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ON SOME NEW BAILEY PAIRS AND NEW EXPANSIONS FOR

SOME MOCK THETA FUNCTIONS∗

ALEXANDER E. PATKOWSKI†

Abstract. In this paper we offer some new identities associated with mock theta functions and
establish new Bailey pairs related to indefinite quadratic forms. We believe our proof is instructive
use of changing base of Bailey pairs, and offers new information on some Bailey pairs that have
proven important in the study of Mock theta functions.
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1. Introduction. In the last few decades, considerable research has been done
on establishing special Bailey pairs to relate q-series to indefinite binary quadratic
forms. (For a definition of Bailey’s lemma and its history see Warnaar [14].) This
dates back to the work of Andrews [1], where in his study of mock theta functions,
he found that

(q)∞
∑
n≥0

qn
2

(1 + q)(1 + q2) · · · (1 + qn)

=
∑
n≥0

qn(5n+1)/2(1 − q4n+2)
∑
|j|≤n

(−1)jq−j2 , (1.1)

which is Ramanujan’s fifth order mock theta function f0(q). Subsequent work includes
Zwegers thesis [14] which established a connection between the right side of (1.1) and
real analytic modular forms through rewriting the summation bounds. For some more
related material on mock theta functions see [7, 9, 10, 12].

The purpose of this paper is to collect some observations from previous work [1, 2]
to construct new identities for mock theta functions by establishing some interesting
Bailey pairs. A subsequent consequence of this is a variety of new identities for q-series
related to indefinite binary quadratic forms.

2. The Bailey pairs. In this section we will prove the desired Bailey pairs
to obtain new relations among q-series related to indefinite quadratic forms in the
following sections. To do this we will need to state some known results and apply the
same technique used in [5]. We use the notation (αn(a, q), βn(a, q)) to be a Bailey
pair where

βn(a, q
k) =

∑
0≤j≤n

αn(a, q
k)

(qk; qk)n−j(aqk; qk)n+j
. (2.1)

If k = 1, then for convenience we simply put (αn(a, q), βn(a, q)) = (αn, βn).
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Lemma 2.1. [2] The pair (α∗n, β
∗
n) is a Bailey pair relative to a where

α∗n(a, b, c, q) =
qn

2

(bc)n(1 − aq2n)(a/b)n(a/c)n
(1− a)(bq, cq)n

×
∑

0≤j≤n

(−1)j(1− aq2j−1)(a)j−1(b, c)j
qj(j−1)/2(bc)j(q, a/b, a/c)j

, (2.2)

β∗n(a, b, c, q) =
1

(bq, cq)n
. (2.3)

We will also need some lemmas that follow from well-known special cases of Bailey’s
lemma.

Lemma 2.2. [5, (S2)] If (αn, βn) is a Bailey pair relative to a then so is (α′n, β
′
n)

where

α′n = an/2qn
2/2αn, (2.4)

β′n =
1

(−√aq)n

∑
0≤j≤n

(−√aq)ja
j/2qj

2/2

(q)n−j
βj . (2.5)

Lemma 2.3. [5, (S1)] If (αn, βn) is a Bailey pair relative to a then so is (α′n, β
′
n)

where

α′n = anqn
2

αn, (2.6)

β′n =
∑

0≤j≤n

ajqj
2

(q)n−j
βj . (2.7)

Next is the reverse implication of [5, (D1)].

Lemma 2.4. If (αn, βn) is a Bailey pair relative to a then so is (α′n, β
′
n) where

α′n(a
2, q2) = αn, (2.8)

β′n(a
2, q2) =

1

(−aq)2n
∑

0≤j≤n

(−1)n−jq(n−j)2

(q2; q2)n−j
βj . (2.9)

Now we offer some new Bailey pairs.

Lemma 2.5. The pair (αn, βn) is a Bailey pair relative to q where

βn =
(−1)n(1− c)

(q2; q2)n(1− cqn)
, (2.10)

αn = q−n(n+1)/2α∗n(q,−1, c, q), (2.11)

where the α∗n is given in (2.2).
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Proof. Put a = q in Lemma 2.2, and suppose the left sides of (2.4)–(2.5) are given
by the a = q, b = −1, case of (2.2)–(2.3). Then we would need our αn and βn to be
given as in Lemma 2.5 by the uniqueness of Bailey pairs, because

1

(−q)n(cq)n
=

1

(−q)n
∑

0≤j≤n

(−1)jqj(j+1)/2(1− c)

(q)n−j(q)j(1− cqj)
. (2.12)

We need one more lemma before our main desired Bailey pair.

Lemma 2.6. The pair (αn, βn) is a Bailey pair relative to q where

βn = 2
∑

0≤j≤n

(−1)jqj(j+1)

(q)n−j(q2; q2)j(1− c2q2j)
, (2.13)

αn = qn(n+1)/2

(
α∗n(q,−1, c, q)

(1− c)
+

α∗n(q,−1,−c, q)
(1 + c)

)
, (2.14)

where the α∗n is given in (2.2).

Proof. To prove this pair we take the pair in Lemma 2.5, multiply both sides by
(1− c)−1, and then add the same pair to itself after c has been replaced by −c, to get

βn = 2
(−1)n

(q2; q2)n(1− c2q2n)
, (2.15)

αn = q−n(n+1)/2

(
α∗n(q,−1, c, q)

(1− c)
+

α∗n(q,−1,−c, q)
(1 + c)

)
. (2.16)

Now insert this Bailey pair into Lemma 2.3. This follows from the observing that

1

1− cqj
+

1

1 + cqj
=

2

1− c2q2j
. (2.17)

We now obtain our main result concerning Bailey pairs.

Lemma 2.7. The pair (αn, βn) is a Bailey pair relative to q2 where

βn(q
2, q2) =

2

(−q2)2n(c2; q2)n+1
, (2.18)

αn(q
2, q2) = qn(n+1)/2

(
α∗n(q,−1, c, q)

(1− c)
+

α∗n(q,−1,−c, q)
(1 + c)

)
, (2.19)

where the α∗n is given in (2.2).

Proof. To obtain this pair, insert the pair in Lemma 2.6 into Lemma 2.4. This
takes a Bailey pair relative to (q, q) and produces a Bailey pair relative to (q2, q2).
This step is attractive because it will convert a pair with a βn that involves a sum
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into a simple truncated product. Note that the αn computation is trivial, and for the
βn we compute

βn(q
2, q2) =

1

(−q2)2n
∑

0≤j≤n

(−1)n−jq(n−j)2

(q2; q2)n−j
βj (2.20)

=
2

(−q2)2n
∑

0≤j≤n

(−1)n−jq(n−j)2

(q2; q2)n−j

⎛
⎝ ∑

0≤i≤j

(−1)iqi(i+1)

(q)j−i(q2; q2)i(1− c2q2i)

⎞
⎠ .

Notice that the sum in (2.20) may be viewed as the coefficient of zn in

(zq; q2)∞
(z)∞

∑
i≥0

(−z)iqi(i+1)

(q2; q2)i(1− c2q2i)
, (2.21)

which is the coefficient of zn in

1

(z; q2)∞

∑
i≥0

(−z)iqi(i+1)

(q2; q2)i(1− c2q2i)
. (2.22)

On the other hand, taking coefficients of zn in (2.22), we can see this is just

1

(c2; q2)n+1
, (2.23)

by equation (2.12). Hence the pair follows.

It should immediately be observed by the reader that the c → 0 case is a well-
known Bailey pair from the study [2], used to establish sixth order mock theta function
expansions. It is therefore natural that the case c = q1/2 would reveal new information.

3. A related Bailey pair. This section notes the Bailey pair obtained by con-
sidering the taking of the pair in Lemma 2.5. and instead subtracting the pair from
itself when c has been replaced by −c. This is

βn = 2
(−1)ncqn

(q2; q2)n(1− c2q2n)
, (3.1)

αn = q−n(n+1)/2

(
α∗n(q,−1, c, q)

(1− c)
− α∗n(q,−1,−c, q)

(1 + c)

)
. (3.2)

Recall from [5, (L1)] that if (αn, βn) is a Bailey pair relative to q then (α′n, β
′
n) is a

Bailey pair relative to 1 where

β′n =
n∑

j≥0

qj
2

(q)n−j
βj (3.3)

α′n = (1− q)qn
2

(
αn

1− q2n+1
− q2n−1 αn−1

1− q2n−1

)
. (3.4)
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Inserting (3.1)–(3.2) into this result gives us the Bailey pair (α1
n, β

1
n) relative to a = 1

where

β1
n = 2c

n∑
j≥0

(−1)jqj2+j

(q2; q2)j(q)n−j(1− c2q2j)
(3.5)

α1
n = (1− q)qn

2

(
an

1− q2n+1
− q2n−1 an−1

1− q2n−1

)
, (3.6)

where the an is given by (3.2). We leave the α1
n is this form for brevity. Applying the

a = 1 case of Lemma 2.4 gives us a new pair.

Lemma 3.1. We have, the Bailey pair (α1′

n , β1′

n ) relative to a = 1 where

β1′

n (1, q2) =
2c

(−q)2n(c2; q2)n+1
, (3.7)

α1′

n (1, q2) = (1 − q)qn
2

(
an

1− q2n+1
− q2n−1 an−1

1− q2n−1

)
, (3.8)

where the an is given in (3.2).

4. Mock theta functions. This section presents our main results of the paper,
establishing new identities for mock theta functions, and introducing new q-series.

It is a clear observation that the case c = q1/2 of Lemma 2.7 (and replacing q by
q2) is the Bailey pair (αn, βn) relative to (q4, q4) where

βn(q
4, q4) =

2

(−q4; q2)2n(q2; q4)n+1
, (4.1)

αn(q
4, q4) = qn(n+1)

⎛
⎝(−1)nq2n2+n(1 + q2n+1)

(1− q2)

∑
|j|≤n

q−j2

+
q2n

2+n(1− q2n+1)

(1− q2)

∑
|j|≤n

(−1)jq−j2

⎞
⎠ , (4.2)

We now state some interesting consequences.

Theorem 1. We have,

2
∑
n≥0

q2n(n+1)

(q4; q8)n+1
=

(−q4; q4)∞
(−q2; q2)∞

(P1(q) + P1(−q)) , (4.3)

where P1(q) =
∑

n≥0
q2n

2+2n

(−q2;q2)n

∑
0≤j≤n

qj
2+j

(−q;q2)j+1(q2;q2)n−j
.

Proof. In Bailey’s lemma, we take the ρ1 →∞, ρ2 = −q, case to get

2
∑
n≥0

(−q4; q4)nq2n(n+1)

(−q2; q2)2n+1(q2; q4)n+1
=

(−q4; q4)∞
(q4; q4)∞

(G1(q) +G1(−q)) , (4.4)
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where G1(q) =
∑

n≥0 q
5n2+4n(1 − q2n+1)

∑
|j|≤n(−1)jq−j2 . Now using (through a

simple application of Lemma 2.2) the equation

∑
n≥0

q2n
2+2n

(−q2; q2)n
∑

0≤j≤n

qj
2+j

(−q; q2)j+1(q2; q2)n−j

=
1

(q2; q2)∞

∑
n≥0

q5n
2+4n(1− q2n+1)

∑
|j|≤n

(−1)jq−j2 , (4.5)

we complete the proof.

Note that the q-series on the left side of (4.3) is one of Ramanujan’s 10th or-
der mock theta functions φ(q4) [6]. The function P1(q) may take on many different
multiple sum forms, here we only mention the form obtained from using Lemma 2.2.

Naturally we may offer more new examples of the mock theta function type like
Theorem 1.

Theorem 2. We have,

2
∑
n≥0

q4n(n+1)

(−q4; q4)n(q4; q8)n+1
=

1

(q4; q4)∞
(G2(q) +G2(−q)) , (4.6)

where G2(q) =
∑

n≥0 q
7n2+6n(1− q2n+1)

∑
|j|≤n(−1)jq−j2 .

The q-series on the left side of (4.6) is one of Ramanujan’s 7th order mock theta
functions F2(q

4).
Zwegers [16, Theorem 1] offered an expansion for the fifth order mock theta

function χ1(q) (and its companion χ0) as a triple sum. It may equivalently be viewed
as a special instance of a known Bailey pair with the conjugate Bailey pair due to
Bessoud and Singh [4, 13],

δn = qn, (4.7)

γn =
qn

(q)2∞

∑
j≥0

(−1)jqj(j+1)/2+2nj . (4.8)

Theorem 3. We have,

2χ1(q
4) = 2

∑
n≥0

q4n

(q4n+4; q4)n+1
=

1

(q4; q4)2∞
(G3(q) +G3(−q)) , (4.9)

where G3(q) =
∑

n,i≥0 q
3n2+6n+2i(i+3)+8ni(1− q2n+1)

∑
|j|≤n(−1)jq−j2 .

In the previous three theorems we can conclude that, in a sense, the “even part”
of Gi(q) for i = 1, 2, 3 is a mixed mock modular form [11]. However, more information
on these Gi(q) is needed, which will be dealt with in the next section.

If we appeal to a certain transformation formula found in Fine’s text [7, pg.18,
eq.(16.3)], and [7, pg.6, eq.(7.31)], we may utilize the pair (2.15)–(2.16) with the
conjugate pair (4.7)–(4.8) to get the following result.
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Theorem 4. We have,

2
∑
n≥0

(−t2)nqn2

(t2; q2)n+1
(4.10)

=
(q; q2)∞
(q2; q2)2∞

∑
n,j≥0

(−1)jqj(j+1)/2+2nj−n(n−1)/2

(
α∗n(q,−1, t, q)

(1 − t)
+

α∗n(q,−1,−t, q)
(1 + t)

)
.

This expansion has relevance to mock theta functions in special cases, such as
t = i.

We mention there are also certain product expansions that are natural conse-
quences of these types of pairs. One example from (2.15)–(2.16) is:

(q2; q2)2∞
(t2; q2)∞

=
∑
n≥0

qn(n+1)/2

(
α∗n(q,−1, t, q)

(1 − t)
+

α∗n(q,−1,−t, q)
(1 + t)

)
. (4.11)

5. More on Gi(q) in relation to Mock theta functions. Recent work from
[10] gives us some tools to state a result on our Gi(q). We can certainly see that Gi(q)
for i = 1, 2, 3 cannot be a modular form. We recall the function

fa,b,c(x, y, q) :=

⎛
⎝ ∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sxrysqar(r−1)/2+brs+cs(s−1)/2. (5.1)

The Appell-Lerch series is of the form

m(x, q, z) :=
1

(x)∞(q/x)∞(q)∞

∑
j∈Z

(−1)jqj(j−1)/2zj

1− qj−1xz
. (5.2)

Recent studies [10, 15] have shown specializations of (5.1) can be expressed in terms
of (5.2), which allows us to deduce which functions are mock theta functions (see [15,
Chapter 1]).

Theorem 5. We have

(−q4; q4)∞
(q4; q4)∞

G1(q), (5.3)

1

(q4; q4)∞
G2(q), (5.4)

and

1

(q4; q4)2∞
G3(q), (5.5)

are mock theta functions.

Note that this theorem implies P1(q) and similar multi-sums related to Gi(q) are
mixed mock modular forms.
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Proof. We give the details for G1(q) and G2(q) only. We write

G1(q) =
∑
n≥0

∑
|j|≤n

(−1)jq5n2+4n−j2 −
∑
n<0

∑
|j|≤−n−1

(−1)jq5n2+4n−j2

=

⎛
⎝ ∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sq4r

2+12rs+4s2+4r+4s

+

⎛
⎝ ∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sq4r

2+12rs+4s2+14r+14s+9

= f8,12,8(q
8, q8, q) + q9f8,12,8(q

18, q18, q).

This is mixed-mock. For G2(q) we have

G2(q) =
∑
n≥0

∑
|j|≤n

(−1)jq7n2+6n−j2 −
∑
n<0

∑
|j|≤−n−1

(−1)jq7n2+6n−j2

=

⎛
⎝ ∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sq6r

2+16rs+6s2+6r+6s

+

⎛
⎝ ∑

r,s≥0

−
∑
r,s<0

⎞
⎠ (−1)r+sq6r

2+16rs+6s2+20r+20s+13

= f12,16,12(q
12, q12, q) + q13f12,16,12(q

26, q26, q).

This is mixed-mock. The above is done by replacing the second series over
n with −n − 1 and then making the substitutions n = r + s and j = r −
s. Note also f8,12,8(q

8, q8, q) = f2,3,2(q
8, q8, q4). Therefore we need to consider

(−q)∞f2,3,2(q
2, q2, q)/(q)∞, which is included in the Appell-Lerch sum represen-

tations in [10, Theorem 0.6]. That is, f2,3,2(q
8, q8, q4) = j(q4, q8)φ(q4) where

j(qa, qm) =
∑

n∈Z(−1)nqmn(n−1)/2+an, by [10, eq.(9.8)]. Similarly we have by [10,
eq.(9.15)] f12,16,12(q

12, q12, q) = f3,4,3(q
12, q12, q4) = j(q4, q12)F2(q

4).
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