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CONSTRAINED SYSTEMS OF CONSERVATION LAWS:

A GEOMETRIC THEORY∗

MORITZ REINTJES†

Abstract. We address the Riemann and Cauchy problems for systems of n conservation laws in
m unknowns which are subject to m − n constraints (m ≥ n). Such constrained systems generalize
systems of conservation laws in standard form to include various examples of conservation laws in
Physics and Engineering beyond gas dynamics, e.g., multi-phase flow in porous media. We prove
local well-posedness of the Riemann problem and global existence of the Cauchy problem for initial
data with sufficiently small total variation, in one spatial dimension. The key to our existence theory
is to generalize the m×n systems of constrained conservation laws to n× n systems of conservation
laws with states taking values in an n-dimensional manifold and to extend Lax’s theory for local
existence as well as Glimm’s random choice method to our geometric framework. Our resulting
existence theory allows for the accumulation function to be non-invertible across hypersurfaces.

Key words. Shock waves, hyperbolic conservation laws, Glimm scheme, Riemann problem,
relaxation systems, curved state space.
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1. Introduction. In this paper we develop a geometric framework for proving
well-posedness of the Riemann and Cauchy problems for systems of conservation laws
by extending the (flat) space of states to a manifold of states. Our motivation comes
from constrained conservation laws that appear in Physics and Engineering, systems
of the form

G(u)t + F (u)x = 0, (1.1)

C(u) = 0, (1.2)

with states u(x, t) ∈ Û ⊂ Rm, t ≥ 0, x ∈ R, and where G, F : Û → Rn and C : Û →
Rm−n are smooth functions and m ≥ n. The function C gives the constraints on the
states and is determined by physical and chemical principles in applications. Often C
is not given explicitly but must be derived from the equations. In this case, until the
constraints are identified, the system appears to have fewer eigenvalues than equations.
The Euler equations of gas dynamics are a constrained system for the gas equation of
state being a (trivial) constraint. Non-trivial examples of conservation laws in Physics
or Engineering of form (1.1) - (1.2) often reflect transport of components that may
coexist in liquid or gaseous form under thermodynamic equilibrium, see for instance
[11, 12, 16, 17].1 More generally, hyperbolic conservation laws with relaxation terms
give rise to constraints, determining the equilibrium states of the relaxation system
[15] (see also [2, 9]).

For nonlinear systems of conservation laws shock waves form generically and it
is most natural to study the Riemann problem. That is, piece-wise constant initial
data containing one discontinuity. In [13], Lax proved local existence for the Riemann
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problem for hyperbolic systems of conservation laws in standard form,

ut + f(u)x = 0. (1.3)

Building on Lax’s work, Glimm proved global existence of solutions of the Cauchy
problem for (1.3).

From a theoretical perspective, assuming G and C are invertible, we can easily
prove existence of solutions for (1.1) - (1.2). Namely, we first solve the constraint
locally, say, using the implicit function theorem which gives us a local parameterization
of the solution space C−1(0). Secondly, we introduce the change of variable U ≡
G(u) ∈ Rn for all states u lying in the image of the paarmeterization, which then
allows us to write (1.1) in standard form (1.3) for

f(U) ≡ F ◦G−1(U). (1.4)

We can now apply Lax’s and Glimm’s method to conclude with the existence of
solutions for the Riemann and the Cauchy problem.

However, this approach has three major drawbacks. First, there exists balance
laws in Petroleum Engineering for which G fails to be invertible on points or hypersur-
faces in state space [10, Chapter 5.1]. Secondly, in practice, inverting the accumulation
function G explicitly is often an obstacle too hard to overcome, regardless whether
G−1 exists theoretically.2 Thirdly, a single parameterization does generally not cover
the entire solution space C−1(0) which could restrict the set of states connectable by
shock and rarefaction curves artificially. To cover C−1(0) entirely, a suitable collection
of such parameterizations is needed, which then defines a manifold.

Motivated to overcome these drawbacks, our approach here is to extend Lax’s
and Glimm’s existence theories beyond standard form (1.3), instead of reducing (1.1)
- (1.2) to standard form. We thus avoid inverting the accumulation function G entirely.
Without introducing the variable U ≡ G(u), one is automatically forced to consider
the manifold of constraints as state space, unless one is willing to accept artificial
restrictions on state space and dependence on the choice of a local parameterization.
We therefore extend Lax’s and Glimm’s methods to the geometric framework of Rie-
mannian manifolds of states, so that the resulting existence theory is independent
of local parameterizations. Remarkably, it is possible to extend Lax’s and Glimm’s
methods even further and allow for the accumulation function G to be non-invertible
on a finite union of hypersurfaces in state space. In Proposition (1.4), we show that
inverting C explicitly can be circumvented in practice.

Let us finally remark that the fruitful geometric treatment of constraints on state
space in Classical Mechanics has been further motivation for us to extend Lax’s and
Glimm’s methods to a similar geometric setting. To give a broader context, Differen-
tial Geometry plays a central role in the theory of shock waves in General Relativity
where (in contrast to this paper) the conservation laws of fluid dynamics are defined
on a manifold [1, 8], for instance, the question whether shock waves create essential
spacetime singularities [20, 21, 19] has a deeper geometric structure [22].

We now present our main results. In order to obtain an existence theory for
(1.1) - (1.2), we consider the following n×n systems of conservation laws with states

2The Euler equations can be written in standard form, after changing variables, however, this
change of variables is non-trivial and one cannot expect to explicitly write all conservation laws of
Physics or Engineering in standard form.
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assuming values in some abstract differentiable manifold M:

g(w)t + f(w)x = 0, (1.5)

where w(x, t) ∈ M, and g and f are C3 functions from M to Rn, (c.f. [5, 24] for
an introduction into Riemannian Geometry). The system of constrained conservation
laws (1.1) - (1.2) assumes the above form by setting u = w whenever u lies in the
manifold C−1(0), and by defining g and f to be the restrictions of G and F to C−1(0).
The initial data for the Riemann problem for (1.5) is

w(x, 0) =

{
wl , x < 0

wr , x > 0
, (1.6)

for wl and wr points in M, so-called constant states. Our first theorem generalizes
Lax’s existence theory to our framework of a manifold of states.

Theorem 1.1. Assume M is a C3 manifold and let wl ∈ M. Assume (1.5) is
strictly hyperbolic in the sense of Definition 2.1 and assume that each characteristic
field is either genuinely nonlinear or linearly degenerate. Then there exists a neighbor-
hood U of wl in M such that if wr ∈ U , the Riemann problem (1.5) with initial data
(1.6) has a solution which consists of (at most) n+ 1 constant states in M separated
by shocks, rarefaction waves or contact discontinuities, such that the shocks satisfy
the Lax-admissibility condition (3.23) in U . This solution is unique within the class
of contact discontinuities, admissible shocks and rarefaction waves separated by (at
most) n+ 1 constant states.

Our definition of strict hyperbolicity is general enough to allow for dg to have a
non-trivial null-space on set of measure zero, that is, invertibility of dg is allowed to
fail at lower dimensional surfaces, as explained in detail below Definition 2.1. The ex-
tended Lax method for proving Theorem 1.1 is independent of local parameterizations
and the construction of shock and rarefaction curves is not restricted to coordinate
neighborhoods. Remarkably, parameterizing the wave curves by arc-length, the most
natural parameterization for curves in Riemannian Geometry, implies the C2 contact
between shock and rarefaction curves, c.f. Lemma 3.4.

Building on Theorem 1.1, we address in Section 4 the Cauchy problem for (1.5)
with initial data of sufficiently small total variation and prove existence of weak so-
lutions by extending Glimm’s famous random choice method to our framework, as
recorded in the next theorem. We define the total variation (T.V.(·)) and our analog
of the L∞-norm (d∞(·, ·)) in terms of the canonical distance function on M, c.f. (4.1)
- (4.4).

Theorem 1.2. Assume the system (1.5) is strictly hyperbolic in the sense of Def-
inition 2.1 and each characteristic field is genuinely non-linear or linearly degenerate
in some neighborhood of some point w̄ ∈ M. Given some curve

w0 : R → M

such that T.V.(w0) and d∞(w0, w̄) are sufficiently small, then there exists a weak
solution w(x, t) ∈ M of (1.5) for all x ∈ R and all t ≥ 0 with initial data w0, and
there exists a constant C > 0 such that

T.V.
(
w(·, t)) + d∞

(
w(·, t), w̄) ≤ C

(
d∞(w0, w̄) + T.V.(w0)

)
, ∀ t ≥ 0,
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−∞

dM
(
w(x, t2), w(x, t1)

)
dx ≤ C |t2 − t1| T.V.(w0).

Glimm’s estimates for wave interaction extend quite naturally to our framework,
since wave strength is measured by the parameters of wave curves. We thus obtain
a uniform bound on the Glimm functionals over the approximate solutions gener-
ated by the random choice method, by using Glimm’s original argument modified
to our framework. However, to conclude the existence of a convergent subsequence
of the approximate solutions constructed with Glimm’s scheme, one faces the diffi-
culty of defining appropriate norms. In particular, a supremums norm on the states
themselves does not seem to make sense and one has to abandon convergence in L1

of the approximate solutions. We overcome these difficulties by using the canonical
distance function of a Riemannian metric on M to measure the distance of states,
which does not define a norm, but which allows us to define an adapted expression
of total variation for curves in M and for the supremums norm on states. After ex-
tending Helly’s Theorem to our framework, we obtain point-wise convergence of the
approximate solutions and convergence in L1 of the flux f(w) and the accumulation
g(w), (abandoning L1 convergence of states all together), which suffices to prove the
existence of a weak solution to (1.5).

From Theorem 1.1 we obtain the following theorem regarding the constrained
system (1.1) - (1.2).

Theorem 1.3. Let G,F ∈ C3(Û ,Rn) and C ∈ C3(Û ,Rm−n) for some open set
Û ⊂ Rm. Assume that for all u ∈ Û with C(u) = 0

det

[
DG(u)
DC(u)

]

= 0, (1.7)

(D denotes differentiation in Û ⊂ Rm), and such that there exists rk(u) ∈ Rm and
λk(u) ∈ R, for all k ∈ {1, ..., n}, solving

(λk DG − DF ) rk = 0, (1.8)

DC rk = 0, (1.9)

with λ1(u) < ... < λn(u). Assume each field is genuinely non-linear or linearly
degenerate. Let ul ∈ Û with C(ul) = 0. Then, there exists a neighborhood U ⊂ Û
of ul such that if ur ∈ U and C(ur) = 0, then the Riemann problem for (ul, ur) of
(1.2) has the unique solution stated in Theorem 1.1 for the manifold M ≡ C−1(0).
Moreover, this existence result still holds when the assumption (1.7) is weakened such
that DG is not invertible, as specified in Definition 2.1.

Theorem 1.3 follows from Theorem 1.1, since (1.7) implies that C−1(0) defines
a manifold whenever DC has full rank, c.f. [24, Theorem 5.1]. Equations (1.8)
and (1.9) are the generalized eigenvalue problem and (1.9) is a consistency condition
which ensures that the wave curves of the system remain in the solution space of the
constraint. One can weaken condition (1.7) for DG to be non-invertible on sets of
measure zero in M ≡ C−1(0) as specified by our notion of hyperbolicity in Definition
2.1.

The extended Glimm’s method of Theorem 1.2 yields existence of weak solutions
to the Cauchy problem for (1.1) - (1.2), under the assumption (1.7) - (1.9) and cor-
responding small data. Since this is rather straightforward, we are content not to
summarize the application of Theorem 1.2 as a separate theorem.
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One can avoid inverting the constraint C to obtain the solution space C−1(0),
explicitly, since the integral curves of the rk’s describe C−1(0) locally, as recorded in
the next proposition. This follows from the consistency condition (1.9) together with
the construction underlying Theorem 1.3. The result of the next proposition is very
useful for applications, since it reduces the inversion problem for C to methods from
Linear Algebra.

Proposition 1.4. Assume (1.7) - (1.9) hold for all u in some open subset of
Rm. Then, locally, C−1(0) equals the image of the integral curves of the eigenvectors
rk. Moreover, the integral curves of rk define a local parameterization of C−1(0) if
and only if there exists a coordinate system of Riemann invariants.

We develop the geometric framework underlying Theorem 1.1 in Section 2 and
prove Theorem 1.1 in Section 3. In Section 5, we prove Theorem 1.3 and Proposition
1.4 . In Section 4, we generalize Glimm’s random choice method to our framework
and prove global existence of solutions for the Cauchy problem with initial data of
small total variation, recorded in Theorem 4.1.

2. The geometric framework.

2.1. Basic notions. We now introduce the geometric framework underlying
Theorem 1.1, first extending the notion of hyperbolicity, genuine nonlinearity and
linear degeneracy to states taking values in a manifold M. (See [5] or [24] for an
introduction to Differential Geometry.) To begin, write (1.5) in the equivalent form

dg
∣∣∣
w
(wt) + df

∣∣∣
w
(wx) = 0, (2.1)

where dg and df denote the differential of g and f respectively. That is, dg and df
are point-wise linear mappings from TwM, the space of tangent vectors at w, to Rn.
Note that wt, wx ∈ TwM, since t �→ w(x, t) for x fixed and x �→ w(x, t) for t fixed
define curves on M, and since the derivative of a curve with respect to its parameter
is a tangent vector. System (2.1) now gives rise to the eigenvalue problem

λk(w) dg
∣∣∣
w

(
rk(w)

)
= df

∣∣∣
w

(
rk(w)

)
, (2.2)

where λk(w) is a real number and rk(w) ∈ TwM is a vector, the so-called right-
eigenvector. Thus, λk : M → R is a real-valued scalar and rk is a vector field on
M. Note that a solution (λk, rk) is independent of the choice of coordinate, which is
fundamental to our framework. We mostly refer to the pair

(
λk, rk

)
, but sometimes

to rk alone, as the k-th characteristic field.
We now define the notion of hyperbolicity in our framework and thereby specify

in what sense dg|w is allowed to have a non-trivial null-space. If dg(rk) = 0 at w,
then, for the eigenvalue problem (2.2) to hold, rk must also lie in the null-space of
df |w, so that λk(w) would be left undetermined at the point w in M. Nevertheless, if
Σ, the set of points w ∈ M at which dg|w fails to be invertible, is a hypersurface in M
and if λk is continuous across Σ, then we define λk on Σ uniquely as the continuous
extension of λk to M. This motivates the next definition.

Definition 2.1. We call (1.5) a hyperbolic system of conservation laws in M,
if the following holds:
(i) dg|w is invertible for all w ∈ M \Σ, where Σ ⊂ M denote the union of a finite

family of co-dimension one surfaces;
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(ii) for each w ∈ M\Σ and k ∈ {1, ..., n} there exists rk(w) ∈ TwM and λk(w) ∈ R

that solve the eigenvalue problem (2.2), such that the eigenvectors rk(w) are
linearly independent;

(iii) λk and rk can be extended as C2 functions to M, such that the resulting rk are
linearly independent on M.

We call (1.5) strictly hyperbolic in M if in addition, for all w ∈ M,

λ1(w) < ... < λn(w). (2.3)

The essential point, regarding our assumption for Σ in Definition (2.1), is Σ being
of measure zero so that the extension of λk is unique.3 Defining λk as the contin-
uous extension then suffices to construct solutions of (1.5) following Lax’s method.
However, to prove the existence of shock curves we need to assume that Σ consists of
only finitely many hypersurfaces for the characteristic polynomial associated with the
Hugoniot locus to have the required stability property. (Our methods also work for
surfaces of higher co-dimension.) Below we give some examples of hyperbolic systems
of conservation laws, in the sense of Definition 2.1, for which dg fails to be invertible
everywhere.

Whether the k-th characteristic field corresponds to a solution that is either a
shock or a rarefaction wave, or whether it corresponds to a contact discontinuity
depends on the fields being genuinely nonlinear or linearly degenerate, respectively.
We now define these notions.

Definition 2.2. We say the k-th characteristic field is genuinely nonlinear in
M, if for all w ∈ M

rk

∣∣∣
w
(λk) > 0. (2.4)

In Definition 2.2 we use the interpretation of vectors as directional derivatives
of scalar functions. That is, expressed in coordinates yμ on a subset of M, we have
rk|w = rμk (y(w))

∂
∂yμ and (2.4) thus becomes

rk

∣∣∣
w
(λk) = r μ

k

(
y(w)

) ∂
(
λ ◦ y−1

) (
y(w)

)
∂yμ

,

which is indeed a real number independent of the choice of coordinates yμ. In the
special case M = Rn, (2.4) reduces to the standard definition of genuine nonlinearity
in Rn, namely,

〈∇λk, rk〉Rn > 0.

Note that (2.4) leaves the freedom to scale the length of rk and this is often used

to set rk

∣∣∣
w
(λk) = 1. However, we are not using this normalization, but work with the

normalization condition

〈rk, rk〉M = 1,

3If Σ were an open set, then the eigenvalue problem (2.2) should rather be considered as additional
constraints of the system and not as part of the evolution.
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in terms of the metric tensor 〈·, ·〉M, which allows us to parameterize the shock and
rarefaction curves with respect to arc-length. Analogously to (2.4), the following
definition generalizes the notion of linear degeneracy to states in a manifold.

Definition 2.3. We say the k-th characteristic field is linearly degenerate in M,
if for all w ∈ M

rk

∣∣∣
w
(λk) = 0. (2.5)

We assume in this paper that the characteristic fields are either linearly degenerate
or genuinely non-linear to prove well-posedness of the Riemann problem and develop
the framework in a simplest setting. We expect however that Liu’s construction [14]
extends to our geometric framework, in particular to our notion of hyperbolicity in
Definition 2.1, so that genuine non-linearity is allowed to fail across hypersurfaces in
state space.

To close this section, we give two examples of systems of conservation laws hy-
perbolic in the sense of Definition 2.1, for which dg is not invertible.

Example 2.4. Take as accumulation and flux function in (1.5)

g(u, v) ≡
(

1
2u

2

1
3v

3

)
and f(u, v) ≡

(
1
3u

3

v3

)
,

for u ∈ (−∞, 3) and v ∈ R. Their derivatives are

dg(u, v) ≡
(

u 0
0 v2

)
and df(u, v) ≡

(
u2 0
0 3v2

)
,

and the eigenvalue problem (2.2) has the solutions r1 = (1, 0) with λ1 = u and
r2 = (0, 1) with λ2 = 3. Thus, this system is strictly hyperbolic on its domain
(u, v) ∈ (−∞, 3) × R and dg has a non-trivial null space on the lines {u = 0} and
{v = 0}. Moreover, the first field is genuinely non-linear and the second linearly
degenerate.

Example 2.5. We modify the p-system in [23], by considering

g(u, v) ≡
(

uv + v
1
2u

2v

)
and f(u, v) ≡

(
u

u2p(v)

)
, (2.6)

as accumulation and flux function in (1.5). We assume p(v) > 0 is a given smooth
function and we restrict to v > 0. In matrix form, (2.6) is given by(

1 + u v
1
2u

2 uv

)(
vt
ut

)
+

(
0 1

u2p′ 2up

)(
vx
ux

)
= 0, (2.7)

where p′ is the derivative of p = p(v). Clearly, dg(v, u) has a non-trivial null-space
at u = 0 for all v > 0. The resulting eigenvalue problem (2.2) is well-posed with
eigenvalues

λ± =
1

2v(2 + u)

(
α(v, u)±

√
8uv(2 + u)p′ + α(v, u)2

)
, (2.8)
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for α(v, u) ≡ 4p(v)(1 + u)− u(1 + 2vp′). Since at u = 0

λ+ =
2p(v)

v
> 0 and λ− = 0,

it follows that λ+ and λ− are distinct for all u sufficiently close to zero. Moreover,
for u sufficiently small, λ± are smooth functions for all v > 0. Thus, since the flux
and accumulation functions in (2.6) are smooth, the eigenvectors of λ± are smooth.
To conclude that (2.7) is strictly hyperbolic in the sense of Definition 2.1, we need to
choose p(v) such that the resulting eigenvectors are linearly independent.

For this, we here consider the simple (but non-trivial) special case

p(v) = v.

The eigenvalues simplify to λ+ = 2 and λ− = − u
(2+u)v and the corresponding nor-

malized eigenvectors are given by

r+ =
1√

(1− 2v)2 + 4(1 + u)2

(
1− 2v
2(1 + u)

)

r− =
1√

4v2 + u2

( −2v
u

)
.

Clearly r− and r+ remain linearly independent in a neighbourhood of u = 0, for
suitable values of v > 0. A computation shows that (λ−, r−) is genuinely non-linear
for all u 
= 0 and all v > 0, while (λ+, r+) is linearly degenerate.

2.2. Weak solutions and Rankine Hugoniot conditions. We now define
weak solutions and derive the Rankine Hugoniot jump conditions for system (1.5).
As in [23], we define C1

0 (Ω) to be the set of real valued continuously differentiable
functions on Ω ≡ {(x, t) : t ≥ 0} with compact support (which can be non-vanishing
on compact subsets of the line {t = 0}). Now, multiplying (1.5) by some ψ ∈ C1

0 (Ω),
integrating over the resulting equation and applying Gauss’s Divergence Theorem to
shift derivatives, leads to our definition of weak solutions.

Definition 2.6. Let w(x, t) ∈ M be a bounded function such that f(w(x, t)) and
g(w(x, t)) are measurable in (x, t) and let w0(x) ∈ M be a bounded function such that
g(w0(x)) is measurable in t. We say that w(x, t) ∈ M is a weak solution of (1.5) with
initial data w0 if∫∫

t≥0

(
g(w)ψt + f(w)ψx

)
dxdt +

∫
R

ψ(·, 0) g(w0) dx = 0, ∀ψ ∈ C1
0 (Ω).

To clarify, the boundedness of w(x, t) assumed in Definition 2.6 shall be under-
stood with respect to the canonical distance function dM, defined in (4.1), which
turns M into a metric-space.

We next show that the discontinuity of a weak solution across a surface Γ(t) ≡
(x(t), t) ∈ Ω satisfies the following generalized Rankine Hugoniot jump conditions :

s[g(w)] = [f(w)], (2.9)

where s(t) = ẋ(t) is the shock speed, and [·] denotes the jump across Γ, i.e., [w] =
wl−wr, [g(w)] = g(wl)− g(wr) and [f(w)] = f(wl)− f(wr), with wl and wr denoting
the left- and right-limit of w(x, t) at Γ.
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Proposition 2.7. Let Γ(t) ≡ (x(t), t) be a differentiable curve across which
w(x, t) is discontinuous and such that w(x, t) is in C1 on the complement of Γ and
w(x, t) has well-defined limits on both sides of Γ. Suppose w(x, t) is a strong solution
of (1.5) in the complement of Γ. Then, w(x, t) is a weak solution of (1.5) if and only
if (2.9) hold across Γ.

Proof. The proof closely follows the reasoning in [23] and is only included for
completeness. Consider some point p on Γ and let B ⊂ {(x, t) : t ≥ 0} be some small
open ball centered at p. Denote with B1 and B2 the two open regions in B to the
right and left of Γ, respectively. Now, assuming w(x, t) is a weak solution and that Ψ
has compact support in B, we find from (2.6) that

0 =

∫∫
B

(
g(w)ψt + f(w)ψx

)
dxdt

=

∫∫
B1

(
g(w)ψt + f(w)ψx

)
dxdt +

∫∫
B2

(
g(w)ψt + f(w)ψx

)
dxdt. (2.10)

Using the fact that w(x, t) is a strong solution of (1.5) on each Bi, i = 1, 2, since
w ∈ C1(Bi), we get∫∫

Bi

(
g(w)ψt + f(w)ψx

)
dxdt =

∫∫
Bi

(
g(w)ψ

)
t
+

(
f(w)ψ

)
x
dxdt.

Now, using the divergence theorem together with the fact that the outward pointing
unit normal vector of ∂B1 = Γ and of ∂B2 = Γ, N1 and N2, both point along the
direction of (−s, 1), but with opposite sign, we write (2.10) as∫∫

B1

(
g(w)ψt + f(w)ψx

)
dxdt =

∫
Γ

ψ

(
g(wr)
f(wr)

)
·N1 dt,

∫∫
B2

(
g(w)ψt + f(w)ψx

)
dxdt = −

∫
Γ

ψ

(
g(wl)
f(wl)

)
·N1 dt.

Inserting this into (2.10) and rescaling N1 to coincide with (−s, 1), gives

0 =

∫∫
B

(
g(w)ψt + f(w)ψx

)
=

∫
ψ (s[g(w)]− [f(w)]) dt,

for all ψ ∈ C1
0 , from which we conclude that (2.9) holds if and only if w(x, t) is a weak

solution of (1.5).

2.3. Left eigen-one-forms. To prove Glimm’s Theorem within our framework
and to show the admissibility of shock waves, we use the following eigenvalue problem
for eigen-one-forms lk,

λk lk(dg) = lk(df), (2.11)

by which we mean that lk is a smooth mapping from M to the space of linear maps
from Rn to R, L(Rn,R). That is, lk|w : Rn → R is linear and smooth in w ∈ M, and
we have

λk(w) lk

∣∣∣
w

(
dg

∣∣∣
w
(v)

)
= lk

∣∣∣
w

(
df

∣∣∣
w
(v)

)
, ∀ v ∈ TwM.
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The above equation closes, since dg|w(v) ∈ Tg(w)R
n = Rn and df |w(v) ∈ Tf(w)R

n =
Rn for all v ∈ TwM, where we use the canonical identification between TpR

n and Rn,
for all p ∈ Rn, through the standard basis on Rn. By a slight abuse of language we
refer to the lk’s as one-forms.

Let us remark here that one can write the eigenvalue problem for eigen-one-
forms (2.11) equivalently as the left-eigenvector problem used in [6, 23]. Namely, by

the Riesz representation Theorem, there exists a unique vector �lk ∈ Rn such that
lk(v) = 〈�lk, v〉Rn for all v ∈ Rn, where 〈·, ·〉Rn denotes the Euclidean inner product on
Rn.

The following lemma shows that the existence of left eigen-one-forms follows from
the existence of right eigenvectors, under the assumption that dg is point-wise invert-
ible in M. We apply Lemma 2.8 in Section 3 to prove C2 contact of the shock and
rarefaction curves at wl and to prove the admissibility of the lower branch of shock
curves.

Lemma 2.8. Assume det(dg|w) 
= 0 and that there exists n linearly indepen-
dent right eigenvectors rk(w) ∈ TwM which solve (2.2) with eigenvalues λk(w) ∈ R,
then there exists n linearly independent one-forms, lk, which solve (2.11). In partic-
ular, there exist a normalization of the lk’s such that the lk’s and rk’s are mutually
orthonormal in the sense that

lj
(
dg(rk)

)
=

{
1, j = k

0, j 
= k
. (2.12)

Proof. It suffices to prove the lemma at a fixed point w ∈ M. Using that dg|w
has the inverse

dg|−1
g(w) : Rn −→ TwM,

where we identify Tg(w)g(M) with Rn, we define the linear map

A(w) = dg|−1
g(w)df |w,

which maps TwM into itself. Now, subsequently suppressing the dependence on w,
we write (2.2) as

Ark = λk rk. (2.13)

Let ek be the k-th standard basis vector of Rn, that is, all entries of ek are 0 except
the k-th entry, which equals 1. Define the linear mapping U : Rn −→ TwM by setting
U(ek) ≡ rk. Then U is invertible and, in light of (2.13), we obtain

U−1AU = diag(λ1, ..., λn),

where we represent the linear mapping on the left hand by its matrix in the standard
basis on Rn. Multiplying the above equation from the left by e∗k, where star denotes
the transpose of a matrix, yields,

e∗k · U−1AU = λk e
∗
k,

which is equivalent to

e∗k · U−1A = λke
∗
k · U−1.
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Substituting now the definition of A, that is, A = dg−1df , into the above equation we
obtain

e∗k · U−1dg−1df = λk · e∗k · U−1dg−1dg.

The left- and right-hand side of the above equation are both linear mappings from
TwM to R, and applying them to some v ∈ TwM, yields〈(

U−1dg−1
)∗
ek, df(v)

〉
Rn

= λk ·
〈(

U−1dg−1
)∗
ek, dg(v)

〉
Rn

.

We conclude that the sought after one-form, satisfying (2.11), is given by

lk

∣∣∣
w
(·) =

〈(
U−1dg−1

)∗
ek , ·

〉
Rn

. (2.14)

To verify (2.12), we use (2.14) and compute

lk
(
dg

(
rj
))

=
〈(

U−1dg−1
)∗
ek , dg(rj)

〉
Rn

=
〈
ek, U

−1(rj)
〉
Rn

=
〈
ek, ej

〉
Rn ,

which completes the proof.

A useful application of left eigen-one-forms, though not further used in this article,
is the following Lemma (which is also proven in [17] for Rn as state space).

Lemma 2.9. Assume that (1.5) is hyperbolic, that the flux f and the accumulation
g are both C2 regular and that dg|w is invertible for all w ∈ M, then

rk
(
λk

) · lk(dg(rk)) = lk

((∇rkdf
)
(rk)

)
− λk · lk

((∇rkdg
)
(rk)

)
, (2.15)

where ∇rkdf and ∇rkdg are the covariant derivatives of the one forms df i and dgi for
i = 1, ..., n fixed.

Proof. This proof generalizes the one in [23]. To begin, note that the expressions
on the left and right hand side of the k-th characteristic eigenvalue problem, (2.2),
are both differentiable maps from M to Rn. Fixing Cartesian coordinates xi on Rn,
we differentiate the i-th component of (2.2) in the direction of rk, which yields

rk

∣∣∣
w

(
λk dgi

∣∣∣
w
(rk)

)
= rk

∣∣∣
w

(
df i

∣∣∣
w
(rk)

)
,

where gi ≡ xi ◦ g and f i ≡ xi ◦ f , for i = 1, ..., n fixed. By the product rule of partial
differentiation, applied for instance in some coordinates on M, we write the above
equation as

rk

∣∣∣
w
(λk) dg

i
∣∣∣
w
(rk) + λk(w) rk

∣∣∣
w

(
dgi

∣∣∣
w
(rk)

)
= rk

∣∣∣
w

(
df i

∣∣∣
w
(rk)

)
. (2.16)

Analogous to the computation in (3.17), we find by the Leipnitz rule of covariant
differentiation [5, 24] that

rk

∣∣∣
w

(
df i

∣∣∣
w
(rk)

)
=

(∇rkdf
i
)∣∣∣

w
(rk) + df i

∣∣∣
w

(∇rkrk
)
,
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where ∇rkdf
i denotes the covariant derivative of the one-form df i and where we used

as in (3.17) that the Christoffel symbols enter covariant differentiation of vector fields
and of one-forms with opposite sign. Now, since an analogous result holds for dgi, we
write (2.16) as

rk

∣∣∣
w
(λk) dg

i
∣∣∣
w
(rk) + λk(w)

(∇rkdg
i
)∣∣∣

w
(rk) + λk(w) dg

i
∣∣∣
w

(∇rkrk
)

=
(∇rkdf

i
)∣∣∣

w
(rk) + df i

∣∣∣
w

(∇rkrk
)
.

Writing the k-th characteristic one-form in coordinates xi as lk ≡ (lk)i dx
i, we multiply

the previous equation by (lk)i and sum over the resulting expression with respect to
i, which yields

rk

∣∣∣
w
(λk) lk

(
dg

∣∣∣
w
(rk)

)
+ λk(w) lk

((∇rkdg
)∣∣∣

w
(rk)

)
+ λk(w) lk

(
dg

∣∣∣
w

(∇rkrk
))

= lk

((∇rkdf
)∣∣∣

w
(rk)

)
+ lk

(
df

∣∣∣
w

(∇rkrk
))

. (2.17)

Now, from the eigen-value problem (2.11), we find

λk(w) lk

(
dg

∣∣∣
w

(∇rkrk
))

= lk

(
df

∣∣∣
w

(∇rkrk
))

,

so that (2.17) simplifies to

rk

∣∣∣
w
(λk) lk

(
dg

∣∣∣
w
(rk)

)
+ λk(w) lk

((∇rkdg
)∣∣∣

w
(rk)

)
= lk

((∇rkdf
)∣∣∣

w
(rk)

)
,

which is the sought after equation (2.15), independent of any choice of coordinates.
This completes the proof of Lemma 2.9.

3. The Riemann problem in the manifold of states. In this section, we
extend Lax’s existence theory [13] to the geometric framework introduced in Section
2, for which we use mostly the exposition in [23] as a starting point. As in [13], the so-
lutions of Riemann problems constructed are compositions of contact discontinuities,
shock and rarefaction waves.

3.1. Rarefaction waves. We begin by introducing the k-th characteristic curve
of (1.5) as the (real valued) solution of the ODE

d

dt
χ(x, t) = λk

(
w(χ(x, t), t)

)
, with χ(x, 0) = x. (3.1)

Following [4], we now define rarefaction waves as C1 solutions of (1.5) constant along
a family of characteristic curve and such that the corresponding wave speed increase
monotonously with respect to x, so that the family of characteristic curves diverge to
form a fan-like region.

Definition 3.1. We say that a C1 solution of (1.5), (x, t) �→ w(x, t) ∈ M, is a
k-simple wave, if it is constant along the k-th characteristic curve, that is, if for fixed
x the tangent vector of the curve t �→ w

(
χ(x, t), t

)
satisfies

d

dt
w
(
χ(x, t), t

)
= 0.
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A k-rarefaction wave is a k-simple wave with ∂
∂x

λk

(
w(x, t)

)
> 0 and a k-compression

wave is a k-simple wave with ∂
∂x

λk

(
w(x, t)

)
< 0.

It follows immediately that characteristic curves are straight lines for simple
waves.

Under the assumption that the k-th characteristic field is genuinely nonlinear, the
following theorem proves that for each wl ∈ M there exists a one-parameter family
of states wr for which the Riemann problem with wl on the left and wr on the right
is solved by a rarefaction wave.

Theorem 3.2. Assume (1.5) is strictly hyperbolic, let wl be some point in M
and assume the k-th characteristic field of (1.5) is genuinely nonlinear in some neigh-

borhood of wl with rk

∣∣∣
w

(
λk

)
> 0. Then there exists a one-parameter family of states

w(ε), with ε ∈ [0, a) for some a > 0, such that w(0) = wl and w(ε) can be connected
to wl on the right by a k-rarefaction wave in M for each ε ∈ [0, a). We call the curve
ε �→ w(ε) the k-th rarefaction curve. This curve is unique modulo its parameterization
and it can be parameterized so that its tangent vector is given by ẇ(ε) = rk(w(ε)).

Proof. Consider the ODE

dv

dε
= rk

(
v(ε)

)
with v(λk(wl)) = wl. (3.2)

Since df and dg are assumed C1 regular, we conclude that rk and λk are C1 as
well. Now the Picard Lindelöf theorem yields the existence of a constant a > 0 and
a function v(ε), for ε ∈ [λk(wl), λk(wl) + a), which solves (3.2). Consider now the
following Riemann problem for the scalar conservation law

εt + λk

(
v(ε)

)
εx = 0, ε(x, 0) =

{
λk(wl), x < 0

λk(wl) + â, x > 0,
(3.3)

for some 0 < â < a. By genuine non-linearity of the k-th characteristic field, we find
that

d

dε
λk

(
v(ε)

)
= dλk

∣∣∣∣
v(ε)

(
dv

dε

)
= rk

∣∣∣∣
v(ε)

(
λk

)
> 0,

which implies λk ◦ v to be monotone in ε. Thus, following the basic theory of scalar
conservation laws [23], there exist a rarefaction wave solving (3.3), given by

ε(x, t) = (λk ◦ v)−1
(x
t

)
, (3.4)

for (x, t) lying in the wave fan region

λk(wl) ≤ x

t
≤ λk

(
v
(
λk(wl) + â

))
, (3.5)

where we used the initial data in (3.2) to simplify the lower bound in (3.5). Notice that
ε(x, t) is constant along the characteristic lines of (3.3), (the straight lines inside the
wave fan (3.5)), and its range is the domain of definition of v, that is, [λk(wl), λk(wl)+
â]. This allows us to define (x, t) �→ w(x, t) as

w(x, t) ≡ v
(
ε(x, t)

)
, (3.6)
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for (x, t) lying in the wave fan (3.5). Since ε(x, t) is constant along the k-characteristic
curves and C1 regular inside the wave fan (3.5) and Lipschitz continuous across its
boundary lines, we conclude that w is a k-simple wave provided it solves (1.5)-(1.6).

We now show that w is a solution of the Riemann problem (1.6) for the system
(1.5). For this, we compute

g(w)t + f(w)x = dg
∣∣∣
w
(wt) + df

∣∣∣
w
(wx)

= dg
∣∣∣
w

(
dv

dε

)
εt + df

∣∣∣
w

(
dv

dε

)
εx,

and using (3.2) together with the eigenvalue problem (2.2), we find

g(w)t + f(w)x = dg
∣∣∣
w
(rk(v)) εt + df

∣∣∣
w
(rk(v)) εx

= dg
∣∣∣
w
(rk(v)) (εt + λk(v)εx) . (3.7)

From (3.3), it follows that the right hand side in the previous equation vanishes, from
which we conclude that w is in fact a solution of (1.5) and that w is a simple wave.

Finally, use λk(w) = λk(v(ε)) and (3.4) to compute

∂

∂x
λk(w) =

1

t
> 0,

which implies that w(x, t) is indeed a rarefaction wave.
Varying now â ∈ (0, a) yields the sought after one-parameter family of states

connected to wl by a rarefaction wave. Uniqueness of the rarefaction curve follows
from the uniqueness of rk (modulo its length) under the assumption that (1.5) is
strictly hyperbolic.

Let us remark that if the set of points Σ, for which the null-space of dg is non-
trivial, were not a set of measure zero, then the eigenvalues λk would not be specified
over this set and (3.3) could not be introduced. Let us remark further, that one
could avoid the inversion problem (λk ◦ v)−1 in (3.4) by normalizing rk such that

rk

∣∣∣
w

(
λk

)
= 1 holds, however, we avoid this normalization here since it would prevent

us from introducing an arc-length parameterization for the wave curves, which is
convenient for extending Glimm’s Theorem to our framework.

3.2. Shock waves. We now prove the existence of n one-parameter families of
states that can be connected to wl on the right by a shock wave.

Theorem 3.3. Let wl ∈ M, and assume that (1.5) is strictly hyperbolic in
some neighborhood of wl. Then there exists n one-parameter families of states, ε �→
wk(ε) ∈ C2(I,M) with I ≡ (−a, a) for some a > 0, such that wk(0) = wl and wk(ε)
satisfies the RH jump conditions (2.9) for some unique shock speed sk ∈ C1(I,R), for
all ε ∈ I. The shock curves ε �→ wk(ε) are linearly independent at wl, unique up to
parameterization and have a C2-dependence on wl.

Proof. Given wl ∈ M, we choose coordinates yμ defined in a neighborhood U of
wl, such that any straight line in Rn through y(wl) intersects y(Σ ∩ U) at most in
finitely many points.4 Writing y = y(w) ∈ Rn and yl = y(wl) ∈ Rn, we compute

f(w)− f(wl) = f ◦ y−1(y)− f ◦ y−1(yl)

4That is, we arrange for each hypersurface in y(Σ ∩ U) to be sufficiently curved.
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=

1∫
0

d

dσ
f ◦ y−1

(
yl + σ(y − yl)

)
dσ

=

1∫
0

d(f ◦ y−1)
∣∣
yl+σ(y−yl)

dσ · (y − yl)

≡ F(y) · (y − yl)

and similarly

g(w)− g(wl) =

1∫
0

d(g ◦ y−1)
∣∣
yl+σ(y−yl)

dσ · (y − yl)

≡ G(y) · (y − yl).

We now write the RH condition (2.9) as the equivalent eigenvalue problem(F(y)− sG(y))(y − yl) = 0. (3.8)

Assume for the moment that wl /∈ Σ, i.e., dg|wl
is invertible. At yl, the above

matrices simplify to F(yl) = d
(
f ◦ y−1

) |yl
and G(yl) = d

(
g ◦ y−1

) |yl
so that (3.8)

reduces to the right eigenvalue problem (2.2) at yl. Thus, for y sufficiently close to yl,
the characteristic polynomial P of (3.8) is a small perturbation of the characteristic
polynomial of (2.2) at yl. By continuous dependence of the (complex) zeros of a
polynomial on its coefficients, we conclude that P has n mutually distinct zeros μi,
i = 1, ..., n, with their real parts satisfying

Re(μ1) > ... > Re(μn). (3.9)

Now, since P has real coefficients, the genuine complex roots of P appear in complex
conjugate pairs, so that (3.9) requires P to have n real valued zeros. Therefore, (3.8)
has n real valued eigenvalues μ1 > ... > μn, that is, there exists ζk(y) ∈ Rn and
μk(y) ∈ R such that (F(y)− μk(y)G(y)

)
ζk(y) = 0, (3.10)

for k = 1, ..., n, and where

ζk(yl) = dy
∣∣∣
wl

(
rk

)
and μk(yl) = λk(yl).

Now, assuming dg|w has a non-trivial null-space for all w ∈ Σ and Σ 
= ∅, then
the characteristic polynomial of (2.2) vanishes identically at each w ∈ Σ. However,
since by our choice of coordinates y, we arranged for y(Σ ∩ U) to be intersected by
the straight line σ �→ yl + σ(y − yl) at most in finitely many points, it follows that G
is invertible, so that the characteristic polynomial of (3.8) is non-vanishing and again
gives rise to n distinct real eigenvalues, that is, to (3.10).

We conclude that (3.8) is satisfied if and only if

y − yl = ε ζk(y) and s = μk(y), (3.11)

for some non-zero ε ∈ R and some k = 1, ..., n. It remains to prove that for each k
there exists a one-parameter family of states y(ε) which solves

H(y, ε) ≡ y − yl − ε ζk(y) = 0.
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H is a C2 function since g and f are assumed to be in C3. It is straightforward that
H(yl, 0) = 0 and

∂

∂yν
Hμ

∣∣∣
(yl,0)

= Iμν ,

for I denoting the identity matrix on Rn and μ, ν ∈ {1, ..., n} indices. Thus, the
Implicit Function Theorem implies the existence of a C2 curve yk(ε), such that

H
(
yk(ε), ε

)
= 0

for all ε sufficiently close to 0.
Defining wk(ε) ≡ y−1

(
yk(ε)

)
, it is immediate by construction that wk is the sought

after shock curve of the k-th characteristic field through wl with sk(ε) ≡ μk ◦y
(
wk(ε)

)
being the corresponding shock speed. Since M is assumed to be a C3 manifold, we
have wk ∈ C2(Ik,M). The above construction yields n unique shock curves with the
property that wk(0) = wl and ẇ(0) = rk(wl), so that linear independence follows as
well. The shock curves have a C2-dependence on yl, since H has this dependence on
yl.

Finally, the above construction of shock curves and speeds is independent of the
choice of coordinates, since s(w), [gi(w)] and [f i(w)] are scalar functions over M.

The next lemma shows that the shock and rarefaction curves have C2 contact at
wl, most remarkably, when parameterized by their arc-length. This lemma is the first
step in the construction which requires Riemannian Geometry over basic Differential
Topology.

Lemma 3.4. Assume the hypotheses of Theorem 3.3. Assume further that M
is endowed with a Riemannian metric 〈·, ·〉M and that the characteristic fields are
normalized such that

〈rk, rk〉M(w) = 1, ∀w ∈ M. (3.12)

Then the shock curves defined in Theorem 3.3 can be parameterized by arc-length and,
denoting the k-th shock curve in its arc-length parameterization by ε �→ wk(ε), they
satisfy

ẇk(0) = rk(wl) and ẅk(0) = ∇rkrk(wl), (3.13)

while the shock speeds satisfies

sk(0) = λk(wl) and ṡk(0) =
1

2
rk

∣∣∣
wl

(λ). (3.14)

Here “·” denotes d
dε
, ∇ is the Levi Civita connection of 〈·, ·〉M and ẅk denotes co-

variant differentiation of ẇk along the shock curve with respect to ∇.

Proof. It suffices to prove the theorem for wl /∈ Σ, since the λk’s and rk’s are
assumed to be extendable to C2 functions over M (by Definition 2.1), so that the
expressions on the right hand side of (3.13) and (3.14) all extend continuously to Σ
as wl varies, and since the shock curves have a C2 dependence on wl.

By construction of wk and sk we already have wk(0) = wl and sk(0) = λk(wl).
Let yμ be the coordinate system used in the proof of Theorem 3.3. Writing wk(ε

′) ≡
y−1

(
yk(ε

′)
)
, for some parameter ε′, we find

ẇk(0) = dy−1

∣∣∣∣
yl

(
ẏk(0)

) ∈ Twl
M.
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Differentiating the first equation in (3.11) with respect to ε′ yields

ẏk(0) = ζk(yl) = dy
∣∣∣
wl

(
rk

)
.

Combining the above two equations, we obtain

ẇk(0) = rk(wl), (3.15)

which holds independent of the choice of coordinates, as both sides are objects in
Twl

M.
Now, since ẇk(0) = rk(wl) 
= 0 we can use the change of variables

dε

dε′
=

√∣∣∣∣dwk

dε′

∣∣∣∣
M

with ε(0) = 0,

to obtain the arc-length parameter ε of the shock curves. By (3.15) and since rk
is normalized by 〈rk, rk〉M = 1, we have dε

dε′
= |ẇk(0)|M = 1. Thus the shock

curves parameterized by arc-length ε still satisfies wk(0) = wl and (3.15) with “·” now
denoting d

dε
.

To derive the remaining identities, first differentiate the RH conditions (2.9) with
respect to ε, which gives

ṡ
(
g(wk)− g(wl)

)
+ sdg

(
ẇk

)
= df

(
ẇk

)
, (3.16)

where dg and df are evaluated at wk(ε). We next differentiate (3.16) by ε, for this
observe that df i(·) and dgi(·) for fixed i = 1, ..., n are one-forms on M, so that, setting

aμ ≡ ∂fi◦x−1

∂xμ and xμ(ε) ≡ xμ ◦ wk(ε) for some coordinate system xμ, we find

d

dε
df i

∣∣∣∣
wk

(
ẇk

)
=

d

dε

(
∂f i ◦ x−1

∂xμ

dxμ

dε

)

=
∂aμ
∂xν

dxν

dε

dxμ

dε
+ aμ

d2xμ

dε2

=
∂aμ
∂xν

ẇν
kẇ

μ
k − Γσ

μν aσ ẇ
ν
kẇ

μ
k + aμ

dẇμ
k

dε
+ aσ Γ

σ
μν ẇ

ν
kẇ

μ
k

=
(∇ ∂

∂ε
aμ

)
ẇμ

k + aμ
(∇ ∂

∂ε
ẇμ

k

)
=

(∇ ∂
∂ε
df i

)(
ẇk

)
+ df i(ẅk

)
, (3.17)

where ẅk denotes covariant differentiation along the shock curves, ∇ ∂
∂ε
ẇk. (Regard-

ing the above cancellation, note that Γμ
σρ enters covariant differentiation of a vector

field with a plus sign, but covariant differentiation of a one-form with a minus sign.)
An analogous result holds for dgi. Using now (3.17) for differentiating (3.16) by d

dε

component-wise then results in

s̈
(
gi(wk)− gi(wl)

)
+ 2ṡdgi(ẇk) + sdgi(ẅk) + s∇ ∂

∂ε
dgi

(
ẇk

)
= ∇ ∂

∂ε
df i

(
ẇk

)
+ df i(ẅk

)
,

Evaluating this equation at ε = 0 and using that wk(0) = wl and ẇk(0) = rk(wl),
yields

2ṡ(0)dgi
∣∣∣
wl

(rk) + λk(wl)dg
i
∣∣∣
wl

(ẅk(0)) + λk(wl)
(∇rkdg

i
)∣∣∣

wl

(
rk

)
=

(∇rkdf
i
)∣∣∣

wl

(
rk

)
+ df i

∣∣∣
wl

(ẅk(0)
)
. (3.18)
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Differentiate now the eigenvalue problem (2.2) along wk, which gives us

λ̇k dg
i
(
rk

)
+ λkdg

i
(∇ ∂

∂ε
rk

)
+ λk

(
∇ ∂

∂ε
dgi

) (
rk

)
= df i

(∇ ∂
∂ε
rk

)
+

(
∇ ∂

∂ε
df i

) (
rk

)
.

Evaluating the previous equation at ε = 0, using ẇk(0) = rk(wl), and subtracting the
resulting expression from (3.18), yields

(
2ṡ(0)− λ̇k(0)

)
dg

∣∣∣
wl

(rk) = (df − λk dg)
∣∣∣
wl

(
ẅk(0)−

(∇rkrk
)
(wl)

)
, (3.19)

where we used that ẇk(0) = rk(wl) implies
(∇ ∂

∂ε
rk

)
(wk(0)) = ∇rkrk(wl).

Now, in light of the eigenvalue problem (2.11) and since the left and right hand
sides in (3.19) are both elements in Twl

M, applying the eigen-one-form lk to both
sides of (3.19) yields

(
2ṡ(0)− λ̇k(0)

)
lk

(
dg

∣∣∣
wl

(rk)
)
= 0.

Using that lk

(
dg

∣∣∣
wl

(rk)
)
= 1 by (2.12) of Lemma 2.8 and that

λ̇k(0) =
d

dε

∣∣∣∣
ε=0

λk

(
wk(ε)

)
= dλk

∣∣∣
wl

(
ẇk(0)

)
= dλk

∣∣∣
wl

(
rk

)
= rk

∣∣∣
wl

(λk), (3.20)

it follows that

ṡ(0) =
1

2
rk

∣∣∣
wl

(λk), (3.21)

which proves the second equation in (3.14).
To complete the proof, substitute (3.21) into (3.19), which gives us

(df − λk dg)
∣∣∣
wl

(
ẅk(0)−∇rkrk(wl)

)
= 0,

from which we conclude in light of the eigenvalue problem (2.2) that

ẅk(0)−∇rkrk(wl) = c rk(0). (3.22)

Now, since rk is assumed to satisfy the normalization (3.12), using the Leipnitz rule
for ∇, we find that

0 = rk

∣∣∣
w

(〈rk, rk〉M)
= 2〈∇rkrk, rk〉M(w).

Likewise, since ε �→ wk(ε) is parameterized by arc-length, it follows that the accelera-
tion ẅk is orthogonal to its velocity ẇk, 〈ẅk, ẇk〉M = 0. Thus, applying the one-form
〈·, ẇk〉M to both sides of (3.22) and using that ẇk(0) = rk(wl), we conclude that
c = 0 and therefore (3.22) implies the sought after equation (3.13).

As for a criteria guaranteeing uniqueness of solutions of the Riemann problem for
the system (1.5), we impose the so-called Lax admissibility conditions. That is, we
say that the k-th shock curve is (Lax) admissible if the following inequalities hold

λk−1(0) < sk(ε) < λk(0),
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λk(ε) < sk(ε) < λk+1(ε). (3.23)

This condition is identical to the flat case and implies that the k-th characteristic
lines impinge on the k-th shock, c.f. [13, 23].

The next lemma shows that the shock curves in the arc-length parameterization
of Lemma 3.4 are admissible for ε < 0. Its proof is taken from [23] and is presented
here for completeness.

Lemma 3.5. Assume the hypotheses of Lemma (3.4) and let the k-th shock curve
be parameterized by arc-length. Assume further that the k-th characteristic field is

genuinely nonlinear with rk

∣∣∣
w
(λk) > 0. Then (3.23) holds for sk(ε) and λk(wk(ε)) if

and only if ε < 0.

Proof. Define the function Φ(ε) ≡ λk(ε) − sk(ε), then Lemma 3.4 implies that
Φ(0) = 0 and

Φ̇(0) = λ̇k(0)− ṡk(0) =
1

2
rk

∣∣∣
wl

(λ) > 0,

where we used (3.20) for the substitution λ̇k(0) = rk

∣∣∣
wl

(λk). Assume now that the Lax

admissibility conditions hold. This implies that Φ(ε) < 0 and thus that ε < 0, since
Φ is monotonically increasing by the previous computation.

Conversely, assuming that ε < 0, the monotonicity of Φ implies that Φ(ε) < 0

and thus λk(ε) < sk(ε). Moreover, since λk(0) = sk(0) and ṡk(0) =
1
2rk

∣∣∣
wl

(λ) > 0, we

conclude that λk(0) > sk(ε) for ε sufficiently close to 0. Furthermore, as ε approaches
0 from below, sk(ε) converges to λk(0), which implies that sk(ε) > λk−1(0), since
λk(0) > λk−1(0) and λk(0) > sk(ε). Finally, since λk+1(0) > λk(0) = sk(0), we
conclude that λk+1(ε) > sk(ε) for ε < 0 sufficiently close to 0. In summary, we proved
that (3.23) holds.

Following [13], we now define the wave curve for the genuinely non-linear charac-
teristic fields as rarefaction curves whenever ε > 0 and shock curves for ε < 0.

Definition 3.6. Assume the k-th characteristic field is genuinely nonlinear with

rk

∣∣∣
w
(λk) > 0 and assume rk is normalized by (3.12). Let w̄k denote the k-th shock curve

parameterized by arc-length and let ŵk denote the k-th rarefaction curve constructed
in Theorem 3.2. We now define the “wave” curve ε �→ wk(ε) in M as

wk(ε) ≡
{
w̄k(ε), ε ≤ 0

ŵk(ε), ε ≥ 0.
(3.24)

Let us finally record the following basic properties of the wave curves being C2

regular and parameterized by arc-length and of the shock speed being the arithmetic
average of the left and right characteristic speeds.

Proposition 3.7. Assume the hypotheses of Lemma (3.4) and assume the k-th

characteristic field is genuinely nonlinear with rk

∣∣∣
wl

(λk) > 0. Then the curve ε �→ wk(ε)

defined in (3.24), is C2 regular and is parameterized by arc-length. Moreover, the
shock speed satisfies

sk(ε) =
λk(wl)− λk(ε)

2
+O(ε2). (3.25)
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Proof. Equation (3.25) follows by the proof of Theorem 17.16 in [23]. Note that

rk

∣∣∣
wl

(λk) cancels out in (3.25), so that the normalization rk

∣∣∣
wl

(λk) = 1 in [23] is irrelevant

for the result here.
The rest of the corollary is immediate from Theorem 3.2 and Lemma 3.4. In

particular, arc-length parameterization follows since 〈rk, rk〉M(w) = 1 for each w ∈ M
and since the rarefaction curves satisfy d

dε
ŵk(ε) = rk(wk(ε)), by Theorem 3.2.

3.3. Contact discontinuities. We now solve the Riemann problem (1.5) and
(1.6) when the k-th characteristic field is linearly degenerate, c.f. Definition 2.5, within
the class of contact discontinuities. We call a function w(x, t) a contact discontinuity
if it is a weak solution of the Riemann problem (1.5) - (1.6), discontinuous across the
straight line {(st, t) : t ≥ 0}, such that s coincides with the characteristic speed on
both sides of that line.

Theorem 3.8. Let the k-th characteristic field be linearly degenerate in the sense
of Definition 2.5. Then, given some wl ∈ M, there exists a one-parameter family of
states, w(ε), for ε ∈ I, for some interval I containing 0, such that for each ε ∈ I, there
exists a contact discontinuity solving the Riemann problem (1.5) - (1.6) for wl = w(0)
and wr = w(ε). If (1.5) is strictly hyperbolic in the sense of Definition 2.1, then this
one-parameter family is unique.

Proof. Given some wl ∈ M, define the curve ε �→ w(ε), for ε sufficiently close to
0, as the solution of the ODE

dw

dε
= rk

(
w(ε)

)
, (3.26)

for initial data w(0) = wl. The assumption of linear degeneracy, that is, rk

∣∣∣
w

(
λk

)
= 0

for all w ∈ M, implies that λk is constant along the curve ε �→ w(ε). That is,

λk

(
w(ε)

)
= λk

(
wl

)
,

for all ε ∈ I, where I denotes some open interval containing 0.
Now, given some ε ∈ I, we define the function

v(x, t) ≡
{
wl, x < t λk(wl),

w(ε), x > t λk(wl).
(3.27)

Clearly, v satisfies the initial data (1.6) for wr = w(ε), and setting s = λk(wl), we
find that

d

dε

(
f
(
w(ε)

) − sg
(
w(ε)

))
= df

∣∣∣
w

(
rk

)− sdg
∣∣∣
w

(
rk

)
,

which vanishes by the eigenvalue problem (2.2). We conclude that

f
(
w(ε)

)− sg
(
w(ε)

)
= f

(
wl

)− sg
(
wl

)
,

for all ε ∈ I, which are in fact the RH conditions, (2.9). Therefore, v satisfies the RH
conditions and is a weak solution of (1.5), according to Proposition 2.7. We conclude
that wl and w(ε) are connected by a contact discontinuity. Uniqueness of the family of
states follows from (3.26) together with the uniqueness of the vectorfield rk by strict
hyperbolicity.
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3.4. Proof of Theorem 1.1. Choose coordinates yμ in some neighborhood U
of wl in M. We now follow the arguments in the proof of Theorem 17.18 in [23]. By
the results from sections 3.1 - 3.3, there exists a neighborhood U ⊂ M of wl and for
each k = 1, .., n there exists a one-parameter family of maps

T k
εk

: U → M,

with the defining property that any w ∈ U can be joined to T k
εk
w by either a k-

shock, a k-rarefaction wave or a contact discontinuity, depending on whether the k-th
characteristic field is genuinely non-linear or linearly degenerate. Set ε ≡ (ε1, ..., εn)
and define the composition T (ε) ≡ T n

εn
...T 1

ε1
. To complete the prove it remains to

show that there exists exactly one ε such that wr = T (ε)wl. This follows by the
Inverse Function Theorem. In more detail, defining

F (ε1, .., εn) ≡ T n
εn
...T 1

ε1
wl − wl,

it follows that F (0, ..., 0) = 0 and, by construction of the wave curves (see (3.26) and
Lemma 3.4), that

∂F

∂εi
(0, ..., 0) = ri(wl).

Now, since the rk’s are linearly independent by the assumption of hyperbolicity, the
Inverse Function Theorem implies the existence of a unique ε such that wr = T (ε)wl.
The result is independent of the choice of coordinates, since the intermediate states
as well as the wave curves connecting them are independent of coordinates. This
completes the proof of Theorem 1.1.

4. The Cauchy problem and Glimm’s scheme. In this section we extend
Glimm’s method for proving global existence of the Cauchy problem with initial data
of bounded total variation to our framework of a manifold of states and prove Theorem
1.2.

To begin, we introduce the canonical distance function dM, which turns M into
a metric space. That is, dM : M×M → [0,∞) is defined as

dM(p, q) = inf
γ

∫ b

a

√
〈γ̇(s), γ̇(s)〉Mds, (4.1)

where 〈·, ·〉M denotes the metric tensor on M and the infimum is taken over all
continuous piecewise differentiable curves γ with γ(a) = p and γ(b) = q.

Given a curve w : [a, b] → M, we now define the total variation of w as

T.V.
∣∣b
a
(w) ≡ sup

P

np−1∑
i=0

dM
(
w(xi+1), w(xi)

)
(4.2)

where P denotes the set of partitions of the interval [a, b] and {x0, ..., xnp
} ∈ P is a

partition. For a curve w : R → M, we define its total variation as

T.V.(w) ≡ lim
k→∞

T.V.
∣∣ k

−k

(
w|[−k,k]

)
. (4.3)

Given a constant state w̄ ∈ M, we define

d∞(w̄, w) ≡ sup
x∈R

dM
(
w(x), w̄

)
, (4.4)
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which generalizes the sup-norm on states in Rn to our framework and which gives
us a convenient notion of distance, sufficient to prove convergence of the Glimm
scheme below. The main result of this section is the generalization of Glimm’s famous
Theorem [6], recorded in Theorem 1.2, which we now recall.

Theorem 4.1. Assume the system (1.5) is strictly hyperbolic and each charac-
teristic field is genuinely non-linear or linearly degenerate in some neighborhood of
some point w̄ ∈ M. Given some curve

w0 : R → M
such that T.V.(w0) and d∞(w0, w̄) are sufficiently small, then there exists a weak
solution w(x, t) ∈ M of (1.5) for all x ∈ R and all t ≥ 0 with initial data w0, and
there exists a constant C > 0 such that

T.V.
(
w(·, t)) + d∞

(
w(·, t), w̄) ≤ C

(
d∞(w0, w̄) + T.V.(w0)

)
, ∀ t ≥ 0,∫ ∞

−∞

dM
(
w(x, t2), w(x, t1)

)
dx ≤ C |t2 − t1| T.V.(w0).

The remainder of this section is devoted to the proof of Theorem 4.1. Throughout
this section, we assume (1.5) to be strictly hyperbolic and each characteristic field to
be either genuinely non-linear or linearly degenerate.

4.1. Interaction estimates. We begin the proof of Theorem 4.1 by deriving
interaction estimates. For this, assume we are given three constant states, wl, wm and
wr, sufficiently close to w̄ such that their mutual Riemann problems are well-posed,
c.f. Theorem 1.1. Assume further that

wr = T (ε)wl ≡ T n
εn
...T 1

ε1
wl,

wm = T (γ)wl ≡ T n
γn
...T 1

γ1
wl,

wr = T (δ)wm ≡ T n
δn
...T 1

δ1
wm, (4.5)

with T denoting the operator introduced in section 3.4. We call the curve on M con-
necting wl with wr = T (ε)wl the ε-wave, setting ε = (ε1, ..., εn). The curve connecting
the state T j

εj
...T 1

ε1
wl with T j−1

εj−1
...T 1

ε1
wl is referred to as the εj-wave, or simply as the

j-wave, and we call |εj | the strength of the j-wave.

Proposition 4.2. If wl, wm and wr are sufficiently close to a constant state
w̄ ∈ M, then

εi = γi + δi +O(|γ| |δ|), (4.6)

where |γ| ≡ max{|γi| : i = 1, ..., n}. Moreover, if there exists a coordinate system of
Riemann invariants ωj near w̄, then

εi = γi + δi +O
((|γ|+ |δ|)3). (4.7)

Proof. Choose local coordinates yμ around w̄ such that wl, wm and wr are
contained in the coordinate neighborhood. By (4.5), yr ≡ y(wr) is a C2 function with
respect to ε = (ε1, .., εn) ∈ Rn. Taylor expanding yr around ε = 0, (keeping in mind
that second order derivatives do in general not commute), gives

y μ
r − y μ

l =

n∑
j=1

∂y μ
r

∂εj

∣∣∣∣
0

εj +
∑
j≤k

εjεk

(
1− 1

2
δjk

)
∂2y μ

r

∂εj∂εk

∣∣∣∣
0

+O(|ε|3) (4.8)
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where δjk denotes the Kronecker symbol. For genuinely non-linear fields, from (3.13)

of Lemma 3.4, we have
∂y μ

r

∂εj

∣∣
0
= rμj (wl) and thus, for j < k,

∂2y μ
r

∂εj∂εk

∣∣∣∣
0

=
∂rμk

(
T k−1
εk−1

...T 1
ε1
yl
)

∂εj

∣∣∣∣
0

= rνj ∂ν(r
μ
k )

∣∣∣
yl

≡ rj(r
μ
k )

∣∣
yl
,

where ∂ν refers to partial differentiation in coordinates y on M, not to differentiation
in parameter space ε = (ε1, ..., εn). For j = k, (3.13) implies that

∂2y μ
r

∂ε2k

∣∣∣∣
0

= ∇ ∂
∂εk

∂y μ
r

∂εk

∣∣∣∣
0

− Γμ
νσ

∂y ν
r

∂εk

∂y σ
r

∂εk

∣∣∣∣
0

= ∇rkr
μ
k

∣∣∣
yl

− Γμ
νσr

ν
k r

σ
k

∣∣∣
yl

= rνk∂ν(r
μ
k )

∣∣∣
yl

≡ rk(r
μ
k )

∣∣
yl
,

where Γμ
νσ is the Christoffel symbol of the covariant derivative ∇. By (3.26), the

above equations also hold true for a contact discontinuity of a linearly degenerate
field. Substituting the above identities into (4.8) yields

y μ
r − y μ

l =

n∑
j=1

r μ
j

∣∣∣
yl

εj +
∑
j≤k

(
1− 1

2
δjk

)
rk

(
r μ
j

)∣∣∣
yl

εjεk +O(|ε|3). (4.9)

Likewise, we find for ym = T (γ)yl the expression

y μ
m − y μ

l =

n∑
j=1

r μ
j

∣∣∣
yl

γj +
∑
j≤k

(
1− 1

2
δjk

)
rk

(
r μ
j

)∣∣∣
yl

γjγk +O(|γ|3), (4.10)

while Taylor expanding yr = T (δ)ym at ym gives

y μ
r − y μ

m =

n∑
j=1

r μ
j

∣∣∣
ym

δj +
∑
j≤k

(
1− 1

2
δjk

)
rk

(
r μ
j

)∣∣∣
ym

δjδk +O(|δ|3). (4.11)

To compare (4.9) - (4.11), we now derive an expression for (4.11) which is centered
at yl. For this, we Taylor expand rj |ym

and rk(r
μ
j )|ym

at yl and apply (3.13), which
yields

r μ
j

∣∣∣
ym

= r μ
j

∣∣∣
yl

+

n∑
i=1

ri
(
r μ
j

)∣∣∣
yl

γi +O(|γ|2),

rk
(
r μ
j

)∣∣∣
ym

= rk
(
r μ
j

)∣∣∣
yl

+O(|γ|).

Substituting the previous two identities into (4.11) yields

y μ
r − y μ

m =

n∑
j=1

r μ
j

∣∣∣
yl

δj +

n∑
i,j=1

ri
(
r μ
j

)∣∣∣
yl

γiδj

+
∑
j≤k

(
1− 1

2
δjk

)
rk

(
r μ
j

)∣∣∣
yl

δjδk +O
(|δ|3 + |γ| |δ|2) (4.12)
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To complete the proof, we add (4.12) to (4.10) and equate the resulting expression
to the right hand side of (4.9), which gives

n∑
i=1

(εi − γi − δi) r
μ
i =

∑
j≤k

(
1− 1

2
δjk

)
rk

(
r μ
j

)∣∣∣
yl

(γjγk + γjγk − εjεk)

+

n∑
i,j=1

ri
(
r μ
j

)∣∣∣
yl

γiδj +O
((|γ|+ |δ|)3 + |ε|3

)
. (4.13)

Using now that εi = O(|γ|+ |δ|), since ε vanishes when γ and δ are zero, we conclude
from (4.13) that

εj = γj + δj +O
(
(|γ|+ |δ|)2) . (4.14)

Substituting (4.14) into (4.13), a straightforward computation finally yields

n∑
i=1

(εi − γi − δi) r
μ
i =

∑
j<i

γiδj
(
ri
(
r μ
j

)− rj
(
r μ
i

))
+O

((|γ|+ |δ|)3),
from which (4.6) is immediate. Moreover, since the existence of a coordinate system
of Riemann invariants implies the Lie brackets of the rk’s in the previous equation to
vanish, (4.7) follows.

From Proposition 4.2 one obtains the main interaction estimate, recorded in the
following theorem. Before we state the theorem, consider the interacting waves in
(4.5). We say the j-wave in γ and the k-wave in δ approach if either j > k or if j = k
and at least one of the waves is a shock. (We often say γ in place of γ wave and so
on.) That is, two waves approach if the wave on the left is faster than the wave on the
right. Note that neither rarefaction waves nor the contact discontinuities constructed
in Theorem (3.8) interact, if they belong to the same characteristic family, since the
head of the left wave travels with the speed of the tail of the right wave. We now
define

D(γ, δ) ≡
∑

|γi||δj |,

where the sum is over all pairs for which the i wave in γ and the j-wave in δ approach.

Theorem 4.3. If wl, wm and wr are sufficiently close to w̄, then 5

εi = γi + δi +D(γ, δ)O(1) as |γ|+ |δ| → 0, (4.15)

and if (4.7) hold, then

εi = γi + δi +D(γ, δ)O
(|γ|+ |δ|) as |γ|+ |δ| → 0.

Proof. The proof of Theorem 19.2 in [23] can be taken word by word.

5The O(1) in (4.15) should be understood as a constant weight to each term in D and not as a
constant.
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4.2. The random choice method. We now introduce Glimm’s random choice
method for constructing approximate solutions, c.f. [6, 23]. Adapting the scheme to
our framework is straightforward and we include it only for completeness. To begin,
divide the line {t = kΔt} into the segments lying between the points mΔx, m ∈ Z

with k + m being an even number and Δx, Δt > 0. For k ∈ N, this defines a grid
over R× [0,∞). We let the ratio Δx

Δt
≡ c be fixed and assume the stability condition

Δx

Δt
> sup{|λj(w)| : w ∈ Û , 1 ≤ j ≤ n}, (4.16)

to ensure that waves from different grid cells do not interact within a single time step.
Here Û denotes the set containing U such that the intermediate states of the solution
to the Riemann problem (wl, wr) lie in Û for all wl, wr ∈ U . Note that, by continuous
dependence of the wave curves on their emanating states wl, Û exist for U sufficiently
small.

Now, choosing for each k ∈ N some θk ∈ [−1, 1] randomly, the mesh points are
defined as

am,k ≡ (mΔx+ θkΔx, kΔt),

for all m ∈ Z and k ∈ N with k + m even. Assuming now some constant values
wk−1

m−1 ∈ M and wk−1
m+1 ∈ M are given, and let vm,k(x, t) ∈ M denote the solution of

the Riemann problem

g(v)t + f(v)x = 0

with initial data at t = (k − 1)Δt given by

v
(
x, (k − 1)Δt

)
=

{
wk−1

m−1, (m− 1)Δx ≤ x ≤ mΔx,

wk−1
m+1, mΔx ≤ x ≤ (m+ 1)Δx.

We then introduce the constant state

wk
m ≡ vm,k(am,k),

for m ∈ Z with m+ k even.
This defines Glimm’s random choice scheme. Given constant states w0

m ∈ M,
each state w0

m being associated to the interval mΔx ≤ x ≤ (m + 2)Δx at t = 0, the
above scheme defines the values wk

m ∈ M for all k ∈ N and m ∈ Z, provided all such
values stay in the neighborhood U where the above Riemann problem is well-posed.
We denote the approximate solution obtain by the above scheme with

wθ,Δx(x, t) ≡ vm,k(x, t), (4.17)

for x ∈ [(m − 1)Δx, (m + 1)Δx] and t ∈ [(k − 1)Δt, kΔt], where k + m is assumed
even. In Theorem 4.5, we prove that wθ,Δx is indeed defined for all t ≥ 0, by showing
that wk

m ∈ U for all k ∈ N and m ∈ Z with k +m even.

4.3. The Glimm functional and total variation bounds. As in [6, 23] we
define mesh curves as (unbounded) piecewise linear curves connecting mesh points
by moving from “west” to either “north” or “south”, that is, a curve I connecting
mesh points is a mesh curve if it is linear in between mesh points, for each k ∈ Z
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there exists exactly one n ∈ N such that ak,n ∈ I and, given some ak,n ∈ I, either
ak+1,n+1 ∈ I or ak+1,n−1 ∈ I.

Given a mesh curve I, we define I− as the set of mesh points in the t ≥ 0 half-
plane below I and I+ as the set of mesh points above I. Given two mesh curves I
and J , we say that I > J if every point on I is either on J or lies in J+. This gives a
partial ordering on the set of mesh curves. We say I is an immediate successor of J
if I > J and each point but one of I lies also on J .

Following [6], we define the following functionals on the mesh curve, J ,

L(J) ≡
∑

{|α| : α crosses J}, (4.18)

Q(J) ≡
∑

{|α||β| : α, β cross J and approach}, (4.19)

where we refer to the wave wr = T (α)wl, solving the Riemann problem for initial
data wl and wr, as the α wave. Moreover, assuming α is a j-wave and β is a k-wave,
both crossing the mesh curve J , we say that α and β approach if either j > k and α
lies to the left of β, or j < k and β lies to the left of α, or j = k and α and β are
distinct waves (not connecting the same states) and at least one of them is a shock
wave. The next lemma is crucial for proving bounds on the above functionals.

Lemma 4.4. For the set of approximates wθ,Δx, defined in (4.17), T.V.(·) and
L(·) are equivalent in the sense that there exists a constant C > 0, independent of θ
and Δx, such that for any mesh curve I we have

1

C
L(I) ≤ T.V.(wθ,Δx|I) ≤ C L(I). (4.20)

Proof. To begin, consider two states wl, wr ∈ M such that wr is connected to
wl on the right by either a j-shock, j-rarefaction wave or a j contact discontinuity.
We denote the corresponding curve by α and assume arc-length parameterization
ε �→ α(ε) as in Lemma 3.4. Now, it follows from the definition of dM, (4.1), that

dM(wl, wr) ≤
∫ b

a

√
〈α̇, α̇〉M dε,

where by (3.24) a and b are such that a = 0 and α(b) = wr for α being a rarefaction
curve, while b = 0 and α(a) = wr if α is a shock curve. In fact, |b− a| is the strength
of the wave. Now, since arc-length parameterization implies 〈α̇, α̇〉M = 1, and since
wr = T j

αj
wl, the above inequality reduces to

dM(wl, wr) ≤ |b− a| = |αj |. (4.21)

Now, the total variation of w ≡ wθ,Δx on some mesh curve I is the sum over the
mutual distances (with respect to dM) of all intermediate states corresponding to the
waves crossing I. Thus, applying (4.21) for all these intermediate states, with wl and
wr playing the role of the individual intermediate states, immediately gives

T.V.(w|I) ≤ L(I). (4.22)

To derive a lower bound on T.V.(w), assume again two states wl, wr ∈ M such
that wr is connected to wl on the right by a j-wave αj , that is, wr = T j

αj
wl. We again



CONSTRAINED SYSTEMS OF CONSERVATION LAWS 433

assume the j-wave to be parameterized by arc-length and, for simplicity, we assume
a = 0 and b = αj . We now write

|αj | =
∫ b

a

dε =
1

|γ̇0(0)|M

∫ b

a

|γ̇0(0)|M dε,

where γ0 denotes the unique geodesic curve6 with γ0(a) = wl and γ0(b) = wr and
where | · | 2

M ≡ 〈·, ·〉M. Using that geodesic curves have a constant parameterization,
i.e., |γ̇0(0)|M = |γ̇0(ε)|M for all ε ∈ [a, b], it follows that

|αj | =
1

|γ̇0(0)|M

∫ b

a

|γ̇0(ε)|M dε =
1

|γ̇0(0)|M dM(wl, wr). (4.23)

To show that (4.23) is indeed valid, it remains to prove that |γ̇0(0)|M > 0 for b > 0
sufficiently small. For this, we denote αj by α and Taylor expand α(b) − γ0(b) at 0,
using that α(b) = wr = γ0(b) and using that, by definition, second order covariant
derivatives of geodesic curves vanish (∇ ∂

∂ε

γ̇0 = 0), which leads to

γ̇μ
0 (0)− rμk (0) = b

d2αμ

dε2
(0) +

d2γμ
0

dε2
(0) +O(b2)

= b∇ ∂
∂ε

α̇μ(0)− bΓμ
ρσ (α̇

ρα̇σ − γ̇ρ
0 γ̇

σ
0 )

∣∣
0
+O(b2)

= b∇rkr
μ
k

∣∣
wl

− bΓμ
ρσ (r

ρ
kr

σ
k − γ̇ρ

0 γ̇
σ
0 )

∣∣
wl

+O(b2),

where we applied (3.13) of Lemma 3.4 for the last equality. Thus, taking the absolute
value with respect to the metric yields

|γ̇0|M ≥ |rk|M − b
(∣∣∇rkrk

∣∣
M

+
∣∣Γμ

ρσ (r
ρ
kr

σ
k − γ̇ρ

0 γ̇
σ
0 )

∣∣
M

+O(b)
)
, (4.24)

(4.24) implies that |γ̇0|M > 0 for b > 0 sufficiently small, since
∣∣∇rkrk

∣∣
M

is uniformly

bounded in U (by the assumed C2 regularity of f and g) and since |γ̇0(0)|M is bounded
by the maximum of |rk(ε)|M along α, for geodesic curves minimizing arc-length.

Now, to obtain a bound on L(I) in terms of the total variation of w|I , we define

C−1 ≡ inf
{|γ̇(0)|M ∣∣ γ geodesic curve connecting two states in Û}

,

where Û denotes the set containing U such that the intermediate states of the solution
to the Riemann problem (wl, wr) lie in Û for all wl, wr ∈ U . By (4.24) and continuous
dependence, one can restrict U enough such that for any geodesic curve γ we have
a uniform upper and lower bound on |γ̇(0)|M, (on the order of |rk|M) which then
implies that ∞ > C > 0. Now, by (4.23), for the C defined above, the lower bound
for the total variation in (4.20) is immediate.

The following theorem shows that the Glimm functional, L(I) + kQ(I), is non-
increasing for some constant k > 0. This was the key insight in [6] to prove convergence
of the scheme later on.

6When the infimum of dM in (4.1) is attained, then the corresponding curve is a so-called
geodesic curve, which is determined through the metric tensor alone. For p and q sufficiently close,
there always exist a unique geodesic curve connecting both points and minimizing (4.1). Moreover,
geodesic curves are one degree more regular than the metric, thus dM has the same regularity as the
metric.
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Theorem 4.5. Consider two mesh curves, I and J , with J > I, and assume I
is in the domain of definition of wθ,Δx. If L(I) is sufficiently small, then J is in the
domain of definition of wθ,Δx and

Q(J) ≤ Q(I),

L(J) + kQ(J) ≤ L(I) + kQ(I),
(4.25)

for a constant k > 0 independent of I and J . In particular, if T.V.(w0) is sufficiently
small, then wθ,Δx is defined in R× [0,∞) and across each mesh curve Î

T.V.(wθ,Δx|Î) ≤ C T.V.(w0) (4.26)

for a constant C > 0 independent of J , θ and Δx.

Proof. The proof of the estimates (4.25) for J being an immediate successor
of I follows by the exact same words as in the proof of Theorem 19.5 in [23]. A
straightforward computation then shows that

L(J) + kQ(J) ≤ L(I) + kQ(I) ≤ L(I) + kL(I)2 ≤ 2L(I),

provided we assume L(I) < 1
k
. By (4.22), of the proof of Lemma 4.4, we then obtain

the inequality

T.V.(wθ,Δx|J ) ≤ L(J) + kQ(J) ≤ 2L(I), (4.27)

from which we conclude that wθ,Δx is defined for the immediate successor J of I, as
long that L(I) is sufficiently small.

The inequalities (4.25) and (4.27) now extend to general mesh curves J > I by
induction, since the constant k comes from the O(1) weight in Theorem 4.3 and thus
only depends on the rk’s and the Riemannian metric. Using then that (4.27) implies
wθ,Δx|J to stay inside Û , so that

sup{|λj(wθ,Δx|J )|, 1 ≤ j ≤ n} <
Δx

Δt
, (4.28)

it follows that wθ,Δx is defined for any J of I, as long that T.V.(I) is sufficiently small.
To extend the domain of definition of wθ,Δx to t ≥ 0, we first introduce 0 as the

unique mesh curve closest to {t = 0}, (connecting all points am,0 with am+1,1 for
m ∈ 2Z). We then obtain

L(J) + kQ(J) ≤ L(0) + kQ(0) ≤ L(0) + kL(0)2 ≤ 2L(0),

provided we assume L(0) < 1
k
. Now Lemma 4.4 yields again

T.V.(wθ,Δx|J ) ≤ L(J) + kQ(J) ≤ C T.V.(0), (4.29)

which implies again that the wave speeds of wθ,Δx are bounded by Δx
Δt

, c.f. (4.28), so
that wθ,Δx is defined for all t ≥ 0.

By (4.27), to prove (4.26), it remains only to bound T.V.(0) by T.V.(w0). For
this, consider a single Riemann problem (wl, wr) which is resolved through the wave
wr = T (ε)wl and denote the intermediate states by wi ≡ T i

εi
...T 1

ε1
wl, i = 0, ..., n.

With this notation we now define the constant

c ≡ sup

{
dM(wi+1, wi)

dM(wl, wr)

∣∣∣∣ i ∈ {0, ..., n− 1}, wl, wr ∈ U
}
,
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which is finite for U sufficiently small, since in the critical case when dM(wl, wr) is
smaller than dM(wi+1, wi), we have that dM(wi+1, wi) converges to 0 faster than
dM(wl, wr), as wl → wr. It follows that

T.V.(0) ≤ c n T.V.(w0),

where we used that T.V.(w0) is larger than the total variation of the piece-wise con-
stant approximate of w0 which are used as the initial states in the Glimm scheme.
Now (4.26) immediately follows from (4.29).

The convergence of the wθ,Δx as Δx → 0, is in fact a consequence of the estimates
of the next corollary.

Corollary 4.6. If T.V.(w0) and dM(w0, w̄) are both sufficiently small, where
w̄ ∈ M is some constant state, then, for all t ≥ 0,

T.V.
(
wθ,Δx(·, t)

)
+ d∞

(
wθ,Δx(·, t), w̄

) ≤ C
(
T.V.(w0) + d∞(w0, w̄)

)
, (4.30)∫ ∞

−∞

dM
(
wθ,Δx(x, t2), wθ,Δx(x, t1)

)
dx ≤ C

(|t2 − t1|+Δt
)
T.V.(w0), (4.31)

for C > 0 denoting some constant independent of θ, Δx, k, Δt, t, t1 and t2.

Proof. For ease of notation we subsequently write w instead of wθ,Δx and use
C as a universal constant. Since the waves in wθ,Δx from different grid cells do not
interact due to (4.16), it follows that

d∞
(
w(·, t), w̄)

= d∞
(
w(·, kΔt), w̄

)
,

T.V.
(
w(·, t)) = T.V.

(
w(·, kΔt)

)
for all t ∈ (

(k− 1)Δt, kΔt
]
. It thus suffices to prove (4.30) on the lines t = kΔt only.

Moreover, by the previous equation, the estimate

T.V.
(
w(·, kΔt)

) ≤ C T.V.(w0) (4.32)

is an immediate consequence of (4.26) in Theorem 4.5. To derive the remaining bound
on d∞ in (4.30), observe that

d∞
(
w(·, kΔt), w̄

) ≤ d∞
(
w(·, kΔt), w(x0 , kΔt)

)
+ dM

(
w(x0, kΔt), w̄

)
(4.33)

for any x0 ∈ R. For the first term on the right hand side we find that

d∞
(
w(·, kΔt), w(x0 , kΔt)

) ≤ lim
l→∞

sup
x∈[−l,l]

dM
(
w(·, kΔt), w(x0 , kΔt)

)
≤ lim

l→∞
T.V.

∣∣ l

−l

(
w(·, kΔt)

)
≡ T.V.

(
w(·, kΔt)

)
≤ C T.V.(w0),

where T.V.
∣∣ l

−l
is defined in (4.2). Thus (4.33) is bounded by

d∞
(
w(·, kΔt), w̄

) ≤ C T.V.(w0) + dM
(
w(x0, kΔt), w̄

)
for any x0 ∈ R. Thus, as in [23], taking the limit of the previous inequality as x0 → ∞
and using that T.V.

(
w(·, kΔt)

) ≤ C T.V.(w0) < ∞ implies that w(x0, kΔt) converges
to some point p ∈ M as x0 → ∞, we get

d∞
(
w(·, kΔt), w̄

) ≤ C T.V.(w0) + dM(p, w̄).
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By construction of the wθ,Δx, it follows that

p = lim
x→∞

w(x, kΔt) = lim
x→∞

w0(x) ∀k ∈ N,

so that the previous inequality yields

d∞
(
w(·, kΔt), w̄

) ≤ C T.V.(w0) + d∞(w0, w̄),

which together with (4.32) proves (4.30).
To derive the L1 Lipschitz estimate (4.31), we follow the proof of Corollary 19.8

in [23], only replacing the Euclidean distance function on w(x, t1) and w(x, t2) by
the canonical distance function dM. In more detail, assume t2 > t1 and set t0 =

sup{t ≤ t1 : t = kΔt, k ∈ N} and S = (t2−t0)
Δt

+ 1. Now, fix some x ∈ R and define
I = [x − SΔx, x + SΔx], then w(x, t1) and w(x, t2) are determined by the Cauchy
data {w(y, t0) : y ∈ I}. Thus,

dM
(
w(x, t2), w(x, t1)

) ≤ sup
{
dM

(
w(y, t0), w(x, t0)

)
: y ∈ I

}
≤ C T.V.

({
w(y, t0) : y ∈ I

})
and defining Im = [(m− S)Δx, (m+ 1 + S)Δx], we obtain∫ ∞

−∞

dM
(
w(x, t2), w(x, t1)

)
=

∑
m∈Z

∫ (m+1)Δx

mΔx

dM
(
w(x, t2), w(x, t1)

)
dx

≤ CΔx
∑
m∈Z

T.V.
({

w(y, t0) : y ∈ Im
})

≤ C(1 + S)Δt
Δx

Δt
T.V.

(
w0

)
,

which proves (4.31) since SΔt ≤ t2 − t1 + 2Δt and Δx
Δt

is fixed by (4.16).

4.4. Convergence. We first show that on each line {t = const.} the approxi-
mates wθ,Δx(·, t) converge to a state w(·, t) as Δx → 0. This follows from an extension
of Helly’s Theorem [18] to our framework, recorded in the next lemma.

Lemma 4.7. Let F ≡ {
u : [a, b] → M}

be an infinite family of curves and assume
there exists a constant state w̄ ∈ M and a constant K > 0 such that

d∞(u, w̄) < K and T.V.(u) < K, ∀u ∈ F .

Moreover, assume K is small enough for all u ∈ F to take values inside some coor-
dinate patch U in the sense that {u(x) : u ∈ F , x ∈ [a, b]} ⊂ U , where the closure is
taken with respect to dM.7 Then there exists a sequence

(
wk

)
k∈N

⊂ F which converges

point-wise for each x ∈ [a, b] to a curve w : [a, b] → M satisfying T.V.(w) < K.

Proof. Choose coordinates yμ : U → Rn such that yμ(w̄) = 0 and such that the
absolute value of each component of yμ(p) is bounded by dM(p, w̄) for each p ∈ U .
We now define for u ∈ F

πu(x) ≡ T.V.
∣∣x
a
(u) and Ωμ

u(x) ≡ πu(x) − yμ
(
u(x)

)
,

7This smallness assumption on K is not required for Helly’s Theorem in Rn. Replacing this
assumption by requiring (M, dM) to be complete suffices to prove convergence of a sequence (wn)
on countable subsets of [a, b], by using the Bolzano Weierstrass Theorem on (M, dM) and a diagonal
choice process, however, it is currently not clear to us how to extend this convergence to the whole
interval [a, b].
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where the last definition is to be understood component-wise for μ ∈ {1, .., n} and
T.V.|xa is defined in (4.2). For each u ∈ F , by the above choice of coordinates, πu and
Ωμ

u are real-valued increasing functions in x. By assumption, π satisfies the bound

sup
x∈[a,b]

∣∣πu(x)
∣∣ < K ∀u ∈ F

and, since dM is equivalent to the Euclidean distance whenever dM is restricted to a
coordinate patch, Ωμ

u satisfies for all μ = 1, ..., n the bound

sup
x∈[a,b]

∣∣Ωμ
u(x)

∣∣ < CK ∀u ∈ F ,

for some constant C independent of u.
According to the Lemma preceding Helly’s Theorem in [18], for an infinite family

of real valued increasing functions defined on [a, b] with a uniform upper bound, there
exist a sequence within that family converging at each point x ∈ [a, b]. Thus, there
exists a sequence (πk)k∈N ⊂ (πu)u∈F and some function π such that

lim
k→∞

πk(x) = π(x) ∀x ∈ [a, b],

and, choosing to each πk the corresponding uk ∈ F , there exists a subsequence of the
Ωμ

k ≡ Ωμ
uk

such that

lim
j→∞

Ωμ
kj
(x) = Ωμ(x) ∀x ∈ [a, b], ∀μ = 1, .., n,

for some function Ωμ. We conclude that yμkj
(x) ≡ πkj

(x) − Ωμ
kj
(x) converges to the

function yμ0 (x) ≡ π(x)−Ωμ(x). Finally, since the closure of the images of all w ∈ F is
assumed to be contained in the coordinate neighborhood U , y−1 is defined for yμ0 (x) for
all x ∈ [a, b], and it follows that the sequence wj ≡ y−1(ykj

) ∈ M converges pointwise
for all x ∈ [a, b] to w ≡ y−1(yμ0 ) and that T.V.(w) < K. Since the convergence is
point-wise, the result is independent of the choice of coordinates.

By (4.30), Lemma 4.7 applies to the family of
(
wθ,Δx

)
Δx

and gives us for any
bounded interval in any of the lines {t = const} a convergent subsequence and, by
Cantor’s diagonal choice process, we can extract for each t = const a subsequence
which converges for all x ∈ {t = const}. By a further diagonal process, there exist a
subsequence (wθ,Δxl

)l∈N of
(
wθ,Δx

)
which converges on any of the lines {t = const ∈

Q} to some w(x, t) ∈ M as k → ∞ (with Δxl → 0 as l → ∞). To extend this
convergence to all t ≥ 0, (as in [6]), set wl ≡ wθ,Δxl

and use (4.31) to compute for
q ∈ Q, q ≥ 0,∫ b

a

dM
(
wi(x, t), wj(x, t)

)
dx

≤
∫ b

a

dM
(
wi(x, t), wi(x, q)

)
dx+

∫ b

a

dM
(
wi(x, q), wj(x, q)

)
dx

+

∫ b

a

dM
(
wj(x, q), wj(x, t)

)
dx

≤ C
(|t− q|+Δti +Δtj

)
T.V.(w0) +

∫ b

a

dM
(
wi(x, q), wj(x, q)

)
dx.

Now, given some ε > 0, we choose q such that

C |t− q| T.V.(w0) <
ε

2
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and then choose i and j large enough for the remaining terms to be bounded by
ε
2 . This shows that dM

(
wi(x, t), wj(x, t)

)
converges to 0 in L1

loc(R) as i, j → ∞
for all t ≥ 0 which implies convergences point-wise almost everywhere in x. Thus
(wl(x, t))l∈N is a Cauchy sequence in (U , dM) for almost every x ∈ R and, since
(U , dM) is a complete metric space, (assuming without loss of generality that U is
restricted sufficiently to be compact, completeness of (U , dM) follows by the Hopf-
Rinow Theorem, c.f. [5]), it follows that (wl(x, t))l∈N converges to some w(x, t) ∈ M
for almost every (x, t) ∈ R × [0,∞). In summary, as a consequence of (4.30) and
(4.31), we proved the following theorem:

Theorem 4.8. Within the family of functions
(
wθ,Δx

)
defined in (4.17), there

exists a subsequence (wl)l∈N which converges almost everywhere in Ω ≡ R × {t ≥ 0}
to some w as l → ∞. (By definition, each wl ≡ wθ,Δxl

corresponds to a grid length
Δxl such that Δxl → 0 as l → ∞.) For the limit function w there exist a constant
C > 0 such that for any t ≥ 0

T.V.
(
w(·, t)) + d∞

(
w(·, t), w̄) ≤ C

(
d∞(w0, w̄) + T.V.(w0)

)
.

To complete the proof of Theorem 4.1, it remains to show that the limit function
w is indeed a weak solution of (1.5). To continue, we prove the following corollary.

Corollary 4.9. Given a continuous function f : M → Rn and let (wl)l∈N be the
convergent subsequence of

(
wθ,Δx

)
shown to exist in Theorem 4.8, then f(wl) → f(w)

in L1
loc

(Ω) as l → ∞.

Proof. By continuity of f , since (wl)l∈N converges to w point-wise almost ev-
erywhere, it follows that (f(wl))l∈N converges to f(w) point-wise almost everywhere.
Moreover, since (wl)l∈N is uniformly bounded with respect to l,

(
f(wl)

)
l∈N

is uni-

formly bounded as well. Therefore, since f(wl) ∈ L1
loc(Ω) for all l ∈ N, the

Lebesque dominated convergence Theorem implies that (f(wl))l∈N converges to f(w)
in L1

loc(Ω).

We continue with the following fundamental observation [6]. Given ψ ∈ C1
0 (Ω),

define

J(θ,Δx, ψ) ≡
∫∫
t≥0

(
g(wθ,Δx)ψt + f(wθ,Δx)ψx

)
dxdt+

∫ ∞

−∞

g(w0Δx
)ψdx,

where w0Δx
(x) is some function converging to w0(x) for almost every x ∈ R such that

g(w0Δx
) converges to g(w0) in L1

loc(R), c.f. [6, 23]. A function w : Ω → M is a weak
solution of (1.5) if and only if J(θ,Δx, ψ) = 0 for all ψ ∈ C1

0 (Ω), c.f. Definition 2.6.
By (4.17), wθ,Δx is an (exact) weak solution in each time strip kΔt ≤ t ≤ (k + 1)Δt,
from which we get that

J(θ,Δx, ψ) =
∞∑
k=1

∫ ∞

−∞

ψ(x, kΔt)
[
g(wθ,Δx)

]
k
(x) dx (4.34)

where

[
g(wθ,Δx)

]
k
(x) ≡ g

(
wθ,Δx(x, kΔt+ 0)

)− g
(
wθ,Δx(x, kΔt− 0)

)
.
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From (4.34) we obtain the non-trivial result that within the sequence wk = wθ,Δxk

there exists a subsequence for which J(θ,Δx, ψ) → 0 as Δx → 0 for almost all θ. To
formulate this final lemma, define the space of random variables

Φ ≡ {
(θk)k∈N : θk ∈ [−1, 1] ∀ k ∈ N

}
.

Theorem 4.10. There exists a set N ⊂ Φ of measure zero and a sequence
Δxi → 0, as i → ∞, such that for any θ ∈ Φ \N and any test function ψ ∈ C1

0 (Ω),
we have J(θ,Δxi, ψ) → 0 as i → ∞.

Proof. The proof follows along the line of argument given in between Lemma 19.12
and Theorem 19.14 in [23], see also [6], by replacing all functions uθ,Δx by g(wθ,Δx)
and using J(θ,Δx, ψ) as defined above. However, to prove that the total variation
bound (4.30) implies the point-wise bound on |J(θ,Δx,Φ)| in terms of Δx and ‖Φ‖∞,
stated in Lemma 19.12 in [23], we also need to use the total variation bound of the
next lemma, Lemma 4.11, which applies since one can always restrict U enough for
U to be compact and to lie in some coordinate neighborhood (y,U ′). Finally, a L2

estimate of J(·, ,Δxi, ψ) with respect to integration over the random variable θ yields
convergence almost everywhere, c.f. Theorem 19.4 in [23].

Lemma 4.11. Let g : M → Rn be Lipschitz continuous and consider a curve
w : R → U , for U ⊂ M being a compact set contained in a coordinate neighborhood
(y,U ′). Then

T.V.
(
g(w)

) ≤ C T.V.(w), (4.35)

for some constant C > 0 which depends only on the metric tensor and the Lipschitz
constant of g in coordinates y, on the domain y(U).

Proof. Let w1, w2 ∈ U . Choose some coordinates y on U and consider y1 ≡ y(w1)
and y2 ≡ y(w2) ∈ y(U), we then find

|g ◦ y−1(y1)− g ◦ y−1(y2)|eucl ≤ Lip(g ◦ y−1) |y1 − y2|eucl, (4.36)

where Lip(g ◦ y−1) denotes the Lipschitz constant of g over y(U) and | · |eucl denotes
the Euclidean square norm. It remains to show that |y1 − y2|eucl ≤ CdM(y1, y2) for
some constant C > 0. To prove this, using that U is assumed compact, we observe
that there exist a constant C > 0 such that

|v|M ≥ C|v|eucl, ∀v ∈ TpM, ∀p ∈ U . (4.37)

(Here C can be taken to be the supremum of the largest eigenvalue of the metric tensor,
which is symmetric by definition.) Now, we consider some curve γ : [a, b] → y(U)
which connects y1 with y2 and compute, using (4.37), that

∫ b

a

|γ̇|Mds ≥ C

∫ b

a

|γ̇|euclds ≥ C|y1 − y2|eucl,

where the last inequality holds since a straight line is the shortest connection between
two points in Euclidean geometry. Since the curve γ is arbitrary, we conclude that

dM(y1, y2) ≥ C |y1 − y2|eucl.
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From the above inequality and the fact that dM(y1, y2) = dM(w1, w2) is invariant,
(4.36) implies

|g(w1)− g(w2)|eucl ≤ C Lip(g ◦ y−1) dM(w1, w2),

from which we conclude (4.35).

Lemma 4.11 completes the proof of Theorem 4.10, and the following corollary is
immediate.

Corollary 4.12. If T.V.(w0) and d∞(w0, w̄) are sufficiently small, then there
exist a set of measure zero N ⊂ Φ and a sequence Δxi → 0, as i → ∞, such that for
any θ ∈ Φ \ N , wθ ≡ limi→∞ wθ,Δxi

is a weak solution of the Cauchy problem (1.5)
with initial data w0.

Corollary 4.12 together with Theorem 4.8 complete the proof of Glimm’s Theorem
extended to our geometric framework, that is, Theorem 4.1.

5. Riemann problems for constrained conservation laws. In this section
we prove Theorem 1.3 and Proposition 1.4.

Proof of Theorem 1.3. By (1.7), that is, the assumption that

det [DG(u), DC(u)] 
= 0,

we conclude that the linear mapping DC(u) : Rm −→ Rm−n is surjective at ul. This
implies that the set M ≡ C−1(0) defines a n-dimensional submanifold in Rm, c.f.
[24, Theorem 5.1]. In more detail, assuming that ul ∈ Û with C(ul) = 0, then, since
C is assumed to have full rank at ul, the implicit function theorem yields that there
exists an open set Ω ⊂ Rn and a differentiable function ϕul

: Ω → Rm invertible on
its image such that ϕul

parameterizes the solution space C−1(0) sufficiently close to

ul. Since the implicit function theorem yields for any point u ∈ Û with C(u) = 0 such
a function ϕu parameterizing some open subset of C−1(0), we conclude that (1.7)
implies the solution space M ≡ C−1(0) to be a n-dimensional submanifold of Rm

[5, 24]. Thus, the constrained system of n × m conservation laws, (1.1) - (1.2), is a
system of the form (1.5), that is, a n × n system of conservation laws with states in
the manifold M.

In order to apply Theorem 1.1, it remains to show that the constrained system
(1.1) - (1.2) is strictly hyperbolic in the sense of Definition 2.1. For this, observe
that condition (1.9), that is, DCrk = 0, implies that the eigenvectors rk(u) lie in
the tangent-space of M whenever u ∈ M, so that by our hypothesis (1.8) the result-
ing system is strictly hyperbolic. Now, Theorem 1.1 applies and yields the claimed
existence and uniqueness of solutions, which completes the proof.

We now prove Proposition 1.4, which shows that the manifold M is locally de-
scribed by the integral curves of the eigenvectors rk, and therefore by the rarefaction
curves, c.f. (3.1). This is useful in practice, because it only involves solving linear
systems but never requires solving the constraint C(u) = 0 explicitly which could be
difficult to accomplish for many applications. One can then obtain the shock curves
by substituting the local parameterization of M = C−1(0) around ul in the Hugoniot
locus. We prove the following more precise version of Proposition 1.4.

Proposition 5.1. Assume (1.7) - (1.9) hold for all u ∈ Û for some Û ⊂ Rm.
Then, locally, the solution space C−1(0) is identical to the image of the integral curves
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of the eigenvectors rk. That is, for each ul ∈ Û with C(ul) = 0, there exist some U ⊂ Û
with ul ∈ U such that

C−1(0) ∩ U =
{
u ∈ Û : u = Sn

εn
...S1

ε1
ul

}
where Sk

εk
u′ ∈ Rm is the point which is reached by the integral curve of rk emanating

in u′ at a parameter εk, for k ∈ {1, ..., n}. Moreover, the integral curves of rk define
a local parameterization of C−1(0) if and only if there exists a coordinate system of
Riemann invariants.

To clarify, a Riemann invariant ωj is a scalar function which satisfies r ν
i ∂νωj = 0,

for i, j ∈ {1, ..., n} with i 
= j.
Proof. Let ul ∈ C−1(0). To begin, we solve the ODE 3.1 simultaneously with the

eigenvalue problem (1.8) - (1.9), that is, we solve the system

duk

dε
= rk

(
uk(ε)

)
, for uk(0) = ul, (5.1)

together with

(λk DG − DF ) rk = 0 and DC rk = 0, (5.2)

the later two equations being evaluated at uk(ε). Assuming for the moment the
solution (λk, rk) of (1.8) - (1.9) exist everywhere in Û ⊂ Rm and not only for u ∈ Û
with C(ul) = 0, it follows that the above system is well-posed, which gives us the
integral curves ε �→ uk(ε), with ε ∈ (−a, a) for some a > 0.

By the condition DC rk = 0, it follows that rk(u) ∈ TuM whenever u ∈ M.
We now change coordinates in Rm such that some open neighborhood of ul in M
coincides with some open set in Rn × {0}m−n. It follows that TuM, as a subspace
of Rm, is identical to Rn × {0}m−n for each u in that neighborhood. Thus, using
uk(0) = ul ∈ M, we conclude that the curve ε �→ uk(ε) lies in M for all ε sufficiently
small, since the rk(uk(ε)) are in Rn × {0}m−n for all ε. (This shows that the above
system is well-posed even when the solution (λk, rk) of (1.8) - (1.9) exists only for
u ∈ C−1(0).)

To prove that M is locally “parameterized” by the integral curves uk for k =
1, ..., n, observe first that the system (5.1) - (5.2) is well-posed for any ul ∈ M.
Now, for εk ∈ (−a, a), k = 1, ..., n, we introduce the mapping Sk

εk
: M → M as

Sk
εk
u = uk(εk) where uk is the integral curve of rk (in the sense of (5.1) - (5.2)) with

initial data uk(0) = u. Given u′ ∈ M sufficiently close to ul, it thus remains to show
that there exist (ε1, ..., εn) such that

u′ = Sn
εn
...S1

ε1
ul. (5.3)

As in the proof of Theorem 1.3, this follows by the Inverse Function Theorem and the
linear independence of the rk’s.

This proves that M ≡ C−1(0) is locally described by the integral curves of rk.
However, for this to be a proper parameterization of M, that is, for (ε1, ..., εn) to
define coordinates, (5.3) must hold independently of the order of the maps Sk

εk
. By

Frobenius Theorem,8 this independence of order holds if and only if the rk’s commute

8If the integral curves of some vector fields rk (k = 1, ..., n) are coordinates, then the commutator
(5.4) vanishes, since second order coordinate derivatives commute. The non-trivial part in Fobenius
Theorem is the reverse implication: Given some vector fields rk which satisfy (5.4), it follows that
their integral curves define a coordinate system, c.f. [25, Chapter 1] as a reference.
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in the sense that

[ri, rj ](ψ) ≡ ri
(
rj(ψ)

)− rj
(
ri(ψ)

)
= 0 ∀ψ ∈ C∞(M). (5.4)

Moreover, assuming there exist a coordinate system of Riemann invariants, then their
defining property r ν

i ∂νωj = 0 implies that r ν
i ∂ν = ∂

∂wi
, for which the above Lie

bracket vanishes. The reverse implication holds, since the parameters of integral
curves of the rk’s are Riemann invariants.

6. Conclusion and outlook. We introduced a geometric framework for the
states of a conservation law lying in a Riemannian manifold and we proved that
the methods of Lax and Glimm to construct solutions of the Riemann and Cauchy
problem respectively can be extended to our geometric framework. For applications,
this shows that it is not necessary to invert the accumulation function g, (which would
be required to transform the conservation law to standard form), since it is possible
to work in the manifolds of states. Moreover, within our framework it is possible to
extend the existence result of Lax and Glimm to the case that dg is not invertibe on
a finite family of co-dimension one surfaces. In this way, it is also possible to address
systems of n conservation laws of the form (1.5) which have fewer than n eigenvalues
at co-dimension one surfaces.

Genuine non-linearity is violated by many physical systems. We expect that one
can extend Liu’s construction [14] to our geometric framework to obtain solutions of
the Riemann problem when genuine non-linearity fails on co-dimension one surfaces.
The uniqueness results of Bressan et al. [3] should apply whenever the accumula-
tion function g is invertible. Let us remark that we chose to address the Cauchy
problem with Glimm’s scheme over alternative methods, since Glimm’s method al-
lows for straightforward applications and provides an algorithm adapted to numerical
computations.

We believe our geometric approach to be more feasible for applying to physical
conservation laws (with or without constraints), since one avoids inverting a possi-
bly non-linear function and is only left with solving a linear generalized eigenvalue
problem. Moreover, conservation laws with an accumulation function usually arise
directly from physical or chemical principles while the corresponding standard form
results from a desire for notational convenience in mathematics, so that the geometric
approach presented here could ultimately lead to less complicated structures which
are easier to work with. We thus believe that it is of advantage to use the geometric
framework presented here for studying conservation laws which are not readily given
in standard form by physical or chemical principles.
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