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Abstract. Koyama’s inequality for normal surface singularities gives the upper bound on the
self-intersection number of the canonical cycle in terms of the arithmetic genus. For those singularities
of fundamental genus two attaining the bound, a formula for computing the geometric genus is shown
and the resolution dual graphs are roughly classified. In Gorenstein case, the multiplicity and the
embedding dimension are also computed.
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Introduction. Various studies have done on normal singular points of a complex
surface. Among others, most fruitful achievements are beautiful theorems on classes
of small genera such as rational and elliptic singular points.

In this article, we study a class of normal (numerically) Gorenstein surface sin-
gularities of fundamental genus ≥ 2, which may be regarded as “singularities on the
Noether line” on the analogy of the geography of global surfaces of general type. To
be more precise, let (V, o) be a normal surface singularity and π : X → V a resolu-
tion. The arithmetic genus of the fundamental cycle is called the fundamental genus
of (V, o) and we denote it by pf (V, o). The arithmetic genus pa(V, o) of (V, o) is the
maximum of the arithmetic genus of effective divisors with support in π−1(o). Let
ZK be the canonical cycle on π−1(o), that is, the Q-divisor numerically equivalent
to −KX . Then Yoichi Koyama obtained the inequality −Z2

K ≥ 8pa(V, o)− 8 around
1984 (unpublished). If the equality sign holds here, then one has ZK = 2D with the
unique effective Z-divisor D computing pa(V, o) and, in particular, (V, o) is numeri-
cally Gorenstein. We call such a singular point even and study those of fundamental
genus 2 in this paper.

In §1, we summarize mostly known results about normal surface singularities for
the later use. Some facts are reproved from the point of view of [5]. We discuss in §2
Koyama’s inequality and introduce the notion of even singularities. Then we restrict
ourselves to those of fundamental genus 2. In this case, a half of the canonical cycle
is nothing more than the Yau cycle introduced in [6]. Using such information, we can
roughly classify the resolution dual graphs. A general picture of the exceptional set is
the core part attached two ADE-branches of (−2)-curves. Here, the core part is the
minimally even cycle, i.e., the minimal model of the fundamental cycle Z, which itself
is the fundamental cycle of an even singular point with pf = pa = 2. Similarly as in
the case of elliptic singularities, minimally even cycles of genus 2 is closely related to
the singular fibers in pencils of curves of genus 2 (cf. [9]). Our classification is much
coarser than [9] and the cycles fall into five classes (0), (i.a), (i.b), (ii.a) and (ii.b)
according to the numerical connectivity and the base locus of the canonical linear
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system. In §3, we establish a formula computing the geometric genus that is modeled
on Okuma’s formula for elliptic singularities [11]. In §4 and §5, we compute the
numerical invariants of (V, o), such as the multiplicity and the embedding dimension,
when (V, o) is Gorenstein.

In the course of the study, basic results for 1-connected curves or chain-connected
curves are used freely. For these, we refer the readers to [1, Appendix] and [5].

1. Preliminaries. In this paper, a curvemeans a non-zero effective divisor (with
support compact) on a smooth surface. For a curve D, the arithmetic genus pa(D) is
defined by pa(D) = 1−χ(D,OD), where χ(D,OD) = h0(D,OD)− h1(D,OD). Then
2pa(D)− 2 = KXD +D2 by the adjunction formula.

1.1. Chain-connected curves. A curve D is said to be chain-connected if
OD−Γ(−Γ) is not nef for any proper subcurve Γ ≺ D. If D is chain-connected and
pa(D) > 0, then there exists the unique chain-connected subcurve Dmin of D such
that pa(Dmin) = pa(D) and KDmin

is nef. We call it the minimal model of D.
A maximal chain-connected subcurve of a curve is called a chain-connected

component. Every curve D decomposes into a sum of chain-connected curves as
D = Γ1 + · · ·+ Γn, where Γi is a chain-connected component of D−

∑
j<i Γj . Then,

OΓj
(−Γi) is nef when i < j, which implies that either Supp(Γi) ∩ Supp(Γj) = ∅ or

Γj � Γi. Such an ordered decomposition is essentially unique and is called a chain-
connected component decomposition (a CCCD for short) of D. For the properties, see
[5].

Lemma 1.1. Let D be a chain-connected curve on a smooth surface X.

(1) If OD(−D) is nef and pa(D) ≤ 1, then pa(Γ) ≤ pa(D) for any curve Γ with
support in Supp(D).

(2) Let p ∈ D and put ν = min{multp(A) | A � D is a component, p ∈ A} If

ρ : X̃ → X is the blowing-up at p and E = ρ−1(p), then ρ∗D− kE is chain-connected
for 0 ≤ k ≤ ν.

Proof. (1) Assume first that Γ is chain-connected. Since OΓ(−D) is nef, Γ �
D. Then pa(Γ) ≤ h1(OΓ) ≤ h1(OD) = pa(D). Consider the general case and let
Γ =

∑n
i=1 Γi be a CCCD. Then pa(Γ) − 1 =

∑n
i=1(pa(Γi) − 1) +

∑
i<j ΓiΓj . Since

ΓiΓj ≤ 0 when i < j, and pa(Γi) ≤ pa(D) by the first step, we get pa(Γ) ≤ pa(D)
when pa(D) = 0, 1.

(2) We fix a component A satisfying multp(A) = ν and take a connecting chain
(cf. [5]) D0 = A, . . . , DN = D starting from A, where Ai = Di−Di−1 is an irreducible
curve with AiDi−1 > 0. Let A be the proper transform of A. Then ρ∗A = A + νE.
Put Di = ρ∗Di − νE for any i. Since Di − Di−1 = ρ∗Ai, Di’s are effective and
non-zero for any i. We construct a connecting chain for ρ∗D − νE by refining {Di}.
For this purpose, it suffices to consider i such that ρ∗Ai is reducible, and to construct
a connecting chain from Di−1 to Di. Since ρ∗Ai is reducible, p ∈ Ai. If Ai denotes
the proper transform of Ai by ρ, then ρ∗Ai = Ai + νiE, where νi = multp(Ai). We
have νi ≥ ν by the definition of ν. Put

Γj =

⎧⎨⎩
Di−1 + jE, if 0 ≤ j ≤ ν,
ρ∗Di−1 +Ai, if j = ν + 1,

Γν+1 + (j − ν − 1)E, if ν + 2 ≤ j ≤ νi + 1 and νi > ν.

Then Γ0 = Di−1,Γ1, . . . ,Γνi+1 = Di is the desired connecting chain, since Γj −Γj−1,
which is either E or Ai, is irreducible and Γi−1(Γi −Γi−1) > 0. Therefore, ρ∗D− νE
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is chain-connected. Since (ρ∗D − (ν − i)E)E > 0 when 0 ≤ i < ν, we see inductively
that ρ∗D − (ν − i− 1)E is chain-connected by [5, Proposition 1.5].

Proposition 1.2. Let D be a chain-connected curve with pa(D) > 0 and Dmin

its minimal model. Assume that Supp(D −Dmin) contracts to several rational double
points and that −D is nef on Supp(D −Dmin). Put (D −Dmin)

2 = −2n. Then the
following hold.

(1) −(D −Dmin) is nef on its support.

(2) D−Dmin decomposes as Γ1+ · · ·+Γn, where each Γi is the fundamental cycle
on its support, −Γ2

i = 2, DminΓi = 1 for any i and OΓj
(−Γi) 
 OΓj

for any pair
(i, j) with i < j. In particular, either Γj ≺ Γi or Supp(Γi) ∩ Supp(Γj) = ∅ for i < j.

(3) If n ≥ 2 and Γ2 ≺ Γ1 in (2), then (type(Γ1), type(Γ2)) = (Al+2,Al) (l ≥ 1),
(Dl+2,Dl) (l ≥ 3), (Dl,A1) (l ≥ 4), (E6,A5), (E7,D6) or (E8,E7), with an obvious
convention that D3 = A3.

Proof. (1) Assume that there exists an irreducible component C � D−Dmin such
that C(D −Dmin) > 0. By the assumption, we have CD ≤ 0 and, hence, CDmin <
0. In particular, C is a component of Dmin. Then, since KDmin

is nef, we have
0 ≤ degKDmin

|C = degKC +C(Dmin −C), from which we get the contradiction that
CDmin ≥ 0 by degKC = C2 = −2. Therefore, −(D−Dmin) is nef on Supp(D−Dmin).

(2) By [5, Lemma 3.6], D−Dmin decomposes as D−Dmin = Γ1+ · · ·+Γn, where
Γi is a chain-connected curve, OΓj

(−Γi) is numerically trivial for i < j, and Dmin+Γi

is a chain-connected curve satisfying DminΓi = 1− pa(Γi) for i ∈ {1, 2, . . . , n}. In our
case, pa(Γi) = 0 and, hence, DminΓi = 1, Γ2

i = −2 and OΓj
(−Γi) 
 OΓj

for i < j.
Furthermore, (D−Dmin)

2 = (
∑n

i=1 Γi)
2 =

∑n
i=1 Γ

2
i = −2n. So, it suffices to see that

every Γi is the fundamental cycle on its support.
Since −(D −Dmin) is nef by (1), every chain-connected component of D −Dmin

is the fundamental cycle on a connected component of Supp(D −Dmin). Hence so is
Γ1. Assume that Γi is the fundamental cycle on its support for i ≤ k. Now, Γk+1 is

a chain-connected component of D−Dmin−
∑k

i=1 Γk. Since −(D−Dmin−
∑k

i=1 Γi)
is nef on its support by the property OΓj

(−Γi) 
 OΓj
for i < j, we see that Γk+1 is

the fundamental cycle on its support. Therefore, we are done by induction.
(3) We have Γ2 ≺ Γ1 and (Γ1 − Γ2)Γ2 = 2. Let C be a component of Γ1 with

CΓ2 = 1. Since Γ2 is the fundamental cycle and, either Γi ≺ Γ2 or Supp(Γ2) ∩
Supp(Γi) = ∅ for i ≥ 3, we see that C �� Γi for i ≥ 2. Then we get CΓ1 < 0 from
0 ≥ CD = CΓ1 +1+C

∑
i≥3 Γi ≥ CΓ1 +1. If Γ1 is of type Al for some l ≥ 2, then C

is one of the end-components of Γ1 and it follows that Γ2 is of type Al−2, because, by
(Γ1−Γ2)Γ2 = 2, we have to remove both end-components from Γ1 in order to obtain
Γ2. As to the other types of Γ1, note that C as above is the unique component of
multiplicity 2 of Γ1 which is located at an end of the Dynkin diagram except in the
case Dl where C is the “second” component. Furthermore, Γ1 − 2C has connected
support unless Γ1 is of type Dl. Then one can determine the possible type of Γ2 by
examining the weighted dual graph of Γ1. We leave the detail to the reader.

1.2. Cycles over a normal surface singularity. Let (V, o) be a normal surface
singular point and π : X → V a resolution. Let Z be the fundamental cycle on
π−1(o), that is, the smallest curve with support in π−1(o) such that −Z is nef on
π−1(o). It is chain-connected. Its arithmetic genus is called the fundamental genus
and denoted by pf (V, o). The arithmetic genus of (V, o) which we denote by pa(V, o)
is the maximum of pa(D) := D(KX + D)/2 + 1 when D runs over all curves with
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support in π−1(o). Clearly, we have pf (V, o) ≤ pa(V, o). The geometric genus is
defined by pg(V, o) = dimC(R

1π∗OX)o. Then pa(V, o) ≤ pg(V, o). When pg(V, o) = 0
(resp. pa(V, o) = 1), (V, o) is called rational (resp. elliptic). It is known (and follows
from Lemma 1.1) that (V, o) is rational (resp. elliptic) if and only if pf (V, o) = 0 (resp.
1).

According to [12], we put

Z1 = min{D | h1(D,OD) = pg(V, o), D is a curve}

and call it the cohomological cycle on π−1(o). If pg(V, o) > 0, then we have
h1(D,OD) = pg(V, o) when Z1 � D, and h1(D,OD) < pg(V, o) when Z1 �� D.

Since the intersection form is negative definite on π−1(o), there is a Q-divisor
ZK with support in π−1(o) such that −ZK is numerically equivalent to a canonical
divisor KX . We call ZK the canonical cycle. If it is integral, then (V, o) is said to be
numerically Gorenstein. In this case, it is shown in [12] that Z1 � ZK on the minimal
resolution (see also [3]). In particular, we have pa(ZK) = 1 and h1(ZK ,OZK

) =
h0(ZK ,OZK

) = pg(V, o). The singular point is Gorenstein if and only if −ZK is
linearly equivalent to KX . When pf(V, o) > 0, Z1 = ZK holds if and only if (V, o) is
Gorenstein (see, e.g., [3]).

We remark the following:

Lemma 1.3. Let π : X → V be a resolution of a normal surface singular point
(V, o) with pg(V, o) > 0 and Z the fundamental cycle on π−1(o). Let L be a line
bundle on X that is numerically trivial on π−1(o). Then L is trivial if and only if
the restriction map H0(X,L) → H0(Z,L) is not the zero map. In particular, when
(V, o) is numerically Gorenstein and π is minimal, (V, o) is Gorenstein if and only if
ωZK


 OZK
.

Proof. One direction is trivial. So, we assume that L is non-trivial and show
that H0(X,L) → H0(Z,L) is the zero map. We may assume that H0(X,L) �= 0.
Take any non-zero s ∈ H0(X,L) and write its zero divisor as (s) = A + B, where
Supp(A) ⊆ π−1(o) and Supp(B)∩π−1(o) is at most a finite set. Since L is numerically
trivial and B is nef on π−1(o), we see that −A is nef on π−1(o). Note that A is a
non-zero effective divisor, because A = 0 implies Supp(B) ∩ π−1(o) = ∅ and, thus, L
is trivial. Then, by the nefness of −A, we have Z � A. Hence s vanishes identically
on Z.

In order to see the last assertion, we apply the above argument to L = KX +ZK .
Note that OZK

(L) 
 ωZK
and H0(X,L)→ H0(ZK , L) is surjective by H1(X,KX) =

0. Since Z is the chain-connected component of ZK , the restriction map H0(ZK , L)→
H0(Z,L) is not the zero map if and only if OZK

(L) 
 OZK
.

The following is a special case of [13, (2.11)].

Lemma 1.4. If (V, o) is Gorenstein and pg(V, o) ≥ 2, then pa(V, o) < pg(V, o).

Proof. We work on the minimal resolution. We assume that there exists a curve
D with support in π−1(o) satisfying pa(D) = pg(V, o), and show that this eventually
leads us to a contradiction.

Recall the general inequality pa(D) ≤ h1(D,OD) ≤ pg(V, o). Hence, in the
present case, pa(D) = h1(D,OD) = pg(V, o) and it follows h0(D,OD) = 1. Fur-
thermore, since h1(D,OD) = pg(V, o), D contains the cohomological cycle Z1 as a
subcurve. Since (V, o) is Gorenstein, we have Z1 = ZK . So, ZK � D. Note that we



NORMAL SURFACE SINGULARITY 75

cannot have D = ZK , because h0(D,OD) = 1 but h0(ZK ,OZK
) = pg(V, o) > 1. We

consider the cohomology long exact sequence for

0→ OZK
(KZK

)→ OD(KD)→ OD−ZK
(KD)→ 0.

We have OZK
(KZK

) 
 OZK
and H0(ZK ,KZK

) → H0(D,KD) is an isomorphism.
Furthermore, H1(ZK ,KZK

) → H1(D,KD) is non-trivial, being the dual of the re-
striction map H0(D,OD)→ H0(ZK ,OZK

). Hence h0(D−ZK ,KD) = pg(V, o)− 1 >
0. On the other hand, one has OD−ZK

(KD) 
 OD−ZK
(D − ZK) by the ad-

junction formula. Since the intersection form is negative definite on π−1(o), we
get H0(D − ZK , D − ZK) = 0. This contradiction implies that we cannot have
pa(D) = pg(V, o). Therefore, pa(V, o) < pg(V, o).

The Yau sequence for Z is the longest sequence of curves

Dm ≺ Dm−1 ≺ · · · ≺ D2 ≺ D1 = Z, (1.1)

where Di+1 is the biggest (non-trivial) subcurve of Di such that pa(Di+1) = pa(Di)
and ODi+1

(−Di) is numerically trivial (1 ≤ i ≤ m− 1). If Zmin denotes the minimal
model of Z, then Zmin � Dm and ZminDm < 0. It is shown in [6] that each Di is the
fundamental cycle on its support and

Supp(Dk) ∩ Supp(Di −Dj) = ∅ for i < j < k. (1.2)

We put Y =
∑m

i=1 Di and call it the Yau cycle. When pf (V, o) = 2, we have pa(V, o) =
pa(Y ) = m+ 1 by [6, Corollary 2.5].

Lemma 1.5. Put Yν =
∑m

i=ν Di and let L ∈ Pic0(Yν). If H0(Yν , L) �= 0, then
OYi

(L) 
 OYi
(Yν − Yi) for some i, ν ≤ i ≤ m.

Proof. Take a non-zero section s ∈ H0(Yν , L). If s does not vanish identically on
any components, then L is trivial and the assertion holds with i = ν. Assume not
and let Cs be the biggest subcurve of Yν on which s vanishes identically. We may
assume that there are no sections t such that Cs ≺ Ct. Then OYν−Cs

(L −Cs) is nef,
because s induces a section of it that does not vanish identically on any components.
Applying [6, Lemma 1.3] to Δ = Yν − Cs, we see Δ = Yi for some ν < i ≤ m. Since
OYi

(L−(Yν−Yi)) is numerically trivial, the section induced by s is nowhere vanishing
and we get OYi

(L) 
 OYi
(Yν − Yi).

1.3. Koyama’s inequality. The author was informed by Masataka Tomari that
Yoichi Koyama obtained the following inequality around 1984:

Proposition 1.6 (Koyama’s inequality). Let (V, o) be a normal surface singular
point with pf (V, o) > 1 and π : X → V a resolution. Then

−Z2
K ≥ 8pa(V, o) − 8

with equality holding if and only if there exists a curve D such that ZK = 2D and
pa(D) = pa(V, o). In particular, (V, o) is a numerically Gorenstein singularity if
−Z2

K = 8pa(V, o) − 8.

Proof. Let D be any curve with support in π−1(o). We have (D − ZK/2)2 ≤ 0,
because the intersection form is negative definite. Hence,

2pa(D)− 2 = KXD +D2 = −ZKD +D2 = (D − ZK/2)2 − Z2
K/4 ≤ −Z2

K/4
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and we get the inequality −Z2
K ≥ 8pa(V, o)− 8 as wished. We have the equality sign

if and only if D−ZK/2 = 0 and pa(D) = pa(V, o). Then ZK = 2D is a Z-divisor and,
hence (V, o) is numerically Gorenstein.

Definition 1.7. A normal surface singularity (V, o) with pf (V, o) > 1 is called an
even singularity if there exist a resolution π : X → V and a curve D on X such that
ZK = 2D. For an even singularity, the minimal model (cf. [5]) of the fundamental
cycle (on X) is called the minimally even cycle.

We collect some fundamental properties of even singularities.

Lemma 1.8. Let (V, o) be an even singular point and π : X → V a resolution on
which ZK = 2D holds for a curve D. Then the following hold.

(1) D is the unique curve satisfying pa(D) = pa(V, o).

(2) The self-intersection number E2 is even for any divisor E with support in
π−1(o). In particular, π is the minimal resolution.

(3) If L is a line bundle on X such that L−KX is nef, then L is generated by its
global sections.

Proof. (1) is clear from the proof of Proposition 1.6. (2) Since KXE + E2 =
−2DE + E2 is even, so is E2. In particular, we have no (−1)-curves on X . Hence π
is the minimal resolution. (3) follows from (2), because, if the linear system |L| has
a base point p, then there exists a curve Δ passing through p and Δ2 = −1 by [4,
Proposition 5.1].

Lemma 1.9. Let (V, o) be an even singular point with pa(V, o) = pf (V, o) >
1. Then ZK = 2Z holds on the minimal resolution space, where ZK and Z are
the canonical cycle and the fundamental cycle, respectively. Furthermore, Z is a
minimally even cycle and, either pg(V, o) = pf (V, o) + 1 or pg(V, o) = pf (V, o) holds
according to whether (V, o) is Gorenstein or not.

Proof. The first assertion is clear from the previous lemma, since pa(V, o) = pa(Z).
As to the second, we consider the exact sequence

0→ ωZ → ωZK
→ OZ(KZK

)→ 0

noting that ZK = 2Z. By Lemma 1.3, H0(ZK ,KZK
)→ H0(Z,KZK

) is not the zero
map if and only if (V, o) is Gorenstein. Hence, h0(ωZK

) equals pa(Z) + 1 when (V, o)
is Gorenstein and, otherwise, it equals pa(Z). Furthermore, Z is the minimally even
cycle, because KZ is nef being numerically equivalent to −Z.

Example 1.10. Let C be a non-singular projective curve of genus g ≥ 2. Take
an invertible sheaf L on C with degL = 2g − 2. We consider the P1-bundle X :=
P(OC ⊕ L) over C. Let ϕ : X → C be the projection and H a tautological divisor
on X such that ϕ∗OX(H) 
 OC ⊕L. We choose the unique element Z ∈ |H − ϕ∗L|.
Then Z is isomorphic to C and Z2 = − degL = 2− 2g < 0. We contract Z to obtain
a normal surface singularity (V, o). Since the canonical bundle of X is induced by
−2H + ϕ∗(KC + L) and it is numerically equivalent to −2Z on Z, we see that (V, o)
is an even singularity. More precisely, we have OZ(KX + 2Z) = OZ(ϕ

∗(KC − L)).
Hence, (V, o) is Gorenstein if and only if L 
 OC(KC). On the other extreme, it tells
us that OZ(KX + ZK) is not necessarily of finite order.
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Lemma 1.11. Let (V, o) be an even singularity with pf (V, o) = 2. Then ZK = 2Y
on the minimal resolution, where Y =

∑m
i=1 Di denotes the Yau cycle; D1 = Z,

m = pa(V, o)− 1. Furthermore, the following hold.

(1) Di is a 1-connected curve with D2
i = −2 for 1 ≤ i ≤ m.

(2) Dm = Zmin. Any component A � Dm satisfying ADm < 0 is not a (−2)-
curve.

(3) Put Yν :=
∑m

i=ν Di for ν ∈ {1, 2, . . . ,m}. Then Yν and 2Yν are the Yau
cycle and the canonical cycle on Supp(Yν), respectively. In particular, the singularity
(Vν , oν) obtained by contracting Yν is an even singularity with pf (Vν , oν) = 2 and
pa(Vν , oν) = m− ν + 2.

Proof. Since Y computes the arithmetic genus of (V, o) as pa(V, o) = pa(Y ) =
m+ 1 by [6], we have ZK = 2Y by the uniqueness of such a curve.

(1) For any i, we have pa(Di) = 2 by the definition of the Yau sequence. Hence
2 = KXDi +D2

i = −2YDi +D2
i = −D2

i , because we have DiDj = 0 when j �= i. Let
Γ be any non-trivial subcurve of Di. Then −2 = D2

i = Γ2 + (Di − Γ)2 + 2(Di − Γ)Γ.
Since Γ2 and (Di − Γ)2 are negative even integers, we get (Di − Γ)Γ > 0. Hence Di

is numerically 1-connected.

(2) For i < m, ODm
(−Di) is numerically trivial. So, KX + Dm, which is nu-

merically equivalent to −2Y +Dm on π−1(o), is numerically equivalent to −Dm on
Dm. Since Dm is the fundamental cycle on its support, this shows that KDm

is nef.
Therefore, Dm is the minimal model of Z = D1. Assume that A is a (−2)-curve and
ADm < 0. It follows that Dm is reducible and we have 0 < A(Dm − A) = ADm + 2
by the 1-connectivity of Dm. Then A(Dm − A) = 1, which implies that A is a
(−1)Dm

-curve, contradicting that Dm is the minimal model.

(3) Since ODj
(−Di) is numerically trivial for i < j, KX is numerically equivalent

to −2Yν on Supp(Yν). This is sufficient to imply the assertion.

2. Resolution dual graphs. In the sequel, unless otherwise stated explicitly,
we let (V, o) be an even singular point of fundamental genus 2. We denote by Z, Y
and ZK the fundamental cycle, the Yau cycle and the canonical cycle, respectively,
on the minimal resolution π : X → V of (V, o).

The purpose of this section is to classify the weighted dual graph of the funda-
mental cycle Z (modulo some 2-connected curves).

Recall that Z is numerically 1-connected by Lemma 1.11 (1). Numerical decom-
positions and the canonical algebra of such a curve were extensively studied in [8]. If
Z is 2-connected, then the canonical linear system |KZ | is free from base points by [1,
Proposition (A.7)]. If Z is not 2-connected, then, letting Δ be a minimal subcurve of
Z with respect to the condition that Δ(Z−Δ) = 1, we see that Δ is 2-connected and
Z−Δ is 1-connected ([1, Lemma (A.4)]). We have Δ2 = (Z−Δ)2 = −2 by Z2 = −2,
and pa(Δ) = pa(Z −Δ) = 1. In particular, ωΔ 
 OΔ and it follows that OΔ(−Δ) is
nef. Then, Δ is the fundamental cycle of a minimally elliptic singular point (cf. [7]).

2.1. Minimally even cycles. We first consider the case pa(V, o) = 2. Then,
Z is a minimally even cycle (of fundamental genus 2) and vice versa, by Lemmas 1.9
and 1.11.

Lemma 2.1. Let (V, o) be an even singularity with pf (V, o) = pa(V, o) = 2. Then,
OX(−Z) is π-free if and only if (V, o) is Gorenstein and Z is 2-connected.
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Proof. Since ZK = 2Z and H1(X,−ZK) = 0 by the vanishing theorem, we see
from the cohomology long exact sequence for

0→ OX(−ZK)→ OX(−Z)→ OZ(−Z)→ 0

that the restriction map H0(X,−Z) → H0(Z,−Z) is surjective. Since OZ(−Z) is
numerically equivalent to KZ and Z is a 1-connected curve with pa(Z) = 2, one
easily see that the following three conditions are equivalent: (i) h0(Z,−Z) > 1, (ii)
OZ(−Z) = ωZ , (iii) (V, o) is Gorenstein. [To show (ii)⇒ (iii), one may need the exact
sequence

0→ ωZ → ωZK
→ OZ(KX + 2Z)→ 0

and Lemma 1.3.] So, we may assume that (V, o) is Gorenstein.
If Z is 2-connected, then |ωZ | is free from base points by [1, Proposition (A.7)].

It follows that OX(−Z) is π-free.
Assume that Z is not 2-connected and take a minimal subcurve Δ of Z with

respect to the condition that (Z −Δ)Δ = 1. Then Δ is 2-connected and Z −Δ is 1-
connected by [1, Lemma (A.4)]. Since OΔ(−Z) is nef of degree 1 and Δ is 2-connected
with pa(Δ) = 1, we see that any non-zero element in H0(Δ,−Z) 
 C vanishes at one
non-singular point p ∈ Δ by [1, Proposition (A.5)]. This implies that p is a base point
of |OZ(−Z)|. It also means that p is a base point of |OX(−Z)|.

Suppose that Z is not 2-connected and take a subcurve Δ as above. Since ωΔ 

OΔ, we have OΔ(KX) 
 OΔ(−Δ). From

0→ ωZ−Δ → ωZ → OΔ(KX + Z)→ 0,

h0(ωZ) = 2 and h0(ωZ−Δ) = 1, the restriction map H0(Z, ωZ)→ H0(Δ,KX + Z) is
non-trivial. Since OΔ(KX +Z) 
 OΔ(Z−Δ) is nef of degree 1 and Δ is 2-connected,
we see that OΔ(Z − Δ) 
 OΔ(x) with a non-singular point x of Δ. Then, either
Δ∩ (Z −Δ) = {x} or Δ ≺ Z −Δ. Note that we have OΔ(Z −Δ) ≡ OΔ(−Z), where
≡ means the numerical equivalence. Let A be the unique irreducible component of Δ
through x.

Lemma 2.2. Let the notation be as above. Either Δ is irreducible and reduced,
or A is a (−4)-curve and Δ − A is the fundamental cycle of a rational double point.
In the latter case, an irreducible component B of Δ−A satisfies AB > 0 if and only
if B(Δ−A) < 0.

Proof. SinceKX ≡ −2Z, we haveOΔ(KX) ≡ OΔ(2x). Then,KXA = −2ZA = 2.
It follows that either pa(A) = 1 and A2 = −2 (so Δ = A), or A is a (−4)-curve.
Assume the latter. Then AΔ = −2, KX(Δ−A) = 0 and (Δ−A)2 = −2. Hence Δ−A
is a 1-connected curve consisting of (−2)-curves. Since OΔ−A(−(Δ−A)) 
 OΔ−A(A)
is nef, Δ−A is the fundamental cycle on its support. The last assertion for B is clear
from OΔ−A(−Δ) 
 OΔ−A. Since (Δ − A)A = 2, there are at most two irreducible
components of Δ−A meeting A.

Remark 2.3. The possible dual graphs of Δ’s are in one-to-one correspondence
with Kodaira’s list of non-multiple fibers in elliptic surfaces [2, Theorem 6.2], with an
obvious modification in the reducible case: choose a component of multiplicity one
and replace it by a (−4)-curve. See also [7].

We turn our attention to the 2-disconnected Z itself.
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Case 1. Assume that Δ∩ (Z −Δ) = {x}. We let Δ1 be a minimal subcurve of
Z −Δ with respect to the condition that (Z −Δ1)Δ1 = 1, and put Γ := Z −Δ−Δ1.
Then Δ1 is a 2-connected curve with pa(Δ1) = 1, Δ2

1 = −2 and OΔ1
(−Z) 
 OΔ1

(y)
for a non-singular point y ∈ Δ1. We have ΔΔ1 = 0, 1. If ΔΔ1 = 1, then Γ2 = 0
and, thus, Γ = 0. In this case, we have Z = Δ + Δ1 and x = y. If ΔΔ1 = 0, then
Δ∩Δ1 = ∅ and Γ2 = −2. Since KXΓ = 0, Γ is a (−2)-cycle. We have Δ∩Γ = {x} and
Δ1 ∩Γ = {y}. Since OΓ(−Γ) 
 OΓ(−Z+Δ+Δ1) 
 OΓ(x+ y), Γ is the fundamental
cycle of a rational double point of type A� for some �. The dual graph of Z would be
as in Fig. 1 if we consider Δ and Δ1 as if they were irreducible curves. It is clear that
Γ is the fixed part of |KZ |, and that OZ−Γ(−Z − Γ) 
 OZ−Γ, h

0(Z − Γ,OZ−Γ) = 2.

��
��� � � � ��

��
−2 −2

[1] [1]

Fig. 1.

Case 2. Assume that Δ ≺ Z − Δ. Then Δ is the minimal model of Z − Δ.
We have (Z − 2Δ)2 = −6. It follows from KX(Z − 2Δ) = −2Z(Z − 2Δ) = 0 that
Z − 2Δ consists of (−2)-curves. Note also that OΔ−A(−Δ) 
 OΔ−A. In particular,
we see that Δ is nef on Z − 2Δ, even when Z − 2Δ has a common component with
Δ. Then, by Proposition 1.2, Z − 2Δ decomposes as Γ1 + Γ2 + Γ3, where each Γi is
the fundamental cycle on its support, Γ2

i = −2, ΔΓi = 1 and OΓj
(−Γi) 
 OΓj

when
i < j. We have the following three cases after re-labeling if necessary:

(a) Γ1, Γ2 and Γ3 are mutually disjoint,

(b) Γ2 ≺ Γ1 and Γ1 ∩ Γ3 = ∅,

(c) Γ3 ≺ Γ2 ≺ Γ1.

Lemma 2.4. For each i = 1, 2, 3, Γi is the fundamental cycle of a ratio-
nal double point. If Γi is a minimal curve (with respect to �) in {Γ1,Γ2,Γ3},
then it is a (−2)-curve that is not a component of Δ. The possible Dynkin types
(type(Γ1), type(Γ2), type(Γ3)) are as follows:

(a) (A1,A1,A1).

(b) (A3,A1,A1) or (Dl,A1,A1), l ≥ 4.

(c) (A5,A3,A1) or (D6,D4,A1).

Proof. For each i, since OΓi
(Δ) is nef of degree 1, there exists a unique component

Ci of Γi, along which Γi is of multiplicity one, such that CiΔ = 1 and Δ(Γi−Ci) = 0.
Recall that Z − 2Δ = Γ1 + Γ2 + Γ3, OΓi

(Z) 
 OΓi
and OΓj

(−Γi) 
 OΓj
when

i < j. So, if Γi is a minimal curve in {Γ1,Γ2,Γ3}, then OΓi
(2Δ) 
 OΓi

(−Γi). Hence
CiΓi = −2 and it follows Γi = Ci, since (Γi − Ci)

2 = 0. Note then that Γi is not a
component of Δ, since Δ is the fundamental cycle and ΔΓi = 1.

We restrict ourselves to the case (c), since the other cases are similar and easier.
In this case, we have C1 = C2 = C3, and Γ3 = C3 as we saw above. We have
OΓ2

(−Γ2) 
 OΓ2
(2Δ+Γ3) which is trivial on Γ3. So, Γ2 has a non-multiple component

Γ3 and any component B with BΓ2 < 0 has to meet Γ3. From this property and
the A-D-E classification, we see that Γ2 is of type A3 or Dl. Similarly, we have
OΓ1

(−Γ1) 
 OΓ1
(2Δ + Γ2 + Γ3) which is trivial on Γ2. Then Γ1 has a non-multiple

component Γ3 and any component B with BΓ1 < 0 satisfies B(Γ2 + Γ3) > 0. From
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this, we see that Γ1 is of type A5 when Γ2 is of type A3. When Γ2 is of type Dl, it is
not so hard to see that Γ2 is of type D4 and Γ1 is of type D6.

Since OΔ(−Z) ≡ OΔ(x) and OΔ(−Δ) ≡ OΔ(2x), we get OΔ(Γ1 + Γ2 + Γ3) ≡
OΔ(3x). So, A(Γ1 +Γ2 +Γ3) = 3 and OΔ−A(Γ1 +Γ2 +Γ3) 
 OΔ−A. We have either
(Δ−A)∩ (Γ1 +Γ2 +Γ3) = ∅ or Δ−A � Γ1 +Γ2 +Γ3, because Δ−A is 1-connected
even if Δ �= A. When (Δ−A)∩ (Γ1 +Γ2 +Γ3) = ∅, the dual graph of Z would be as
in Fig. 2 if we treat Δ as if it were a single elliptic curve.

(c) � � � � �
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−2 [1]2
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2 [1]

−2(a)

Fig. 2. Dual graph of Z when gcd(Δ, Z − 2Δ) = 0

Assume that Δ − A � Γ1 + Γ2 + Γ3 (Δ �= A). We cannot have the case (a),
because, if (a) is the case, each Γi is a (−2)-curve which is not a component of Δ by
Lemma 2.4.

If (b) is the case, then Lemma 2.4 implies that Γ2 and Γ3 are (−2)-curves not
contained in Δ, because they are minimal curves in {Γi}3i=1. So, Δ − A � Γ1 − Γ2.
We have AΓ3 = 1 by (Δ − A) ∩ Γ3 ⊆ (Γ1 − Γ2) ∩ Γ3 = ∅ and ΔΓ3 = 1. Since
2 = (Δ − A)A ≤ (Γ1 − Γ2)A and A(Γ1 + Γ2) = 2, we get AΓ1 = 2, AΓ2 = 0. So,
A ∩ Γ2 = ∅ and (Δ−A)Γ2 = 1. There exists a component B � Δ−A of multiplicity
one with BΓ2 = 1 and BΓ1 = −1. Since OΓ1−Γ2

(−Δ) is nef of degree 0, any chain-
connected subcurve of Γ1 − Γ2 is either a subcurve of Δ or disjoint from Δ. This
implies that Δ−A is nothing but a chain-connected component of Γ1−Γ2. By using
this fact, one can easily see the following by considering the CCCD of Γ1 − Γ2: If Γ1

is of type A3, then Δ−A = B is a (−2)-curve and, either A meets B normally at two
distinct points or A contacts B at a point to the second order. If Γ1 is of type Dl, then
Δ−A is either B or Γ1−Γ2−B which is of type Dl−1. Here, we cannot have Δ−A = B,
because, if so, we have multA(Z) = 2, multB(Z) = 2multB(Δ) + multB(Γ1) = 4 and
AB = 2 which leads us to a contradiction: AZ = A(2A+ 4B + Γ3) = 1.

If (c) is the case, then Δ−A � (Γ1−Γ3) + (Γ2−Γ3) and it follows A(Γ1−Γ3) +
A(Γ2 − Γ3) ≥ A(Δ − A) = 2. From this and A(Γ1 + Γ2 + Γ3) = 3, we infer that
AΓ1 = 2, AΓ2 = 1 and AΓ3 = 0. Also in this case, any chain-connected component of
Γ1 − Γ3 is either a subcurve of Δ or disjoint from Δ. So, one can conclude similarly
as in the previous case: If Γ1 is of type A5, then Δ−A is of type A2. If Γ1 is of type



NORMAL SURFACE SINGULARITY 81

D6, then Δ−A is of type A5.
In each case, the possible dual graph of Z is as in Fig. 3 in which two circles

connected by a line with 2 means that the corresponding two curves contact at a
point to the second order.
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Fig. 3. Dual graph of Z when gcd(Δ, Z − 2Δ) �= 0

We continue to assume that Δ ≺ Z −Δ and study the base locus of |ωZ | closely.
It follows from

0→ ωΔ → ωZ → OZ−Δ(KX + Z)→ 0

that H0(Z, ωZ) → H0(Z −Δ,KX + Z) is surjective, because H1(ωΔ) → H1(ωZ) is
injective being the dual map of H0(Z,OZ) → H0(Δ,OΔ). Take a non-zero section
s ∈ H0(Z − Δ,KX + Z) 
 C. If s does not vanish identically on any components
of Z −Δ, then s vanishes only at x ∈ Δ. Hence x is an isolated base point of |KZ |
in this case. So, we assume that s vanishes identically on some component and let Γ
be the biggest curve on which s vanishes identically. Then OZ−Δ−Γ(KX + Z − Γ) ≡
OZ−Δ−Γ(−Z − Γ) is nef. In particular, degOZ−Δ−Γ(−Z) ≥ (Z − Δ − Γ)Γ. Recall
that OZ−Δ(−Z) is nef of degree 1 and Z − Δ is 1-connected. Therefore, we have
degOZ−Δ−Γ(−Z) = (Z − Δ − Γ)Γ = 1. Then Γ is a 1-connected curve on which
Z is numerically trivial. This shows that Γ is a (−2)-cycle. We also know that
Z − Δ − Γ is 1-connected. We have Δ � Z −Δ − Γ, since Δ must be the minimal
model of the 1-connected curve Z − Δ − Γ with pa(Z − Δ − Γ) = 1. Furthermore,
since s induces a nowhere vanishing section of OZ−Δ−Γ(KX + Z − Γ), we see that
OZ−Δ−Γ(KX + Z − Γ) 
 OZ−Δ−Γ. Note that s is constant on every Γi. Therefore,
Γ is one of the maximal curves in {Γ1,Γ2,Γ3} and x ∈ Γ ∩Δ.
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Lemma 2.5. ωZ−Γ 
 OZ−Γ and h0(Z − Γ,OZ−Γ) = 2.

Proof. Consider the cohomology long exact sequence for

0→ ωZ−Γ → ωZ → OΓ(−Z)→ 0.

Since H0(Z, ωZ)→ H0(Γ,−Z) is the zero map, we get h0(Z−Γ, ωZ−Γ) = h0(Z, ωZ) =
2. We already know that ωZ−Γ is trivial on Z − Δ − Γ. Since Δ � Z − Δ − Γ, we
see that ωZ−Γ is numerically trivial. Then, by the Riemann-Roch theorem, we get
h1(Z − Γ, ωZ−Γ) = 2. By the Serre duality theorem, we get h0(Z − Γ,OZ−Γ) = 2.

It remains to show that ωZ−Γ 
 OZ−Γ. For this purpose, we consider the coho-
mology long exact sequence for

0→ ωΔ → ωZ−Γ → OZ−Δ−Γ → 0.

We have h0(ωΔ) = h0(Z −Δ−Γ,O) = 1. It follows that the restriction map H0(Z −
Γ, ωZ−Γ)→ H0(Z −Δ−Γ,OZ−Δ−Γ) is surjective. Since Δ � Z −Δ−Γ, we see that
there is a nowhere vanishing section in H0(Z−Γ, ωZ−Γ). Therefore, ωZ−Γ 
 OZ−Γ.

Lemma 2.6. With the above notation, Z−Γ is the canonical cycle of a maximally
elliptic singularity of geometric genus two.

Proof. We shall show that Z −Γ = (Z −Δ−Γ)+Δ gives us the CCCD, i.e., the
elliptic sequence. Recall that Z−Δ−Γ and Δ are 1-connected andOΔ(−(Z−Δ−Γ)) 

OΔ(−(KX +Z−Γ)) 
 OΔ. So it remains to show that Z−Δ−Γ is the fundamental
cycle on its own support. If C � Z −Δ − Γ is a component such that C �� Δ, then
CΔ ≥ 0 and, hence, C(Z − Δ − Γ) = 2ZC − CΔ ≤ 2ZC ≤ 0. This implies that
OZ−Δ−Γ(−(Z −Δ− Γ)) is nef and, thus, Z −Δ− Γ is the fundamental cycle on its
support. Since the geometric genus h0(Z −Γ,O) = 2 coincides with the length of the
CCCD, Z − Γ contracts to a maximally elliptic singularity of geometric genus 2.

Now, as a summary, we state a rough classification of the minimal even cycles
according to the base locus of the canonical linear system and the numerical decom-
position:

Proposition 2.7. Minimally even cycles Z of fundamental genus 2 fall into the
following five classes (0), (i.a), (i.b), (ii.a) and (ii.b).

(0) |ωZ | is free from base points and Z is 2-connected.

(i) |ωZ | has an isolated base point x.

(i.a) Z = Δ+Δ1, Δ ∩Δ1 = {x}.

(i.b) Z = 2Δ+ Γ1 + Γ2 + Γ3, the base point x ∈ Δ is a non-singular point of
Zred.

(ii) The fixed part Γ of |ωZ | is the fundamental cycle of a rational double point.

(ii.a) Z = Δ+Δ1 + Γ, where the Γ is a simple chain of (−2)-curves (of type
(A)) with Δ ∩ Γ = {x} and Δ1 ∩ Γ = {y}.

(ii.b) Z = 2Δ+ Γ1 + Γ2 + Γ3, Γ is a maximal curve in {Γ1,Γ2,Γ3}.

We remark that, when (V, o) is Gorenstein, the above substantially gives us the
classification of the maximal ideal cycles.
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2.2. General case. Let us consider the case m ≥ 2.

Proposition 2.8. Let (V, o) be an even singularity with pf (V, o) = 2 and
pa(V, o) = m + 1 ≥ 3. If Y =

∑m
i=1 Di denotes the Yau cycle, then D1 − Dm

decomposes into a numerically disjoint sum of two fundamental cycles Δ1,Δ2 of ra-
tional double points: D1 − Dm = Δ1 + Δ2, DmΔi = 1, OΔ2

(−Δ1) 
 OΔ2
. The

possible types of Δ1, Δ2 are as follows.

(2Am−1) : Δ1 and Δ2 are both of type Am−1, Supp(Δ1) ∩ Supp(Δ2) = ∅.

(A2m−1,A2m−3) : Δi is of type A2m−(2i−1) (i = 1, 2) and Δ2 ≺ Δ1.

(E6,A5) : m = 3, Δ1 is of type E6, Δ2 is of type A5 and Δ2 ≺ Δ1.

(Dl,A1) : m = 2, Δ1 is of type Dl for some l ≥ 4, Δ2 is of type A1 and Δ2 ≺ Δ1.

Proof. Suppose that m ≥ 2. We have KX(D1 − Dm) = 0, since pa(D1) =
pa(Dm) = −D2

1 = −D2
m = 2 by Lemma 1.11 (1). Hence D1 −Dm consists of (−2)-

curves. Let A be a component of D1−Dm and let i = i(A) be the biggest index such
that A � Di. Then A(Di +Di+1) = 0 by (1.2) and 0 = KXA = −2Y A.

We have (D1 − Dm)2 = −4 by D1Dm = 0. It follows from Proposition 1.2
that D1 − Dm decomposes as D1 − Dm = Δ1 + Δ2, DmΔi = 1, Δ2

i = −2 and
OΔ2

(−Δ1) 
 OΔ2
. Since OΔ2

(−D1) is nef of degree one, there exists a non-multiple
component C of Δ2 with −CD1 = 1. Then CDi = 0 for i ≥ 3 by (1.2) and CD2 = 1.
We have 0 > C(D1−Dm) = CΔ1+CΔ2 = CΔ2 by CDm ≥ 0 and OΔ2

(−Δ1) 
 OΔ2
.

From the A-D-E classification, we see that Δ2 is of Dynkin type Ar for some r.
Furthermore, we have r = 1 (i.e., CΔ2 = −2) if and only if CDm = 1, i.e., m = 2.

Assume that Δ1 and Δ2 are disjoint. Then the same argument as above shows
that Δ1 is of Dynkin type As for some s. Let C′ be a component of Δ1 with −C′D1 =
1. Then C and C′ are (−1)D1

-curves. It follows that D1−C−C′ is a chain-connected
curve with pa(D1−C−C′) = 2. Furthermore, OD1−C−C′(−D1) is numerically trivial
by D2

1 = −2. Hence, D2 = D1−C−C′. Now, we can repeat the argument inductively
for Di −Dm (i = 1, . . . ,m− 1) to find r = s = m− 1. This gives (2Am−1).

Assume that Δ2 ≺ Δ1. Then it follows from Proposition 1.2 (3) that Δ1 is of
type either Ar+2 or Dl (r = 1 or l = 5, r = 3) or E6 (r = 5). In this case, C is of
multiplicity 2 in D1 −D2 and D2 � D1 − 2C. It is easy to see that −(D1 −D2) is
nef on D1 −D2. Put Γ = D1 − C −D2. Then Γ2 = −2 and CΓ = 0. Since Γ is the
fundamental cycle on its support, as in Proposition 1.2 (3), we see that Γ is of type
either A3 or Dl′ for some l′ ≥ 4. From this, we inductively see that r = 2m− 3 when
Δ1 is of type Ar+2, m = 3 when Δ1 is of type E6, and that (D5,A3) is impossible.

The weighted dual graphs corresponding to the cases in the above Proposition
are as in Figures 4–6. Note that, though Dm is treated as if it were a single curve
and Dm has no common component with Δ1 +Δ2 in the figures, in reality Dm may
well be reducible and, moreover, Dm and Δ1 +Δ2 may have a common component.

Example 2.9. Each can be realized by a double point with Dm non-singular.
Sample equations are as follows.

(2Am−1) : z2 = x6 + y6m

(A2m−1,A2m−3) : z2 = x(y + xm−1)(y5 − x5(m−1)), m ≥ 3

(E6,A5) (m = 3) : z2 = (x2 − y3)(x5 − y15)

(Dl,A1) (m = 2) : z2 = (x10 − y5)(x2 − yl−1), l ≥ 3
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Not all combinations are possible and we cannot attach an arbitrary type of
(Δ1,Δ2) to a given minimally even cycleDm. We call a curveD essentially irreducible,
if there is a non-multiple irreducible component C of D such that D − C consists of
(−2)-curves at most.

Lemma 2.10. Assume that pa(V, o) = m+ 1 ≥ 3 and put D1 −Dm = Δ1 + Δ2

as above.

(1) If A is an irreducible component of Dm, then ADm < 0 if and only if (Dm−1−
Dm)A > 0.

(2) Every irreducible component B of Dm−1 satisfying BDm−1 < 0 meets Dm at
one non-singular point of a non-multiple component C of Dm. If CDm = 0, then C
is a (−2)-curve and C � Dm−1 −Dm.

(3) If (Δ1,Δ2) is of type (2Am−1), then Dm is of type either (0), (i.a) or (ii.a).
If it is of type (E6,A5), then Dm is of type (0) and is essentially irreducible. If it is
of type either (A2m−1,A2m−3) or (Dl,A1), then Dm is of type (0) and is essentially
irreducible, unless Dm and Dm−1 −Dm have a common component.

Proof. (1) is clear. In fact, we have (Dm−1 −Dm)A = −DmA.
(2), (3): We compare Dm−1 and Dm. We take an irreducible component B of

Dm−1 satisfying BDm−1 < 0. Since B is not a component of Dm, it is a (−2)-curve.
Then 0 = KXB = −2Y B = 0, from which we get (Dm−1 +Dm)B = 0. Furthermore,
since Dm−1 is a reducible numerically 1-connected curve, we get 1 ≤ (Dm−1−B)B =
DmB + 2 and, thus, BDm−1 = −1 and BDm = 1. Then, Dm has a unique non-
multiple component C meeting B at a point. If CDm = 0, then (Dm−1 −Dm)C = 0
and C is a component of Dm−1 − Dm (since BC > 0 and B � Dm−1 − Dm). In
particular, C is a (−2)-curve and B + C is the configuration of type A2 in this case.
We also remark that we have Dm ∩ (D1 −Dm−1) = ∅ for m ≥ 3 by (1.2) and, thus,
C cannot be a component of D1 − Dm−1. From these, one easily see that the case
CDm = 0 cannot happen when (Δ1,Δ2) is of type either (2Am−1) or (E6,A5).

Assume that CDm < 0. Then, Dm cannot be of types (i.b), (ii.b) because Dm

has a non-multiple component C which is not a (−2)-curve. This is the case when
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��
��� � � � � �

�

2

Δ2

�

2 2 2 2

[2]

−2
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D1−Dm is of type either (2Am−1) or (E6,A5) as we saw above. Except when (Δ1,Δ2)
is of type (2Am−1), B as above is unique and it is a component of multiplicity 2 of
Dm−1. Then (Dm−1 − Dm)C ≥ 2BC = 2, i.e., −DmC ≥ 2. This implies that
Dm is essentially irreducible, since the other components, if any, are (−2)-curves by
4 = KXDm = −2DmDm ≥ −2DmC ≥ 4. In particular, when (E6,A5), the only
possible type of Dm is (0) which is essentially irreducible.

We assume that CDm = 0. Assume that Dm−1 −Dm is of type (A3,A1). Then
C is one of the end components of A3. A as in (1) does not meet B, but meets C or
an another end component C′ of A3. When m ≥ 3, C has to be the end component of
A2m−1 adjacent to B, and A meets C. If Dm−1−Dm is of type (Dl,A1), then m = 2
and C have to be the component adjacent to B in the Dl configuration.

If D1−D2 is of type (Dl,A1) and CD2 = 0, then C is a component of multiplicity
3 in Z. From this, one immediately sees that the only possible case is l = 4 and D2

is of type (ii.a) as in Fig. 8 by the nefness of −Z (examined on the Dl configuration).
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Fig. 8. (ii.a) + (D4,A1)

In Fig. 9, we give an example of the case where Dm and D1 − Dm have a common
component, where Dm is of type (ii.b) (see, Fig. 2 (a)) and D1 − Dm is of type
(A2m−1,A2m−3).

3. A geometric genus formula. The purpose of this section is to establish a
formula computing the geometric genus of the even singular point (V, o) of fundamen-
tal genus 2, modeled on Okuma’s formula [11] for elliptic singularities.

Recall that ZK = 2Y = 2(D1 + · · · + Dm). By (1.2), ODm
(Z) 
 ODm

(Di) for
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Fig. 9. (ii.b) + (A2m−1,A2m−3)

1 ≤ i ≤ m− 1. We put Yi =
∑m

j=i Dj and

Fi−1 = Y − Yi =

i−1∑
j=1

Dj (3.1)

for 1 ≤ i ≤ m. Then Yi is the Yau cycle on Supp(Di) and, as shown in [6, Lemma 1.3],
−Fi−1 is π-nef for 1 ≤ i ≤ m. Note that OYi

(Fi−1) is numerically trivial.
We consider two subsets of {1, 2, . . . ,m} given by

A = {i | O2Yi−Di
(Fi−1) 
 O2Yi−Di

, 1 ≤ i ≤ m},
B = {i | ω2Yi

(Fi−1) 
 O2Yi
, 1 ≤ i ≤ m}.

(3.2)

We always have 1 ∈ A, and we have 1 ∈ B if and only if (V, o) is Gorenstein.

Lemma 3.1. The geometric genus of an even singularity (V, o) with pf(V, o) = 2
and pa(V, o) = m + 1 is given by pg(V, o) = m + #A + #B, where #T denotes the
cardinality of the set T .

Proof. First, we consider the case m = 1. Then Y = D1 = Z and ZK = 2Z.
It follows from [14] or [5] that pg(V, o) ≤ 2pf(V, o) + 1 = 3 with equality holding
only when (V, o) is Gorenstein. If (V, o) is Gorenstein, then 2 = pa(V, o) < pg(V, o)
by Lemma 1.4. Hence we have pg(V, o) = 3 if and only if (V, o) is Gorenstein and,
otherwise, we have pg(V, o) = 2. Hence the formula for pg(V, o) in the statement holds
for m = 1.

Next, we consider the case m ≥ 2. Put ωZK
= OZK

(κ). For i = 1, 2, . . . ,m,
consider the cohomology long exact sequence for

0→ ω2Yi−Di
(Fi−1)→ ω2Yi

(Fi−1)→ ODi
(κ− Fi−1)→ 0.

Note that ω2Yi
(Fi−1) is numerically trivial. Since Supp(Yi) is connected and Di is

the chain-connected component of 2Yi, the restriction map H0(2Yi, ω2Yi
(Fi−1)) →

H0(Di, κ− Fi−1) is not the zero map if and only if ω2Yi
(Fi−1) 
 O2Yi

. Therefore,

h0(2Yi, ω2Yi
(Fi−1)) = h0(2Yi −Di, ω2Yi−Di

(Fi−1)) +

{
1, if i ∈ B,
0, if i �∈ B.

(3.3)

Next, for i = 1, 2, . . . ,m− 1, consider the exact sequence

0→ O2Yi+1
(−Fi)→ O2Yi−Di

(−Fi−1)→ ODi
(−Fi−1)→ 0.

By the same reasoning as above, the restriction map H0(2Yi − Di,−Fi−1) →
H0(Di,−Fi−1) is not the zero map if and only if O2Yi−Di

(Fi−1) 
 O2Yi−Di
and

we have

h1(2Yi −Di,−Fi−1) = h1(2Yi+1,−Fi) +

{
h1(Di,−Fi−1), if i ∈ A,
−χ(Di,−Fi−1), if i �∈ A.
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Since pa(D) = 2, we get h1(Di,−Fi−1) = h0(Di,−Fi−1) + 1. From this and the
duality theorem, we get

h0(2Yi −Di, ω2Yi−Di
(Fi−1)) = h0(2Yi+1, ω2Yi+1

(Fi)) +

{
2, if i ∈ A,
1, if i �∈ A.

(3.4)

Putting hi = h0(2Yi, ω2Yi
(Fi−1)), we get

hi = hi+1 + 1 +

⎧⎨⎩
2, if i ∈ A ∩ B,
1, if i ∈ A ∪ B \ (A ∩ B),
0, if i �∈ A ∪ B,

by (3.3) and (3.4). This also holds for i = m with hm+1 = 0. Hence, summing up, we
get the desired formula for pg(V, o) = h1.

A geometric interpretation of A is as follows. Note that O2Yi−Di
(Fi−1) 


O2Yi−Di
((i − 1)Z) by (1.2). If i > 1 and i ∈ A, then this means that O2Yi−Di

(Z) is
a torsion element and, putting α = ord(O2Yi−Di

(Z)), i − 1 is a multiple of α. Con-
versely, if j = 1 + kα with a non-negative integer k and j ≤ m, then we have j ∈ A.
Hence,

A =

{
1 + kα | 0 ≤ k ≤

[
m− 1

α

]}
,

where [x] denotes the biggest integer not exceeding x ∈ R. We remark that, when
m ≥ 2, α does not depend on i > 1 in the sense that we have ord(ODm

(Z)) = α by
[11, Lemma 3.7], since we have H1(2Yi −Di,Z) 
 H1(Dm,Z).

A similar observation can be done also for B. Assume that B �= ∅ and put
β = minB. We have ω2Yi

(Fi−1) 
 O2Yi
(κ − (i − 1)Z). If i ∈ B and i > β, then

restricting O2Yβ
(κ− (β− 1)Z) 
 O2Yβ

to 2Yi, we get O2Yi
(κ− (β− 1)Z) 
 O2Yi

and,
therefore, O2Yi

((i− β)Z) 
 O2Yi
. Hence i− β can be divided by α (which is also the

order of O2Yi
(Z) by the same reasoning as above), and we get

B =

{
β + kα | 0 ≤ k ≤

[
m− β

α

]}
as far as B �= ∅. In particular, we have A = B if and only if (V, o) is Gorenstein.

We have shown the following:

Theorem 3.2. Let (V, o) be an even singularity with pf (V, o) = 2 and pa(V, o) =
m+ 1. Put

α =

{
1, if m = 1,

ord(ODm
(Z)), if m ≥ 2,

(3.5)

and β = minB when B �= ∅. Then,

pg(V, o) = m+ 2 +

[
m− 1

α

]
+

[
m− β

α

]
if B �= ∅

and pg(V, o) = m+ 1 + [(m− 1)/α] if B = ∅.

Remark 3.3. (1) When B = ∅, we have pg(V, o) = h1(Y,OY ) by [6, Theorem 1.5].
This means that the cohomological cycle is a subcurve of the Yau cycle.
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(2) When (V, o) is Gorenstein, α may divide m− 1.

Recall that (Vν , oν) is the singular point obtained by contracting Dν (1 ≤ ν ≤ m),
(V1, o1) = (V, o).

Corollary 3.4. Let (V, o) be an even singularity with pf (V, o) = 2 and
pa(V, o) = m+1. Then pg(V, o) ≤ 3m = 3pa(V, o)− 3. If the equality sign holds, then
(Vν , oν) is Gorenstein and pg(Vν , oν) = 3(m− ν + 1) for all ν = 1, . . . ,m.

Definition 3.5. Let (V, o) be an even singular point with pf(V, o) = 2. It is
called a maximally even singularity if the equality pg(V, o) = 3pa(V, o) − 3 holds.
Then, it is Gorenstein.

4. Maximal ideal cycles. In this section, we study the maximal ideal cycles of
even Gorenstein singularities of fundamental genus 2 and show the following:

Theorem 4.1. Let (V, o) be an even Gorenstein singular point with pf(V, o) = 2
and pa(V, o) = m + 1, m the ideal sheaf of o ∈ V and π : X → V the minimal
resolution. Put Fα =

∑α
i=1 Di assuming that α < m when m ≥ 2, where Y =

∑m
i=1 Di

is the Yau cycle and α is the number defined in (3.5). Then, one of the following three
holds.

(0) Fα is the maximal ideal cycle and mOX 
 OX(−Fα).

(I) Fα is the maximal ideal cycle, but there exists a point p such that mOX 

mpOX(−Fα).

(II) There exists a (−2)-cycle Γ ≺ Z such that Fα + Γ is the maximal ideal cycle
and mOX 
 OX(−Fα − Γ). Γ is the fixed part of |ωZ | when m = 1 and it is a
chain-connected component of Z −Dα when m > α ≥ 2.

When m ≥ 2, (I) occurs only when either α = 1 or α � m − 1; (II) occurs only when
α � m− 1.

Therefore, even Gorenstein singularities of fundamental genus 2 fall into 4 types
(0), (I) and (II) in Theorem 4.1 and (III) a class consisting of those with α ≥ m ≥ 2.
In the course of the proof, we freely use the notation in the previous sections.

We first consider the case where m = 1. Then, Fα = Z and ωZ = OZ(−Z) since
(V, o) is Gorenstein. Therefore, the assertion follows from what we saw in §2.1 (espe-
cially, Lemma 2.1) except the statement in (II) for Z of type (ii) in Proposition 2.7.

Lemma 4.2. Let (V, o) be an even Gorenstein singularity with pf (V, o) =
pa(V, o) = 2. If it is of type (ii) and Γ is the fixed part of |ωZ | described in §2.1,
then OX(−Z − Γ) is π-free.

Proof. Since (V, o) is Gorenstein, KX is linearly equivalent to −2Z. So, we have
ωZ−Γ = OZ−Γ(−Z − Γ). As we have already seen in Case 1 in §2.1 and Lemma 2.5,
−Z − Γ is trivial on Z − Γ. We have OΓ(−Z − Γ) 
 OΓ(−Γ). Hence −Z − Γ is
nef also on Γ, since Γ is the fundamental cycle of a rational double point. In sum,
OZ(−Z − Γ) is nef.

Using the exact sequences

0→ OX(−ZK − Z − Γ)→ OX(−Z − Γ)→ OZK
(−Z − Γ)→ 0

and

0→ OZ(−2Z − Γ)→ OZK
(−Z − Γ)→ OZ(−Z − Γ)→ 0,
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one can easily show that the restrictionH0(X,−Z−Γ)→ H0(Z,−Z−Γ) is surjective.
We know that OZ(−Z−Γ) is nef of degree 2. Recall that OZ−Γ(−Z−Γ) 
 OZ−Γ

and consider the cohomology long exact sequence for

0→ OΓ(−2Z)→ OZ(−Z − Γ)→ OZ−Γ → 0.

Since OΓ(−2Z) 
 OΓ, we get h0(Γ,−2Z) = 1 and h1(Γ,−2Z) = 0. Hence,
H0(Z,−Z − Γ) → H0(Z − Γ,OZ−Γ) is surjective, and we get h0(Z,−Z − Γ) =
h0(Γ,−2Z) + h0(Z − Γ,OZ−Γ) = 3. Since h0(Z,−Z − Γ) = degOZ(−Z − Γ) + 1
holds, |OZ(−Z − Γ)| is free from base point by [5, Theorem 2.1]. This shows that
OX(−Z − Γ) is π-free.

Now, we assume m ≥ 2 and α < m.
For 1 ≤ i ≤ m, consider the exact sequence

0→ OX(−ZK)→ OX(−Fi−1)→ OY +Yi
(−Fi−1)→ 0.

Since H1(X,−ZK) = 0 by the vanishing theorem, the restriction map
H0(X,−Fi−1)→ H0(Y + Yi,−Fi−1) is surjective. Next, consider the exact sequence

0→ OY +Yi+1
(−Fi)→ OY +Yi

(−Fi−1)→ ODi
(−Fi−1)→ 0 (4.1)

for 1 ≤ i ≤ m with the convention that Ym+1 = 0, Fm = Y . When i = 1,
H0(ZK ,OZK

)→ H0(Z,OZ) is surjective and we have h0(Y + Y2,−Z) = pg(V, o)− 1.
When i ≥ 2 and i �∈ A, we haveH0(Di,−Fi−1) = 0 and it followsH0(Y +Yi+1,−Fi) 

H0(Y + Yi,−Fi−1). Therefore, when α ≤ m, we have H0(Y + Yα+1,−Fα) 

H0(Y + Y2,−Z). From the commutative diagram

H0(X,−ZK) �� H0(X,−Z) �� H0(Y + Y2,−Z)

H0(X,−ZK) �� H0(X,−Fα)

��

�� H0(Y + Yα+1,−Fα).

�

��

we see that any holomorphic function on X vanishing identically on Z necessarily
vanishes identically on Fα.

We claim that the restriction mapH0(Y +Yα+1,−Fα)→ H0(Dα+1,ODα+1
) is sur-

jective. To see this, it suffices to show that the restriction map H0(Y +Yα+1,−Fα)→
H0(Yα+1,−Fα) is surjective, since we have OYα+1

(−Fα) 
 OYα+1
and the restriction

mapH0(Yα+1,OYα+1
)→ H0(Dα+1,ODα+1

) is surjective. Consider the exact sequence

0→ OY (−Y )→ OY +Yα+1
(−Fα)→ OYα+1

(−Fα)→ 0.

Since (V, o) is Gorenstein, we have OY (−Y ) 
 ωY and h0(Y,−Y ) = h1(Y,OY ) =
m+1+[(m−1)/α] = pg(V, o)−1− [(m−1)/α] by [6, Theorem 1.5]. Similarly, we have
h0(Yα+1,OYα+1

) = h1(Yα+1,Oα+1)− (m−α) = 1+ [(m−α− 1)/α] = [(m− 1)/α] by
the Riemann-Roch theorem. Then, h0(Y + Yα+1,−Fα) = pg(V, o)− 1 = h0(Y,−Y ) +
h0(Yα+1,OYα+1

). This implies that H0(Y + Yα+1,−Fα) → H0(Yα+1,OYα+1
) is sur-

jective.
We have shown that |OX(−Fα)| has no base points on Dα+1. So our next

task is to consider the base points on Z − Dα+1. Recall that Z − Dα+1 con-
sists of two fundamental cycles of rational double points. Since the surjective
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map H0(Y + Yα+1,−Fα) → H0(Dα+1,ODα+1
) factors through H0(Z,−Fα), the re-

striction map H0(Y + Yα+1,−Fα) → H0(Z,−Fα) is non-zero and H0(Z,−Fα) →
H0(Dα+1,ODα+1

) is surjective. Note also that we haveOZ−Dα+1
(−Fα+1) 
 OZ−Dα+1

being a numerically trivial invertible sheaf on the rational curve Z − Dα+1. Then,
from the exact sequence

0→ OZ−Dα+1
(−Fα+1)→ OZ(−Fα)→ ODα+1

→ 0, (4.2)

we get h0(Z,−Fα) = 1 + h0(Z − Dα+1,O) = 3. Since OZ(−Fα) is nef of degree 2,
it follows from [5, Theorem 2.1] that |OZ(−Fα)| is free from base points. We next
consider

0→ H0(Y2 + Yα+1,−Z − Fα)→ H0(Y + Yα+1,−Fα)→ H0(Z,−Fα).

If α = 1, then H0(Y2 + Yα+1,−Z − Fα) = H0(2Y2,−2Z) 
 H0(2Y2, ω2Y2
) which is of

dimension pg(V2, o2) = 3m − 3. It follows that H0(Y + Y2,−Z) → H0(Z,−Z) is of
rank 2. In order to estimate h0(Y2 + Yα+1,−Z − Fα) for α ≥ 2, we consider

0→ OY2+Yi+1
(−Z − Fi)→ OY2+Yi

(−Z − Fi−1)→ ODi
(−Z − Fi−1)→ 0

for i ≥ 2 and proceed similarly as what we did with (4.1). Then, one sees h0(Y2 +
Yi+1,−Z − Fi) = h0(Y2 + Yi,−Z − Fi−1) for i < α, and h0(Y2 + Yα+1,−Z − Fα) =
h0(Y2+Yα,−Z−Fα−1)−1 and it follows h0(Y2+Yα+1,−Z−Fα) = h0(2Y2,−2Z)−1.
On the other hand, since O2Y2

(−2Z) 
 ω2Y2
and the invariant β for (V2, o2) is given

by α − 1, we get h0(2Y2,−2Z) = (m − 1) + 2 + [(m − 2)/α] + [(m − 1 − α)/α] =
m+ [(m− 2)/α] + [(m− 1)/α]. Hence,

h0(Y + Yα+1,−Fα)− h0(Y2 + Yα+1,−Z − Fα) = 2 +

[
m− 1

α

]
−

[
m− 2

α

]
and we get the following:

Lemma 4.3. Assume that m ≥ 2 and α < m. Then the restriction map H0(Y +
Yα+1,−Fα)→ H0(Z,−Fα) is surjective if α ≥ 2 and α divides m− 1; otherwise, its
image is 2-dimensional.

If α ≥ 2 and α | (m − 1), then OX(−Fα) is π-free, by what we have seen above.
Hence mOX = OX(−Fα) in this case.

We consider the case that H0(Y + Yα+1,−Fα)→ H0(Z,−Fα) is of rank 2. Take
s0, s1 ∈ H0(Y + Yα+1,−Fα) which span the image. We can assume that s0 is a
non-zero constant on Dα+1, whereas s1 vanishes identically on Dα+1. Then s0 can-
not vanish identically on any components of Dα − Dα+1 and s1 induces a non-zero
element t1 ∈ H0(Z −Dα+1,−Fα+1) from the exact sequence (4.2) and the fact that
OZ−Dα+1

(−Fα+1) 
 OZ−Dα+1
.

Assume that s0 has isolated zeros only. If t1 does not vanish on any components,
then s0 and s1 have no common zeros. In this case, mOX 
 OX(−Fα). If t1 vanishes
identically on a component, then it vanishes identically on a chain-connected compo-
nent Γα+1 of Z − Dα+1 and is a non-zero constant on Z −Dα+1 − Γα+1; it follows
that s0 and s1 have common zeros only at a point p ∈ Γα+1, p �∈ Dα+1. That is,
Bs|OX(−Fα)| = {p}.

Assume that s0 vanishes identically on a component of Z −Dα. Then α ≥ 2 and
s0 vanishes identically on at least one maximal chain-connected component of Z−Dα.
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If t1 does not vanish on any components of Z−Dα+1, then s0 and s1 have no common
zeros and we have mOX 
 OX(−Fα). If t1 vanishes on a component, then it vanishes
on Γα+1 as above. Therefore, there are two possibilities: either Z −Dα+1 is of type
(2Aα) and s0, s1 has no common zeros, or s0, s1 vanishes identically on a maximal
chain-connected component Γ of Z −Dα satisfying Γ ≺ Γα+1. In the former case, we
have mOX 
 OX(−Fα). As to the latter, we have the following.

Lemma 4.4. If s0 and s1 vanish identically on Γ, then mOX 
 OX(−F ), where
F = Fα + Γ.

Proof. Recall that we have α ≥ 2 and α � m− 1.
We first confirm that OX(−Fα−Γ) is π-nef. Put Γ′ = Z−Dα−Γ. Then Γ′ is the

fundamental cycle of a rational double point and Fα + Γ = Fα+1 + Z − Γ′. Let C be
an irreducible component of Z and assume that C(Fα + Γ) = C(Fα+1 + Z − Γ′) > 0.
We know that −Fα, −Fα+1 and −Z are nef on π−1(o) by [6, Lemma 1.3]. From
C(Fα + Γ) > 0, we get CΓ > 0. On the other hand, from C(Fα+1 + Z − Γ′) > 0, we
get CΓ′ < 0 and, thus, C is a component of Γ′. This contradicts CΓ > 0, because
OΓ′(−Γ) is trivial. Therefore, −F is nef on π−1(o), where F = Fα + Γ.

It remains to show that OX(−F ) is π-free. For this purpose, we consider the
commutative diagram

0 �� OX(−ZK − Γ) ��

��

OX(−F ) �� OY +Yα+1
(−F ) ��

��

0

0 �� OX(−ZK) �� OX(−F ) �� OY+Yα+1−Γ(−F ) �� 0

of sheaves with exact rows. Since there are no curves with support in π−1(o) whose
self-intersection numbers are odd, we know that ωX is π-free by a result in [4].
Hence H0(X,−ZK) → H0(Γ,OΓ) is surjective, and we get H1(X,−ZK − Γ) = 0
by H1(X,−ZK) = 0. It follows that H0(X,−F ) → H0(Y + Yα+1,−F ) and
H0(X,−F )→ H0(Y + Yα+1 − Γ,−F ) are both surjective.

Since Γ is the fixed part of |OX(−Fα)|, the natural inclusion H0(Y + Yα+1 −
Γ,−F )→ H0(Y + Yα+1,−Fα) is an isomorphism. Then, the exact sequence

0→ OY2+Yα+1
(−Fα − Z)→ OY+Yα+1−Γ(−F )→ OZ−Γ(−F )→ 0

and the computation done just before Lemma 4.3 show that the image of H0(Y +
Yα+1−Γ,−F )→ H0(Z−Γ,−F ) is 2-dimensional. We remark that Z−Γ is numerically
1-connected, since so is Z and (Z − Γ)Γ = 1. Since OZ−Γ(−F ) is nef of degree one,
we have h0(Z − Γ,−F ) ≤ 2. Therefore, H0(Y + Yα+1 − Γ,−F )→ H0(Z − Γ,−F ) is
surjective and OZ−Γ(−F ) is generated by its global sections by [5, Theorem 2.1]. In
particular, we know that |OX(−F )| has no base points on Z − Γ.

Now, we consider the commutative diagram

0 �� OΓ(−ZK) ��

��

OY+Yα+1
(−F ) ��

��

OY+Yα+1−Γ(−F ) ��

��

0

0 �� OΓ(−Fα − Z) �� OZ(−F ) �� OZ−Γ(−F ) �� 0

with exact rows, where the vertical maps are restriction maps. A non-zero element
of H0(Γ,−ZK) 
 H0(Γ,OΓ) gives us an element of H0(Y + Yα∗1,−F ) that does not
vanish on Γ \ (Dα ∩ Γ). In sum, OX(−F ) is π-free.
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Lemma 4.5. h1(Y + Yα+1,OY+Yα+1
) = pg(V, o) − 1, h1(Y + Yα+1,−Fα) =

pg(V, o)− 1− α and h1(Y + Yα+1,−nFα) = pg(V, o)− 2− α for any n ≥ 2.

Proof. Firstly, we consider the case where m = 1.

0→ OZ(−(n+ 1)Z)→ OZK
(−nZ)→ OZ(−nZ)→ 0.

Since OZ(−Z) = ωZ , by duality, we get h1(Z,−(n + 1)Z) = h0(Z, nZ) = 0 for
n ≥ 1. Then, H1(ZK ,−nZ) 
 H1(Z, ωZ(−(n − 1)Z). We get h1(ZK ,−Z) = 1 and
h1(ZK ,−nZ) = 0 for n ≥ 2. Since pg(V, o) = 3, we are done.

Next, we consider the case m ≥ 2. The restriction map H0(X,−Fα)→ H0(Y +
Yα+1,−Fα) is surjective and H1(X,−Fα) 
 H1(Y + Yα+1,−Fα). Since h0(Y +
Yα+1,−Fα) = pg(V, o)− 1 as we already saw, we get h1(Y + Yα+1,−Fα) = pg(V, o)−
1−α by the Riemann-Roch theorem. It follows h1(ZK ,−Fα) = pg(V, o)− 1−α. For
n ≥ 2, we consider

0→ OX(−ZK − (n− 2)Fα)→ OX(−nFα)→ O2Yα+1
(−nFα)→ 0.

We have H1(X,−ZK − (n − 2)Fα) = 0 when n ≥ 2 and H1(X,−nFα) 

H1(2Yα+1,−nFα) 
 H1(2Yα+1,O). Therefore, h1(ZK ,−nFα) = pg(Vα+1, oα+1) =
pg(V, o) − 2 − α for n ≥ 2. We note that OY +Yα+1

(−Fα) 
 ωY+Yα+1
. Hence

h1(Y +Yα+1,O) = h0(Y +Yα+1,−Fα) = h1(Y +Yα+1,−Fα)+α by the Riemann-Roch
theorem.

The following completes the proof of Theorem 4.1.

Lemma 4.6. Assume that Bs|OX(−Fα)| = {p} and let ρ : X̃ → X be the blowing-
up at p. Put E = ρ−1(p) and F := ρ∗Fα +E. Then mO

X̃

 O

X̃
(−F ). In particular,

mult(V, o) = −F 2 = 2α+ 1.

Proof. Recall that p ∈ Dα−Dα+1 whenm ≥ 2. Since every irreducible component
through p is non-singular at p and has negative intersection number with Fα, one easily
sees that −F is nef on (π ◦ ρ)−1(o). It remains to show that O

X̃
(−F ) has no base

points on E. This will be done along an analogous line to the proof of Lemma 4.4.
Since p is the base point of |OY +Yα+1

(−Fα)|, the restriction map H0(ρ∗(Y +
Yα+1),−ρ∗Fα)→ H0(E,OE) is the zero map and we get h0(ρ∗(Y +Yα+1)−E,−F ) =
h0(ρ∗(Y + Yα+1),−ρ∗Fα) = pg(V, o)− 1 and h1(ρ∗(Y + Yα+1)−E,−F ) = h1(ρ∗(Y +
Yα+1),−ρ

∗Fα) + h0(E,OE) = pg(V, o) − α. When m = 1, this gives us h0(ρ∗Z −
E,−F ) = 2. When m ≥ 2, we recall that h0(Y2 + Yα+1,−Z − Fα) = m− 1 + [(m −
2)/α] + [(m− 1)/α] = pg(V, o)− 3 and consider

0→ H0(ρ∗(Y2+Yα+1),−ρ
∗(Z+Fα))→ H0(ρ∗(Y+Yα+1)−E,−F )→ H0(ρ∗Z−E,−F )

to find H0(ρ∗(Y + Yα+1) − E,−F ) → H0(ρ∗Z − E,−F ) is of rank 2 and, hence,
h0(ρ∗Z − E,−F ) ≥ 2. Since Oρ∗Z−E(−F ) is nef of degree 1 and ρ∗Z − E is chain-
connected by Lemma 1.1, it follows from [5, Theorem 2.1] that h0(ρ∗Z −E,−F ) = 2
and Oρ∗Z−E(−F ) is generated by its global sections. From

0→ O
X̃
(−ρ∗ZK)→ O

X̃
(−F )→ Oρ∗(Y+Yα+1)−E(−F )→ 0,

we see that H0(X̃,−F ) → H0(ρ∗(Y + Yα+1) − E,−F ) is surjective. As we al-
ready remarked in the proof of Lemma 4.4, ωX is π-free. Thus the restriction
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map H0(X̃,−ρ∗ZK) → H0(E,OE) is surjective and we have H1(X̃,−ρ∗ZK − E) 


H1(X̃,−ρ∗ZK) = 0. Then, it follows from the exact sequence

0→ O
X̃
(−ρ∗ZK − E)→ O

X̃
(−F )→ Oρ∗(Y+Yα+1)(−F )→ 0

that H0(X̃,−F )→ H0(ρ∗(Y +Yα+1),−F ) is surjective and H1(X̃,−F ) 
 H1(ρ∗(Y +
Yα+1),−F ). We now consider the commutative diagram

H0(E,−ρ∗ZK)
�
� ��

�

��

H0(ρ∗(Y + Yα+1),−F ) �� ��

��

H0(ρ∗(Y + Yα+1)− E,−F )

����
H0(E,−ρ∗(Fα + Z)) �

� �� H0(ρ∗Z,−F ) �� �� H0(ρ∗Z − E,−F ),

where the vertical arrows are restriction maps, to conclude that H0(ρ∗(Y +
Yα+1),−F ) → H0(ρ∗Z,−F ) is surjective. Since Oρ∗Z(−F ) is nef of degree 2 and
h0(ρ∗Z,−F ) = 3, we see that Oρ∗Z(−F ) is generated by its global sections. Since

H0(X̃,−F )→ H0(ρ∗Z,−F ) is surjective, we see that O
X̃
(−F ) is (π ◦ ρ)-free and we

have mO
X̃

 O

X̃
(−F ).

By Theorem 4.1 and its proof, we get the following:

Corollary 4.7. Let the situation be as in Theorem 4.1. Then, the multiplicity
of (V, o) is given by

mult(V, o) =

⎧⎨⎩
2α, if mOX 
 OX(−Fα),

2α+ 1, if mOX 
 mpOX(−Fα),
2α+ 2 if mOX 
 OX(−Fα − Γ).

Proof. See, [12, 4.6].

Remark 4.8. It will be interesting to compare the fundamental genus and the
arithmetic genus of the maximal ideal cycle described in Theorem 4.1. We have
pa(Fα) = α+ 1 and pa(Fα + Γ) = α. Hence it is smaller than the fundamental genus
only when it is of type (II) with α = 1.

5. Embedding dimensions. In this section, we compute the embedding di-
mension of a maximally even singularity of fundamental genus 2. For this purpose,
we sometimes need the following:

Proposition 5.1. Let L be a line bundle of degree d > 0 on a curve D such
that |L| is free from base points. Then h0(D,L) ≤ d+ h0(D,OD). Furthermore, the
graded ring R(D,L) =

⊕∞
n=0 H

0(D,nL) is generated in degree one in the following
cases.

(1) h0(D,L) = d+ h0(D,OD).
(2) h0(D,L) = d+ h0(D,OD)− 1, d ≥ 3 and ωD 
 OD.

Proof. Take a general section s ∈ H0(D,L). Since |L| is free from base points,
ζ = (s) is an effective Cartier divisor of degree d. By using the identificationsOD(L) 

OD(ζ) and Oζ(ζ) 
 Oζ by another general section of L, we get an exact sequence

0→ OD → OD(L)→ Oζ → 0.
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From this, we get h0(D,L) ≤ h0(Oζ)+h0(D,OD). If (1) is the case, then H0(D,L)→
H0(Oζ) is surjective. It follows that H0(D,nL) → H0(Oζ) is surjective for any
n ≥ 1, because so is the composite SymnH0(D,L) → H0(D,nL) → H0(Oζ). Then
we have h0(D,nL) = h0(D,OD) + nd for n ≥ 0 in this case. If (2) is the case, then
H0(D,L)→ H0(Oζ) is not surjective, but one can prove that H0(D,L)→ H0(Oζ′) is
surjective for any effective subscheme ζ′ ⊂ ζ of length d− 1 as in [10, §6]. This shows
that ζ is “in general position” with respect to the quadrics (cf. [12]) and it follows
that Sym2H0(D,L)→ H0(D, 2L) and the composite Sym2H0(D,L)→ H0(D, 2L)→
H0(Oζ) are surjective. Then h0(D,nL) = h0(D,OD) + nd− 1 for n > 0.

In both of (1) and (2), the rest follows from Castelnuovo’s free pencil trick. Choose
a general subspace W ⊂ H0(D,L) of dimension 2 and consider the Koszul exact
sequence

0→
2∧
W ⊗OD((n− 1)L)→W ⊗OD(nL)→ OD((n+ 1)L)→ 0

for n > 0. Since 2h0(D,nL) = h0(D, (n+1)L)+ h0(D, (n− 1)L), W ⊗H0(D,nL)→
H0(D, (n+ 1)L) is surjective for n ≥ 1 when (1), and for n ≥ 2 when (2).

We shall show the following with several lemmas:

Theorem 5.2. Let (V, o) be a maximally even singular point with pf(V, o) = 2.
Then the embedding dimension is given by

embdim(V, o) =

{
3, if mult(V, o) = 2, 3,
4, if mult(V, o) = 4.

Lemma 5.3. Let (V, o) be a maximally even singular point with pf (V, o) = 2. If
Bs|OX(−Z)| = ∅, then R(Y + Y2,−Z) :=

⊕
n≥0 H

0(Y + Y2,−nZ) is generated by

s0, s1 ∈ H0(Y +Y2,−Z) and s2 ∈ H0(Y +Y2,−3Z). In particular, embdim(V, o) = 3.

Proof. We first claim that the rank of the restriction map H0(Y + Y2,−nZ) →
H0(Z,−nZ) is 2n− 1 when n ≥ 2. This follows from the exact sequence

0→ O2Y2
(−(n+ 1)Z)→ OY+Y2

(−nZ)→ OZ(−nZ)→ 0,

since we have h0(Y + Y2,−nZ)− h0(2Y2,−(n+ 1)Z) = h1(Y + Y2,−nZ) + 2n− 1−
pg(V2, o2) = 2n− 1 by Lemma 4.5. Recall that s0, s1 generate a (n+ 1) dimensional
subspace of H0(Z,−nZ) spanned by si0s

n−i
1 (0 ≤ i ≤ n). Hence, we find a new

element s2 ∈ H0(Y + Y2,−3Z) linearly independent from si0s
3−i
1 (0 ≤ i ≤ 3).

Recall that the image of the restriction map H0(Y + Y2,−Z)→ H0(Z,−Z) is of
dimension 2. We denote byW = 〈s0, s1〉 ⊂ H0(Y +Y2,−Z) the subspace of dimension
2 which restricts to span the image ofH0(Y +Y2,−Z)→ H0(Z,−Z). ThenW induces
a pencil that is free from base points and we have a Koszul exact sequence

0→
2∧
W ⊗OY+Y2

(−(n− 1)Z)→W ⊗OY +Y2
(−nZ)→ OY +Y2

(−(n+ 1)Z)→ 0

for any non-negative integer n. We have 2h1(Y +Y2,−nZ) = h1(Y +Y2,−(n−1)Z)+
h1(Y + Y2,−(n+ 1)Z) when n ≥ 3 by Lemma 4.5. It follows that the multiplication
map W ⊗H0(Y + Y2,−nZ)→ H0(Y + Y2,−(n+1)Z) is surjective for n ≥ 3. Hence,
the graded ring R(Y + Y2,−Z) is generated by elements of degrees ≤ 3. Similarly,
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we can show that W ⊗H0(Y + Y2,−Z) → H0(Y + Y2,−2Z) is surjective and W ⊗
H0(Y + Y2,−2Z) → H0(Y + Y2,−3Z) has 1-dimensional cokernel. Indeed, as we
saw above, we have s2 ∈ H0(Y + Y2,−3Z). Clearly, there is a relation of the form
s22 = φ6(s0, s1).

Let x0, x1 ∈ H0(X,−Z) and x2 ∈ H0(X,−3Z) be preimages of s0, s1 and s2.
We show that m/m2 is generated by x0, x1, x2. Indeed, we have H0(X,mOX) 

H0(X,−Z) and H0(X,−2Z)/H0(X,m2OX) is generated by x2. Then,

embdim(V, o) = dimH0(X,−Z)/H0(X,−2Z) + dimH0(X,−2Z)/H0(X,m2OX)

= dimH0(X,−Z)/H0(X,−2Z) + 1.

As is already seen, the restriction map H0(X,−nZ) → H0(Y + Y2,−nZ) is
surjective for any positive integer n. Hence, dimH0(X,−Z)/H0(X,−2Z) =
dim Im{H0(X,−Z) → H0(Z,−Z)} = dim Im{H0(Y + Y2,−Z) → H0(Z,−Z)}. We
have h0(Y + Y2,−Z) = pg(V, o) − 1 by Lemma 4.5 and the Riemann-Roch theorem.
We consider the exact sequence

0→ O2Y2
(−2Z)→ OY +Y2

(−Z)→ OZ(−Z)→ 0.

Since O2Y2
(−2Z) 
 ω2Y2

, we get h0(2Y2,−2Z) = pg(V2, o2) = pg(V, o)−3. Therefore,
embdim(V, o) = (pg − 1)− (pg − 3) + 1 = 3.

See, Example 2.9 for maximally even double points.

Lemma 5.4. Let (V, o) be a maximally even singular point with pf(V, o) = 2. If
Bs|OX(−Z)| = {p}, then embdim(V, o) = 3.

Proof. Put F = ρ∗Z − E. We let Z̃K = ρ∗ZK − E be the canonical cy-
cle on X̃. We shall show that h0(Z̃K ,−F ) = deg(O

Z̃K
(−F )) + pg(V, o) − 1. We

have H1(X̃,−F ) 
 H1(Z̃K ,−F ). Since H1(X̃,−F ) 
 H1(ρ∗(Y + Y2) − E,−F ),

we get h1(Z̃K ,−F ) = pg(V, o) − 1. Hence, by the Riemann-Roch theorem, we get

h0(Z̃K ,−F ) = deg(O
Z̃K

(−F )) + pg(V, o)− 1 as wished. Since deg(O
Z̃K

(−F )) = 3, it

follows from Proposition 5.1 (2) that R(Z̃K ,−F ) is generated in degree 1. From this,
one has m

n 
 (π ◦ ρ)∗OX̃
(−nF ) for any positive integer n as in [12, §4]. Then we

have embdim(V, o) = dim Im{H0(X̃,−F )→ H0(F,−F )}.
Since the intersection number of any curve with support in π−1(o) is even, we

see that OX(KX − Z) is π-free (cf. [4]). This implies that H0(X̃,−ρ∗(ZK + Z) →

H0(E,OE) is surjective and we get H1(X̃,−ρ∗ZK−F ) = 0 from H1(X,−ZK−Z) =

0. It follows that H0(X̃,−F ) → H0(ρ∗ZK ,−F ) is surjective and H1(X̃,−F ) 

H1(ρ∗ZK ,−F ). In particular, h1(ρ∗ZK ,−F ) = pg(V, o) − 1. By the Riemann-Roch
theorem, we get h0(ρ∗ZK ,−F ) = pg(V, o) + 3. We consider

0→ H0(ρ∗(Y + Y2)− E,−2F )→ H0(ρ∗ZK ,−F )→ H0(F,−F ).

Then embdim(V, o) = h0(ρ∗ZK ,−F )− h0(ρ∗(Y + Y2)− E,−2F ). We showed in the
proof of Lemma 4.6 that H0(ρ∗(Y + Y2)−E,−F )→ H0(ρ∗Z −E,−F ) is surjective.
Since R(ρ∗Z − E,−F ) is generated in degree 1 by Proposition 5.1 (1), H0(ρ∗(Y +
Y2)− E,−2F )→ H0(ρ∗Z − E,−2F ) is also surjective. From the exact sequence

0→ H0(2ρ∗Y2,−3ρ
∗Z −E)→ H0(ρ∗(Y +Y2)−E,−2F )→ H0(ρ∗Z −E,−2F )→ 0,
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we get h0(ρ∗(Y + Y2)−E,−2F ) = pg(V2, o2) + 3 = pg(V, o). In sum, embdim(V, o) =
3.

Example 5.5. The minimal resolution of the hypersurface triple point {z3 =
(x2 − y4)(x4 − y2)} has two (−2)-elliptic curves meeting normally at a point as the
exceptional set. Hence it is of type (i.a). The exceptional set for {z3 = x4 + y6}
consists of one (−2)-elliptic curve E0 and three (−2)-curves E1, E2, E3 such that
E0Ei = 1 (i = 1, 2, 3) and EiEj = 0 (i, j ∈ {1, 2, 3}, i �= j). Hence it is of type (i.b)
(see, Fig. 2 (a)). {z3 = x(x3 + y5)} is another example of type (i.b) (see, Fig. 3 (c)).

If α = 1, then Type (II) occurs only when m = 1.

Lemma 5.6. Let (V, o) be of type (II), m = 1. Then the ring R(ZK ,−F ) is
generated in degree one. Furthermore, mnOX 
 H0(X,−nF ) for any positive integer
n and embdim(V, o) = 4.

Proof. We only have to show that h0(ZK ,−F ) = 6 = deg(OZK
(−F )) − 1 +

h0(ZK ,OZK
).

0→ OZ(−2Z − Γ)→ OZK
(−F )→ OZ(−F )→ 0.

We have h1(Z,−2Z − Γ) = 0 and h0(Z,−2Z − Γ) = 3, since ωZ = OZ(−Z). As we
already saw in the proof of Lemma 4.2, we have h0(Z,−F ) = 3. Hence h0(ZK ,−F ) =
3 + 3 = 6. By Proposition 5.1, R(ZK ,−F ) is generated in degree 1. This shows
that m

n 
 π∗OX(−nF ) as in [12]. In particular, embdim(V, o) = ε(V, o). Since
H0(X,−F )→ H0(ZK ,−F ) is surjective, by using

0→ OZ−Γ(−2F )→ OZK
(−F )→ OF (−F )→ 0

and h0(Z − Γ,OZ−Γ) = 2, we get embdim(V, o) = 6− 2 = 4.

Remark 5.7. For a 1-connected curve D with pa(D) = 2 and KD nef, the
structure of the canonical algebra R(D,KD) was extensively studied in [8]. When D
is not 2-connected, her deep analysis shows:

R(D,KD) 
 C[x0, x1, y, z]/(ϕ2, ϕ6),

where deg x0 = deg x1 = 1, deg y = 2 and deg z = 3, and the ϕi’s are homogeneous
forms of degree i. A normal form is like:

ϕ2 = x0(x0 − λx1), ϕ6 = z2 − y3 + · · · (λ ∈ C).

In other words, the canonical model of D is a weighted complete intersection of type
(2, 6) in P(1, 1, 2, 3).
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