and ¢ = ¢(x, u,p) : AXRXR™ — R;
and the second boundary value problem (SBVP) asks that

Tu(Q) =T (1.2)

for some given T C R™. Here,  and Y are open sets and Ty (z) := T(z, u(z), Vu(z)).
We consider the specific case when this prescription is given through the push-forward
condition

(Tu)#f =9

for two probability densities f and g supported in 2 and Y respectively. This corre-
sponds to

f(z)
9(T(x,u(z), Vu(z)))’

When the map T is generated by a function G : dom G C R" x R® x R — R, we
find ourselves in the world of generated Jacobian equations (GJEs), and we call Ty,
the transport map associated to G and u.

PJEs, in particular, GJEs, encompass many problems in analysis, economics, and
geometry (see [11] for a discussion of some of these problems as well as the many ref-
erences therein). The simplest PJE, when T = T(p) = p, is the Monge-Ampere equa-
tion, and the SBVP corresponds to the optimal transportation problem for quadratic
cost. Here, smooth data does not ensure the existence of a smooth solution. Rather,
the problem requires an additional, strong geometric condition on the support of the
target density g for such a statement to hold. Specifically, we need T to be convex,

Y(z,u(x), Vu(z)) = (1.3)
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as Caffarelli showed in [2]. (See [12] for an investigation of how important, quan-
titatively, the convexity of Y is in guaranteeing the regularity of Vu.) When T is
highly non-linear in its variables, the complexity of the problem is compounded. If
T = T(z,p), as it does in the optimal transport problem for general cost, not only
do we need to place geometric restrictions on Y, but the associated generator G of
T must obey certain structural conditions to first ensure the production of T and
second guarantee the regularity of solutions. In the most complex situations, wherein
T = T(x,u,p), analogous geometric conditions on the target domain and structure
conditions on G are still insufficient to yield regular solutions. This phenomenon
is exhibited, for instance, in the reflector shape design problem: Karakhanyan and
Wang, in [13], showed that smooth data may produce distinct solutions with vastly
different regularity.’

The distinguishing feature of a general GJE from the optimal transport case is the
map T may depend on the values of the potential u. This feature will be the source of
the challenges faced in this work. The third coordinate of G in the optimal transport
case for cost ¢ is a simple height parameter. Changes in this variable translate to
vertical shifts in the graph of G(z,y,v) = —c(x,y) — v. In general, changes in the
third variable of an arbitrary generating function affect the shape of the graph G (see,
e.g., [11, 13, 15]).

As noted, the GJE setting is one in which the map T is produced from another G.
In the optimal transport problem for cost ¢, the map T is generated by the equation

D,G(x,T) = —Dyc(z,T) = p.

Generally, the map T (along with another V) is generated through the system of
equations

D,G(x,T,V)=p
G(z,T, V) =u.

As such, G must satisfy a collection of basic structure conditions to produce T.

1.1. Structure of G. Our starting assumptions are three-fold: 1. dom G =
X xY x I where X,Y C R™ are open and I C R is an open interval, 2. G is of class
CL.(X xY x1I), and 3.

D,G(z,y,v) <0. (G-Mono)

Up to a change of variables, we let [ = R.
The remaining structure conditions on G will hold on a subset of the domain of
G:

g:={(z,y,v):v eV}

for each pair (z,y) € X x Y, the set V, , is some open interval (possibly empty). We
assume that g is open. In keeping with the nomenclature of [11], the final structure
conditions we impose on G are as follows. First, we ask that the map

(y,v) = (D, G(z,y,v), G(x,y,v)) is injective on {(y,v) : (x,y,v) € g}. (G-Twist)

L In the optimal transport problem, potentials u are unique up to the addition of a constant. In
the near-field reflector problem, however, we find that solutions may not be unique in any natural
sense.
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Second, we assume that the map

D,G
T —% is injective on {z : (z,y,v) € g}. (G*-Twist)

Third, we suppose that

det ( zy g g g) #0on g. (G-Nondeg)

We shall make some remarks on these conditions in Section 2.

1.2. Statement of main result. In [15], the local regularity of solutions to
our SBVP is also studied. Under a pair of higher-order structural assumptions on
the generating function G and geometric restrictions on the open, bounded sets 2
and T, solutions are proved to be smooth (given smooth densities bounded away
from zero and infinity in ©Q and YT respectively), and the transport associated to
G and u is shown to be a diffeomorphism from 2 onto Y. These assumptions are
extensions of the MTW conditions on the cost ¢ and the c-convexity and c*-convexity
requirements on the source and target domains in the optimal transport problem for
general cost (see [14]). We refer the reader to [11] for other results on the regularity
of solutions to general generated Jacobian equations under different, but related,
additional conditions on the structure of G and on the geometry of the domains of
the equation.

The purpose of this paper is to show that solutions to (1.1) — (1.3) are smooth
outside a singular set of measure zero without the presence of any additional structural
or geometric conditions. Precisely, our main result is the following:

THEOREM 1.1. Let G and g be as in Section 1.1 and  C X and T C Y be
two open, bounded sets. Suppose f : Q — RT and g : T — R are two continuous
probability densities bounded away from zero and infinity and u : Q — R is a G-conver
function such that (Tw)x f = g. Then, for every 5 < 1, there exist two relatively closed
sets S C Q and Sy C T of measure zero such that Ty : Q\ S0 — T\ S is a
homeomorphism of class C’loC . If, in addition, G € CFI2*(Qx T xR), f € CF(Q),

loc loc

and g € CFo(Y )forsomek>0anda€(0,1), then Ty : Q\ S0 = T\ S is a

loc
. k+1,«
diffeomorphism of class C| .~

Notice that when f and g are just assumed to be continuous, the regular sets de-
pend on the value of 8. In the higher regularity cases, the regular sets are independent
of the values of k£ and . Recall that the SBVP for GJEs may, in general, have many
solutions, all with potentially different regularity properties (again, see [13, 11]). Yet
by Theorem 1.1, outside sets of measure zero, all of this variety is unseen.

The proof of Theorem 1.1 follows the global strategy of its optimal transport
predecessor [5, Theorem 1.3]. However, new difficulties arise here coming from the
additional non-linear nature of general generating functions over those that arise in
optimal transportation and the non-existence of a Kantorovich formulation of the
problem. In particular, the third component v of G plays no role in [5], while its
presence here is pervasive.

As far as we know, Theorem 1.1 is the first partial regularity result on general
GJEs. That said, in the optimal transport setting, the first partial regularity result
was proved by Figalli in two dimensions for quadratic cost in [8]. This two dimensional,
quadratic cost result was subsequently pushed to arbitrary dimension by Figalli and
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Kim in [9] and then again by Goldman and Otto in [10]. In [5], De Philippis and
Figalli extended these last quadratic cost results to general cost, while Chen and
Figalli proved a partial Sobolev regularity result for general cost in [4]. Finally, we
mention that the e-regularity techniques developed by De Philippis and Figalli, in
[5], and exploited here have been used to prove regularity results at the boundary for
optimal transports in [3] and [12].

1.3. Organization. This paper has four additional sections. In Section 2, we
introduce some more notation and some preliminary results. Section 3 is dedicated to
the proof Theorem 1.1. Finally, in the last two sections, we prove the local regularity
results around which the proof of our main result revolves.

2. Preliminaries. In this section, we introduce some notation and preliminary
results. We start with some remarks on G and the structure conditions it obeys.
Then, we visit the geometry of solutions to the SVBP for GJEs. Finally, we show that
solutions to (1.1) — (1.3) satisfy a Monge—Ampere-type equation almost everywhere.

2.1. Structure and duality. The assumption that g is open is mild. For in-
stance, in the near-field reflector/reflector shape design problem [13], an important
model setting for the SBVP for general GJEs— wherein we have non-uniqueness of
solutions and varying regularity among solutions— the set g is open (see [11, Section
3.1]). More generally, as far as we know, the set g is open in all examples of GJEs.

Thanks to (G-Mono), there exists a unique function H determined by the equation

G(z,y,H(z,y,u)) = u,

and H(z,y,-) is well-defined on the (non-empty) open interval G(z,y,R). We call H
the dual of G. In the optimal transport case, H(x,y,u) = —c(x,y) — u, and we see
that G(z,y,R) = R for all pairs (x,y). Generally, however, G(z,y,R) maybe not be
R for any pair (z,y). In addition, we define the set

b = {(Iayvu) HEURS Uz,y}

with Uy, = G(z,y,Vsy). As g is open, (G-Mono) and the continuity of D,G
together imply that the set b is also open. Hence, H is locally C? on h and

D, H(z,y,u) < 0. (H-Mono)
We can see that the map

(z,u) = (DyH(z,y,u), H(z, y,u)) is injective on {(x,u) : (z,y,u) € b}, (H-Twist)

the map
DEH y I e . )
y = —% is injective on {y : (z,y,u) € b}, (H*-Twist)
and
D.H
det Dny — DyuH ] D H ;ﬁ 0 on h (H—Nondeg)

In particular, (G-Twist) and (H*-Twist), (G*-Twist) and (H-Twist), and (G-Nondeg)
and (H-Nondeg) are respectively equivalent (see [11, Remark 9.5] and [15]).
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Moreover, with H, we can generate the map S and look to solve the dual generated
Jacobian equation

49,806 v(0), TV = S0 (2.1)

We will often use the following first-order identities:

D.G D,G 1
v DH = — Y d  D,H=
D,G’ v p,g= ™" D,G

D.,H= -

and the following second-order identities:

D..,.G + D?>GD,H D,,.G + D?>GD,H
D,,H=-"%" v & D,H=-"" v Y
(D,G)? Y (D,G)? ’
and
DG
D2H _ v
“ (D,G)?

Here, the derivatives of H are taken at (z,y,u) and the derivatives of G at
(z,y,H(x,y,u)) provided, of course, u € G(z,y,R). These identities are simple
consequences of (G-Mono).

Now let E be the n x n matrix from (G-Nondeg):

D,G
E(x,y,v) := |DyyG — D3,y G® DzG (z,y,v). (2.2)

Notice that the Jacobian determinants of the maps in (G-Twist) and (G*-Twist) are
[DyG(2,y,0)["|det(E(z,y,0))]  and  |DyG(z,y,v)[""|det(E(z, y,v))]

respectively.

2.2. G-convexity. Solutions to (1.1) — (1.3) are G-convex functions. Let us
recall the definition of G-convexity and some related facts, definitions, and charac-
teristics. We say that a function u : X — R is G-convez if for every zy € X, there
exists a focus (yo,v0) € Y x R such that

(70,%0,v0) € @
and
u(zo) = G(zo, Yo, vo) and u(z) > G(z,yo,v0) Vo e X.

Notice that if (yo,v0) and (yo,v1) are foci for a G-convex function u at the point zg,
then by (G-Mono), vo = v1 = H(xg,y0,u(zg)). So we can recast our definition and
say that u: X — R is G-convex if for each g € X, there exists a point yy € Y such
that

(20, yo, H(z0, Y0, u(z0))) € g
and

u(zo) = G(zo,y0, H(zo,yo, u(r0))) and u(z) > G(z,y0, H(zo,yo,u(zo))) Vre X.
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For a G-convex function u : X — R, we define its G-subdifferential at xo to be
the (non-empty) set

deu(ze) == {y € Y - u(x) > G(z, 5, Hlzo,yu(e0)) Ve X} (23)
provided
(o0, y, H(zo,y, u(x0))) € g. (2.4)
Given y € dgu(zg), we call
Yoo () = G(y,v)

with v := H(zg,y, u(xg)) a G-support of u at zy. Recalling the Fréchet subdifferential
of a function u at xg:

O u(zg) :={peR":u(x) >u(xo) +p- (x —x0) + o]z — x0])},
with o(Jz — 2g]) = 0 as & — x, we see that
y € dgu(zo) = D.G(z0,y, H(wo,y,u(w0))) € 0~ u(xo). (2.5)

For £ C X, we set

dgu(E) := U dgu(x) and O u(E) := U 0~ u(z).

zeE rzel

REMARK 2.1. In the optimal transport setting, the geometric condition (2.3)
alone dictates whether or not a point y is in the G-subdifferential of u at xy. The
admissibility condition (2.4) always holds. Yet this is not the case in general. A
simple but important consequence of this is that the G-subdifferential may not be
continuous in the way the c-subdifferential is for c-convex functions. For instance, in
the quadratic cost case, c-convexity is convexity, and given y; € 0 u(xy) such that
yr — yo and z, — xo, we know that yo € 9~ u(xg). However, if we replace 9~ u with
Ogu, this implication may not hold.

Akin to the Legendre transform, we define the G-transform of u to be the H-
convex function given by

ug(y) := sup H(z,y, u(z)). (2.6)
reX
In actuality, the supremum here is taken over those € X such that H(x,y, u(z)) is
defined; the G-convexity of u implies that u(z) € U, ,, whenever y € dgu(z), and so
the supremum is over a non-empty set. Moreover, as noted in [15, Section 4]2,

ugHg =Uu (2.7)

2 While (2.7) and (2.8) are mentioned in [15, Section 4], they are not proved. For completeness,
we prove them here. Let yo € Ogu(zo) and vo := H(zo, yo, u(zo)). By definition, (xo, yo, u(zo)) € b.
If 2o is the only point at which H(-,yo, u(-)) is defined, then zg € dgug (yo) trivially. On the other
hand, let z € X be such that H(z, yo, u(z)) is well-defined. Since u(z) > G(z,yo,vo) for all z € X,
we see that

H(m,yo,u(x)) < H({E,yo, G((E,yo,vo)) =vo = H(w07y0,u(m0))'

By construction, H(z,yo,-) can be evaluated at G(z,yo,v0). Hence, the supremum in (2.6) is
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where vy (z) := sup,cy G(z,y, v(y)) is the H-transform of a given H-convex function
v:Y — R, and

Yy e (9(;u(117) A 81-111(;(]4). (2.8)

For the H-subdifferential, the analogue of the admissibility condition (2.4) is

(CE, Yo, G(.’IJ, Yo, V(yO))) € hu

for z € duv(yo). Because we have assumed that G is of class C2 (X x Y x R), we

find that G-convex functions are locally semiconvex. (The semiconvexity constant of
u in a set depends only on the C°-norm of D2G in that set.) In particular, G-convex
functions are locally uniformly Lipschitz and twice differentiable at almost every point
(see, e.g., [7]). This basic regularity will be the foundation of our analysis.

Since G satisfies (G-Twist) and (G-Nondeg), we can generate the maps
G-exp, ,(-) and V,(-,-) from the pair of equations

{DEG@’ G-y uP): Vol D) =Py e (D,@ @) ({(@,0) : (2.1.0) € 8)).

G(z,G-exp, ,(p), Va(u,p)) = u
Here, D, G is evaluated at the point (z, G-exp, ,(p), Vz(u,p)). In other words,
G-exp, ,(p) =y & p=D,G(z,y,H(z,y,u))
and
Vo (u,p) = H(z, G-exp, ,(p), u)
so long as (x,y, H(x,y,u)) € g. And so (2.5) can be rewritten as
De(20) C G-eXp,1 gy (0 (x0)). (2.9)

When applying G'eXon,u(mo)(') to p € 9 u(xp), we only consider those p =
D,G(zo,y,H(zo,y,u(zo))) such that u(zg) € U,,,. Hence, we see that if u is
differentiable at x, then dgu(xo) is a singleton {yo} and

Vu(zo) = D:G(x0, Yo, v0), (2.10)
and if u is twice differentiable at g, then
D*u(xg) > D2G(z0, Yo, vo).- (2.11)

In (2.10) and (2.11), vo := H(zo,yo,u(zo)). Finally, given a G-convex function
u: X — R, let us define the map (at almost every x € X) Ty by

Tu(z) == G-exp, y(z)(Vu(z)).

Even though T, depends on u and G, we shall often suppress the second dependence
for notational simplicity.

achieved at (zo,yo0,u(zo)). That is, if yo € dgu(zo), then zo € Oxug(yo) and ug(yo) =
H(z0,y0,u(zo)). It then follows that

ugH(z0) 2 G(z0,y0, uc(yo)) = G(zo,yo, H(zo, yo, u(xo))) = u(zo).
A symmetric argument, taking ug in place of u and ugy in place of ug above, yields that
zo € Onuc(¥o) = o € dgugH(zo)
and u(zo) = G(zo, yo, H(zo, Y0, u(z0))) > G(zo, Yo, uc(y0)) = ugu(zo).
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2.3. A Monge—Ampere-type equation. Set v := ug. Then, v is a solution
to the SBVP for (2.1), the dual equation (see [15, Lemma 4.1]). In particular, by [15,
Lemma 4.1] and the remarks just before it, (Sy)xg = f. Recall that u and v are
twice differentiable almost everywhere; let €2 and T; be the full (Lebesgue) measure
subsets of 2 and T respectively on which u and v are respectively twice differentiable.
By (2.8) and (2.9), we see T, and Sy are inverses of one another in the sense that

Sv(Tu(z)) =2 Vee and Tu(Sv(y)) Vye Y. (2.12)

Here, of course, Sy(y) := H-exp,,
Theorem 11.1] to deduce that

v(y)(VVv(y)). Since (Tu)xf = g, we can apply [16,

| det(VTy(2))| = % Vi € Q.

Then, (2.10) and (2.11) imply that

det(DQU(I) - DQQCG($7 Tu(I)a H(ZE, Tu(I)v u(x)))

—|det(E(a:,Tu(x),H(I,Tu(I)au(x))mg(,ﬁi)x)) a.e. (2.13)

Since by (G-Nondeg), E has non-zero determinant, the nondegeneracy of the right-
hand side of our Monge—Ampere-type equation (2.13) is preserved. (See [15] for more
details.) In conclusion, a solution u to (1.1) — (1.3) satisfies a Monge-Ampere-type
equation almost everywhere.

3. Proof of Theorem 1.1. Set v to be the G-transform of u and let Q4, Y1,
and Sy be as in (2.12). Consider the set

Qo =1 N T;l(Tl) c Q,

and observe that |2\ Q2| = 0 since (Ty)4f = g and the densities f and g are bounded
away from zero and infinity. Recall that (Sy)xg = f.

Fix 2/ € Qo. Since 2’ is a point of differentiability for u, the G-subdifferential
of u at 2’ is a singleton (see (2.9)): Odgu(a’) = {Tu(2)}. Set ¢y’ := Ty(a’) and
v = H(2', Tu(z'),u(z’))). Note that y' € T;. Up to a translation, we can assume
that (2/,y’,v") = (0,0,0). Furthermore, up to subtracting G(-,0,0), we can assume
that u(0) = 0 and its G-support at (0,0,0) is identically zero; that is, % 0,0(x) =0
and u(x) > 0 for all x € Q. In turn,

D,G(-,0,0) = 0. (3.1)

With these normalizations in hand, define

G(z,y,v) := G(x,y,v + H(0,y,0)) and a(z) ;= u(x).

Notice that H(0,y,0) may not be defined at all points y € Y or even all points y € Y.
However, it is well-defined in B. C T for some € > 0 by the implicit function theorem
and (G-Mono). Furthermore, as u is twice differentiable at the origin and Vu(0) = 0,
[16, Theorem 14.25] implies that

0~ u(z) = D*u(0)x + o(|z|).
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So using (2.9), we can find an € > 0 such that
dgu(B.) C B-C T. (3.2)

Here, ¢ and e are not necessarily equal. For each (x,y) € B. x B, let wa =
Vay —H(0,9,0). Define

§:={(z5,0) : (1,9) € B x B. and v € V., }.

Observe that G satisfies (G-Twist), (G*Twist), and (G-Nondeg) on § (also (G-
Mono)). In B, we find that @ is G-convex. Indeed, let zo € B, yo € dgu(zo),
and v := H(zo, Yo, u(xo)) — H(0, y0,0). Then, (zo,yo,?0) € § and

G(z,90,%0) = G(x,y0, H(20, %0, u(r0))) < u(r) = a(z) Vre B

with equality at = xy. In particular,

dgu(r) = Ogu(r) Vo e B.. (3.3)
Setting
f=fip, and  §:=gly as.) (3.4)
we claim that
(Ta)yf = 9. (3.5)

Note that the dual of G is

H(‘Tu Y, ’U,) = H(‘Tu Y, ’U,) - H(Ou Y, 0)

And so using (3.3) and recalling (2.9), we see that Ty|p, = Tq. Thus, recalling (3.3),
it suffices to show that T (dgu(B,))\ B. has measure zero. To this end, observe that
if z € Tg'(Ogu(Be)) \ Be, then there exists an z. € B, such that dgu(z) N dgu(x.)
is non-empty. Therefore, as © # x. and recalling (2.8), we see that

T, '(Ogu(B.)) \ B. C T,'({non-differentiability points of v}).
Since
|T, ! ({non-differentiability points of v})| = 0,

because v is semiconvex and f is bounded away from zero, the claim holds.
By construction, G is such that

G(-,0,0) = G(0,-,0) =0,
and 1 is such that
1(0) = Vu(0) = 0.
Thus, Taylor expanding G and 1 around the origin yields
G(z,y,v) = D,G(0,0,0)v + D, G(0,0,0)z - y
+ D, G(0,0,0) - vz + Dy, G(0,0,0) - vy

1 -
+5D2G(0,0,0)0° + o(|2f* + [y|* + [v]*)
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and
a(z) = %D%(O)x 2+ ol[]?).
Let
a:=-D,G(0,0,0)>0, M :=D,,G(0,0,0), and P :=D%a(0).

As M = E(0,0,0), with E defined in (2.2), det(M) # 0. Hence, using (2.13) and
(3.1), we find that det(P) = det(D?*u(0)) > 0; that is, P is positive definite and
symmetric. Therefore, after the change of coordinates

X v) = (Z,7,0) = P1/2$ P 1/2Mt av
( 'Y, ) ( 'Y, ) ( ’ Y, ’
we see that

G(&,7,0) := G(z,y,0) = —0+&-J+b1 -0 +bz- 0§+ c30° +o(|Z* +|g* +[3[*), (3.6)

with
1 . 1 .
b= Dy G(0,0,00P72, by == =Dy G(0,0,0)[M] 71 P2,
and
! D2G(0,0,0)
Cc3 = —5 .
3 2@2 v s Uy
Also,
I 1 _
u(z) :=u(r) = §le2 +o(|Z[*) (3.7)

and is G-convex in P/2B,. In particular,
Ogu(i) = PV2M'ogt(x)  with 2 =P Y%z

Now admissibility is with respect to

§:={(2,9,0): (&,§) € P/?Be x P"Y2M'B. and © € aVp-1/25 (pre)-1p1/25}-

Additionally, letting H be the dual of G, we see that
H(Z,7,0) = =i+ & -§ — by - UZ — by - 4 — 30 + o(|Z2 + |7)® + |@]?).  (3.8)
By construction,

H(-,0,0) = H(0,-,0) = 0.
Here, @ := u. Furthermore, if we set
f(@) = det(P~V2) f(P7%2) and  §(§) == | det([M']""P/?)|g([M "]~ PV2g),

then from (3.4), (2.13), and (3.1), we deduce that

f(0) det(P~1/2)  £(0) det(P~1)  det(D?u(0))
7

_ B )
(0) ~ Tdet([MTTP1/2)] 9(0) — |det(M~1)| [det(E(0,0,0))] (3.9)
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Moreover, (Tq)xf = g by (3.5) and construction.

Consider the rescalings®

o H rI, i, r2i
Hr(‘rvy?/u) = %7

G(mﬁ, i, 720)

Gr(i'uguﬁ) = 2 )

and

Since g and b are open and G is of class CZ _, we have that Bg x Bs x (—64,64) C g, b,
for all 7 sufficiently small. In addition to the openness of g, using (3.6) and the C?
regularity of G, we can ensure that Bg x (—64,64) x Bs C dom G,-exp for all r
small enough.* Here, g, is the set on which G, satisfies (G-Twist), (G*-Twist), and
(G-Nondeg); and H, and b, are as expected. Also, define
G o g(rg)

£ =T md @)= 0

Since f and g are bounded away from zero and infinity, (3.9) implies that f (0) = g(0).
Therefore, from the continuity of f and g, we deduce that

Ilfr = Ulzoo(my) + l1gr — Ulzoo(my) <6

with § = 6(r) — 0 as 7 — 0. Using the push-forward condition (Tq)4f = §, we find
that (Tw,)#fr = gr. Moreover, from (3.6) and (3.8), we determine that

|G — 2§+ 0|lc2(Bex Bs x (—64,64)) + [Hy — Z - § + G| c2(Byx By x (—64,64)) < 0 (3.10)

where § = 6(r) — 0 as r — 0. Furthermore, from (3.7), we see that

Lo
u, — |7 =7
20 ooy
where n =n(r) = 0 as r — 0.
As we proved (3.2), we deduce that
07 u,(z) C By(Z) Vi€ Bs (3.11)

where ¢ = p(r) — 0 as r — 0. Additionally, from (3.10), we find that
|Gr-expz (D) — Dllor(Bsx (—64,64)x Bs) < 0-

3 The most basic generating function, coming from the optimal transport problem with quadratic

cost, is invariant under parabolically quadratic rescalings, thinking of v as time: set
2
G (,y,0) = w
r

if G(z,y,v) =z -y — v, then G, = G. Rescaling in this way suggests that G need not account for
D4+ G(0,0,0), DyyG(0,0,0), or D2G(0,0,0) being non-zero, a heuristic confirmation of our choice
for G.

4By the C? regularity of G, the openness of g, and the inverse function theorem (recall (G-
Twist)), we find that the family functions {F,; := (G-exp,, Vz)}zco varies in a O fashion (in z)
in some open set O. Hence, by continuity and the openness of g, we can find an open subset of the
origin in R?”?*1 on which G-exp is well-defined. The rescaling (z,u,p) + (z/r,u/r2,p/r), therefore,
permits this inclusion.
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Therefore, using (2.9) and (3.11), we obtain that
Og,u.(Z) C B,(Z) Vi € By (3.12)

where p = p(r) = 0 as 7 — 0. Since g is twice differentiable at 0, the G,-transform
of u, is also twice differentiable at 0; let v,. be the G,-transform of u,.. In addition,
D?v,.(0) =1d5. So arguing as we did to prove (3.12), we find that

Om, vr(§) C Bp-(§) Yy € By (3.13)
where p* = p*(r) — 0 as r — 0. Hence, if
C:=hB and K = 0g,u,.(B;)
and r is sufficiently small, then we can force
By, CK C B (3.14)

thanks to (3.12), (3.13), and duality. Observe that C is convex by construction and
K is closed being the G,-subdifferential of a compact set and recalling (3.14), (3.10),
and the inclusion Bg x Bg X (—64,64) C g,. Finally, recalling (3.9) and arguing as we
did to prove (3.5), we have that

(Tu,)#(frlc) = grlx.

The remainder of the proof of Theorem 1.1 is identical to the optimal transport
case after replacing [5, Theorem 4.3], [5, Theorem 5.3], and [5, Corollary 4.6] by
Theorem 4.1, Theorem 5.5, and Corollary 4.7 respectively. We refer the reader to [5]
rather than including the details.

4. CYP-regularity and strict G-convexity. In this section, we prove an e-
regularity result and exhibit some of its consequences. Before stating it, let us intro-
duce some notation. Set

Bgr := Baog X Bar x (—R3 R?) c R*"*1,
Furthermore, we let
Il lx for k=1,2

be the parabolic C*-norm. That is, a function is of class €* if it is k times continuously
differentiable in « and y and k — 1 times continuously differentiable in v. Finally, we
say a set E is C-semiconvex if every point on the boundary of FE can be touched from
outside by a ball of radius 1/C.

THEOREM 4.1. Let C be a closed, (C20)-semiconvex set and K be a closed set
such that

Bl/QCC,/CCBg, (4.1)

5 We can see this by differentiating the equations
Vur(Z) = Dz G (%, Tu, (Z), Hr (Z, Ty, (2),ur(2)))
and
Vv (§) = DgHr(Sv,.(9), 9, Gr(Sv,. (9), 4, vr(9)))

at 0 and using (3.6), (3.8), and that [VTy, (0)] ! = VSy,.(0).
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f and g be two densities supported on C and K respectively, and u be a G-convex
function such that dgu(C) C By and (Ty)xf = g. In addition, suppose that By C g,b.
For every g € (0,1), there exist constants dg,m0 € (0,1) such that the follow holds: if

If —1cllze(By) + 19 — 1kl Lo (By) < o, (4.2)
IG =z y+vlezp,) + [H—-2-y+ulles,) + [|E—1d|cos,) < do, (4.3)
and
Lo
u-— §|x| < 1o, (4.4)
CO(Ba)

then u € C1F(Byq).
Theorem 4.1 will follow from its pointwise version Proposition 4.2.

PROPOSITION 4.2. Let C be a closed, (Cs0)-semiconvex set and K be a closed set
such that

Bl/g cC,K C Bs,

f and g be two densities supported on C and K respectively, and u be a G-convex
function such that u(0) = 0, dgu(C) C Bs, and (Tw)gf = g. In addition, suppose
that Bs C g, b,

G('v 0, O) - G(Oa * O) = H(a 0, 0) = H(Oa * O) =0, (45)
and
D,G(0,0,0) = D,H(0,0,0) = -1 and D;,G(0,0,0) = D.,H(0,0,0) =1d. (46)

For every g € (0,1), there exist constants 6,n € (0,1) such that the follow holds: if

If = Ulzeey + lg = Uz <9, (4.7)
G =z y+vles) + |[H—-2-y+ullgs,) <9, (4.8)
and
1 2
u— |z <, (4.9)
20 ooy

then u € C1#(0).

The proof of Proposition 4.2 makes use of two lemmas. The first is a compactness
result that allows us to approximate u with a solution to an optimal transport problem
with quadratic cost. The second is an estimate on the G-subdifferential of u in terms
of the gradient map of the convex potential that approximates u found in the first
lemma.

LEMMA 4.3. Let C be a closed, (Crd)-semiconvex set and K be a closed set such
that

Bi/r CC,K C By (4.10)
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for some R >3, f and g be two densities supported on C and K respectively, and u :
Br — (=R? R?) be a G-convex function such that dgu(C) C Br and (Ty)xf = g.
In addition, suppose that Brx C g. Also, let p > 0 be such that |C| = |pK| and w be
a conver function such that (Vw)zle = 1, with w(0) = u(0). Then, there exists
an increasing function w : RY — R depending only on R, satisfying w(5) > § and
w(0%) = 0 such that if

If = Ulree) +1lg = Ulpope) <6 (4.11)

and
IG -2z y+ vy + IH—2-y+ulle2s,) <9, (4.12)

then
[u—wlco,, s < w(d). (4.13)

Proof. Suppose, to the contrary, that the lemma is false. Then, there exists
an g9 > 0 and sequences of closed sets C; and K, satisfying (4.10) with C; being
(Cr/j)-semiconvex, functions f; and g, satisfying (4.11) with § = 1/j, and generating
functions G satisfying (4.12) also with 6 = 1/ such that

u;(0) =w;(0)=0 and  [[u; —wjlcos,, ) = <o (4.14)

where u; and w; are as in the statement of the lemma. Moreover, Br C g;.
Using the push-forward condition (Ty;)4f; = gj, (4.10), and (4.11), we find that

pi = (IC;1/VC;DV™ — 1 (4.15)
as j — 00. Now let us extend each wjlc; to a convex function on Bg, setting

w(x) = sup w;i(z)+p-(x—2).
z€Cj,ped~w;(z)

From (4.15), we see that
87Wj(BR) C Bp].R C Bsogr

for j > 1. Hence, the family w; is uniformly Lipschitz (recall the equality in (4.14)),
and so, up to a subsequence, w; converges uniformly in Br to some convex function
Woo. Similarly, let us extend ujlc; to Bg:

llj(.’IJ) = sup Gj(xvvaj(Zvyuuj(Z)))'
ZECj,yeacj uj(z)

Given xog € Bg, let (20,y0) be a pair at which the above supremum is attained.
Then, using (4.12), we see that vo := H;(20,%0,u;(20)) € (—R3, R?), and it follows
that (zo,y0,v0) € g;. Consequently, these extensions are Gj-convex in Bg. So
from (4.12), in particular, since the C''-norms of G; are uniformly bounded, and as
Oa,u;(BRr) C Bg, taking j > 1, we determine that the collection u; is uniformly
(R + 1)-Lipschitz (again, recall that u;(0) = 0). Thus, up to a subsequence, u;
converges uniformly in Br to some convex function u.,. Moreover, by (4.14),

Un(0) = wae(0) =0 and  [[uee — waolcogs, ) = €0 (4.16)
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Up to subsequences, the sets C; converge in the Hausdorff sense to some
Bi/r CCx C Brg.
Also, since each C; is (Cr/j)-semiconvex, it follows that C, is convex and
dist(9C;, OCos) + dist(ICos, IC;) — O

Then, arguing exactly as is [1, Theorem], we find that |C;ACs| — 0, or, equivalently,
that 1¢; converges in L' to 1¢_ . Furthermore, using (4.11) and as p; — 1, we see
that f; and 1,,c, converge in L' to 1¢. . In addition, up to subsequences, g; and
1,,x, converge weakly-* in L to a density goc.

By [16, Theorem 5.20] and the uniqueness of optimal transports, we see that
VW is the optimal transport for the quadratic cost —x - y taking le to goo. If
Vus = Vwy almost everywhere in Co, then the equality in (4.16) implies that
Uso = Woo, contradicting the inequality in (4.16). It then follows that there exists an
increasing function wg : RT™ — R, depending only on R, such that wg(0") = 0 and
(4.13) holds. Taking w(d) := max{wr(d),d} concludes the proof.

Define 7 := (Id, Ty, )4 f;. By construction, this family of measures is tight and

sptm; C | J {(2.9) 1y € da,u;(x)}.
LEECj

So m; converges weakly to some measure m,, whose marginals are 1¢_ and goo. Fur-
thermore, for any {(zj.yx)}_; C spt 7oo, there exist sequences {(z7, yi )}, C spt;
such that (x7,y;) — (zx,yx) for each k =1,..., N and

N
Z u; (%H) > Z Gj (I?H_l ) yia Hj (Ii, yia u; (Ii)))
k=1

with (IN+1,yN+1) = (2J,y]). This is just the G -convexity of u;j. Recalling (4.12)
and that u; converges uniformly to u., taking the limit as j — oo, we deduce that

N
§ xk-l—l - xk *Yk-
k=1

In other words, the support of 7, is c-cyclically monotone for the quadratic cost.
Therefore,

o — (Id, VUQ)#lcw,

and Vug is the optimal transport for the quadratic cost —x - y taking 1¢_ t0 goo. In
particular, Vuy = Vwe, almost everywhere in Cs. Using that f; converges in L' to
1c.. and arguing as in the proof of [16, Corollary 5.23], we see that T, converges to
Vuy in measure in Bg and as distributions, up to a further subsequence. By (4.12)
and since u; converges to U uniformly, we have that Ty, also converges to Vus, as
distributions in Br. Hence, by the local integrability of Vuy and Vu,, we determine
that Vu,, = Vug almost everywhere in C, as desired. O

REMARK 4.4 (A remark on the regularity of C and the proof of Lemma 4.3).
In the optimal transportation setting, De Philippis and Figalli appeal to the strong
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stability results available for solutions, thanks to the Kantorovich formulation of the
problem, to show that Vu,, = Vw,, almost everywhere. Here, however, the set C
has to have some regularity to deduce L' convergence of the contradiction sequence’s
source densities and, in turn, prove the same equality. An inspection of the proof
of [1, Theorem| shows that |C;ACs| goes to zero, i.e., 1¢, converges in L' to 1¢c__,
provided that the boundaries 9C; converge uniformly to the boundary dCs and have
(n-dimensional Lebesgue) measure zero. Therefore, Lemma 4.3 can be applied, by
Arzela-Ascoli, if C is a Lipschitz set whose boundary’s Lipschitz constant depends
only on R, for example. So the regularity assumption on C in Theorem 4.1 and
the following lemmas, propositions, and theorems, that C is (C§)-semiconvex, can be
weakened. Indeed, in the course of the proof of Proposition 4.2, every application of
Lemma 4.3 after the first will be to the (C3d)-semiconvex sets {uy, < 1}. With respect
to our main theorem, C = B; — o, which is as nice as imaginable.

From this point forward, let NV;.(E) denote the r-neighborhood of a set E.

LEMMA 4.5. Let R > 3, u: By — (=R, R) be a G-conver function such
that Ogu(By/g) C Br, and w € C'l(Bl/R) be convex. Suppose that B C g. Fix
A € R™ ™ to be a symmetric matrixz such that

iId§A§ KI1d (4.17)

K
for some K > 1. Define the ellipsoid

1
E(xp, h) = {;v : §A(:C —x9) - (x—20) < h},
and assume that E(xo,h) C By . If
[u—wllcoe(o,n)) <€
and
1G—z-y+vllese) + IIH-z-y+ulle sy <0
for small constants €,0 > 0, then
BGU.(S(,T(), h — 81/2)) C N5+K’(hs)1/2 (VW(5($Q, h))) Vo<e< h? <1

where K' = K'(K) > 0.
Proof. Up to a change of coordinates, we can assume that zo = 0. Let £(h) =
£(0,h) and define
w(z) = w(z) +¢+e'/?(Az -z — 2h).

By construction, w > u outside £(h) and w < u inside £(h—¢e'/2). Therefore, if , , ,
is a G-support for u at x € £(h—e'/?), then ¥, , ; will touch w from below at a point
z € E(h) for some v > v. Moreover, (Z,y,7) € g since v = H(Z,y, w(Z)) € (—R?, R?).
Hence,

dgu(E(h —e'/?)) C daw(E(R)). (4.18)
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Note that even though w may not be G-convex, we can still consider its G-
subdifferential; it just might be empty at some points. In particular, the equal-
ity daw(z) = G-exp, g () (VW(z)) still holds. Thus, since |G-exp, () (VW(z)) —
Vw(z)| < § by assumption, we find that
Igw(E(h)) C Ns(Vw(E(h)). (4.19)
From (4.17), we determine that £(h) C Bogp)i/2. And so since
V()| < [Vw()| +2¢Y2K o],

recalling (4.17), it follows that

Ns(VW(E(R))) C Nipak(rneyrr2(VW(E(R))). (4.20)
Finally, combining (4.18), (4.19), and (4.20), we deduce that

Da(E(h — /%)) € Ny e neyyr= (Vw(E(h)

with K/ = 4K3/2 as desired. O
Proof of Proposition 4.2. The proof will be done in four steps.

— Step 1: u and its G-sections are close to a strictly convex solution of a Monge—
Ampére equation and its sections.

Using Lemma 4.3 and arguing exactly as in [5], we find the existence of a strictly
convex function w such that w(0) = u(0) =0,

[u—wlcos, ) <w(d), (4.21)
and
det(D*w) =1 in By (4.22)

in the Alexandrov sense. Furthermore, there exists a constant Ky = Ky(n) > 0 such
that

1
Iwllcs(s, ;) < Ko and 7 Id < D*w < Kold  in Bys. (4.23)
And so
S(w,h) :=={z:w(x) <Vw(0) -z +h} C Bag,py/e- (4.24)

(Precisely, this is Step 1 in the proof of [5, Theorem 4.3], which uses (4.9).) By
(4.23) and as u is semiconvex with a semiconvexity constant depending only on
| DG || coB,), i-e., 6 ((4.8)), we have that u — w is semiconvex with a semiconvexity
constant depending on dimension (recall that § < 1). So using (4.21), we deduce that

Vw(0)] < Kiw(®)"/2 (4.25)

for some constant K1 = Kj(n) > 0 (cf. (4.39), noticing that —Vw(0) € 0~ (u — w +
c| - [*)(0) for some ¢ > 0 depending on n.
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Define
Sa(u,h) :={z:u(z) < h}.
We claim that if § and h are sufficiently small, then
S(w,h — Kow(8)/?) € Sg(u,h) C S(w, h+ Ksw(8)"?) € By e (4.26)

where Ky = K3(n) > 0. First, by (4.24), we can choose ¢ and h sufficiently small so
that the last inclusion holds. To conclude, let z € S(w,h — Kow(6)'/?). Then, by
(4.21), recalling that u(0) = 0, and from (4.25), we deduce that

u(z) < Vw(0) -z + h — Kow(8)? + w(d)
< h+ K1w(0)Y? — Kaw(6)'/? + w(6)
<h
taking Ko = K7 + 1. This proves the first inclusion; the proof of the second is
analogous.

— Step 2: The G-sections of u and their images under dgu are close to ellipsoids
with controlled eccentricity and u is close to a paraboloid at some small scale.

We claim that for every small n > 0, there exist constants hg = ho(n,n) > 0 and
6 = §(ho,n,m) > 0 such that the following holds: there exists a symmetric matrix
satisfying

i Id< A< K31d, (4.27)
K3
det(A) = 1, (4.28)
A/4Bh[1)/2/3 C SG(II, ho) C AB3h(1)/2’ (429)
and
A_lBh[l)p/g C dgu(Se(u, hy)) C A_1B3h3/2' (4.30)
Moreover,
1
u-— §|A_1:1c|2 < nhyg. (4.31)

co (AB3h(1)/2)

Here, K5 = K3(n) > 0.
Let

A= [D*w(0)] V2.

With A defined in this way, using (4.23) and (4.22), we see that (4.27) and (4.28)
hold.
Notice that (4.29) is equivalent to

5(h0/18) C SG(U, ho) C 5(9h0/2)
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where

E(h) = {:v : §D2W(0)$ cx < h}.
Now from (4.23), we deduce
E(h) C Bagomy2- (4.32)
Consequently,
E(h) C S(w,h+ Ko(2Koh)*?)  and  S(w,h) C E(h+ Ko(2Koh)*?).
The second inclusion follows from (4.24). Thus, applying (4.26), we see that
E(ho/18) C Sa(u, ho)

provided that hg and § are sufficiently small depending only on n. On the other hand,
applying (4.26), we see that

SG(II, ho) C g(9h0/2)

so long as § and hg are sufficiently small, again, depending only on n. Whence, (4.29)
holds, as desired. More generally, for every ¢ < 1 and C' > 1, we can find § and hg
sufficiently small so that

5(Ch0) C SG(H, ho) C 5(Ch0) (433)

Let us now prove (4.30). To do this, we consider the G-transform of u and the
Legendre transform of w. Specifically,

V)= swp Hizgu@) and  w'(y) = sup {z-y—wi)
IEBl/s IGBI/S

Notice that by (4.8) and (4.21),
IV = w¥llcogs, o) < w(®) +6 < 2()
Also, observe that
Vw* = [Vw] ™! and D*w*(Vw(z)) = [D*w(z)] " . (4.34)

Moreover, from (4.23), w* is uniformly convex and of class C*® in the open set
VW(B1/5) Let

& (h) = {y S DPW (Vw(0))(y — Yw(0)) - (5 — Vw(0)) < h}.

Thanks to (4.23), for every ¢ < 1 and C' > 1, we can find hg sufficiently small so that
Indeed, using (4.34) and (4.23), we find that

|D?*w* (Vw(0))(Vw(x)—Vw(0)) (Vw(z)—Vw(0)) - D*w(0)z-2| < 2Ko|z|* + K|z|*
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and that |z| < K(2Koh)'/? whenever Vw(z) € £*(h). Combining these last two
inequalities and (4.32) proves (4.35). Then, by (4.33) with C = 3/2, Lemma 4.5
applied with h = 3ho/2 + w(8)/?, and (4.35), we determine that

8(;11(8(;(11, ho)) C NK[/)/W((;)I/Q (VW(5(2}L0))) - 5*(7h0/2)

for § and hg sufficiently small, depending only on dimension. Hence, recalling (4.25)
and choosing ¢ sufficiently small, we find that the second inclusion in (4.30) holds. In
order to conclude, we must show that

5*(h0/16) C aGu(Sc;(u, ho)).

The first inclusion in (4.30) then follows, again, by (4.25) and choosing ¢ sufficiently
small. Since

E C dgu(duv(E)) VE,
considering (4.33), we see it suffices to show that

Applying Lemma 4.5 to v and w*, provided that ¢ is small enough, we determine
that

8HV((€* (h0/16)) C NKé”w(&)l/z (VW* (8* (ho/S))) C g(ho/?))

Here, we have used (4.35) and (4.34) for the second inclusion. Thus, (4.30) indeed
holds after taking § and hg sufficiently small.
Finally, from (4.21), (4.23), (4.25), and (4.27), we see that

1
u-— §|A_1x|2

1 1,2
) + HW 2|A x|

S ||u - W”co (ABSh1/2
0

co (ABM(I)/Z) co (ABM(I)/Z)

<w(d) + [|[Vw(0) - + || Kolx]?

@IV Flen(apy ) IO ooas )
1/211/2 3,3/2

S w(&) + 3K1K3w(5) hO + 27K0K3h0

< nho

where the last inequality follows after first choosing hg sufficiently small and then
choosing ¢ even smaller.

— Step 3: An iterative construction.

Set
1 1 1 1
Pi=—2 A, g = —= Ay, V= —w, and U= —u.
h(l)/2 v hé/2 Y ho ho
Define
. G(h?Az RYPAY, hoo o u(hl? Az
Gl(x, 7, v) — ( 0 }?0 Y, no ) and ul(x) — ( OhO )
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Similarly, let

H(ht/? A%, hl/? A=1g, hoi)
ho

Hl(‘%vgva) =

Recalling (4.5), (4.6), and (4.8), we see that
1G1 =& g+ Ollg2(sy) + [HL = 2§ + tillg2(m) <0
provided hé/2 < 1/Ks5. In addition, thanks to (4.29) and (4.30), we have the inclusions
By/3 CC1,K1 C B3
where, recalling that G1(+,0,0) = 0,
Cr:=8q,(u,1)={u; <1}  and  K;:=dg, wm(Se, (u,1)).

Arguing as in Proposition 5.3, we find that C; is a closed, (C3)-semiconvex set.
Furthermore, rewriting (4.31) yields

Now let
f1(@) = f(h?AR)1e,  and  g1(§) == g(hy > AT )1k,

Recalling that det(A) = 1 and arguing as in the proof of Theorem 1.1, we determine
that

(Tu,)#f1 = g1.
Finally, using (4.7), it follows that
11 = Uz + llgr = UL,y < 0.

Hence, we can apply Steps 1 and 2 to u; and find a symmetric matrix A; such that

1
—Id< A4, < K3ld
K3 B 3 )

det(Al) = 1,

AlBh[l)/2 C S(;1 (ul, ho) C A1B3h[1)/2,

/3

Al_lBh[l)/z/B C (9(;111(5(;1 (ul, ho)) C Al_lth[l)/z,

and

1 .
u; — §|A1 1I|2 S T]ho

co (,4133}1’(1)/2
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(The constants K5 and hg are those from Step 2 and Sg, (uy,h) = {u; < h}.)
We can continue, iteratively constructing

o GRRYPAE, R P AT, hoo )
Gr1(2,9,0) = oA h;) e 0 ho?) and w1 (2) =

uy (hé/zAku')
ho

where Ay is the symmetric matrix constructed in the the k-th iteration. In turn,
setting

Mk Z:Al-...'Ak,

we have a sequence of symmetric matrices such that

1
77 [ < My < Kk1d, (4.36)
3
det(Mk) = 1,
and
Mth§/2/3 C S(;1 (ul, hlg) C MkB3h§/2- (4.37)
~ Step 4: CYP(0)-regularity.
Let 5 € (0,1). By (4.36) and (4.37), we find that
B(h[l)/2/3K3),c C S(;1 (ul, hlg) C B(3K3h(1)/2)k' (438)

Defining rg := hé/2/3K3 and recalling that G1(-,0,0) = 0, it follows that
laifleos, ) < hf = (3K3ro) < v "

provided hq (and so rp) is sufficiently small. In other words, u; and u are C*# at the
origin. [0

With Proposition 4.2 in hand, let us now prove Theorem 4.1. The proof amounts
to a change of variables.

Proof of Theorem 4.1. Let 29 € By /s and yo € dgu(zo). By (4.3), observe that
|zo — Yol < [0 — pol + [P0 — Yol < |zo — pol + do
where
po = Dy G(z0,yo, H(zo, Yo, u(zo))).

As u is semiconvex with a semiconvexity constant depending only on || D3G|co(s,) <
0 (recall (4.3)), there exists a ¢ > 0 such that

1
w(z) :=u(x) — §|:1c|2 + ¢z — 20]?
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is convex. By construction, py — xo € 9~ w(xp). And so using (4.4) and since zo +

77(1)/26 € C provided that 7y < 1/9, for example, we find that

w(zo + 15/ %) — w(xo)

(Po —z0) -e < 172 <(@2+ C)Wé/z Ve € S"71
"o
In turn,
|20 — ol < C (6o +15"%). (4.39)
Set
ug = u(xp) and vo := H(xo, yo, u(zp)).
From (4.4) and using (4.3) and (4.1), we deduce that
1 1 1
lug| < 5“70 and [vg| < §+ i+770+50- (4.40)
Define
My = E(zo,y0,v0) and  ag:= —D,G(z0,%0,v0),
where E is as defined in (2.2). Observe that (4.3) implies that
lag — 1|, Jagt — 1] <8 and  |My—1Id|,|My "' —Id| < 250. (4.41)
Now consider the change of variables
I :=x — X, g := Mo(y — yo), v :=ap(v — vp), and U= U — UQ.
Define
C:=C—uxo and KK := Mo(K — yo);
and set

f(@) = f(z+m0) and g(y) = det(My )g(Mg 5+ vo).
Then, from (4.1), (4.39), and (4.41), we see that

Bl/g CC_,K:CBg

if 69 and ng are sufficiently small. From (4.41), we have that | det(My)—1| < (144n)dy

if 0g is sufficiently small. Thus,
If = Uy + 115 — Ul pooicy < 4(1+ n)do,
recalling (4.2). Let
G(z,9,v) :== G(z,y,v — vo + H(z0,y,u0)) — G(z, Y0, v0).
Notice that the dual of G is

H(jv gv ’EL) = aO(H(Ia Y, u —uo + G(.I, Yo, UO)) - H(.Io, Y, ’U,())),
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and H is well-defined on Bs by the assumption that B4 C b and our estimates on g,
Yo, U, Vo, ag, and My. Similarly, from (4.3), (4.39), (4.40), and (4.41), it follows that

IG =2 -+ 0llo2(s) + [IH — - § + | 52(55) < Codo.
In particular,
G(-,0,0) = G(0,-,0) = H(-,0,0) = H(0,-,0) = 0.
Also, computations show that
D5G(0,0,0) = DzH(0,0,0) =1 and  Dz3G(0,0,0) = DzzH(0,0,0) =1d.
Set
§ := min{4(1 + n)do, Codo}.

Finally, define

u(z) :=u(x) — G(z,yo0,v0).

Arguing as in the proof of Theorem 1.1, we see that @ is G-convex and (Ty)4f = g.
Furthermore, from (4.4), (4.3), and (4.39), we determine that

1 1/2 _

? < 2ng + 280 + C(do +no' ") =: 1.

u— S|zl

Co(B3)
Indeed, recalling that vy := H(xo, yo, u(zo)),

|zI”

1 1
= ‘u(m) — G(z,y0,v0) — 5:0 ~x+x-x0+ u(zo) —u(zo) + 5:00 - To — To - To

N | =

‘ﬁ_

<2no + | — G(z,y0,v0) + x - xo + u(zo) — o - To|

=2n0 + |z - yo — vo — G(x,y0,v0) — = - Yo + vo — To - Yo + u(xo)
+ o - Yo + = - To — To - To|

< 2no + 200 + (|z| + |zol)|zo — ol

< 210 + 200 + C (0 +15”%).

In summary, we see that u, G, H, f, g, C, “and K satisfy the hypotheses of
Proposition 4.2. Hence, taking dp and 7, in turn, § and 7, sufficiently small, we find
that u € C#(By /), as desired. 0

An important corollary of Theorem 4.1 is a strict G-convexity estimate for u in
B1/6 .

COROLLARY 4.6. Under the hypotheses of Theorem 4.1, we find that u is strictly
G-conver in Byjg. More precisely, for all o > 2, there exist constants no,d0 > 0,
depending on o and dimension, such that for all xo € By, we have that

inf {u—% 0,0} > cod” Vd < dist(zo, 0B /) (4.42)
OBq(xo) :

for some constant co = co(o,n) > 0. Here, yo € dgu(zo) and vy := H(zg, yo, u(zo)).
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Proof. Let u; be as in Proposition 4.2 and set dy := 3K3hé/2. Then, from (4.38),
we deduce that

inf up Z dgdg Yd S do
BBd

provided dj is sufficiently small depending on ¢ and dimension. In turn,

1/2

. (o “d\° - .
aBlf(fzo){u — Growowo f = hodf ( 3{3 ) > cod?  Vd < dist(xo, 0B /6)

taking co = ¢o(o,n) > 0 sufficiently small, as desired. O

From the strict G-convexity of u in By /g, we deduce that Ty(B;6) is open, a
key fact used in the proof of Theorem 1.1.

COROLLARY 4.7. Under the hypotheses of Theorem 4.1, we have that Ty (B /)
s open.

Proof. Since u is differentiable in B /5, we have that Ty(B;/5) = dgu(Bi6). We
show that for each g € B/, there exists an g > 0 such that for any y € B.,(yo),
the map

z— H(z,y,u(z))
has a local maximum at some point 2 € By /5. Here, {yo} := Ogu(zo). If so, then
Vu(z) = D.G(z,y, H(z,y, u(z)));

that is, {y} = dgu(z) and B.,(yo) C Tu(Bi/s), as desired. To this end, let d > 0 be
such that By(zo) C By /6 and

x € argmax H(z,y,u(z)).
2€Bg(z0)

Since u(x) = G(z,y, H(z,y,u(z))) and G is decreasing in v, we observe that

W(T) = G, yo,00 (%) < G(2,y, H(zo,y,u(w0))) — G(2,y0, H(wo, yo, u(zo)))
= G(z,y,H(z0,y,u(z0))) — G(,y0, H(zo, y,u(20)))
+ G(z,y0, H(wo,y,u(x0))) — G(,y0, H(z0, Yo, u(x0)))
< Cegg

with C:= |G| 41 (8,)(1 + 2||H|/%1(8,)). Hence, taking eg < cod” /C, we see that
U.(LL') - gI07y07U0 (‘T) < cod?,

which, recalling (4.42), implies that z lives inside Bg(z¢) and not on its boundary. O

5. Higher regularity. Here, we prove a higher regularity version of Theo-
rem 4.1. To do this, we will need a more refined comparison-type principle than
the one established in Lemma 4.3. The comparison-type principle in this section
makes use of a change of variables formula for the G-exponential map, Lemma 5.1,
and the coincidence of the G-subdifferential of u at x and the G-exponential map at
(z,u(z), Vu(x)) when u is differentiable, Remark 5.2.
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Given a G-convex function w on an open set O, we have defined Ty(z) :=
G-exP, w(2)(VW(2)). Yet even when w is not G-convex, we may still consider Ty (z)
if {(x,w(x),Vw(z)) : z € O} C dom G-exp.

LEMMA 5.1. Let O C R™ be open, w € C?(0), and {(z,w(x),Vw(x)) : = €
O} C dom G-exp. If

D?*w(x) — D2G(x, Ty (), H(z, Ty (z),w(x))) >0 V€ O,
then for every Borel set E C O,

det(D2W($) - D?CG(!T, Tw($), H(LL', Tw (x)v W(‘T))))
T (B)| < [E Gt Bl Tl B Tum wo

x.

In addition, if the map Ty, is injective, then equality holds.
Proof. After differentiating the identity

Vw(z) = D, G(z, Tw (), H(z, Ty (z), w(x))),

we see that the Jacobian determinant of the C* map z + Ty () is the integrand
above. Thus, applying the Area Formula (see, e.g., [6]) concludes the proof. O

REMARK 5.2. Recall, by (2.9), that if u is differentiable at 2 and G-convex, then
dau(z) = {G-exp, y()(Vu(z))} = {Tu(z)}.

Let co[E] denote the convex hull of the set E. Also, recall that A,.(F) denotes
the r-neighborhood of a set E. The following comparison-type principle compares
G-convex functions of class C'' and smooth solutions of Monge—Ampere equations.

PROPOSITION 5.3. Let R > 3 and u > 0 be a G-convex function of class C* such
that u(0) =0 and

Bijr € S:={u<1} C Bg. (5.1)

Assume B(R, S) := Bag x Tu(S) x (—R3, R®) C g,b and Bar x (—R?, R?) x Vu(S) €
dom G-exp. Suppose that f and g are two densities such that (Ty)xf =g and

|

f
1 N

< .
H/\l <e (5.2)

CO(Tu(S))

"

co(s)
for some constants A1 /A2 € (1/2,2) and € € (0,1/4). Furthermore, assume that
IG—z-y+ U”‘@”?(B(R,S)) +H-—z-y+ ’UJHcg2(B(R75)) +||E-1Id HC“(B(R,S)) <4. (5.3)

Then, there exists constants v = vy(n, R) € (0,1) and 61 = d1(n, R) > 0 such that the
following holds: if w is convex and satisfies

det(D2w) = )\1/)\2 m N(Sw (CO[S]
w=1 on ONj~(co[S]),

then

[u—wllcogs) < K(e+67/™) (5.4)
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provided 6 < &§;. Here, K = K(n,R) > 0.

The proof of Proposition 5.3 follows the proof of [5, Proposition 5.2]. Yet because
the map Ty depends on z, u, and Vu and not just on z and Vu, the argument is
more delicate.

Proof. Recall that u + §|z|? is convex by (5.3). Thus, as u(0) =0, u =1 on 95,
and S C Bpg, using (2.10), it follows that
1 1
|D.G(z,y,v)| = [Vu(z)| > |[Vu(z) + 20x| — 25|z| > I —20R > ¥ Vo € dS (5.5)

provided that § is small enough. Here, y := Ty(z) and v := H(z,y,u(x)). Now
consider

S = m E,
r€0S

where

E, :={z€ Br:G(z,y,v) <1}.
Clearly, S C S. Let z ¢ S and = € 9S be a point such that dist(z,05) = | — z| > 0.
If |z — x| < 1/0R, then using (5.3) and (5.5), we find that

g 2
G(z,y,v) — 1 > |Vu(z)||z — z| — §|z —z|* >0,
and z ¢ S. On the other hand, if |z — 2| > 1/dR, then by (5.3) and (5.5), we have
that
G(z,9,0) =1 = |z —2||Vu(@)| + (z —2) - (y = D2 G(2,9,v)) — 26
1

> — — 20.
> o5 — 2RO -2

And so G(z,y,v) — 1 >0 and z ¢ S provided that § is sufficiently small. In turn,
S§=5

if § > 0 is sufficiently small depending only on R. It follows that S is a (Cgd)-
semiconvex set. Now arguing exactly as in [5, Proposition 5.2], we have that

oscw < Kpgn, (5.6)
1-Krnd/"<w<1 onds, (5.7)
and
sY/T
D*w > Id in co[S] (5.8)
R.n

for some constants Kr, and 7 > 0 depending only on dimension and R.
Define

wh = (1+ 3¢ + 26Y/)w — 3e — 261/2
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and
51/2 51/2
W= (1—35— 2>w+3a+2+KR,n57/".

We claim that if 7 is sufficiently small, then w~ > u > w™ in S. If so, then (5.6) will
imply (5.4), as desired.

Choose « := 7/4. By (5.7), we have that w~ > u > w* on 9S. We first show
that u > w™ in S. Suppose not. Then, as u > wT on 95, we see that

0#7Z:={u<w'}es.

Thanks to (5.8) and (5.3), we have that

1/4

§
D*wt > D?w > Id > 61d > | D2G|cos(r,s) Id  in co[S] (5.9)

R.n

provided that § is sufficiently small depending on R and n. Notice that w(Z) C
(—2R?,1).° Moving any supporting plane to wt in Z down and then up until it
touches u from below, we see that

Vwt(Z) C Vu(Z).

It follows that {(x,w™(z),Vw*(2)) : # € Z} C domG-exp. Let zd € Z, yo :=
T+ (2d), and vf = H(z§,y0,w'(2§)). Increase and then decrease vy to vy so
that G(-,y0,v0) touches u from below at zo. Recall that Ty+(zf) = yo if and
only if Vw*(2f) = D,G(xg,v0,vg). (See Section 2.2.) Hence, from (5.9) and as
G(zd,y0,v) = wh(z]), we have that

G(z,y0,vy) < w(zd)+Vwt(zd) (. —2f) + g|x —af P <wh(z) Vr € colS].
In turn, xg € Z. Indeed, if not, then
G (20, Yo, v0) = u(zo) > W (z0) > G(zo, Yo, vy ),
from which using (G-Mono), it follows that
w(zg) > ulzg) > Glag, o, v0) = G(zg,y0, v ) = W' (ag).
Impossible; and we deduce that
T+ (Z) C Tu(2). (5.10)
Now for any = € Z, from (5.8) and taking § even smaller, we compute that

D*wt(z) — D2G(z, Ty (z), H(z, Ty (z),wh(2))) > (1 + 3¢ + 51/2)D2W(:1:).

6By (5.7) and the convexity of w, we see that wT < 1 in Z C S. The inclusion wt(Z) C
(—2R2?,1) then follows from considering the lower barrier (for w)

A}/n 2 2
o~ (2] = (R+67")2) + 1
2

and taking § smaller if needed.
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And so by (5.3), we see that

det(D*wT(z) — D2G(x, Ty+ (z), H(z, Tyt (z), wh(2)))) o (143 +5Y/2)n A
| det(E(z, T+ (2), H(z, Ty (z), wt(2))))| IO ) LS

Moreover, from (5.9), for any x,z € Z with x # z, setting y := Ty+(x) and v :=
H(z,y,w"(z)), we determine that

WJF (Z) - G(Zv Y, U)
1

=3 /1 (D*wt(tz + (1 — t)z) — D2G(tz + (1 — t)z,y,v)) (2 —x) - (z — x) dt > 0.
0

In other words, the function G(-,y, v) only touches w* at x, and the map z — T+ (2)
is injective in Z. Therefore, Lemma 5.1 yields

(1+3e+6Y2)" N A1
T, > —|Z|>(1+3)—|Z
To (o) = S 2> (143912
if § is small enough depending only on R and n. On the other hand, since u is C' in
S, the push-forward condition and (5.2) imply that

|Tu(Z)|=/Zg(,_J;i%d:c§ iii—ilZl.

Combining these last two inequalities, we find that (5.10) is impossible unless Z is
empty. That is, w© <uin S.

The argument showing that u < w~ in S is similar to the one just presented,
showing that u > w™ in S. So we only provide a sketch. Again, suppose, to the
contrary, that W := {u > w™ } is non-empty. Now we can find a positive constant u
so that u touches w— + 4 from below in S. As both u and w— are C, it follows that
Vu = Vw~ on the set {u =w~ + u}. Therefore, if n > 0 is sufficiently small, then
the set W, := {u>w~ 4+ pu—n} is non-empty and Vw ™ (W) is contained in a small
neighborhood of Vu(W,)).

Set w,  :=w~ +pu—n. Then, using the same barrier as before, we find that w,” €
(=R?,2). Hence, {(z,w, (z), Vw, (z)) : 2 € W,} C dom G-exp. Let G(-,y0,v, ) be
the G-support for u at z, € W,. Increase and then decrease v, to vy so that
G(,y0,v0) touches w, from below, and let z¢ be the point at which G(-,yo,vo)
touches w, from below. Notice that zo € W), and vo = H(xo, yo, W, (20)). Therefore,
DG (w0, y0,v0) = VW, (20); that is, yo € T, (W) or

Tw(W,) C T - (W,).

wg(
Observe that from (5.8),
(1 -3¢ — 0V/%)DPw(x) < Dw; (x) - D2G(w, T, (2), H(x, T,,_(x), w; (x)))

if 63/ > 2K ,6. Also, taking & even smaller (so that 63/4 > 4K, or, equivalently,
612 > 4K R ,0%/*), we find that

51/2

Dw; (¢) = DEG(r, Ty (), (e, Ty 1), w5 ) < (1 32 = T ) D
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Without loss of generality, we assume that §'/2 < 1/4; whence, 1 — 3¢ — 512 > 0.
Hence, by Lemma 5.1,

(1 —3c—3Y2/4)" )y Ao
T (W, < —|W 1—3e)—=|W,|.
| wn( )| < (1— o) )\2| nl < ( 5)/\2| nl
Moreover,
1—5/\1
T.(W,))| > —— = |W,|.
Tu(Wy)l = 1= LWl

Like before, combining these last two inequalities, we arrive at a contradiction unless
|[Wy,| =0, so long as § is sufficiently small depending on R and dimension. O

With Proposition 5.3 in hand, our next proposition is a higher regularity version
of Proposition 4.2.

PROPOSITION 5.4. In addition to the hypotheses of Proposition 4.2, suppose
G,H € C?°(B3), f € C%(C), g € C**(K), with a € (0,1), and Bg x (—27,27) x
Bg C dom G-exp. There exist positive constants 6" < ¢ and n' < n such that the
following holds: if

[f = 1lzoee) +1lg = Uy <9
IG =2y +vlezsy + [H -2y +vllgzs,) + [E—1d|lcosy,) <6, (5.11)
and

1
u— —|z?
2

then u € C2°(0) for some o/ < a.

The proof of Proposition 5.4 follows arguing exactly as in the proof of [5, The-
orem 5.3]. That said, let us make some remarks. An inspection of the proof of
[5, Theorem 5.3] reveals that, apart from a comparison-type principle like Proposi-
tion 5.3, we will need that the sum of the norms in (5.11) decays under parabolically
quadratic rescalings. (The remainder of the proof uses classical estimates for the
Monge-Ampere equation.) The assumption G, H € C%%(B3) plus (4.5) and (4.6)
guarantee this decay. Notice that (4.5) and (4.6) imply that E(0,0,0) = Id, taking
care of the third term. Finally, since the domain of the G-exp map includes the
product of three open sets at the beginning, the third of which compactly contains
Vu(Bj3), the set inclusions in the hypotheses of Proposition 5.3 will be satisfied at
each stage of the iteration by construction; we are zooming in with the correct rescal-
ing. So applying Proposition 5.4 at every point in Bj,7 and then classical Schauder
estimates, we obtain our final theorem.

THEOREM 5.5. In addition to the hypotheses of Theorem 4.1, suppose G, H &€
Ck(By), f € CF(C), g € CH*(K), for some k > 0 and a € (0,1), and Bg x
(—64,64) x Bg C dom G-exp. There exist positive constants 61 < §p and n1 < 1o such
that the following holds: if

If = Lellpoo(By) + lg — 1kl Lo (By) < 01,
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|G —z-y+vles,) + IIH=2-y+vlleg,) + [|[E=1d|cos,) < 1,

1 2
_ - <
u- 5zl <,

CO(Ba)

then u S Ok+2,a(B1/8)'
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