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WEAK* SOLUTIONS I: A NEW PERSPECTIVE ON SOLUTIONS TO

SYSTEMS OF CONSERVATION LAWS∗

ALEXEY MIROSHNIKOV† AND ROBIN YOUNG‡

Abstract. We introduce a new notion of solution, which we call weak* solutions, for systems
of conservation laws. These solutions can be used to handle singular situations that standard weak
solutions cannot, such as vacuums in Lagrangian gas dynamics or cavities in elasticity. Our framework
allows us to treat the systems as ODEs in Banach space. Starting with the observation that solutions
act linearly on test functions α ∈ X, we require solutions to take values in the dual space X∗ of X.
Moreover, we weaken the usual requirement of measurability of solutions. In order to do this, we
develop the calculus of the Gelfand integral, which is appropriate for weak* measurable functions.
We then use the Gelfand calculus to define weak* solutions, and show that they are stronger than the
usual notion of weak solution, although for BV solutions the notions are equivalent. It is expected
that these solutions will also shed light on vexing issues of ill-posedness for multi-dimensional systems.
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1. Introduction. Hyperbolic systems of conservation laws are fundamental in
the study of fluids and continuum dynamics, expressing basic physical properties such
as conservation of mass and momentum. In one dimension, these take the form

ut + F (u)x = 0, u(x, 0) = u0(x), (1)

where u ∈ U ⊂ R
n, F : U → R

n, being derived from the integral form

d

dt

∫
(a,b)

u dx = −
∫
∂(a,b)

F · n ds = −F (u)
∣∣∣b
a
.

Here u is the vector of conserved quantities, and F is the corresponding flux. Math-
ematically, these equations present particular challenges because of the ubiquity of
shock waves, at which continuum fields such as pressure are discontinuous, so that
global classical solutions generally do not exist.

The study of weak solutions for general systems was initiated by Peter Lax in
the 1950’s [11], and followed in the 1960’s by Glimm’s celebrated proof of the global
existence of weak solutions, provided the initial data has sufficiently small total varia-
tion [9]. A weak solution is a locally bounded, locally integrable function u satisfying∫ T

0

∫
R

(
u(x, t)�∂tϕ(x, t) + F (u(x, t))�∂xϕ(x, t)

)
dx dt

+

∫
R

u0(x)�ϕ(0, x) dx = 0,

(2)

for all smooth test functions ϕ [11, 5]. This must be augmented by an entropy con-
dition, which serves to restrict weak solutions to those which contain only admissible
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shocks. There is now a mature and complete theory of entropy weak solutions in one
space dimension, culminating in Bressan and collaborators’ proofs of uniqueness and
continuous dependence of entropy weak solutions, both via approximation schemes
and via vanishing viscosity [2, 1]. All of these results depend on Glimm’s global BV
estimates, which in turn require the initial data to have small amplitude and bounded
variation [23].

If the data is large, even for physical systems, the class of weak solutions is not
always sufficient to cope with the variety of solutions. In particular, the use of a
Lagrangian frame, which is often computationally convenient, presents problems near
vacuums, cavities and fractures in the medium, where they are represented by Dirac
masses [24, 25]. There have been several varied attempts to extend the class of weak
solutions in these and similar contexts [10, 6, 20, 8]. This problem is worse in higher
dimensions, for which there are several instances of solutions exhibiting instability
and nonuniqueness, independent of entropy considerations [17, 19, 21, 12].

Our initial motivation was to allow Dirac masses, representing vacuums, which
are discontinuities in the medium, to appear in solutions of the Euler equations of
gas dynamics, in a Lagrangian frame. In particular, once the use of Dirac masses is
rigorously justified, their use simplifies the manipulation of solutions in calculations.
In addition, we would like to be able to rigorously describe solutions as the solutions
of an ODE in a Banach space, thus correctly regarding the conservation law as an
evolution equation. We would also prefer a definition that more closely resembles the
integral form of the balance law than does (2).

The pairing (2) of the weak solution u(x, t) with arbitrary smooth test functions
ϕ ∈ C∞

c (R×(0, T )), together with the idea of studying the evolution t→ u(t) = u(·, t),
motivate the following observations.

• u(t), the value of a solution u, should be a spatial function which acts linearly
on spatial test functions x → α(x), that live in a certain Banach space X .
Thus, u(t) should take values in the dual space, u(t) ∈ X∗.

• Rather than requiring t→ u(t) ∈ X∗ to be (strongly) Bochner integrable, it is
sufficient to require the weaker condition that the scalar function t→ 〈u(t), α〉
be integrable for each test function α ∈ X .

• To make sense of the nonlinear flux F (u) and its derivative in the space X∗,
one needs to properly define the flux as a mapping F : X∗ → X∗, so F must
be extended to a map of Banach spaces.

• To obtain consistency and be able to use the calculus of distributions, we also
should require that a union of sets C∞

c (Ω) are dense in X for appropriate
subsets Ω ⊆ R .

In this paper, we develop the point of view that u = u(t) ∈ X∗ is a map on [0, T ]
with values in a Banach space X∗, which solves the evolution equation

u′(t) + DxF (u(t)) = 0 in X∗, (3)

in a natural sense, for appropriately interpreted time derivative u′ and flux F (u).
That is, we view the problem as a time evolution, treating space using the relation
between the test function spaceX and its dualX∗, while for time we use the usual test
functions C∞

c (0, T ). We note that weak solutions, defined by (2), make no distinction
between time and space.

In light of our second observation above, we regard the assumption of strong
measurability, in which u : [0, T ] → X∗ is measurable, as being too strong for our
purposes. Instead, we prefer to use the concept of weak* measurability, so that the
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scalar function
〈
u, α
〉
: [0, t] → R is measurable for each α ∈ X . The appropriate

notion of integration in this case is the Gelfand integral, denoted �
∫
E u(t) dt, with

E ∈ B([0, T ]) measurable, which is essentially defined by the condition

�

∫
E

u(t) dt ∈ X∗, such that
〈
�

∫
E

u(t) dt, α
〉
=

∫
E

〈
u(t), α

〉
dt,

for all spatial test functions α ∈ X . In fact, in order to make sense of the solution u(t)
as a measure, we are required to use the Gelfand integral rather than the Bochner
integral.

Although the Gelfand integral goes back to the 1930’s, to the authors’ knowledge
it has not been extensively studied. In this paper we recall the Gelfand integral and
develop the calculus thereof, including appropriate versions of the Fundamental Theo-
rem of Calculus and an integration by parts formula. We then develop a related notion
of Gelfand weak (G-weak) derivative, and introduce the space W 1,q

w∗ (0, T ;X
∗) as the

analogue of the usual space W 1,q of weakly differentiable functions; in particular, our
analysis shows that functions from W 1,q

w∗ (0, T ;X
∗) have absolutely continuous repre-

sentatives with weak derivatives in the space of weak* measurable maps Lq
w∗(0, T ;X

∗),
the dual of Lq′(0, T ;X).

Having developed the calculus of the Gelfand integral, we define the notion of
weak* solution. Here weak* refers to the target space rather than any type of con-
vergence. Suppose that the initial data for (1) is u0 ∈ X∗. We say that the function
u ∈W 1,q

w∗

(
0, T ;X∗

)
is a weak* solution to (1), if

ū(t)− ū(s) = �

∫ t

s

DxF (u(τ)) dτ, in X∗, (4)

for t, s ∈ [0, T ], and ū(0) = u0 in X∗. Here ū is the absolutely continuous representa-
tive of u with values in X∗, and we must make sense of the flux map F : X∗ → X∗ and
distributional derivative operator Dx, while implicitly requiring DxF (u(·)) ∈ X∗. The
formulation (4) is equivalent to that of (3), interpreting u′ as the G-weak derivative
of u. Moreover, (4) provides a more direct interpretation of the system (1) than (2),
essentially because the integration by parts is carried out implicitly and abstractly in
the definition of the spaces W 1,q

w∗

(
0, T ;X∗

)
.

We note that, unlike the usual definition of weak solution, our definition implicitly
imposes a certain regularity on the solution u, in that t → u(t) must be absolutely
continuous in X∗. Also, although we require DxF (u(t)) ∈ X∗, this need only be weak*
measurable, rather than strongly measurable as a function of t. More precisely, the
mapping

t→ DxF (u(t)) belongs to Lq
w∗(0, T ;X

∗) = Lq′(0, T ;X)∗.

Note also that we allow any 1 ≤ q ≤ ∞, so we allow different rates of growth of
solutions. When weak* solutions contain discontinuties such as shocks, we are again
required to rule out inadmissible shocks via entropy considerations; when an entropy-
flux pair is available, the entropy inequality is again interpreted in the weak* sense.

In principle, by changing the space X of spatial test functions, we could admit
different classes of weak* solutions. As an example, classicalHs solutions are obtained
by setting X = H−s, a large space, while by restricting the class of test functions
to a smaller space, say X = Hs, we allow more solutions. In [14], the authors
choose X = C0, so that weak* solutions can include Radon measures, which allows
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the treatment of vacuums in gas dynamics and fractures in elasticity. These weak*
solutions are not weak solutions as they include Dirac masses; on the other hand, the
implicit regularity of weak* solutions means that weak* solutions are more restrictive
than weak solutions.

In the present work, we primarily focus on weak* solutions u ∈ X∗
⋂
BV n, with

X = (C0)
n and X∗ = Mn, which we call BV weak* solutions. Having defined this

class of solutions, we compare them to the more familiar entropy weak solutions.
We prove that weak* solutions are distributional solutions, essentially because the
product test functions α(x)β(t) are dense in the set C∞

c (R2). In particular, a locally
bounded weak* solution is a weak solution.

Next, we prove that a weak solution with appropriate a.e. bounds on the spatial
total variation is a weak* solution, and in particular, any global solution obtained
via Glimm’s method or vanishing viscosity is a global weak* solution with q = ∞.
This means that the celebrated well-posedness theory for small BV weak solutions
developed by Bressan’s school applies without change to weak* solutions. Indeed,
the L1 stability of BV weak* solutions follows directly once existence of BV weak*
solutions is established, see Theorem 4.3.

As an illustrative example of the use of BV weak* solutions, we derive the
Rankine-Hugoniot jump conditions, by explicitly differentiating jumps to get Dirac
masses in the derivative, and similarly express the entropy conditions. We also show
that the quasilinear form of the equation is satisfied at any Lebesgue point of a weak*
solution. Our derivation of the Rankine-Hugoniot conditions is both easier and more
general than the usual derivation [5]. As a further example, we express the solution
of the Riemann problem as a Bochner integral, which in this case coincides with the
Gelfand integral.

Finally, in an appendix, we consider the conditions that imply that an abstract
function be G-weak differentiable. Indeed, we show that for 1 < q ≤ ∞, the space
W 1,q

w∗ (0, T ;X
∗) is isometric to the space of functions having bounded variation, intro-

duced by Brezis in [3].

Our goal in this paper has been to introduce the calculus of the Gelfand integral
and to define the notion of weak* solution, showing that it is consistent with the
usual well-known class of BV weak solutions. In the upcoming papers [14, 15, 16],
we develop these results, as follows. In [14], we extend the definition in a natural
way to rigorously allow the use of Dirac masses to deal with vacuums and other dis-
continuities in the medium, and in [15] we implement a front-tracking scheme for
approximating solutions with vacuum. In [16], we extend these ideas to an abstract
and general framework in which we define weak* solutions for multi-dimensional sys-
tems of balance laws. It is hoped that the availability of a wide variety of test function
spaces X will shed light on the problems of instability and nonuniqueness of (strongly
measurable) weak solutions.

The paper is arranged as follows. In Section 2, we recall the basic facts we need
and establish notation for the rest of the paper. In Section 3 we recall the Gelfand
integral and develop the calculus thereof: we do this for an abstract target space X∗,
so we can use these results unchanged in more general contexts. In Section 4 we use
the Gelfand integral to define weak* solutions, and prove that weak* solutions are dis-
tributional solutions, and weak solutions which satisfy appropriate growth conditions
are weak* solutions. Finally, in the appendix, we consider necessary and sufficient
conditions for a function to have a G-weak derivative.
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2. Preliminaries. We begin by setting notation and recalling various facts
about functions, measures and derivatives that will be useful throughout the pa-
per. For general references, we refer the reader to the books of Royden, Cembranos
& Mendoza, Diestel & Uhl, etc. [18, 4, 7].

2.1. Measures and distributions. Let Ω ⊂ R be an open set. Denote the
Borel σ-algebra on Ω by B(Ω), and Lebesgue measure on the measure space

(
Ω,B(Ω))

by λ; we also write dx = dλ = λ(dx).
For any distribution T ∈ D′(Ω), we use the standard pairing

〈
T, ϕ
〉
to denote

the action of T on ϕ ∈ D(Ω) = C∞
c (Ω). Any integrable function f ∈ L1

loc(Ω) acts as
distribution by 〈

f, ϕ
〉
:=

∫
f ϕ dx , ϕ ∈ D(Ω).

Let Mloc(Ω) denote the set of all sigma-finite Radon measures on the measure space
(Ω,B(Ω)). Any measure ν ∈Mloc(Ω) is also a distribution via the action〈

ν, ϕ
〉
:=

∫
ϕ(x) ν(dx) =

∫
ϕ(x) dν , ϕ ∈ D(Ω) .

We embed the integrable functions L1(Ω) in the space of Radon measures by
means of the natural mapping T : L1(Ω)→M(Ω), T (f) =: Tf , defined by

Tf (E) =

∫
E

f(x) dx , E ∈ B(Ω) .

If f ∈ L1(Ω), it is easy to see that Tf is a Radon measure which satisfies ‖Tf‖M(Ω) =
‖f‖L1(Ω), so that T is norm preserving, and we can regard

L1
loc(Ω) ⊂Mloc(Ω) ⊂ D′(Ω) , L1(Ω) ⊂M(Ω) ⊂ D′(Ω) . (5)

Next, suppose that F : Ω ⊂ R → R, with Ω ⊂ R open. We denote the classical
derivative of F at x ∈ Ω by dF

dx , wherever this exists. We adopt the convention that if
dF
dx exists λ-almost surely, then we redefine dF

dx to be zero at all points x at which the
classical derivative is not defined. If F ∈ L1

loc(Ω) has a weak derivative, we denote
the weak derivative by F ′(x) or DF ∈ L1

loc(Ω). Finally, we denote the distributional
derivative of F by DF ∈ D′(Ω).

2.2. BV functions. We recall a few basic facts about BV functions. The total
variation of a function F : (a, b)→ R is

V(F, (a, b)) := sup
P

N∑
k=1

|F (xk+1)− F (xk))| ,

where P := {xk}Nk=1 ranges over the set of all finite increasing sequences in (a, b), and
we say that F is of function of bounded variation on (a, b) if V(F, (a, b)) < ∞. We
denote the space of functions of bounded variation by

BV
(
(a, b)

)
:=
{
F : (a, b)→ R : V(F, (a, b)) <∞} .

We note that the usual convention is to treat BV functions on a closed interval
[a, b], but we find it convenient to consider an open interval when studying their
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distributional derivatives. Clearly, F can be extended to the closed interval [a, b] by
continuity. The classical derivative dF

dx exists Lebesgue almost surely, the left and
right limits F (x±) := limz→x± F (z) exist for all x ∈ (a, b), and the set of all jump
discontinuities

J = {x ∈ (a, b) : F (x+)− F (x−) 	= 0}
is at most countable. The right-continuous modification F ∗ of F satisfies F ∗ =
Fc + Fj + Fs, where the functions

Fc(x) := F (a) +

∫ x

a

dF

dx
ds ,

Fj(x) :=
∑
x̄∈J

H(x− x̄)
(
F (x̄+)− F (x̄−)) , H(x) := Xx≥0 ,

Fs(x) := F ∗(x) − Fc(x)− Fj(x) ,

(6)

are the absolutely continuous, jump and singular continuous parts of F , respectively.
Each BV function gives rise to a finite signed Borel measure via

ν(y, x] := F (x+)− F (y+), ∀x, y ∈ (a, b), (7)

and ν(a, b) := F (b)−F (a), with variation ‖ν‖M(a,b) = |ν|(a, b) = V(F, (a, b)). Apply-
ing (7) to the decomposition (6) of F yields ν = νc + νj + νs, where νc is absolutely
continuous, νc � λ, with λ-a.e. Radon-Nikodym derivative dνc

dλ = dF
dx ; νj is a purely

atomic singular measure νj ⊥ λ; and νs is a singular continuous measure, νs ⊥ λ.
Moreover, we have the identities

νc(A) =

∫
A

dFc

dx
dx and νj =

∑
x̄∈J

(
F (x̄+)− F (x̄−)) δx̄.

These decompositions fully describe the distributional derivative of the function F ∈
BV (a, b), as follows.

Lemma 2.1. Using the above notation, F ∈ BV (a, b) has distributional derivative
given by

DF = DF ∗ = ν = νc + νj + νs , with

DFc = νc , DFj = νj , and DFs = νs,

so that 〈
DF, ϕ

〉
=

∫
ϕ νc(dx) +

∫
ϕ νj(dx) +

∫
ϕ νs(dx)

=

∫
ϕ
dF

dx
dx+

∑
x̄∈J

(
F (x̄+)− F (x̄−))ϕ(x̄) + ∫ ϕ νs(dx) .

2.3. Products of Banach spaces. Let X be a normed space, with norm de-
noted by ‖ · ‖X . Recall that the dual X∗ of X has norm

‖φ‖X∗ = sup
x∈X,x 
=0

|φ(x)|
‖x‖X = sup

x∈X,x 
=0

〈
φ, x
〉

‖x‖X ,



WEAK* SOLUTIONS I 357

where
〈
φ, x
〉
denotes the pairing between φ and x, and X∗ is a Banach space. We

recall the well-known property that this pairing distinguishes elements in X or X∗:
that is, if

〈
φ, x
〉
= 0 for all x ∈ X , then φ = 0, and if

〈
φ, x
〉
= 0 for all φ ∈ X∗, then

x = 0.
Because we are interested in systems, our solutions will consist of vectors with

values in (X∗)n. For any X , we equip the product space Xn with the “Euclidean”
norm

‖x‖Xn :=
( n∑

i=1

‖xi‖2X
)1/2

, x = (x1, . . . , xn) ∈ Xn. (8)

We show that there is no ambiguity between (X∗)n and (Xn)∗.

Lemma 2.2. For any n ≥ 1, the mapping I : (X∗)n → (Xn)∗, given by

[I(F )](x) =
n∑

i=1

Fi(xi) for F = (F1, . . . , Fi) ∈ (X∗)n, x ∈ Xn ,

is an isometric isomorphism, ‖I(F )‖(Xn)∗ = ‖F‖(X∗)n .

Proof. The map I is trivially injective and onto; to show it is an isometry, first
note that ∣∣∣[I(F )](x)

∣∣∣ = ∣∣∣ n∑
i=1

Fi(xi)
∣∣∣ ≤ n∑

i=1

‖Fi‖X∗ ‖xi‖X ≤ ‖F‖(X∗)n‖x‖Xn ,

by Cauchy-Schwarz in R
n, so that ‖I(F )‖(Xn)∗ ≤ ‖F‖(X∗)n . Next, given any F ∈

(X∗)n and ε > 0, we can find x̄i ∈ X , i = 1, . . . , n such that each ‖x̄i‖ = 1 and( n∑
1=1

∣∣∣Fi(x̄i)− ‖Fi‖X∗

∣∣∣2)1/2 ≤ √nε.

Now set

ȳ = ‖F‖−1
(X∗)n

(
x̄1‖F1‖X∗ , . . . , x̄n‖Fn‖X∗

)
,

so that ‖ȳ‖Xn = 1, and

[I(F )](ȳ)− ‖F‖(X∗)n = ‖F‖−1
(X∗)n

n∑
i=1

‖Fi‖X∗

(
Fi(x̄i)− ‖Fi‖X∗

) ≥ −√nε ,

again using Cauchy-Schwarz. Since ε is arbitrary, the result follows.

Corollary 2.3. Let Ω ⊂ R
d be an open set, and C0(Ω) denote the closure of

Cc(Ω) under the sup-norm. For n ≥ 1, the mapping T : M(Ω)n → (C0(Ω)
n)∗, given

by 〈
T (μ), ϕ

〉
=

∫
Ω

ϕ(x) · μ(dx) :=
n∑

i=1

∫
ϕi(x) μi(dx) ,

is an isometric isomorphism,

‖T (μ)‖(C0(Ω)n)∗ = ‖μ‖Mn(Ω) =
( n∑

i=1

(|μi|(Ω))2
)1/2

.

Proof. Since Ω ⊂ R
d is locally compact, the proof for n = 1 follows from the Riesz-

Markov and Riesz Representation theorems [18]; the general case follows directly.
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2.4. Measurability and equivalence of functions. Because we want to in-
tegrate in Banach spaces, we recall several notions of measurability and note the
relationships between them. We follow the conventions used in the book of Diestel
and Uhl [7]. Unless explicitly stated otherwise, f is a map of a single variable with
values in a Banach space, f : [0, T ]→ X , and the Borel σ-algebra is always assumed.

The map f is measurable, or B-measurable, if f−1(A) ∈ B := B([0, T ]) for each
A ∈ B(X) .

The map f(t) is called λ-essentially separably valued if there exists N ∈ B with
λ(N) = 0 and a countable set H ⊂ X such that f([0, T ]\N) ⊂ H ; f is separably

valued if f([0, T ]) ⊂ H .
The map f is simple if there exist vectors u1, u2, . . . , un ∈ X and sets

E1, E2, . . . , En ∈ B such that

f(t) =
n∑

i=1

ui XEi
(t)

where XEi
is the indicator function of Ei.

The map f is λ-measurable, or strongly measurable, if there is a sequence of simple
functions fn : [0, T ]→ X such that

lim
n→∞

‖fn(t)− f(t)‖ = 0 λ-almost surely on [0, T ].

It is not hard to show that a map is λ-measurable if and only if it is both B-
measurable and λ-essentially separably valued. In particular, if the space X is sepa-
rable, then λ-measurability and B-measurability are equivalent.

The map f : [0, T ] → X is norm-measurable if its norm ‖f(t)‖ : [0, T ] → R is
λ-measurable (i.e. Lebesgue measurable).

If f : [0, T ] → X is λ-measurable, it is norm-measurable. Moreover, if fn :
[0, T ] → X is a sequence of λ-measurable functions which almost surely converge in
norm, ‖fn(t) − f(t)‖ → 0 as n → ∞ λ-almost surely on [0, T ], then the limit f is
λ-measurable.

We now define a map f : [0, T ]→ X to be weakly measurable, or scalar measurable,
if for each φ ∈ X∗, the function

φ(f(·)) = 〈φ, f(·)〉 : [0, T ]→ R

is λ-measurable, or equivalently B-measurable.
A measurable map is weakly measurable, and the converse holds if f is λ-

essentially separably valued; this is the statement of Pettis’ Measurability Theorem;
see [7]. It follows immediately that ifX is separable, then f is λ-measurable if and only
if it is weakly measurable. Pettis’s theorem also yields the fact that f : [0, T ]→ X is
λ-measurable if and only if it is the λ-almost everywhere uniform limit of a sequence
of countably valued λ-measurable functions.

The map f : [0, T ]→ X∗ is weak*-measurable if for each x ∈ X , the function

[f(·)](x) = 〈f(·), x〉 : [0, T ]→ R

is λ-measurable.
In view of the standard embedding X ⊂ X∗∗, it follows that an X∗-valued weak

measurable map f : [0, T ]→ X∗ is weak* measurable.
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We now introduce notions of equivalence of functions. Suppose we are given f ,
g : [0, T ]→ X and f∗, g∗ : [0, T ]→ X∗.

The maps f and g are λ-equivalent if f(t) = g(t) λ-a.e.
The maps f and g are weakly equivalent if, for all φ ∈ X∗, and for λ-a.e. t, we

have
〈
φ, f(t)

〉
=
〈
φ, g(t)

〉
.

The maps f∗ and g∗ are weak* equivalent if, for all x ∈ X , and for λ-a.e. t, we
have

〈
f∗(t), x

〉
=
〈
g∗(t), x

〉
.

It is clear that λ-equivalent functions are weakly equivalent, and that weakly
equivalent functions with values in X∗ are weak* equivalent. In fact, the converse of
this is true, provided the functions are strongly measurable; see [7].

Lemma 2.4. Suppose that f , g : [0, T ] → X and f∗, g∗ : [0, T ] → X∗ are λ-
measurable. If f and g are weakly equivalent, then they are λ-equivalent, and if f∗

and g∗ are weak* equivalent, then they are λ-equivalent.

In this lemma, the requirement that the functions be strongly measurable is es-
sential. We will later consider non-measurable functions that are weak or weak*
measurable, in which cases the corresponding weaker notions of equivalence are ap-
propriate.

2.5. The Bochner integral. The integral of a simple function, given by h(t) =∑N
i=1 uiXEi

: [0, T ]→ X , is defined in the obvious way,∫ T

0

h(t) λ(dt) =

∫ T

0

h(t) dt :=

N∑
i=1

ui λ(Ei) ∈ X.

We say that a λ-measurable function f : [0, T ] → X is Bochner integrable, or
summable, if there exists a sequence of simple functions {hn}n≥1 such that the

Lebesgue integral
∫ T
0
‖hn− f‖ dt→ 0 as n→∞. It follows that if f is summable, its

integral over any E ∈ B exists in the space X ,∫
E

f(t) dt := lim
n→∞

∫
E

hn(t) dt .

The calculus of the Bochner integral is well known, and many of the usual theo-
rems of the Lebesgue integral translate directly to statements on the Bochner integral.
These include a Bochner dominated convergence theorem and a Bochner-Lebesgue
differentiation theorem, which states that for λ-almost all s ∈ [0, T ],

lim
h→0

1

h

∫ s+h

s

‖f(t)− f(s)‖ dt = 0 and

lim
h→0

1

h

∫ s+h

s

f(t) dt = f(s) .

(9)

Hille’s theorem states that Bochner integration commutes with closed linear op-
erators, and in particular implies that if f : [0, T ] → X and f∗ : [0, T ] → X∗ are
Bochner integrable, then for each E ∈ B, x ∈ X and φ ∈ X∗,〈

φ,

∫
E

f(t) dt
〉
=

∫
E

〈
φ, f(t)

〉
dt and〈∫

E

f∗(t) dt, x
〉
=

∫
E

〈
f∗(t), x

〉
dt .
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The Bochner integral allows us to introduce Lp spaces as a natural generalization
of the usual space Lp(0, T ) of real valued functions. For each 1 ≤ p ≤ ∞, the Banach
space Lp(0, T ;X) consists of all λ-equivalence classes of Bochner integrable functions
f : [0, T ]→ X such that ‖f‖Lp(0,T ;X) <∞, where

‖f‖Lp(0,T ;X) :=

⎧⎨⎩
(∫ T

0
‖f(t)‖p dt

)1/p
, 1 ≤ p <∞ ,

ess supt∈[0,T ] ‖f(t)‖ , p =∞ .

Now let X,Y be Banach spaces with Z = X
⋂
Y nonempty, and suppose f ∈

L1(0, T ;X). We say that g ∈ L1(0, T ;Y ) is the Bochner weak derivative or B-weak
derivative of f , written f ′(t) = g(t), provided that f , g are Bochner integrable as
functions from [0, T ]→ Z and∫ T

0

f(t)ϕ′(t) dt = −
∫ T

0

g(t)ϕ(t) dt

for all scalar functions ϕ ∈ C∞
c (0, T ). For X∗-valued functions, B-weak derivatives

are fully determined by their actions as functionals: that is, for f , g ∈ L1(0, T ;X∗),
f ′ = g if and only if for every x ∈ X and ϕ ∈ C∞

c (0, T ),∫ T

0

〈
f(t), x

〉
ϕ′(t) dt = −

∫ T

0

〈
g(t), x

〉
ϕ(t) dt.

For 1 ≤ p ≤ ∞, the Sobolev space W 1,p
(
0, T ;X

)
is the set of all functions

f ∈ Lp
(
0, T ;X

)
with f ′ ∈ Lp

(
0, T ;X), with norm

‖f‖W 1,p(0,T ;X) :=

{ ( ∫ T
0
‖f(t)‖p + ‖f ′(t)‖p dt

)1/p
, 1 ≤ p <∞,

ess supt∈[0,T ]

(‖f(t)‖+ ‖f ′(t)‖) , p =∞ .

For our purposes, the most important feature of functions in W 1,p(0, T ;X) is the
Fundamental Theorem of Calculus, which follows from the fact that if f ∈ Lp(0, T ;X),

the integral
∫ t
0
f(s) ds is absolutely continuous as a function of t.

Theorem 2.5. Let f ∈ W 1,p(0, T ;X) for some 1 ≤ p ≤ ∞, and define f̄(t) =

f(0) +
∫ t
0 f

′(s) ds. Then f̄ ∈ C
(
[0, T ];X

)
is a.e. differentiable and f̄ = f a.e.. The

function g : [0, T ]→ X given by

g(s) :=

{
limh→0

1
h

(
f̄(s+ h)− f̄(s)

)
, if the limit exists,

0 , otherwise,

is strongly measurable and satisfies g(t) = f ′(t) λ-a.e. on [0, T ]. If p = ∞, then f̄ is

Lipschitz continuous with∥∥f̄(t)− f̄(s)
∥∥ ≤ L |t− s| with L := ess sup

t∈[0,T ]

‖f ′(t)‖ .

The following form of Hölder’s inequality holds: if f ∈ Lp(0, T ;X) and g∗ ∈
Lq(0, T ;X∗), p−1 + q−1 = 1, then

〈
g∗, f

〉
: [0, T ]→ R is integrable and satisfies∫ T

0

∣∣〈g∗(s), f(s)〉∣∣ ds ≤ ∥∥f∥∥
Lp(0,T ;X)

∥∥g∗∥∥
Lq(0,T ;X∗)

.
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As a consequence, we can integrate by parts: given f ∈ W 1,p(0, T ;X) and g∗ ∈
W 1,q(0, T ;X∗), we have

〈
g∗, f

〉 ∈W 1,1(0, T ), and∫ T

0

〈
g∗′(t), f(t)

〉
dt =

〈
ḡ∗(s), f̄(s)

〉 ∣∣∣T
0
−
∫ T

0

〈
g∗(t), f ′(t)

〉
dt (10)

where f̄ , ḡ are the continuous representatives of f and g, respectively.

3. The Gelfand integral. It is sometimes too restrictive to consider only the
Bochner integral of strongly measurable functions with values in a Banach space. Here
we recall the Gelfand integral, which is better suited to our purposes. Throughout
this section we fix a Banach space X and let X∗ denote its dual. The Gelfand integral
is similar to the Dunford integral, but takes its values in the space X∗. For a detailed
discussion see Tulcea and Tulcea [22], Diestel and Uhl [7], or Cembranos and Mendoza
[4].

Suppose that we are given a weak*-measurable function Φ : [0, T ] → X∗, and
suppose also that 〈

Φ(·), x〉 ∈ L1(0, T ) for all x ∈ X .

For a given E ∈ B = B([0, T ]), we define the map TE : X → L1(0, T ) by

TE(x) =
〈
Φ(·), x〉χE(·) ∈ L1(0, T ) .

It is clear that TE is linear, and if xn → x and TE(xn)→ y in L1, then by the Riesz-
Fischer theorem, a subsequence TE(xnk

)(s) → y(s) a.e., while also TE(xn)(s) →〈
Φ(s), x

〉
χE(s) for all s ∈ [0, T ]. It follows that y ∈ L1(0, T ), so TE is closed, and

further, by the closed graph theorem, it is bounded, so we can write ‖TE(x)‖L1 ≤
‖TE‖ ‖x‖ for all x ∈ X . Since integration is a bounded linear operator of L1 into R,
it follows that the map

x �→
∫ T

0

TE(x)(s) ds =

∫
E

〈
Φ(s), x

〉
ds

is a bounded linear functional on X , so defines an element of the dual X∗.

Definition 3.1. Let Φ : [0, T ] → X∗ be a weak* measurable function such that〈
Φ(·), x〉 ∈ L1(0, T ) for every x ∈ X. The Gelfand integral of Φ over measurable set
E ⊂ (0, T ), denoted by �

∫
E
Φ(s) ds, is an element of X∗ defined by〈

�

∫
E

Φ(s) ds, x
〉
=

∫
E

〈
Φ(s), x

〉
ds for all x ∈ X . (11)

3.1. The spaces Lq
w∗(0, T ;X

∗). It is clear from (11) that if two weak*-
measurable functions are weak*-equivalent, then their Gelfand integrals coincide. We
are thus led to consider equivalence classes,

[Ψ] =
{
Ψ̃ : [0, T ]→ X∗ : Ψ and Ψ̃ are weakly*-equivalent

}
.

We now wish to describe the sets of (equivalence classes of) weak*-measurable func-
tions which are Lq Gelfand integrable, and to give an appropriate norm. Note that
even if Φ : [0, T ] → X∗ is weak*-measurable, in general its norm ‖Φ‖ : [0, T ] → R is
not measurable. However, the theory of liftings provides the following lemma, [4, 22].
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Lemma 3.2. Each Gelfand integrable function Ψ : [0, T ] → X∗ is weak*-

equivalent to a map Ψ̂ : [0, T ] → X∗ whose norm ‖Ψ̂‖ : [0, T ] → R is mea-
surable. Moreover, if Ψ1 and Ψ2 are weak*-equivalent and norm-measurable, then

‖Ψ1‖ = ‖Ψ2‖ almost everywhere.

It is easy to show that if X is separable, all weak*-measurable functions are
norm-measurable.

We are now in a position to describe the X∗ valued Gelfand Lq spaces, for 1 ≤
q ≤ ∞. Given an equivalence class [Ψ] of Gelfand integrable functions, set∣∣∣∣∣∣ [Ψ]

∣∣∣∣∣∣
q
:= inf

{‖g‖Lq(0,T ) : ‖Ψ̂(t)‖ ≤ g(t) λ-a.e.
}
,

where Ψ̂ ∈ [Ψ] is a norm-measurable element of the equivalence class. It follows that∣∣∣∣∣∣ · ∣∣∣∣∣∣
q
is a norm, and we let Lq

w∗(0, T ;X
∗) be the space of equivalence classes [Ψ] of

finite norm,

Lq
w∗(0, T ;X

∗) :=
{
[Ψ] :

∣∣∣∣∣∣ [Ψ]
∣∣∣∣∣∣
q
<∞} .

It is not difficult to show that Lq
w∗(0, T ;X

∗) is a Banach space and that the trivial
inclusion

Lq(0, T ;X∗) ⊂ Lq
w∗(0, T ;X

∗) via f �→ [f ],

is a norm-preserving isomorphism. In particular, a Bochner integrable map f :
[0, T ] → X∗ is also Gelfand integrable, and when they both exist, the integrals co-
incide. Also, if Ψ̂ ∈ [Ψ] ∈ Lq

w∗(0, T ;X
∗) is norm-measurable, then ‖Ψ̂‖ ∈ Lq(0, T )

and ∣∣∣∣∣∣ [Ψ]
∣∣∣∣∣∣
q
= ‖ ‖Ψ̂(·)‖ ‖Lq(0,T ) .

Similarly, ∫ T

0

∣∣〈Ψ̂(t), x
〉∣∣q dt ≤ ∫ T

0

‖Ψ̂(t)‖q ‖x‖q dt =
∣∣∣∣∣∣ [Ψ]

∣∣∣∣∣∣q
q
‖x‖q,

and we conclude that for any x ∈ X and Ψ̃ ∈ [Ψ] ∈ Lq
w∗(0, T ;X

∗), we have〈
Ψ̃(·), x〉 ∈ Lq(0, T ) with

∥∥〈Ψ̃(·), x〉∥∥
Lq(0,T )

≤
∣∣∣∣∣∣ [Ψ]

∣∣∣∣∣∣
q
‖x‖ . (12)

It turns out that Lq
w∗(0, T ;X

∗) is the dual space of Lp(0, T ;X), provided 1 ≤ p <
∞ and p−1 + q−1 = 1; see [4] for details.

Theorem 3.3. For each Ψ̃ ∈ [Ψ] ∈ Lq
w∗(0, T ;X

∗) and f ∈ Lp(0, T ;X), the

function 〈
Ψ̃(·), f(·)〉 ∈ L1(0, T ) ,

and is independent of representative Ψ̃. Moreover, the natural linear map [Ψ] →
I([Ψ]) ∈ Lp(0, T ;X)∗, given by

〈
I[Ψ], f

〉
:=

∫ T

0

〈
Ψ̃(s), f(s)

〉
ds , f ∈ Lp(0, T ;X),

is an isometric isomorphism of Lq
w∗(0, T ;X

∗) onto Lp(0, T ;X)∗.
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3.2. Absolute continuity. Although the spaces Lq
w∗(0, T ;X

∗) can be regarded
as well known, to the authors’ knowledge the calculus of Gelfand integrable functions
has not previously been developed. Here we develop this calculus in parallel with the
well-known calculus of the Bochner integral. We begin by proving absolute continuity
of the Gelfand integral.

Theorem 3.4. Fix 1 ≤ q ≤ ∞, and suppose [Φ] ∈ Lq
w∗(0, T ;X∗) with Φ̃ ∈ [Φ].

The linear map Ψ(t) : [0, T ]→ X∗ defined by

Ψ(t) = �

∫ t

0

Φ̃(s) ds , that is

〈
Ψ(t), x

〉
=

∫ t

0

〈
Φ̃(s), x

〉
ds , x ∈ X ,

is absolutely continuous. Also, the total variation function VΨ : [0, T ] → R, defined

by

VΨ(t) := V
(
Ψ, [0, t]

)
= sup

P[0,t]

∑
‖Ψ(tn)−Ψ(tn−1)‖ ,

the supremum being over partitions P[0,t] = {0 = t0 < t1 · · · < tn = t}, is absolutely

continuous, with pointwise derivative dVΨ

dt ∈ Lq(0, T ), and we have

‖Ψ(t)−Ψ(s)‖ ≤ VΨ(t)− VΨ(s) =

∫ t

s

dVΨ

dt
(τ) dτ ≤

∫ t

s

‖Φ̂(τ)‖ dτ (13)

for all 0 ≤ s ≤ t ≤ T , for Φ̂ ∈ [Φ] norm-measurable.

Proof. Suppose that Φ̂ ∈ [Φ] is norm-measurable, and let E ⊂ [0, T ] be a union

of disjoint intervals, E =
⋃N

n=1(an, bn). Then ‖Φ̂‖ ∈ L1(0, T ), and we have

N∑
n=1

‖Ψ(bn)−Ψ(an)‖ =
N∑

n=1

sup
‖x‖=1

〈
Ψ(bn)−Ψ(an), x

〉
=

N∑
n=1

sup
‖x‖=1

∫ bn

an

〈
Φ̂(s), x

〉
ds

≤
N∑

n=1

∫ bn

an

‖Φ̂(s)‖ ds =
∫
E

‖Φ̂(s)‖ ds ,

and absolute continuity follows from that of the Lebesgue integral. Similarly, for any
0 ≤ s ≤ t ≤ T ,

VΨ(t)− VΨ(s) ≤
∫ t

s

‖Φ̂(τ)‖ dτ ,

so VΨ(t) is absolutely continuous. Thus the derivative dVΨ

dt is defined λ-a.e., and

VΨ(t)− VΨ(s) =

∫ t

s

dVΨ

dt
(τ) dτ for all 0 ≤ s ≤ t ≤ T .

It follows that 0 ≤ dVΨ

dt ≤ ‖Φ̂(t)‖ λ-a.e. on [0, T ], and thus dVΨ

dt ∈ Lq(0, T ).
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The Lebesgue Differentiation Theorem implies that for all x ∈ X ,

lim
h→0

1

h

∫ t+h

t

〈
Φ̃(s), x

〉
ds =

〈
Φ̃(t), x

〉
λ-a.e. .

Our next task is to extend this to get a Gelfand-Lebesgue Differentiation Theorem.
Fix 1 ≤ q ≤ ∞ and p−1 + q−1 = 1.

Theorem 3.5. Suppose that [Φ] ∈ Lq
w∗(0, T ;X

∗) and Φ̃ ∈ [Φ]. Then for each

f ∈ Lp(0, T ;X),

lim
h→0

1

h

∫ t+h

t

〈
Φ̃(s), f(t)

〉
ds =

〈
Φ̃(t), f(t)

〉
λ-a.e. , and (14)

lim
h→0

1

h

∫ t+h

t

〈
Φ̃(s), f(s)

〉
ds =

〈
Φ̃(t), f(t)

〉
λ-a.e. . (15)

If X is separable then for almost all t ∈ (0, T )

1

h
�

∫ t+h

t

Φ̃(s) ds
w∗−→ Φ̃(t) as h→ 0.

Proof. Since f ∈ Lp(0, T ;X), it is strongly measurable, and without loss of
generality we may assume that it is separably valued. Let {xn} be a countable dense
subset of f([0, T ]) and let Φ̂ ∈ [Φ] be norm-measurable. Define the set

E :=

{
t :

1

h

∫ t+h

t

‖Φ̂(s)‖ ds→ ‖Φ̂(t)‖
}

⋂ ∞⋂
n=1

{
t :

1

h

∫ t+h

t

〈
Φ̃(s), xn

〉
ds→ 〈Φ̃(t), xn

〉}
where the limits are taken as h → 0. By the Lebesgue Differentiation Theorem, E
has full measure, λ

(
[0, T ] \ E) = 0. For t ∈ E and any n, we have

∣∣∣ 1
h

∫ t+h

t

〈
Φ̃(s), f(t)

〉
ds− 〈Φ̃(t), f(t)〉∣∣∣

≤
∣∣∣1
h

∫ t+h

t

〈
Φ̃(s), f(t)− xn

〉
ds
∣∣∣

+
∣∣∣ 1
h

∫ t+h

t

〈
Φ̃(s), xn

〉
ds− 〈Φ̃(t), xn

〉∣∣∣+ ∣∣∣〈Φ̃(t), xn − f(t)
〉∣∣∣

≤
∣∣∣1
h

∫ t+h

t

‖Φ̂(s)‖ ds
∣∣∣ ‖f(t)− xn‖

+
∣∣∣ 1
h

∫ t+h

t

〈
Φ̃(s), xn

〉
ds− 〈Φ̃(t), xn

〉∣∣∣+ ‖Φ̃(t)‖ ‖xn − f(t)‖ .

Since t ∈ E and {xn} is dense in f([0, T ]), the right hand side can be made arbitrarily
small, and (14) follows.

Now set Bn = {t : ‖Φ̂(t)‖ < n}. Clearly Bn is nonempty for all n beyond some
N ≥ 1, and

⋃
n Bn has full measure. For any n ≥ N and t ∈ E

⋂
Bn, using (9), we
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get

lim sup
h→0

∣∣∣ 1
h

∫ t+h

t

〈
Φ̃(s), f(s)− f(t)

〉
ds
∣∣∣

≤ lim sup
h→0

∣∣∣ 1
h

∫ t+h

t

‖Φ̂(s)‖ ‖f(s)− f(t)‖ ds
∣∣∣

≤ n lim sup
h→0

∣∣∣1
h

∫ t+h

t

‖f(s)− f(t)‖ ds
∣∣∣ = 0,

and thus (15) follows from (14).
Now suppose that X is separable and let {xn}n≥1 be dense in X . Define E as

above and fix t ∈ E. Then there is some δ > 0 such that for all 0 < |h| < δ,

1

h

∫ t+h

t

‖Φ̂(s)‖ ds ≤ ‖Φ̂(t)‖+ 1 .

For each such h, define φt(h) ∈ X∗ by

φt(h) :=
1

h
�

∫ t+h

t

Φ̃(s) ds,

so that, for every x ∈ X ,

∣∣〈φt(h), x
〉∣∣ ≤ 1

h

∫ t+h

t

‖Φ̂(s)‖ ds ‖x‖ ≤ (‖Φ̂(t)‖ + 1
) ‖x‖,

which yields ‖φt(h)‖X∗ ≤ ‖Φ̂(t)‖ + 1 for each 0 < |h| < δ. Now for any fixed x ∈ X
and each n, we have∣∣〈φt(h)− Φ̃(t), x

〉∣∣ ≤ ∣∣〈φt(h)− Φ̃(t), xn

〉∣∣ + ∣∣〈φt(h), x− xn

〉∣∣+ ∣∣〈Φ̃(t), xn − x
〉∣∣

≤
∣∣〈φt(h)− Φ̃(t), xn

〉∣∣ + (‖Φ̂(t)‖ + 1 + ‖Φ̃(t)‖) ‖x− xn‖ ,

and since t ∈ E, for every n ≥ 1 we have

lim sup
h→0

∣∣〈φt(h)− Φ̃(t), x
〉∣∣ ≤ (‖Φ̂(t)‖+ 1 + ‖Φ̃(t)‖) ‖x− xn‖.

Since {xn} is dense, we have
〈
φt(h), x

〉 → 〈
Φ̃(t), x

〉
, and since x is arbitrary, the

result follows.

3.3. The spaces W 1,q
w∗ (0, T ;X

∗). Suppose that Ψ, Φ : [0, T ] → X∗ are weak*
measurable, and [Ψ], [Φ] ∈ L1

w∗(0, T ;X
∗). We say that Φ is the Gelfand weak deriva-

tive or G-weak derivative of Ψ, written Ψ′(t) = Φ(t) or [Φ] = [Ψ′], if

�

∫ T

0

Ψ(t)ϕ′(t) dt = − �

∫ T

0

Φ(t)ϕ(t) dt, that is∫ T

0

〈
Ψ(t), x

〉
ϕ′(t) dt = −

∫ T

0

〈
Φ(t), x

〉
ϕ(t) dt for all x ∈ X,

(16)

for all scalar functions ϕ ∈ C∞
c (0, T ).
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We now define the space W 1,q
w∗

(
0, T ;X∗

)
, for 1 ≤ q ≤ ∞, to be the set of weak*

equivalence classes [Ψ] ∈ Lq
w∗

(
0, T ;X∗

)
having G-weak derivative [Ψ′] ∈ Lq

w∗

(
0, T ;X),

with norm∣∣∣∣∣∣ [Ψ]
∣∣∣∣∣∣
W 1,p

w∗ (0,T ;X)
:=

{( ∫ T
0
(‖Ψ̂(t)‖q + ‖Ψ̂′(t)‖q) dt)1/q , 1 ≤ q <∞

ess supt∈[0,T ]

(‖Ψ̂(t)‖ + ‖Ψ̂′(t)‖) , q =∞ ,

for Ψ̂ ∈ [Ψ], Ψ̂′ ∈ [Ψ′] norm-measurable.
We are now in a position to state the Gelfand Fundamental Theorem of Calculus.

Theorem 3.6. Let Ψ : [0, T ] → X∗ be weak* measurable and let 1 ≤ q ≤ ∞ be
given. We have [Ψ] ∈ W 1,q

w∗ (0, T ;X
∗) if and only if there exist [Φ] ∈ Lq

w∗(0, T ;X
∗)

and ψ0 ∈ X∗ such that the mapping

Ψ̃ : [0, T ]→ X∗ given by Ψ̃(t) := ψ0 + �

∫ t

0

Φ(s) ds (17)

satisfies Ψ̃ ∈ [Ψ].
Moreover, if [Ψ] ∈ W 1,q

w∗ (0, T ;X
∗), then there exists an absolutely continuous

representative Ψ̄ ∈ [Ψ] such that

Ψ̄(t) = Ψ̄(0) + �

∫ t

0

Ψ′(s) ds. (18)

The map Ψ̄ belongs to Lq(0, T ;X∗) and has variation VΨ̄ which satisfies (13).

Proof. First, suppose that Ψ̃ ∈ [Ψ] satisfies (17). Then for every x ∈ X , t ∈ [0, T ],
we have 〈

Ψ̃(t), x
〉
=
〈
ψ0, x

〉
+

∫ t

0

〈
Φ(s), x

〉
ds ∈ R ,

so the function t �→ 〈Ψ̃(t), x
〉
is in W 1,q(0, T ), with weak derivative t �→ 〈Φ(t), x〉.

Thus (16) holds for any ϕ ∈ C∞
c (0, T ), so [Ψ̃] ∈W 1,q

w∗ (0, T ;X∗) with [Φ] = [Ψ̃′].
Now suppose that [Ψ] ∈ W 1,q

w∗ (0, T ;X
∗) and let Ψ̂ ∈ [Ψ] and Φ̂ ∈ [Ψ′] be norm-

measurable. We need to find the trace ψ0 of Ψ at t = 0. For each x ∈ X and
ϕ ∈ C∞

c (0, T ), we have∫ T

0

〈
Ψ̂(t), x

〉
ϕ′(t) dt = −

∫ T

0

〈
Φ̂(t), x

〉
ϕ(t) dt ,

and (12) implies
〈
Ψ̂(·), x〉 ∈ W 1,q(0, T ) with weak derivative

〈
Φ̂(·), x〉. This implies

that for each x ∈ X , there exists a unique absolutely continuous real-valued function
zx : [0, T ]→ R such that

zx(t) =
〈
Ψ̂(t), x

〉
λ-a.e. t ∈ [0, T ], and

zx(t) = zx(0) +

∫ t

0

〈
Φ̂(s), x

〉
ds for all t ∈ [0, T ] ,

(19)

where zx(0) is the trace of the map t→ 〈Ψ̂(t), x
〉
at t = 0. Note that zx(0) need not

equal
〈
Ψ̂(0), x

〉
, and we must show the existence of ψ0 ∈ X∗ such that zx(0) =

〈
ψ0, x

〉
for all x ∈ X .
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From linearity of Ψ̂(·), continuity of zx(·), and (19) it follows that, for any c1,
c2 ∈ R and x1, x2 ∈ X , we have

zc1x1+c2x2(t) = c1 zx1(t) + c2 zx2(t) for all t ∈ [0, T ],

so the map X � x → zx(0) is a linear functional. Next, for each x ∈ X , (19) implies
that ∫ T

0

〈
Ψ̂(t), x

〉
dt =

∫ T

0

zx(t) dt = zx(0)T +

∫ T

0

(∫ t

0

〈
Φ̂(s), x

〉
ds
)
dt .

Since t→ ‖Ψ̂(t)‖ and t→ ‖Φ̂(t)‖ are measurable and integrable, we conclude that

|zx(0)| ≤ 1

T

(∫ T

0

‖Ψ̂(t)‖ dt+ T

∫ T

0

‖Φ̂(t)‖ dt
)
‖x‖ .

Thus X � x → zx(0) is also bounded, and hence there is some ψ0 ∈ X∗ such that
zx(0) =

〈
ψ0, x

〉
for all x ∈ X .

It follows from (19) and Theorem 3.4 that the map Ψ̄ : [0, T ]→ X∗, defined by

Ψ̄(t) = ψ0 + �

∫ t

0

Φ̂(s) ds

is absolutely continuous with G-weak derivative Φ̂, and so [Ψ̄] ∈ W 1,q
w∗ (0, T ;X

∗).
Moreover, since

〈
Ψ̄(t), x

〉
= zx(t), we have Ψ̄ ∈ [Ψ]. The rest of the theorem follows

directly from Theorem 3.4.

To simplify notation in the sequel, we adopt the convention that, unless otherwise
specified, we identify [Φ] ∈ Lq

w∗(0, T ;X
∗) with a norm-measurable representative Φ̂,

and if [Ψ] ∈ W 1,q
w∗ (0, T ;X

∗), we identify [Ψ] with its absolutely continuous represen-
tative Ψ̄ and [Ψ′] with a norm-measurable representative Ψ̂′.

Corollary 3.7. Suppose that u ∈ W 1,q
w∗ (0, T ;X

∗) with continuous representative

ū. If there exists a strongly measurable f : [0, T ] → X∗ such that f ∈ [u′], then ū is
strongly measurable and ū ∈W 1,q(0, T ;X∗).

Proof. Since f ∈ [u′] and ū is continuous, we have

ū(t) = ū(0) + �

∫ t

0

f(s) ds, t ∈ [0, T ]. (20)

Moreover, since f is strongly measurable, it is norm-measurable, and∫ T

0

‖f(t)‖q dt = ∣∣∣∣∣∣ [u′]
∣∣∣∣∣∣q
q
<∞,

so that f ∈ Lq(0, T ;X∗), (20) is a Bochner integral, and ū ∈W 1,q(0, T ;X∗).

Our next calculus theorem is an integration by parts formula. Let 1 ≤ p ≤ ∞
satisfy 1

p + 1
q = 1, and let X be a Banach space with dual X∗.

Theorem 3.8. Suppose that f ∈ W 1,p(0, T ;X) and Ψ ∈ W 1,q
w∗ (0, T ;X

∗). The

function
〈
Ψ(t), f(t)

〉
: [0, T ]→ R is in W 1,1(0, T ), with weak derivative

D
〈
Ψ(t), f(t)

〉
=
〈
Ψ′(t), f(t)

〉
+
〈
Ψ(t), f ′(t)

〉
λ-a.e. , (21)
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where Ψ′ and f ′ are the G-weak and B-weak derivatives of Ψ and f , respectively.

Moreover, ∫ T

0

〈
Ψ′(t), f(t)

〉
dt =

〈
Ψ̄(s), f̄(s)

〉∣∣∣T
0
−
∫ T

0

〈
Ψ(t), f ′(t)

〉
dt , (22)

where f̄ and Ψ̄ are the continuous representatives of f and Ψ, respectively.

Proof. Set z(t) =
〈
Ψ(t), f(t)

〉
, which is in L1(0, T ) by Theorem 3.3, assume that f

and Ψ are continuous representatives, and fix representatives f ′ and norm-measurable
Ψ′. Let E =

⋃N
n=1(an, bn) be a disjoint union of intervals. By Theorems 2.5 and 3.6

we have

f(bn)− f(an) =

∫ bn

an

f ′(t) dt and

〈
Ψ(bn)−Ψ(an), f(bn)

〉
=

∫ bn

an

〈
Ψ′(t), f(bn)

〉
dt,

and so, since f and Ψ are continuous, we get

N∑
n=1

|z(bn)− z(an)|

≤
N∑

n=1

∣∣∣ ∫ bn

an

〈
Ψ′(t), f(bn)

〉
dt
∣∣∣+ N∑

n=1

∣∣∣ ∫ bn

an

〈
Ψ(an), f

′(t)
〉
dt
∣∣∣

≤ ‖f‖L∞(0,T ;X)

∫
E

‖Ψ′(t)‖ dt+ ‖Ψ‖L∞(0,T ;X∗)

∫
E

‖f ′(t)‖ dt.

Absolute continuity the Lebesgue integral now implies that z(t) is absolutely contin-
uous, so also z ∈ W 1,1(0, T ), with weak derivative Dz = dz

dt almost everywhere.

Next, Theorem 3.5, (9) and absolute continuity of z(t) imply that the set

E =

{
t :

dz

dt
exists, lim

h→0

1

h

∫ T

0

f ′(s) ds = f ′(t) , and

1

h

∫ t+h

t

〈
Ψ′(s) f(s)

〉
ds =

〈
Ψ′(t) f(t)

〉 }
has full measure, λ([0, T ]\E) = 0. For each t ∈ E, we have

dz

dt
(t) = lim

h→0

1

h

(〈
Ψ(t+ h)−Ψ(t), f(t)

〉
+
〈
Ψ(t), f(t+ h)− f(t)

〉)
=
〈
Ψ′(t), f(t)

〉
+
〈
Ψ(t), f ′(t)

〉
,

which is (21). Next, by absolute continuity,

z(T )− z(0) =

∫ T

0

Dz(t) dt ,

which is (22).
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4. Application to hyperbolic conservation laws. We now apply the calculus
we have developed to the Cauchy problem for systems of hyperbolic conservation laws
in one space dimension,

∂tu+ ∂xF (u) = 0 , u(x, 0) = u0(x), (23)

where u = u(x, t) : R× R+ → R
n, x ∈ R, and F ∈ C1(Rn;Rn).

Recall that a distributional solution of (23) is a measurable function u(x, t) :
R× [0, T )→ R

n which satisfies∫ T

0

∫
R

(
u(x, t)�∂tϕ(x, t) + F (u(x, t))�∂xϕ(x, t)

)
dx dt

+

∫
R

u0(x)�ϕ(0, x) dx = 0,

(24)

for every function ϕ ∈ C1
c (R

2,Rn); here it is implicitly assumed that F (u(x, t)) is lo-
cally integrable. A distributional solution which is locally bounded is a weak solution.

In defining distributional and weak solutions, there is no distinction between the
roles of time and space, with both the solution u and test functions ϕ regarded as
functions on R × [0, T ). Our approach is different, in that we wish to understand
the PDE (23) as an evolution equation, so we will regard the solution as a function
of time taking values in a Banach space. In particular, we regard the (spatial) test
functions as elements of a Banach space X , which contains C∞

c as a dense subspace,
and, since u(t) acts linearly on these test functions, it has values in X∗, and we regard
u ∈ Lq

w∗(0, T ;X
∗); throughout this section, we fix the constant 1 ≤ q ≤ ∞. Taking

this point of view, we use the convention that u(t) ∈ X∗ stands for u(·, t).
The critical issue is to make sense of the nonlinear flux F (u) and its derivative in

the space X∗. Generally the flux F is given as a function of the conserved variables u,
regarded as a pointwise field. In our case we treat u(t) ∈ X∗ as a field, and we similarly
regard F (u(t)) ∈ X∗ as a field in the same way, being defined via composition. We
refer to the corresponding map F : X∗ → X∗ as a flux mapping. We now assume
that Ω ⊆ R is open and that the space X of test functions contains C∞

c (Ω) as a dense
subset.

We say that f ∈ X∗ has an X∗-valued distributional derivative, written Dxf ∈
X∗, if, for all φ ∈ C∞

c (Ω) ⊂ X , we have∣∣〈f, φ′
〉∣∣ ≤ C ‖φ‖X ,

and in this case we define Dxf by〈
Dxf, φ

〉
:= −〈f, φ′

〉
.

Note that this is not the classical distributional derivative, because we are requiring
that Dxf be a bounded operator on X .

Definition 4.1. Let F : X∗ → X∗ be a flux mapping and u0 ∈ X∗. The function
u ∈W 1,q

w∗ (0, T ;X
∗) is called a weak* solution of the system (23) if

u′(t) + DxF (u(t)) = 0 in X∗ (25)

for a.e. t ∈ [0, T ], and such that ū(0) = u0 in X∗, where ū is the time continuous

representative of u. Equivalently, we require

ū(t)− ū(s) = �

∫ t

s

DxF (u(τ)) dτ in X∗ for t, s ∈ [0, T ]. (26)
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We note that this is a general definition which depends on the choice of the space
X of test functions as well as the growth rate q.

4.1. Classical solutions. As a first example, recall that if the system is sym-
metrizable (say if F is a gradient), then well-known energy estimates yield finite time
existence of classical solutions in the space Hs(R) for s > 3/2 [13]. Moreover, since
they are differentiable, these satisfy the appropriate integration by parts formulae.
Thus, if we choose

X = H−s(R), so that X∗ = Hs(R),

then these classical solutions can be regarded as weak* solutions on [0, T ), where T
is the blowup time of classical solutions.

To clarify this example, we consider the scalar Burgers’ equation,

ut + (u2/2)x = 0, u(x, 0) = u0(x),

for u ∈ R, which is well known. Solving by characteristics, we have

u(x, t) = u0(x0), where x− x0 = u0(x0) t, (27)

x0 being implicitly determined as x0 = x0(x, t). Differentiating the equation, we see
that the spatial derivative v(x, t) = ux(x, t) satisfies

vt + u vx + v2 = 0,

and solving along characteristics, we find, after simplification,

v(x, t) =
v0(x0)

1 + t v0(x0)
,

valid as long as t < −1/v0(x0); here the blowup time is

tb = inf
{− 1/v0(x0) : v0(x0) < 0

}
. (28)

Using the quasilinear equation ut + u ux = 0 directly, we also see that

u′(t) = ut(·, t) with ut(x, t) =
−u0(x0) v0(x0)

1 + t v0(x0)
.

Next, differentiating (27), we get

∂x0

∂x
=

1

1 + t v0(x0)
and

∂x0

∂t
=

−u0(x0)

1 + t v0(x0)
.

It follows that the homogeneous Ḣ1 norm of the solution is

‖u(t)‖2
Ḣ1 =

∫
v(x, t)2 dx =

∫
v0(x0)2

(1 + t v0(x0))3
dx0 ,

where we have used dx = (1+ t v0(x0)) dx0 from (27) to change variables. Now using
(28), we can write

‖u(t)‖Ḣ1 = O(1) (1 − t/tb)
−3/2,
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which gives the rate of blowup of H1 norm. Thus for any q > 1, we have u ∈
Lq(0, τ ;H1) if and only if τ < tb, the blowup time. Following similar steps, we can
calculate higher Hs norms and blowup rates, as desired.

This example illustrates that when the class of test functions is large, in this
case H−s, then the solution is in a smaller space, Hs, in which we have only local
existence. At the other extreme, a very small space such as Hs would yield a much
larger class of solutions. A more realistic example is obtained by using X = C0 as the
space of spatial test functions, which would lead to solutions in the space X∗ = M of
time varying Radon measures. This point of view is taken in [14], where the notion of
weak* solution allows for vacuums in gas dynamics and fractures in elasticity. These
solutions are not weak solutions as vacuums and fractures are represented by delta
measures; the flux mapping F , as well as the entropy and entropy flux, must be
extended to measures (see [14]). In general, our goal is to find the right space which
would lead to global existence and stability of solutions: in this paper, we primarily
focus on weak* solutions u ∈ X∗

⋂
BV n, with X = C0 and X∗ = Mn.

4.2. BV weak* solutions. It is well known that in one space dimension, the
correct setting for systems of hyperbolic conservation laws is the spaceBV of functions
of bounded variation [9, 2, 5]. Recall that if w ∈ BVloc then Dw ∈Mloc, which is the
dual of C0. We will thus take

X = C0(R)
n, so that X∗ = Mloc(R)

n,

and use Mloc to define weak* solutions. However, we wish to restrict our solutions
further so that the ODE remains consistent. We accomplish this as follows: if Φ ∈
W 1,q

w∗

(
0, T ;X∗

)
, and in addition, Φ has values in some Y ⊂ X∗, then we write Φ ∈

W 1,q
w∗

(
0, T ;Y,X∗

)
, that is we set

W 1,q
w∗

(
0, T ;Y,X∗

)
=
{
Φ ∈W 1,q

w∗ (0, T ;X
∗) : Φ(t) ∈ Y, t ∈ [0, T ]

}
.

Note that we do not assume that Y is a subspace of X∗, because we use the topology
of X∗ throughout. We also use the notation T− to mean up to but not including T ,
so that

Lq
w∗(0, T

−;X∗) := {φ : [0, T )→ X∗ : φ ∈ Lq
w∗(0, τ ;X

∗) ∀ 0 < τ < T },
and similarly for W 1,q

w∗ (0, T
−;X∗).

For one-dimensional systems of conservation laws, for which BV solutions are
appropriate, we take X = (C0)

n, X∗ = Mn
loc, and Y = BV n

loc.

Definition 4.2. Suppose that u0 ∈Mloc(R;R
n). The function

u ∈W 1,q
w∗

(
0, T−;BV n

loc,M
n
loc

)
is called a BV weak* solution to the Cauchy problem (23) if for a.e. t ∈ (0, T )

u′(t) + DxF (u(t)) = 0 in Mn
loc (29)

and such that ū(0) = u0, where ū is the time continuous representative of u in Mn
loc.

In (29), u′ is the G-weak derivative of u in the space W 1,q
w∗ (0, T−;Mn

loc), and
DxF (u(t)) is the distributional derivative of the function x → F (u(x, t)). Since
u(t) ∈ BV n

loc for a.e. t, and F is C1 and so Lipschitz, for these t we also have
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F (u(·, t)) ∈ BV n
loc, and Lemma 2.1 implies that DxF (u(t)) ∈ Mn

loc, so we can un-
derstand the equation in Mn

loc. Moreover, in view of separability of C0, each ele-
ment of Lq

w∗(0, T
−;Mn

loc) is norm-measurable, and (29) is equivalent to requiring that
[u′] + [DxF (u)] = 0 as equivalence classes of Lq

w∗(0, T ;M
n(Ω)). As usual, this means

ū(t)− ū(s) = �

∫ t

s

DxF (u(τ)) dτ ∈Mloc for t, s ∈ [0, T ].

We note that our definition of weak* solutions implicitly requires some regularity,
namely that u is absolutely continuous as a function t → u(t) ∈ Mn

loc with values
in BV n

loc. Also, recall that we require only that u′ (and thus DxF (u)) be weak*-
measurable, rather than strongly measurable, and the parameter q allows a range
of growth rates of weak* solutions. In this sense, our weak* solutions are different
from weak solutions, which are locally bounded locally integrable functions u(x, t)
satisfying (24). Although the two notions of solution are different, we show they yield
the same solutions in the most important case.

Theorem 4.3. Suppose that u ∈ W 1,q
w∗

(
0, T−;BV n

loc,M
n
loc

)
is a BV weak* solution

to the Cauchy problem (23), with continuous representative ū. Then ū is Hölder

continuous as a function into L1
loc(R;R

n), that is,

ū ∈ C0,1−1/q(0, T−;L1
loc) or ū ∈ Lip(0, T−;L1

loc), (30)

for 1 ≤ q < ∞ or q = ∞, respectively. The function ū(x, t) is a distributional
solution of the Cauchy problem (23). In particular, if u is locally bounded, u ∈
L∞
w∗

(
0, T−;L∞

loc(R;R
n)
)
, then ū(x, t) is a weak solution to the Cauchy problem (23).

Proof. According to Theorem A.2 below, ū ∈ W̃ 1,q(0, T−;Mn
loc), which implies

that for each open Ω ⊂⊂ R, there exists φ ∈ Lq such that

‖ū(t)− ū(s)‖Mn(Ω) ≤
∫ t

s

φ(τ) dτ , t, s ∈ [0, τ ].

Since φ ∈ Lq, we apply Hölder’s inequality, together with (5), to get

‖ū(t)− ū(s)‖L1(Ω) = ‖ū(t)− ū(s)‖Mn(Ω) ≤ ‖φ‖q |t− s|1−1/q ,

which implies (30).
To show that ū is a distributional solution, assume we are given a test function

ψ ∈ C1
c (R × (−∞, T );Rn). Restricting ψ to the time interval [0, T ), we have ψ ∈

W 1,∞(0, τ ;C0

(
(a, b);Rn

)
) for some 0 < τ < T and finite open interval (a, b) ∈ R.

From (29) it follows that u′ = −DxF (u) ∈ L1
w∗(0, τ ;M

n(a, b)), and by Theorem 3.8,
the functions t→ 〈DxF (u(t)), ψ(t)

〉
and t→ 〈u(t), ψ(t)〉 are Lebesgue integrable and∫ τ

0

〈
DxF (u(t)), ψ(t)

〉
dt = −

∫ τ

0

〈
u′(t), ψ(t)

〉
dt

=
〈
ū(0), ψ(0)

〉
+

∫ τ

0

〈
u(t), ψ′(t)

〉
dt .

Next, for each t ∈ [0, T ) we have u(t) ∈ BV n
loc, and since F is C1, we have also

F (u(t)) ∈ BV n
loc, so that DxF (u(t)) ∈Mn

loc and〈
DxF (u(t)), ψ(t)

〉
=

∫
R

ψ(x, t)Dx(F (u))(dx, t)

= −
∫
R

F (u(x, t))�∂xψ(x, t) dx .
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Similarly, since u(t) ∈Mn
loc

⋂
BV n

loc ⊂ L1
loc(R;R

n),

〈
u(t), ψ′(t)

〉
=

∫
R

∂tψ(x, t) · u(dx, t) =
∫
R

u(x, t)�∂tψ(x, t) dx, and

〈
ū(0), ψ(0)

〉
=

∫
R

ψ(x, 0) · ū(dx, 0) =
∫
R

ū(x, 0)�ψ(x, 0) dx .

Combining the above relations we obtain∫ T

0

∫
R

(
u(x, t)� ∂tψ(x, t) + F (u(x, t))�∂xψ(x, t)

)
dx dt

+

∫
R

u0(x)�ψ(x, 0) dx = 0 ,

which is (24). Finally, since ū(t), and hence also F (ū(t)), is continuous with values in
L1
loc, both ū(x, t) and F (ū)(x, t) are locally integrable, and the proof is complete.

Having shown that any weak* solution is a distributional solution, we now show
that a weak solution with sufficiently regular growth is also a weak* solution. In
particular, the global weak solutions generated by Glimm’s method, front tracking,
and vanishing viscosity, all of which have uniformly bounded total variation, are all
weak* solutions. It follows that the uniqueness and L1-stability results of Bressan
et.al. hold unchanged in the framework of weak* solutions.

Theorem 4.4. Let u(x, t) be a weak solution of the Cauchy problem (23), with
u(·, t) ∈ BV n

loc for each t ∈ [0, T ). Suppose also that for each open interval Ω ⊂⊂ R,

there is some gΩ ∈ Lq(0, T−) such that

V(u(·, t); Ω) ≤ gΩ(t) , a.e. t ∈ (0, T ). (31)

Then u ∈ W 1,q
w∗ (0, T

−;BV n
loc,M

n
loc), and u is a BV weak* solution to the Cauchy

problem.

Proof. Let I = (a, b) ⊂⊂ (0, T ) and Ω ⊂ R be finite intervals. Since u(x, t)
is locally bounded and integrable, for each α ∈ C1

0 (Ω), the map t → 〈
u(t), α

〉
:=∫

Ω
u(x, t)α(x) dx is measurable and integrable over I. Also,

ess sup
t∈I

‖u(·, t)‖Mn(Ω) = ess sup
t∈I

∫
Ω

|u(x, t)| dx ≤ λ(Ω) ‖u‖L∞(I×Ω),

so that u ∈ L∞
w∗(a, b;M(Ω)).

Next, for each t, we have u(t) := u(·, t) ∈ BV n
loc, and so since F ∈ C1, also

F (u(t)) ∈ BV n
loc, and in particular, x→ F (u(x, t)) is integrable over Ω for each t ∈ I.

Lemma 2.1 now implies that DxF (u(t)) ∈Mn
loc for each t ∈ I, and

t→ 〈DxF (u(t)), α
〉
= −

∫
R

F (u(x, t))α′(x) dx

is measurable and integrable on I. Moreover, since F is locally Lipschitz and u is
locally bounded, our assumption (31) implies that there is some g̃Ω ∈ Lq(0, T−) such
that

‖DxF (u(t))‖Mn(Ω) = V
(
F (u(·, t)); Ω) ≤ g̃Ω(t), a.e. t ∈ (0, T ),



374 A. MIROSHNIKOV AND R. YOUNG

and so also∣∣〈DxF (u(t)), α
〉∣∣ ≤ ‖DxF (u(t))‖Mn(Ω) ‖α‖L∞(Ω) ≤ g̃Ω(t) ‖α‖L∞(Ω) .

Since α is arbitrary and gΩ ∈ Lq(0, T−), Theorem A.1 below implies that

DxF (u(t)) ∈ Lq
w∗(0, T

−;Mn(Ω)) .

Now let ψ ∈ C1
c (I) and α ∈ C1

0 (Ω), and set ϕ(x, t) = ψ(t)α(x). Using (24), we
get ∫

I

(∫
Ω

u(x, t)�α(x) dx
)
ψ′(t) dt+

∫
I

( ∫
Ω

F (u(x, t))�α′(x) dx
)
ψ(t) dt = 0,

or equivalently ∫
I

〈
u(t), α

〉
ψ′(t) dt =

∫
I

〈
DxF (u(t)), α

〉
ψ(t) dt.

Since ψ is arbitrary, it follows that the G-weak derivative u′ exists and〈
u′(t), α

〉
= −〈DxF (u(t)), α

〉
a.e. t ∈ I.

Since α and I = (a, b) ⊂⊂ (0, T ) are arbitrary we conclude that

u′ + Dx(F (u(t))) = 0 in Mn(Ω), a.e. t ∈ (0, T )

and u ∈ W 1,q
w∗ (0, T

−;Mn(Ω)). Moreover, (31) and Theorem A.1 below yield u ∈
Lq
w∗(0, T

−;BV n(Ω)), so also u ∈W 1,q
w∗ (0, T

−;BV n(Ω),Mn(Ω)), and u is a BV weak*
solution.

It remains to show that the initial data is taken on in an appropriate sense. Let
ū(t) be the continuous representative of the weak solution u(·, t) ∈ Mn(Ω). We have
shown that this is a weak* solution, with initial data ū(0) ∈ BV n

loc. By Theorem 4.3,
this is a continuous distributional solution. Moreover, u(t) = ū(t) a.e. t in Mn(Ω),
and so also in L1

loc(Ω), and this in turn implies u(x, t) = ū(x, t) almost surely as
functions of both space and time. Since both u and ū are distributional solutions, for
any ϕ ∈ C1

c

(
Ω× (−∞, τ)

)
, use of (24) then yields∫

R

ū(x, 0)�ϕ(0, x) dx =

∫
R

u0(x)�ϕ(0, x) dx,

so that ū(0, x) = u0(x) a.e. x, and thus ū(0) = u0 ∈Mn
loc.

4.3. Shock waves and entropy. It is well known that discontinuities in weak
solutions satisfy the Rankine-Hugoniot jump conditions, and that entropy conditions
are required to select the unique, physically relevant solution when discontinuities are
present. Here we restate these conditions from the point of view of weak* solutions. In
particular, we note the ease with which the Rankine-Hugoniot conditions are derived.

In deriving the shock conditions, we wish to understand the local pointwise struc-
ture of BV weak* solutions. To do so, we make some reasonable simplifying assump-
tions. For a given Ω ⊂ R and t ∈ [0, T ), we assume u(t) ∈ SBV (Ω), so that u has no
singular continuous part, and we can write

u(x, t) =
∑
j

vj(t)H(x− xj(t)) + uc(x, t), a.e. x ∈ Ω, (32)
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where uc is the absolutely continuous part of u, and there are jumps of size vj(t)
located at points xj(t) ∈ J ⊂ Ω. The jump vj(t) is

vj(t) = u(xj(t)+, t)− u(xj(t)−, t) ,

while uc(·, t) ∈ W 1,1(R) with ∂xu = ∂xuc almost surely, where we have used ∂x to
denote the pointwise (partial) derivative. It follows that F (u) has the same form,
namely

F (u(x, t)) =
∑
j

gj(t)H(x − xj(t)) + fc(x, t), a.e. x ∈ Ω, (33)

where gj(t) is the jump in F (u) at xj(t),

gj(t) = F (u(xj(t)+, t))− F (u(xj(t)−, t)) ,

and fc is given by

fc(x, t) = F
(
uc(x, t) +

∑
xj≤x

vj(t)
)
−
∑
xj≤x

gj(t),

so also fc(·, t) ∈ W 1,1(R). From (33), we calculate the distributional derivative

DxF (u) =
∑
j

gj(t) δxj(t) + ∂xfc(·, t) ∈Mn(Ω), (34)

where ∂xfc(·, t) is defined λ-a.e., and in fact, for almost all x 	= xj(t),

∂xfc(x, t) = DF (u) ∂xuc(x, t) = DF (u) ∂xu(x, t) ∈ L1(R),

where DF (u) is the derivative of F : Rn → R
n.

We now make the further assumption that uc(x, ·), vj and xj are absolutely
continuous functions of t, a.e x ∈ Ω. Thus for a full measure set of t, say t ∈ E, the
weak derivative Dtu can be calculated as a measure, and we have

Dtu =
∑
j

vj(t)
d(−xj)

dt
δxj(t)

+
∑
j

dvj
dt

H(x− xj(t)) + ∂tuc(x, t) ∈Mn(Ω).

(35)

Since u is assumed to be a weak* solution, it follows that its G-weak derivative
u′ ∈ Mn(Ω), and u′ = Dtu whenever Dtu exists as a measure, and therefore that for
t ∈ E,

Dtu+ DxF (u) = 0 ∈Mn(Ω).

For two measures to be equal their atomic parts must coincide, and comparing (34)

and (35) yields vj(t)
dxj

dt = gj(t), which is the Rankine-Hugoniot condition,

F (u(xj(t)+, t))− F (u(xj(t)−, t)) = x′
j(t)
(
u(xj(t)+, t)− u(xj(t)−, t)

)
, (36)
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for each j ∈ J . Moreover, away from the jump set, the absolutely continuous parts
of the measures must agree a.e., so that for a.e. x 	= xj(t),∑

xj<x

dvj
dt

+ ∂tuc(x, t) + ∂xfc(x, t) = 0,

and using (32), this yields

∂tu(x, t) +DF (u) ∂xu(x, t) = 0, a.e. x 	= xj , (37)

so that, as is well known, the absolutely continuous part of the solution satisfies the
quasilinear form of the equation almost everywhere. Note that the jump conditions
(36) are trivially satisfied at any point of continuity of u.

Having checked that discontinuities in weak* solutions satisfy the Rankine-
Hugoniot condition (36), we must now give an entropy selection criterion which will
ensure uniqueness of solutions with shocks. For abstract systems that are genuinely
nonlinear and/or linearly degenerate, there are two such conditions, namely the Lax
entropy condition and that obtained from a convex entropy/flux pair. Here we give
the appropriate statement of these entropy conditions for weak* solutions.

Recall that the Lax entropy condition holds for a single isolated jump associated
with a specific wave family. We can rewrite (36) for a single isolated jump located at
x = ξ(t) as

F (u+)− F (u−) = ξ′(t) (u+ − u−), where u± = u(ξ(t)±, t), (38)

which is an eigenvalue problem, with n different solutions, one for each wave family.
The wave families are in turn distinguished by the associated nonlinear wave speed
λk, the k-th eigenvalue of the matrix DF (u). Lax’s entropy criterion for a k-shock is
then usually written as

λk(u−) > ξ′(t) > λk(u+), (39)

so the associated k-th characteristics impinge on both sides of the shock. We continue
to use this condition for isolated shocks in weak* solutions, for which the left and right
limits are well-defined functions.

On the other hand, if we are given a C1 entropy/flux pair (η, q), we require that
the map

t �→ η(u(·, t)) ∈ W 1,1
w∗ (0, T ;Mloc),

and the usual entropy condition holds, namely

μη := η(u)′ + Dxq(u) ≤ 0 in M . (40)

This can be interpreted as a measure, since every signed distribution is representable
as a signed measure. Note that since η and q are C1 functions, use of (37) at points of
absolute continuity of u(x, t) means that the measure μη vanishes at those points, so
that μη is supported on the jump set of the solution. We note that the requirement

that η ∈ W 1,1
w∗ (0, T ;Mloc) is stronger than the usual assumption that the sum ηt+qx =

div(η, q) ≤ 0 in M , because we require each term to be a measure separately.
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4.4. The Riemann problem. As an illustrative example, we describe the well-
known solution of the Riemann problem as a BV weak* solution. Recall that the
solution of the Riemann problem consists of constant states separated by n centered
elementary waves, these being (centered) shocks or rarefactions for genuinely nonlinear
families, and (centered) contact discontinuities for linearly degenerate families.

Recall that a centered k-shock consists of a discontinuity between two constant
states u− = uk−1 and u+ = uk satisfying (38) and (39), which has constant shock
speed ξ′(t) = σk(uk−1, uk), so that the position of the shock at time t is given by
ξ(t) = σk(uk−1, uk) t. The centered k-shock can thus be written as

u(x, t) = uk−1 + (uk − uk−1)H(x− σk(uk−1, uk) t). (41)

A centered rarefaction wave is a solution of the form u(x, t) = w(x/t), which
satisfies (37), which reduces to

−ε dw
dε

+DF (w(ε))
dw

dε
= 0, ε = x/t.

This is an eigenvalue problem, and the centered k-rarefaction wave is u(x, t) = wk(ε),
corresponding to the k-th eigenpair,

dwk

dε
= rk(ε) and ε =

x

t
= λk(wk(ε)), (42)

and such that λk(wk(ε)) is monotone increasing. The k-rarefaction between states
uk−1 and uk is then described by

u(x, t) =

⎧⎪⎨⎪⎩
uk−1, x/t ≤ λk(uk−1),

wk(ε), λk(uk−1) ≤ x/t = ε ≤ λk(uk),

uk, λk(uk) ≤ x/t.

(43)

If the k-th family is linearly degenerate, that is rk ·∇λk ≡ 0, then the wave speed
does not change across a k-wave, and both (41) and (43) degenerate and coincide,
and the k-contact discontinuity is given by

u(x, t) = uk−1 + (uk − uk−1)H(x− λk(uk) t),

λk(uk) = λk(uk−1).
(44)

The general Riemann problem with data u0(x) = uL + (uR − uL) H(x) is solved
by finding (unique) states {u�}n�=0, with u0 = uL and un = uR, such that each uk−1

is connected to uk by a centered k-wave. We describe this as a weak* solution by
explicitly calculating the appropriate derivatives. It suffices to consider the waves
separately.

We first consider a k-shock satisfying (41). Clearly

F (u(x, t)) = F (uk−1) + (F (uk)− F (uk−1))H(x− σk(uk−1, uk) t),

and differentiating yields

u′ = Dtu = −(uk − uk−1)σk δσkt and

DxF (u) = (F (uk)− F (uk−1)) δσkt,
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where u′, being strongly measurable in Mn
loc, is the B-weak derivative of u. The jump

condition (38) implies (29), and u′ is clearly bounded,∣∣〈u′, α
〉∣∣ = |uk − uk−1| |σk| ‖α‖, and

‖u′‖Mn = |uk − uk−1| |σk|,

so u ∈W 1,∞
(
0,∞−;BV n

loc,M
n
loc

)
. The same estimates hold for k-contacts.

We now describe the k-rarefaction similarly. Across the wave, namely for
λk(uk−1) ≤ x/t ≤ λk(uk), we have

u′ =
dwk

dε
∂tε and DxF (u) = DF

dwk

dε
∂xε,

where x = λk(wk(ε)) t, and u′ = DxF (u) = 0 otherwise. It follows that

1 = λ̇k t ∂xε and 0 = λk + λ̇k t ∂tε,

where λ̇k := dλk

dε = dwk

dε ·∇λk, and we can calculate the action of u′ on a test function
α, by

〈
u′, α
〉
=

∫ tλk(uk)

tλk(uk−1)

dwk

dε

−λk

tλ̇k

α(x) dx = −
∫ λk(uk)

λk(uk−1)

dF

dλ
α(λt) dλ,

by change of variables, where now λ parameterizes the integral curve. It follows that
u′ is bounded,

∣∣〈u′, α
〉∣∣ ≤ ∫ λk(uk)

λk(uk−1)

∣∣∣dF
dλ

∣∣∣ dλ ‖α‖, so that ‖u′‖Mn ≤ V(F ),

the variation being taken along the integral curve, and again the solution satisfies
u ∈W 1,∞

(
0,∞−;BV n

loc,M
n
loc

)
.

Having described the simple waves separately, we now combine them into Lax’s
well-known solution of the general Riemann problem. That is, we identify states
u0 = uL, u1, . . . , un = uR, such that each pair (uk−1, uk) is joined by a k-wave,
satisfying (41) or (43) for genuinely nonlinear fields, and (44) for linearly degenerate
fields. Our assumption of strict hyperbolicity means that for each k = 1, . . . , n, we
have λk(uk) < λk+1(uk), so the waves can be consistently pieced together for positive
times t > 0. This means that the calculations above all hold locally, and for t > 0,
the (Bochner) derivative u′ is simply the sum of each of the individual terms.

It remains to state the sense on which the initial data is taken on. Recall that
the solution is absolutely continuous in Mn, and as t → 0, each individual wave
converges in Mn to the limit uk−1 + (uk − uk−1)H(x), so the full solution converges
to uL+(uR−uL)H(x), as required. Here, since for each fixed t, u(·, t) ∈ BV ⊂ L1

loc ⊂
Mn

loc, we note that ‖u(·, t)‖Mn = ‖u(·, t)‖L1, so we have continuity in L1 as a function
of t, namely u(·, t)→ u0 ∈ L1. We note that generally, the solution is not continuous
at t = 0 in BV , but only in the larger space L1. However, the Riemann solution is
continuous as a function of t in BV (with constant BV norm) for all positive times
t > 0.

Appendix A. G-weak differentiability. We now show that if a function
Ψ ∈ Lq

w∗(0, T ;X
∗) is bounded by a sufficiently regular integral, then it is G-weakly

differentiable. Throughout this appendix, we assume p and q satisfy 1
p + 1

q = 1.
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Theorem A.1. Fix ψ0 ∈ X∗ and suppose that Ψ ∈ Lq
w∗(0, T ;X

∗) is such that

for each x ∈ X, there are functions vx ∈ L1(0, T ) such that

〈
Ψ(t), x

〉
=
〈
ψ0, x

〉
+

∫ t

0

vx(s) ds , a.e. t ∈ [0, T ], (45)

and suppose there is a non-negative v ∈ Lq(0, T ) such that

|vx(t)| ≤ v(t) ‖x‖ , a.e. t ∈ [0, T ] . (46)

Then we have [Ψ] ∈ W 1,q
w∗ (0, T ;X

∗) if either 1 < q ≤ ∞ or q = 1 and X is separable.

Proof. Recalling that Lp(0, T ;X)∗ � Lq
w∗(0, T ;X

∗), we construct a bounded
linear functional on the space Lp(0, T ;X) which is a G-weak derivative of [Ψ].

We begin by observing that vx is almost linear in x; that is, for fixed x1, x2 ∈ X
and scalars α1, α2, we have∫ t

0

vα1x1+α2x2(s) ds =

∫ t

0

α1vx1(s) + α2vx2(s) ds, a.e. t,

and so absolute continuity of the integral implies that, for a.e. t, we have

vα1 x1+α2 x2(t) = α1 vx1(t) + α2 vx2(t).

We first assume q > 1 and let h(t) =
∑N

n=1 xn XEn
(t) ∈ X be a simple function.

Define the functional Γ on simple functions by

〈
Γ, h
〉
:=

N∑
n=1

∫
En

vxn
(t) dt . (47)

It is easy to verify that
〈
Γ, h
〉
is independent of the representation of h, and〈

Γ, α1h1 + α2h2

〉
= α1

〈
Γ, h1

〉
+ α2

〈
Γ, h2

〉
, (48)

so that Γ is linear on the subspace of simple functions.
Recall that for simple h(t) we can take the En disjoint, in which case

‖h‖Lp(0,T ;X) =
( ∫ T

0

∥∥∥∑
n

xn XEn
(t)
∥∥∥p dt

)1/p
=
(∑

n

‖xn‖pλ(En)
)1/p

,

and for such h, we have

∣∣〈Γ, h〉∣∣ ≤ N∑
n=1

‖xn‖
∫
En

v(t) dt =

∫ T

0

v(t)
( N∑

n=1

‖xn‖XEn
(t)
)
dt

≤ ‖v‖Lq(0,T )

( N∑
i=1

‖xn‖pλ(En) dt
)1/p

= ‖v‖Lq(0,T )‖h‖Lp(0,T ;X) ,

(49)

where we have used (46) and Young’s inequality.
If f ∈ Lp(0, T ;X), take a sequence {hn}n≥1 such that ‖f −hn‖Lp(0,T ;X) → 0. By

(49), the sequence
{〈

Γ, hn

〉}
n≥1

is Cauchy and hence converges, so we set
〈
Γ, f
〉
:=
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limn→∞

〈
Γ, hn

〉
, this limit being independent of the sequence hn. Using (48), it follows

that Γ is linear, and from (49) it is bounded,∣∣〈Γ, f〉∣∣ ≤ ∥∥v‖Lq(0,T ) lim
n→∞

‖hn‖Lp(0,T ;X) = ‖v‖Lq(0,T )‖f‖Lp(0,T ;X) ,

so that Γ ∈ Lp(0, T ;X)∗. By Theorem 3.3, there exists [Φ] ∈ Lq
w∗(0, T ;X

∗) such that

〈
Γ, f
〉
=

∫ T

0

〈
Φ(s), f(s)

〉
ds for all f ∈ Lp(0, T ;X) .

Define Ψ̄ : [0, T ]→ X∗ by

Ψ̄(t) = ψ0 + �

∫ t

0

Φ(s) ds, so that [Ψ̄] ∈W 1,q
w∗ (0, T ;X

∗).

Then, recalling (45) and (47), we have for each x ∈ X

〈
Ψ̄(t), x

〉
=
〈
ψ0, x

〉
+

∫ T

0

〈
Φ(s), xX[0,t](s)

〉
ds =

〈
ψ0, x

〉
+
〈
Γ, xX[0,t]

〉
=
〈
ψ0, x

〉
+

∫ t

0

vx(s) ds =
〈
Ψ(t), x

〉
, a.e. t ∈ [0, T ],

so that Ψ ∈ [Ψ̄] and thus Ψ ∈ W 1,q
w∗ (0, T ;X∗), completing the proof for q > 1.

Now set q = 1 and suppose that {xn}n≥1 is dense in X . Then the set

E =
⋃
n≥1

{
t ∈ (0, T ) : lim

h→0

1

h

∫ t+h

t

vxn
(s) ds = vxn

(t) , |vxn
(t)| ≤ v(t) ‖xn‖

}
has full measure. For t0 ∈ E, define Φ(t0) by

〈
Φ(t0), xn

〉
= vxn

(t0) for each n. Then,
as above, we check that Φ(t0) is a bounded linear functional on the linear span of
the set {xn}n≥1, with norm bounded by v(t0). This can be extended by continuity
to a linear functional on all of X , with norm ‖Φ(t0)‖X∗ ≤ v(t0). Setting Φ(t0) = 0
for t0 /∈ E, we obtain a mapping Φ : [0, T ] → X∗ such that

〈
Φ(t), xn

〉
= vxn

(t)

a.e. t ∈ [0, T ] for each n, and limn→∞

〈
Φ(t), xn

〉
=
〈
Φ(t), x

〉
for each t. This implies

that Φ is weak* measurable, and ‖Φ(t)‖ ≤ v(t) implies that [Φ] ∈ L1
w∗(0, T ;X

∗).

Again define Ψ̄ : [0, T ]→ X∗ by Ψ̄ = ψ0 + �
∫ t
0
Φ(s) ds, so that [Ψ̄] ∈ W 1,1(0, T ;X∗).

For fixed x ∈ X , the set

Ax =
{
t :
〈
Ψ(t), z

〉
=
〈
ψ0, z

〉
+

∫ t

0

vz(s) ds , for z = x and each xn

}
has full measure. For t ∈ Ax and any n, we have

〈
Ψ̄(t), xn

〉
=
〈
Ψ(t), xn

〉
, so that∣∣〈Ψ̄(t)−Ψ(t), x

〉∣∣ = ∣∣〈Ψ̄(t), x − xn

〉− 〈Ψ(t), x− xn

〉∣∣
≤ ‖Ψ̄(t)‖‖x− xn‖+ ‖Ψ(t)‖‖x− xn‖,

so that
〈
Ψ̄(t), x

〉
=
〈
Ψ(t), x

〉
for all t ∈ Ax. Since x ∈ X is arbitrary, Ψ and Ψ̄ are

weak*-equivalent and so Ψ ∈ [Ψ̄] ∈W 1,1
w∗ (0, T ;X

∗).
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A.1. Relation to Brezis’ space. Given a Banach space X and 1 ≤ p ≤ ∞,
Brezis defined the space W̃ 1,p(0, T ;X) to be the set of all absolutely continuous func-
tions Ψ : [0, T ] → X for which the total variation function t → VΨ(t) is absolutely
continuous on [0, T ], and such that the scalar pointwise derivative dVΨ

dt ∈ Lp(0, T ). In

particular, for Ψ ∈ W̃ 1,p(0, T ;X), for all 0 ≤ s < t ≤ T , we have

‖Ψ(t)−Ψ(s)‖ ≤ VΨ(t)− VΨ(s) =

∫ t

s

d

dt
VΨ(τ) dτ. (50)

Brezis proved that W 1,p(0, T ;X) ⊂ W̃ 1,p(0, T ;X), and if X is reflexive, the two

spaces coincide, W 1,p(0, T ;X) = W̃ 1,p(0, T ;X) [3].
We have shown in Theorems 3.6 and 3.4 that each Ψ ∈ W 1,q

w∗ (0, T ;X
∗) has an abso-

lutely continuous representative Ψ̄, and that this in turn satisfies Ψ̄ ∈ W̃ 1,q(0, T ;X∗).

We now show that the converse is also true, that is, if Ψ ∈ W̃ 1,q(0, T ;X∗), then
[Ψ] ∈W 1,q

w∗ (0, T ;X
∗).

Theorem A.2. For 1 < q ≤ ∞, the canonical mapping W̃ 1,q(0, T ;X∗) →
W 1,q

w∗ (0, T ;X), given by Ψ �→ [Ψ], is injective, onto and norm-preserving. The same

conclusion holds for q = 1 provided X is separable.

Proof. Suppose that Ψ ∈ W̃ 1,q(0, T ;X∗) and fix x ∈ X . Then the numerical
function

zx(t) :=
〈
Ψ(t), x

〉
: [0, T ]→ R

is absolutely continuous, so its pointwise derivative dzx
dx is defined λ-a.e., belongs to

L1(0, T ), and

〈
Ψ(t), x

〉
=
〈
Ψ(s), x

〉
+

∫ t

s

dzx
dt

(τ) dτ for all 0 ≤ s < t ≤ T .

Now, using (50), we have for all 0 ≤ s < t ≤ T ,∣∣∣ ∫ t

s

dzx
dt

(τ) dτ
∣∣∣ = ∣∣〈Ψ(t)−Ψ(s), x

〉∣∣ ≤ ‖x‖ ∫ t

s

d

dt
VΨ(τ) dτ,

which in turn implies ∣∣∣dzx
dt

(t)
∣∣∣ ≤ ‖x‖ d

dt
VΨ(t) a.e. t ∈ [0, T ].

Recalling that the variation satisfies d
dtVΨ(·) ∈ Lq(0, T ), the result now follows from

Theorem A.1.
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