
METHODS AND APPLICATIONS OF ANALYSIS. c© 2017 International Press
Vol. 24, No. 1, pp. 105–124, March 2017 008

REMARKS ON LAUFER’S FORMULA FOR THE MILNOR

NUMBER, ROCHLIN’S SIGNATURE THEOREM AND THE

ANALYTIC EULER CHARACTERISTIC OF COMPACT COMPLEX

MANIFOLDS∗
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Introduction. There are several classical approaches to studying the geome-
try and topology of isolated singularities (V, 0) defined by a holomorphic map-germ

(Cn+1, 0)
f
→ (C, 0). One of these is by looking at resolutions of the singularity,

π : Ṽ → V . Another is by considering the non-critical levels of the function f and
the way how these degenerate to the special fiber V . Laufer’s formula for the Milnor
number establishes a beautiful bridge between these two points of view. The formula
says that if n = 3, then one has:

μ+ 1 = χ(Ṽ ) +K2 + 12ρg ,

where μ is the Milnor number, i.e., the number of vanishing cycles in a nearby local
non-critical level; χ is the usual Euler Characteristic, K2 is the self-intersection num-
ber of the canonical class of the resolution, and ρg is the geometric genus (see the
text).

There is a generalistion of this formula by J. Steenbrink in [44] for normal surface
singularities which are Gorenstein and smoothable. There is also a generalization by
E. Looijenga in [26] to higher dimensions.

In this article we look at Laufer’s formula from various viewpoints. In Section
1 we discuss some basic facts about surface singularities and carefully describe the
various invariants appearing in Laufer’s formula. Section 2 puts together various
known geometric and topological facts about surface singularities. The main point is
that if the singularity is Gorenstein and we set V ∗ = V \P , then the structure group
of the tangent bundle TV ∗ has a reduction to SU(2), which is isomorphic to the group
of unit quaternions. This has a number of geometric and topological implications.

In Section 3 we discuss relations amongst Laufer’s formula and one of the classical
theorems in low dimensional topology: Rochlin’s signature theorem, saying that if M
is a closed oriented 4-manifold and W is a “characteristic submanifold”, then one has:

σ(M)−W 2 ≡ 8ArfW mod (16) ,

where ArfW is the Arf invariant of a certain quadratic form over H1(W ;Z2) (see
the text for explanations). This section is based on work by H. Esnault, E. Viehweg
and the author in [14], carrying Rochlin’s theorem to the framework of algebraic
geometry. Here we refine slightly the arguments in [14] to prove a formula over the
integers, whose reduction modulo 2 is, essentially, Rochlin’s theorem. No doubt this
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formula itself needs a refinement, aiming toward relations with more recent invariants
of low dimensional manifolds.

In section 4 we revisit Laufer’s formula in the context of Gorenstein normal surface
singularities. We use the material in the previous sections to discuss briefly the non-
smoothable case. We give a weak answer using a cobordism invariant; we hope this
may serve to point out a path to follow. A basic point is: Who plays the role of the
Milnor number when this is not naturally defined?

This article grew up from the talk I gave at the International Conference on Sin-
gularity Theory in honor of Henry Laufer’s 70th Birthday, held at the Tsinghua Sanya
International Mathematics Forum in December 2015. I am indebted to the organizers
for inviting me to participate in this meeting in honor of one of the mathematicians
I most admire.

1. Laufer’s Formula for the Milnor number. Consider a holomorphic map-
germ

f : (Cn+1, 0)→ (C, 0) ,

with a critical point at 0. Let V = f−1(0) and let LV = V ∩ Sε be the link. Milnor’s
classical theorem in [29] says that we have a locally trivial fibration:

φ :=
f

|f |
: Sε \ LV −→ S

1.

There is an alternative description of this fibration, essentially due to Milnor too.
Given ε > 0 as above, choose 0 < δ << ε and set N(ε, δ) = f−1(∂Dδ) ∩ Bε. Then:

f : N(ε, δ) −→ ∂Dδ
∼= S

1

is a locally trivial fibration, equivalent to the previous one.
When f has an isolated critical point, Milnor proved that the fiber Ft := f−1(t)∩

Bε has the homotopy type of a bouquet of spheres of middle dimension: Ft �
∨
Sn.

The number of spheres in this wedge is, by definition, the Milnor number of f ; usually
denoted μ(f) or simply μ. By definition one has: μ = RankHn(Ft) .

Milnor also proved that μ equals the Poincaré-Hopf local index of the gradient

vector field ∇f . Hence it equals the intersection number: μ = dimC

On+1,0

Jac(f) , where

Jac(f) is the Jacobian ideal of f (generated by its partial derivatives).

This number is also known as the Milnor number of the hypersurface germ (V, 0)
where V = f−1(0). It is an important invariant that has played a key-role in singu-
larity theory.

These results were soon generalized by H. Hamm to complex isolated complete
intersection singularities (ICIS), see [19, 27]:

f := (f1, · · · , fk) : (C
n+k, 0)→ (Ck, 0) .

Such a germ also has an associated Milnor fibration and the fibre has the homotopy
type of a bouquet of spheres of middle dimension. So this has too a well-defined
Milnor number, which is the rank of the middle-homology of the Milnor fibre.

Extending the notion of Milnor number to more general singularities is a topic
on which there is a vast literature and we will come back to this point in Section 4.

Now consider a normal surface singularity germ (V, 0). A natural and classical way
to study the germ (V, 0) is by considering resolutions of it. This leads, for instance,
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to several important invariants. We now introduce some of these, and we refer to the
literature for details (see for instance [5] or [41, Chapter IV]).

Let Ṽ be a resolution of (V, 0). This means that Ṽ is non-singular and we have a
proper analytic map:

π : Ṽ −→ V ,

which is a biholomorphism away from the exceptional divisor E := π−1(0). The
resolution is good if it further satisfies that the irreducible components Ei of E are
non-singular and they meet normally, i.e., they meet transversally and no three of
them meet at a point. Given any resolution of (V, 0), we can make it good by a
further sequence of blow ups. And there is always a minimal resolution, characterized
by Castelnuovo’s criterium: that no irreducible component of E := π−1(0) is rational
with self-intersection -1.

It is well known, by [30], that the intersection pairing inH2(Ṽ ) is negative definite.
This has many important consequences, one of these being that if the resolution is
good, then its canonical class K is characterized uniquely by the adjunction formula

2gEi
− 2 = Ei · (K + Ei) .

Let us be more precise. The irreducible components Ei, i = 1, ...r, of E generate the
homology group H2(Ṽ ). One has the canonical bundle K

Ṽ
of Ṽ , which is the bundle

of holomorphic 2-forms, and K is a divisor of this bundle. Thence K represents a
homology class in H2(Ṽ ;R) which “morally” is the dual of minus the Chern class of

Ṽ . This statement would be correct if Ṽ were a compact surface; in our setting we
need something else. A way to make this precise is to consider Ṽ as a compact smooth
4-manifold with boundary the link LV and a complex structure in its interior. By
Poincaré-Lefschetz duality we have an isomorphism H2(Ṽ ) ∼= H2(Ṽ , LV ). Hence the

class represented by the divisor K is dual to a class −ĉi(Ṽ ) in the relative cohomology

H2(Ṽ , LV ); the image of −ĉi(Ṽ ) in H2(Ṽ ) is the usual Chern class c1(T Ṽ ).
Since each irreducible component Ei of the divisor E is a smooth Riemann surface

embedded in Ṽ , we have a natural C∞ splitting:

T Ṽ |Ei
∼= TEi ⊕ νEi ,

where the latter is the normal bundle. Thus one has:

c1(T Ṽ |Ei
) = c1(TEi) + c1(νEi) ,

or equivalently:

−K ·Ei = (2− 2gEi
) + Ei · Ei ,

which is the adjunction formula. The remarkable fact is that satisfying this formula
for all the Ei characterizes uniquely the canonical class K; this happens because the
Ei generate the homology of Ṽ and the intersection pairing in Ṽ is non-degenerate.
Yet, it can happen that K is not an integral class, since the coefficients one gets
as solutions of the adjunction formulae can be rational numbers. For instance the
surface singularity one gets by taking a holomorphic line bundle L with Chern class
−c < 0 over the Riemann sphere and blowing down to a point the zero section S, has
canonical class K = (−1 + 2

c
)S, which is never integral if c > 2.
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For normal surface singularities, we can define Gorenstein singularities as follows.
The concept of numerically Gorenstein is due to Durfee in [11].

Definition 1.1. The germ of V at p is Gorenstein if its canonical bundle K =
∧2(T ∗(V \ {0}) is holomorphically trivial. The germ (V, 0) is numerically Gorenstein
if the complex bundle K is topologically trivial away from 0.

It is well known that every hypersurface (or complete intersection) germ is Goren-

stein. For instance, if V is defined by a holomorphic map germ (C3, 0)
f
→ (C, 0), then

contracting the canonical 3-form

Ω = dz1 ∧ dz2 ∧ dz3

by the gradient vector field ( ∂f
∂z1

, ∂f
∂z2

, ∂f
∂z3

) yields a holomorphic 2-form which is never-
vanishing on V \ {0}. In local coordinates this 2-form can be written as:

ω(z1, z2, z3) =
dz1 ∧ dz2
∂f/∂z3

=
dz2 ∧ dz3
∂f/∂z1

=
dz3 ∧ dz1
∂f/∂z2

.

A. Durfee proved in [11]:

Proposition 1.2. The following are equivalent:
(1) The germ (V, 0) is numerically Gorenstein;
(2) The complex bundle TV ∗ is topologically trivial, where V ∗ := V \ {0}.
(3) The canonical class K is integral.

The equivalence between the first two statements follows because c1(TV
∗) =

−c1(KV ∗) and by elementary homotopy reasons, a 2-dimensional complex vector bun-
dle over V ∗ is trivial if and only if its first Chern class vanishes. The next statement
is more subtle and we refer to [23] for a further discussion on numerically Gorenstein
singularities. The point is that the integrality of K corresponds to being able to find
a representative of the 1st Chern class of the resolution Ṽ whose support is contained
in the exceptional divisor π−1(0); and this is independent of the choice of resolution.

Remark 1.3. [Zariski-Lipman conjecture] For every normal surface singularity
(V, 0) one has that the tangent bundle T (V \ {0}) is trivial as a real vector bundle.
If the singularity is Gorenstein, then the canonical bundle K of V \ {0}, which is the
second exterior product of T (V \ {0}), actually is holomorphically trivial. Hence it is
natural to ask whether there exist normal surface singularities such that T (V \ {0}) is
holomorphically trivial. The Zariski-Lipman conjecture claims that if this is so, then
the germ (V, 0) actually is regular.

Notice that the Euler characteristic χ(Ṽ ) is easily computable from the genera of

the Ei and the way they meet: Each Ei contributes to χ(Ṽ ) with its Euler charac-
teristic χ(Ei), and then each meeting point of an Ei with an Ej contributes with −1.

Of course χ(Ṽ ) depends on the choice of resolution. Similarly, the self intersection
number

K2 = K ·K = a2iE
2
i + 2aiaj(Ei · Ej) ,

where K = a1E1 + · · · arEr, also depends on the choice of resolution. Yet, it is an
exercise to show that the sum:

χ(Ṽ ) +K2
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is independent of the choice of resolution, and so is an invariant of the germ (V, 0).
Moreover, this invariant depends only on the topology of the germ (V, 0) and not on
its complex structure, by [32].

There is another important invariant of the germ (V, 0) which plays a major role
in the sequel, the geometric genus:

ρg := dimH1(Ṽ ,O) .

This too is independent of the choice of resolution, but this invariant does depend
on the choice of the complex structure on (V, 0). For instance the Pham-Brieskorn
singularities:

z21 + z72 + z143 and z31 + z42 + z123 ,

have the same topology but different geometric genus. Yet, there is remarkable work
by A. Nemethi and others showing that under certain conditions the geometric genus
is topological (see for instance [31]).

Laufer in [22] proved:

Theorem 1.4. Assume the germ (V, 0) is a hypersurface germ. Then

μ(V ) + 1 = χ(Ṽ ) +K2 + 12ρg(V ) .

In fact the same statement, with essentially the same proof, holds for all Goren-
stein surface singularities with a smoothing that can be put in a projective family
with no other singularities. This includes all ICIS.

Observe that the left hand side in Laufer’s formula is the Euler characteristic of
the Milnor fibre and therefore has no a priori meaning if the singularity is not an
ICIS. Yet, the right hand side is an integer defined always for all normal numerically
Gorenstein surface singularities, and it is an invariant of (V, 0).

Definition 1.5. Let (V, 0) be a numerically Gorenstein normal surface singu-
larity germ. We call:

La(V, 0) := χ(Ṽ ) +K2 + 12ρg(V )

the Laufer invariant of (V, 0).

So a natural question is:

Question 1.6. What is the Laufer invariant when the germ is not an ICIS? In
other words, what is there on the left hand side of the equation in Theorem 1.4 when
the singularity is not an ICIS?

I will consider two cases:

a) The singularity germ is Gorenstein and smoothable;

b) The germ is non-smoothable.

The answer in the first case is due to Steenbrink (Theorem 1.8 below). The
non-smoothable case is open and this is the subject we discuss in Section 4.

We recall that the surface singularity germ (V, 0) is smoothable if there exists
a 3-dimensional complex analytic space W and a flat map F : W → C such that
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F−1(0) is isomorphic to (V, 0) and F−1(t) is smooth for t 
= 0. It is well known that
there exist normal surface Gorenstein singularities which are non-smoothable. And
there exist also normal surface singularities which have non-equivalent smoothings.
We refer, for instance, to [47] for more on smoothings of surface singularities.

The following two theorems are important in the sequel (see [18, 44]):

Theorem 1.7 (Greuel-Steenbrink). Every smoothable Gorenstein normal sur-
face singularity (V, 0) has a well-defined Milnor number μGS: The 2nd Betti-number
of a smoothing. Furthermore, the first Betti number b1 vanishes, hence the Euler
characteristic of every smoothing equals μGS + 1.

Theorem 1.8 (Steenbrink). This invariant satisfies Laufer’s formula:

μGS + 1 = χ(Ṽ ) +K2 + 12ρg(V ) .

In other words, for normal surface singularities which are Gorenstein and smooth-
able, the Laufer invariant is: La(V, 0) = μGS + 1 .

2. Geometry and topology on Gorenstein singularities. Let (V, 0) be a
normal surface singularity germ. Let LV be its link and set V ∗ = V \ {0}. Then
V ∗ is a complex manifold of dimension 2, so its tangent bundle TV ∗ has GL(2,C)
as structure group. This can always be reduced to U(2) by endowing V ∗ with a
Riemannian metric. If we want to reduce the structure group further to SU(2) then
we meet an obstruction: The action of U(2) must be trivial on the canonical bundle
KV ∗ of holomorphic 2-forms on V ∗, since the action of the structure group U(2) on
TV ∗ is by the determinant. Hence the structure group can be reduced to SU(2) if
and only if the canonical bundle of V ∗ is topologically trivial. So we arrive to the first
statement in the following theorem from [38, 39], since for Gorenstein singularities
the canonical bundle of V ∗ is trivial. Recall that SU(2) consists of the 2× 2 matrices
of the form: (

z1 z2
−z̄2 z̄1

)
, z1, z2 ∈ C and |z1|

2 + |z2|
2 = 1 ,

so it is isomorphic to the 3-sphere S
3, which is the group Sp(1) of unit quaternions.

Theorem 2.1. Let (V, 0) be a normal Gorenstein surface singularity germ. Let
LV be its link and set V ∗ = V \ {0}. Then:

(1) A choice of a never-vanishing holomorphic 2-form ω on V ∗ determines:
• A reduction to SU(2) ∼= Sp(1) of the structure group of the tangent
bundle TV ∗

• A canonical trivialization P of the tangent bundle TLV which is compat-
ible with the complex structure on V . We call P the canonical framing
of LV .

(2) The element in the framed cobordism group Ωfr
3
∼= Z24 represented by the pair

(LV ,P) depends only on the analytic structure of the germ (V, 0) and not on
the other choices.

We thus have, from the first statement, that for Gorenstein singularities, the
tangent bundle TV ∗ actually is a bundle over the quaternions and we have at each
point in V ∗ multiplication by the quaternions i, j, k. This implies the second statement
in the theorem above: At each point x ∈ LV we can multiply the unit outward normal
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vector ν(x) by i, j, k, thus getting three linearly independent vector fields on LV that
provide a trivialization of its tangent bundle. By construction this parallelism on the
link is compatible with the complex structure on V ∗.

The proof of the last statement in Theorem 2.1 follows easily from Theorem 2.2
below.

We recall that ifX is a closed oriented 4-manifold, its Pontryagin class p1(X) is the
2nd Chern class of the complexification of its tangent bundle: p1(X) = −c2(TX⊗C) .

For every 2-dimensional complex bundle one has p1 = c21−2c2 . If X is a complex
manifold then: c2(X)[X ] = χ(X) . Hence in this case we have:

p1(X)[X ] = c21(X)[X ]− 2c2(X)[X ] = K2
X − 2χ(X) ,

where KX is the canonical class, dual of c1 of the canonical bundle KX := ∧2(T ∗(X).
We now let X be a compact oriented 4-manifold with non-empty boundary M .

Suppose further that M is equipped with a trivialization τ of its tangent bundle TM .
Since X is oriented, the normal bundle ν(M) of M in X is trivial and, endowing X
with a Riemannian metric, we have a canonical trivialization ν of ν(M). Then τ ⊕ ν
determines a trivialization of TX |M .

Using the isomorphism TX |M ∼= M × R4 determined by τ ⊕ ν, we get a vector
bundle over the quotientX/M . The relative Pontryagin class p1(X ; τ) ∈ H4(X,M ;Z)
is defined as that of the bundle we get over X/M using that H4(X/M) ∼= H4(X,M).
This depends on the choice of τ . We refer to [45] and to [7, Chapter 1] for a thorough
discussion of relative characteristic classes.

If X has a complex structure then we may ask the trivialization τ of TM to be
compatible with that complex structure, i.e., that τ⊕ν trivializes TX |M as a complex
bundle. In that case, if τ is compatible with complex structure on X , we have:

p1(X ; τ)[X ] = c21(X ; τ)[X ]− 2c2(X ; τ)[X ] = K2
X,τ − 2χ(X)

where KX,τ is the canonical class relative to τ , dual of c1 of the canonical bundle rel-
ative to τ . In other words, τ defines a trivialization of the canonical bundle restricted
to M , and KX,τ is the obstruction to extending that trivialization over the interior
of X . Alternatively, we may use τ to identify the fibers of the canonical bundle over
points in M , and get a line bundle over the quotient space X/M . Then KX,τ is the
dual in H2(X) of the Chern class of the line bundle over X/M via the isomorphism
H2(X/M) ∼= H2(X,M).

In order to determine the element in Z24 that (LV ,P) represents we may use a
classical invariant coming from algebraic topology: the Adams e-invariant. In this
dimension it is an integer modulo 24 and it provides a group isomorphism:

eR : Ωfr
3 −→ Z24 ,

where Ωfr
3 is the cobordism group of stably framed 3-manifolds

The original definition of this invariant by J. F. Adams is via homotopy theory.
Conner and Floyd gave an interpretation using spin cobordism and the Â-genus,
which is an integer for closed spin manifolds. There is also a slightly weaker complex
Adams e-invariant eC, which in this dimension is the reduction modulo 2 of eR and
can be defined in terms of complex cobordism, using the Todd genus. Later Seade
[40] improved the interpretation of the real Adams e-invariant in terms of cobordism
by using the Todd genus together with a correction term in Z2 for the lack of a spin
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structure. In the setting of singularities, the complex Adams e-invariant was first used
by A. Durfee in [11]. Then Seade used it in various papers, as briefy explained below.

Let (V, 0) be again a normal Gorenstein surface singularity, and let (LV ,P) be its
link equipped with its canonical framing. The following theorem spring easily from
[38, 39, 40]:

Theorem 2.2. If X is a compact 4-manifold with boundary LV , whose interior
has a complex structure compatible with P. Then:

eR([LV ,P ]) = K2
X,P + χ(X) + 12Arf(KX) mod (24) ,

where KX,P ∈ H2(X) is the dual of the Chern class of the canonical bundle of X
relative to P and Arf(KX) ∈ {0, 1} is the Arf invariant of a certain quadratic form
associated to KX . Furthermore:

• If X = Ṽ is a good resolution of (V, 0), then KX is the canonical class, inde-
pendently of the choice of P.

• If (V, 0) is smoothable and X = FV is a smoothing, then KX = 0 and
Arf(KX) = 0.

We say more about the invariant Arf(KX) in the following section. Recall
that just as the signature classifies the non-degenerate quadratic forms on finite-
dimensional vector spaces over R, so too the Arf invariant classifies the non-degenerate
quadratic forms on finite dimensional vector spaces over Z2 := {0, 1}. The Arf invari-
ant of such a form is 0 if and only if it carries more elements to 0 than to 1.

Corollary 2.3. Let (V, 0) be Gorenstein and smoothable, and Ṽ a good resolu-
tion. Then:

μGS + 1 ≡ K2 + χ(Ṽ ) + 12Arf(K) mod (24)

where μGS is the Milnor number and K := K
Ṽ

is the canonical class. Thence by the
Laufer-Steenbrink formula, Arf(K) equals the parity of the geometric genus:

Arf(K) = dimH1(Ṽ ,O
Ṽ
) mod (2) .

We remark that Arf(K) and the geometric genus are defined even if the germ
(V, 0) is non-smoothable. It was thus asked in [40] whether or not the last congruence
adobe holds for non-smoothable singularities. The answer is positive, as proved in
[14] and discussed in the following section.

3. Rochlin’s signature theorem revisited for complex manifolds. The
classical Rochlin’s signature theorem in [35] states that the signature of a closed spin
4-manifold is divisible by 16. In the context of complex manifolds this is equivalent to
saying that for compact complex surfaces with even canonical class, the Todd genus
is an even integer. In this section we briefly discuss improvements of this theorem.

Recall that if X is a closed oriented 4-manifold, the cup product determines a
non-degenerate bilinear form:

H2(X ;R) ∪H2(X ;R) −→ H4(X ;R) ∼= R .

The signature of X , σ(X) ∈ Z, is by definition the signature of this quadratic form.
By Thom’s theorem in [46] we have:

σ(X) =
1

3
p1(X)[X ] ,



ANALYTIC EULER CHARACTERISTIC OF COMPLEX MANIFOLDS 113

where p1 is the Pontryagin class and [X ] is the orientation cycle. Notice that this is
a special case of Hirzebruch theorem [20], saying that the signature of closed oriented
manifolds of dimension 4k is given by the corresponding L-genus.

Rochlin signature theorem was later refined and improved by a number of people,
culminating in the theorem below (see for instance [36, 15, 34]). We recall that a
characteristic submanifold is an oriented submanifold of codimension 2 representing
a homology class in H2(X ;Z) whose reduction modulo 2 is dual to the 2nd Stiefel-
Whitney class.

Theorem 3.1 (Rochlin). Let W be a characteristic submanifold of X, then

σ(X)−W 2 ≡ 8Arf W mod (16)

where ArfW ∈ {0, 1} is the Arf invariant of a certain quadratic form on H1(W ;Z2).

In fact it is well-known that every closed oriented 4-manifold is spinc and its
spinc structures are classified by the homology classes represented by its characteristic
submanifolds. Moreover, if W is characteristic in X , then W actually determines a
spinc structure on X , which in turn determines a spin structure on W (see [34]). One
has that ArfW = 0 if and only if W , equipped with its induced spin structure, is a
spin boundary.

If we now consider a compact complex manifold M of complex dimension 2, then
its Pontryagin class can be expressed in terms of the Chern classes:

p1(M)[M ] = c21(M)[M ]− 2c2(M)[M ] .

By definition one has c2(M)[M ] = χ(M) where χ(M) is the usual Euler characteristic.
Hence, if KM is the canonical class, Poincaré dual of c1 of the canonical bundle
KM := ∧2(T ∗(M), then we get:

p1(M)[M ] = K2
M − 2χ(M) .

We we may actually take KM as being a divisor, and −KM is the anti-canonical
divisor, dual of c1(TM).

We remark that for complex manifolds, the 2nd Stiefel-Whitney class is the reduc-
tion modulo 2 of its 1st Chern class. Hence in this case we can say that a characteristic
submanifold of M is a smooth submanifold W of real dimension 2 that represents the
same class as KM in H2(M ;Z2).

Since KM is the zero-set of a section of the canonical bundle KM , if we forget
about holomorphicity, we can make that section transverse to the zero section of KM

and get that KM can always be smoothed C∞; then the smoothing is a characteristic
submanifold. IfKM is even, the empty set ∅ is characteristic andM is a spin manifold.

Recall that the Thom-Hirzebruch signature theorem in [20] says:

σ(M) =
1

3
p1(M)[M ]

where p1 = Pontryagin class. Thus, if W = K̃ is a C∞ smoothing of the canonical
divisor KM , then Rohlin’s theorem can be restated as:

(c21(M) + c2(M))[M ] ≡ 12Arf K̃ (24).

Recall the 2nd Todd polynomial is 1
12 (c

2
1 + c2). That is:

Td(M) =
1

12
(c21(M) + c2(M))[M ]
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so Rohlin’s theorem can be restated as:

Td(M) ≡ Arf K̃ mod (2) .

On the other hand the Riemann-Roch-Hirzebruch theorem [20] says the Todd genus
equals the analytic Euler characteristic: Td(M) = χ(M,OM ) . Thus we arrive to the
following formulation of Rochlin’s theorem:

Theorem 3.2. For compact complex surfaces, the parity of the analytic Euler
characteristic is determined by the invariant Arf K̃:

χ(M,OM ) ≡ Arf K̃ mod (2) .

In this theorem we can essentially replace K by any other divisor whose reduction
modulo 2 coincides with that of K. In that case we must consider the analytic Euler
characteristic with coefficients in some appropriate holomorphic bundle (see below for
details).

We want a similar expression in algebraic geometry, not with a topological
smoothing of K but in terms of actual divisors. We follow [14]. We have:

Definition 3.3. [Esnault-Seade-Viehweg] A characteristic divisor W of M is
a divisor of a bundle L of the form L = D2 ⊗K−1

M .

Observe that in this case W is a divisor of the form W = 2D −KM where D is
a divisor of some holomorphic bundle D. In this case, if W 
= 0, the restriction of D
to W is a theta-characteristic on W . That is (see [14, Lemma 1.3]):

D2|W ∼= KW .

Notice too that the reduction of W modulo 2 coincides with that of KM . If W = 0,
then we have that the bundle D is a square root of the canonical bundle KM .

Definition 3.4. Let W be a characteristic divisor of M . Define its mod
(2)-index by:

h(W ) = dim H0(W,D|W ) mod (2) ,

if W 
= 0. If W = 0, then define h(W ) = 0.

We remark that by [4, 25], if W is non-singular, this is the invariant Arf(W ) in
Rochlin’s theorem. In the particular case of the canonical class K := KM one has
D = KM , so that its mod (2)-index is:

h(K) = dim H0(K,KM |K) mod (2) .

We have the following theorem from [14], which is a version of Rochlin’s signature
theorem for complex manifolds, with the additional feature that it uses divisors instead
of smooth submanifolds.

Theorem 3.5. [Esnault-Seade-Viehweg] Let M be a compact complex manifold of
complex dimension 2, and let W be a characteristic divisor in M , say W = KM − 2D
where D is a divisor of some holomorphic bundle D. Then:

h(W ) ≡ χ(M,D) mod (2) ,
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where χ(M,D) =
∑2

i=0(−1)
ihi(M,D) is the analytic Euler characteristic of M with

coefficients in D. In particular, the parity of the analytic Euler characteristic of M
coincides with the mod (2) index h(K):

h(K) ≡ χ(M,OM ) mod (2) .

This theorem is proved in [14] in a more general setting, for complex manifolds
of dimension of the form 4k + 2. Here we restrict to the case k = 0.

If we can take W = 0, this means that M admits a spin structure, and in this
case the theorem is very easy to prove: If W = 0, then KM = D2 and therefore Serre
duality yields:

H0(M ;D) ∼= H2(M ;KM ⊗D−1) ∼= H2(M ;D) .

Thence

χ(M,D) ≡ h1(M,D) mod (2) ,

and the result follows because the cup product on H1(M,D) is skew, so this space
must be even dimensional.

The proof of (3.7) in [14] can be refined slightly to prove the theorem below, which
is stronger.

Theorem 3.6. Let M and W = 2D − KM be as in Theorem 3.7. If W 
= 0,
then:

h0(W ;D|W ) = χ(M,D) +R ,

with R an even integer: R = h1(M ;D)− 2h2(M ;D)+ dim Ker(β̂) , where β̂ is a skew
symmetric bilinear form on H1(M ;D).

Proof. Consider the exact sequence of sheaves over M ,

0→ KM ⊗D−1 s∗

−→ D
r
−→ D|W → 0 ,

where s∗ is multiplication by the section s of L that defines W and r is the restriction
to W . We have the corresponding long exact cohomology sequence:

0→ H0(M ;KM ⊗D−1)−→H0(M ;D) −→ H0(W ;D|W )
α
−→

α
−→ H1(M ;KM ⊗D−1)

β
−→ H1(M ;D)→ · · ·

From this we get an exact sequence:

0→ H0(M ;KM ⊗D−1)→H0(M ;D)→ H0(W ;D|W )
α
→ Im(α)→ 0 .

For each cohomology group, let hi be the dimension of Hi. By exactness we get:

h0(M ;KM ⊗D−1)− h0(M ;D) + h0(W ;D|W ) = dim Im(α) .

By Serre’s duality we have:

H0(M ;KM ⊗D−1) ∼= H2(M ;D) .
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Substituting in the equation above we get:

h2(M ;D)− h0(M ;D) + h0(W ;D|W ) = dim Im(α) .

Hence:

h0(W ;D|W ) = χ(M,D) + h1(M ;D)− 2h2(M ;D) + dim Ker(β) ,

since by exactness, dim Im(α) = dim Ker(β). We get

h0(W ;D|W ) = χ(M,D) +R

with R as claimed in Theorem 3.6. It remains to prove that R is even. That h1(M ;D)
is even follows because the cup product in H1(M ;D) is a non-degenerate skew form.
It remains to show that dim Ker(β) is even too. In fact, by Serre duality

H1(M ;KM ⊗D−1) ∼= H1(M ;D) ,

and β is a bilinear form: It is defined by the cup product

H1(M ;KM ⊗D−1)×H1(M ;KM ⊗D−1) −→ H2(M ;K2
M ⊗D−2) ,

followed by the maps:

H2(M ;K2
M ⊗D−2)

s∗

−→ H2(M ;KM )
tr
−→ C .

Since the cup product above is skew, β can be written as a matrix of the form:⎛
⎜⎜⎜⎜⎜⎝

0 b1
−b1 0

0 b2
−b2 0

. . .

⎞
⎟⎟⎟⎟⎟⎠

Hence the kernel of β is even dimensional. The result follows by letting β̂ be the dual
form of β in H1(M ;D).

Now consider a normal Gorenstein surface singularity germ (V, 0) that we can
assume algebraic. We may take a compactification of it and resolve all its singularities.
We are then in the setting envisaged above. It is shown in [14, Sections 3,4] that the
previous discution, with some extra work, yields:

Theorem 3.7 (Esnault-Seade-Viehweg). Let π : Ṽ → V be a resolution of (V, 0),
and let K := K

Ṽ
be a divisor of the canonical bundle K := K

Ṽ
. Assume further, with

no loss of generality, that the divisor K is vertical, i.e., the support of the divisor is
contained in the exceptional curve. Then the parity of the geometric genus coincides
with the mod (2) index h(−K). That is,

dimH1(Ṽ ,O
Ṽ
) ≡ dimH0(−K,K|K) mod (2) .

Furthermore, if the resolution Ṽ is minimal, then for all vertical divisors D ≥ 0 and
W = 2D −K

Ṽ
we have the actual equalities:

dimH1(Ṽ ,O
Ṽ
) = dimH0(−K,K|K) = dimH0(W,D|W ) +

1

8
(W 2 −K2

Ṽ
) .
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The last equality essentially comes from the Rieman-Roch theorem for surfaces,
which implies that for a compact complex surface M and a divisor W = K − 2D as
above we have:

χ(M,D) = χ(M,D) +
1

8
(W 2 −K2) .

4. Laufer’s formula revisited. We know from Theorem 1.8 that if (V, 0) is a
normal Gorenstein singularity which is smoothable, then:

μGS(V ) + 1 = χ(Ṽ ) +K2 + 12ρg(V ) .

The right hand side is the Laufer invariant of (V, 0). This is well defined even for
non-smoothable singularities. It is thus natural to ask who ought to be in left hand
side when the singularity is non-smoothable? A weak answer springs from theorems
2.2 and 3.7 above:

Theorem 4.1. Let (V, 0) be a normal Gorenstein singularity, let LV be its link

and P its canonical framing. Let Ṽ be a resolution of (V, 0). Then the Laufer invariant
of (V, 0) reduced modulo 24 equals the real e-invariant of the pair [LV ,P ]:

eR[LV ,P ] = K2
Ṽ
+ χ(Ṽ ) + 12 ρg mod (24) .

In order to get a complete answer following this line of thought, we need to define
an invariant in Z associated to the link, such that its reduction modulo 24 equals
eR[LV ,P ]. At this moment, I do not know how to do this.

A much related question is: Who ought to be the Milnor number for normal
isolated (Gorenstein surface) singularities in general?

There are several possible definitions of the Milnor number in the literature,
including a very interesting one by Buchweitz-Greuel for curves (see [9]). This is
determined by the Euler characteristic of a smoothing when that exists. Yet, in higher
dimensions there are singularities having various smoothings with different topology.

There are two other viewpoints I wish to mention, which have been explored
by various people: One is the via indices of vector fields and 1-forms; another is via
Chern classes for singular varieties. Let us sketch these. We refer to [7] for a thorough
account on the material in this section and bibliography about it.

4.1. Indices of vector fields and 1-forms: The homological index. Let
(V, 0) be a normal complex isolated singularity germ of dimension n ≥ 1, defined in
some CN . Let v be a continuous vector field on V . That is, v is the restriction to V
of a continuous vector field in a neighborhood of 0 in CN , which is tangent to V at
each x ∈ V \ {0}. We assume v is singular at 0 and it has no more singularities on V .

Indices of vector fields on singular varieties appear first in work by M. H. Schwartz
[37] and R. MacPherson [28] in relation with Chern classes for singular varieties. They
considered vector fields which are radial, which in our setting means that restricted
to V they are transversal to every small sphere in CN centered at 0.

The first concept of an index of vector fields in general, on singular varieties, was
introduced in [7] and is known as the GSV index. This is defined for vector fields as
above provided (V, 0) is an ICIS. In that case the GSV index is defined by:

IndGSV(v; (V, 0)) = IndPH(v;Vt) ,
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where the latter is the total Poincaré-Hopf index of an extension of v to a Milnor
fibre of (V, 0). A basic property of this index is that if v is radial at 0, then its index
is the Euler characteristic of the Milnor fibre. The GSV index has an interpretation
as the “virtual index”, defined in terms of Chern-Weil theory (see [7]). And it has
also an algebraic interpretation in [17], the homological index, which is particularly
interesting for what follows, because is does not need the germ (V, 0) to be an ICIS.
We return to this point below.

There is another concept of index which is relevant in the sequel, the radial
index, that we denote Indrad(v; (V, 0)). This has several important properties (see for
instance [7]). It was first introduced by H. King and D. Trotman in [21] and later
(independently) by W. Ebeling and S. Gusein-Zade [12] and by M. Aguilar et al in
[1].

When the vector field v is radial, then Indrad(v; (V, 0)) = 1 by definition. Oth-
erwise we must consider too a contribution for “its lack of radiality”: We consider
a cylinder V(ε,ε′) in V bounded by two sufficiently small spheres Sε, Sε′ , ε > ε′ > 0.
We consider a continuous vector field ζ on V(ε,ε′) with isolated singularities, which
restricts to v on V ∩ Sε and to a radial vector field on V ∩ Sε′ . Then define

Indrad(v; (V, 0)) = 1 + IndPH(ζ; (V(ε,ε′)) ,

where the latter is the total Poincaré-Hopf index of ζ on the manifold V(ε,ε′).
An interesting basic property of this index is that it is defined for all continuous

vector fields on arbitrary isolated singularities, even real analytic ones, and if the germ
(V, 0) is a complex ICIS, then its difference with the GSV index is the Milnor number
up to sign, independently of the choice of vector field.

These concepts of indices have been extended to 1-forms by W. Ebeling and S.
Gusein-Zade in several articles. The homological index of 1-forms was is introduced
in [13] inspired by Gómez-Mont’s construction in [17] for vector fields. Let us recall
this index for 1-forms:

Consider a normal isolated singularity (V, 0) of dimension n in some CN , and a
germ of a holomorphic 1-form ω in Cn with an isolated singularity in V at p, i.e., its
kernel is transverse to V at every point away from p. For each j ≥ 0, let Ωj(V, 0) be
the space of j-forms on the germ (V, 0). One has a complex (Ω•

V,p,∧ω):

0 −→ Ω0(V, 0)
∧ω
−→ Ω1(V, 0)

∧ω
−→ · · ·

∧ω
−→ Ωn(V, 0) −→ 0

where the arrows are exterior multiplication by ω.

One has the homology of this complex in the usual way, and this is all finite
dimensional. We then define:

Definition 4.2. The homological index Indhom(ω; (V, 0)) is the Euler charac-
teristic of this complex up to sign:

Indhom(ω; (V, 0)) :=

n∑
i=0

(−1)n−i hi(Ω
•
V,p,∧ω).

This construction is dual to the original one in [17] for vector fields, where the
arrows go in reverse sense:

Ωj(V, 0)
�v
−→ Ωj−1(V, 0) ,



ANALYTIC EULER CHARACTERISTIC OF COMPLEX MANIFOLDS 119

where � is the contraction of forms by the vector field.
If the germ (V, 0) is an ICIS, then the homological index coincides with the GSV-

index. The proof of this fact for 1-forms is given in [13] and essentially follows Greuel’s
computations for the celebrated Lê-Greuel formula for the Milnor number of an ICIS.
In the case of vector fields, this was proved in Gómez-Mont’s first paper on the topic,
[17], when (V, 0) is a hypersurface germ. The proof in the ICIS case is much harder
and was proved recently in [10]. It follows that in this case, for a 1-form on V with
an isolated singularity at 0, the index Indhom(ω; (V, 0)) is the number of singularities
of the restriction of ω to a Milnor fibre (counted with their local multiplicities). As
noted in [13], we then have:

μ(V, 0) = Indhom(ω; (V, 0))− IndRad(ω; (V, 0)) . (4.2)

That is, the Milnor number is the difference between the homological and the radial
indices of the 1-form ω, independently of the choice of ω.

Now, if the germ (V, 0) is not an ICIS, the radial and the homological indices are
still defined: What is the left hand side of equation (4.2) in this more general case?
Is this the Laufer invariant when V is a two-dimensional Gorenstein singularity?

Remark 4.3. It is an exercise to show that given an arbitrary isolated singularity
germ (V, 0), the difference of the radial and the homological indices of a holomorphic
1-form on (V, 0) is independent of the choice of the 1-form, so it is an invariant
ν := ν(V, 0) of the germ, introduced in [13]. If this germ is an ICIS, ν is the Milnor
number: What is it in general? If (V, 0) is a Gorenstein surface singularity, is ν + 1
the Laufer invariant?

Remark 4.4. [The total homological index] Let X be a compact complex analytic
variety of pure dimension n with isolated singularities, and v a continuous vector
field on X with isolated singularities. Assume further that v is holomorphic in a
neighborhood of each singular point of X. Then one has a total homological index
Indhom(v;X) defined in the obvious way: It is the sum of the homological indices of
v at the singularities of X, plus the usual Poincaré-Hopf local indices at the smooth
points of X. It is easy to show that Indhom(v;X) is independent of the choice of v
and depends only on X. What is this invariant, that we may denote Indhom(X)? If
X is a complete intersection, then Indhom(X) is the top dimensional Fulton-Johnson
class of X evaluated on the orientation cycle. What is it in general?.

4.2. The Milnor classes. Milnor classes were introduced by various authors at
about the same time and we refer to [7] for references and a thorough account on the
subject. We just sketch here the main ideas in relation with this article.

Recall that a complex manifold M of dimension n has Chern classes
c1(M), · · · , cn(M). These can be defined in various equivalent ways, as for instance:

i) As the primary obstructions for constructing appropriate frames of vector fields;
ii) In an axiomatic way;
ii) Using connections, via Chern-Weil theory.

Chern classes are important invariants that play a fundamental role in many areas of
mathematics. It is thus natural to search for extensions of these to singular varieties.
Nowadays there are several non-equivalent such extensions, each having its own prop-
erties and interest. In a way each of these is related to some kind of extension of the
concept of tangent bundle to the case of singular varieties.
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The first extension of Chern classes to singular varieties was by M. H. Schwartz
[37] in the early 1960s. She considered a compact singular variety X of dimension n
in some complex manifold M , equipped with a Whitney stratification. Let U be a
regular neighborhood ofX in M ; this is itself a complex manifold, union of strata. She
then considered stratified vector fields and used obstruction theory to obtain special
representatives of the Chern classes of U adapted to X in some appropriate sense.
These classes are elements in H∗(U ,U \ X) that depend only on X and not on the
manifold M . When X is non-singular we have a natural isomorphism H∗(U ,U \X) ∼=
H∗(X) (with appropriate shifts in dimensions) and the Schwartz classes become the
usual Chern classes.

Later, in 1974, R. MacPherson gave in [28] a different construction of Chern classes
for singular varieties and showed that these satisfy certain axioms, thus answering a
conjecture by Deligne and Grothendieck. These classes live in the homology, and
when the space is a compact manifold, they are dual to the usual Chern classes.

MacPherson’s construction uses the Nash transform X̃
ν
→ X ; the projection ν is

an isomorphism over the regular part Xreg of X . One has the Nash bundle T̃ → X̃
which essentially coincides with the tangent bundle on Xreg. The Chern classes of

T̃ live in H∗(X̃); they can be mapped into H∗(X̃) by the Alexander homomorphism
and then pushed down into the homology of X . The classes one gets in H∗(X) are
by definition the Mather classes of X . The MacPherson classes are obtained from
these by putting appropriate weights on each stratum of some Whitney stratification;
the weights in question are given by an invariant introduced by MacPherson which is
called the local Euler obstruction.

Brasselet and Schwartz in [8] proved that the Alexander duality isomorphism

H∗(U ,U \X) ∼= H∗(X)

carries the Schwatz classes into those defined by MacPherson, thence these became
known as the Chern-Schwartz-MacPherson classes, that we may denote by ĉSM

i ∈
H2i(X ;Z), i = 1, ..., n. Essentially by definition one has that the 0-degree term is the
Euler characteristic.

On the other hand, in [16] the authors gave another construction of Chern classes
for singular varieties using Segre’s class. This is easy to explain when X is a global
complete intersection in some complex manifold M , defined by a regular sequence
(s1, · · · , sk) of sections of some holomorphic bundle E of rank k over M . Restricted
to the regular part of X the bundle E is isomorphic to the normal bundle of X (for
some Riemannian metric) and therefore one may call:

τ(X) := TM |X − E|X ∈ KU(X) ,

the virtual tangent bundle of X . The Chern classes of τ(X) live in H∗(X) and are
known as the Fulton-Johnson classes of X .

As mentioned above, when X is not a complete intersection, the definition of its
Fulton-Johnson classes uses the Segre class. This is as follows: Consider an arbitrary
singular variety X in a compact m-manifold M . Its Segre class s(X,M) is defined by
considering the blow up of M along X :

b : B −→M ;

let L be the tautological line bundle of B and D the corresponding divisor, which
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maps onto X . Then the Segre class is

s(X,M) = b∗

(m−1∑
i≥0

c1(L)
i ∩D

)
∈ H∗(X) .

Now consider the total Chern class c∗(TM). Then the total Fulton-Johnson class of
X is defined as:

cFJ
∗ (X) := c∗(TM) ∩ s(X,M) ∈ H∗(X) .

For complete intersections this coincides with the previous definition via the Alexander
homomorphism H∗(X)→ H∗(X).

Let us denote the homology Fulton-Johnson classes by ĉFJ
i (X), i = 1, · · · , n.

These provide another extension of Chern classes to the case of singular varieties, and
it is natural to ask how these relate to the Chern-Schwartz-MacPherson classes. This
problem was first studied by P. Aluffi in [2].

One has the following result from [42]:

Theorem 4.5 (Seade-Suwa). Let X be an n-dimensional compact local complete
intersection in a complex manifold, with only isolated singularities. Then ĉFJ

0 (X) is
the total GSV-index of a vector field on X and one has:

ĉFJ
0 (X) = χ(X) + (−1)n

∑
μj ,

where the μj are the local Milnor numbers at the singular points of X.

Thence one has that if X is a complete intersections with isolated singularities,
then:

ĉFJ
0 (X)− ĉSM

0 (X) = (−1)n+1
∑

μj .

It is thus natural to define:

Definition 4.6. LetX be a compact complex analytic variety of pure dimension
n. Its ith Milnor class is:

Mi(X) := (−1)n
(
ĉFJ
i (X)− ĉSM

i (X)
)
.

There is a large literature on Milnor classes and we refer to [7] for more on the
topic.

We now focus our attention on one very particular case. Let (V, 0) be a complex
isolated singularity germ of dimension n > 1 and consider a compactification V of
this germ, with a unique singular point at 0. Consider the Milnor classes Mi(V ).
Since these have support at the singular set, all Milnor classes vanish, exceptM0(V )
which depends only on the germ (V, 0) and not on the choice of the compactification.
If this germ is an ICIS, then we know that M0(V ) is the Milnor number. What is
the 0-degree Milnor classM0(V ) when (V, 0) is not a complete intersection germ?
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