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ASYMPTOTIC ANALYSIS OF DIFFERENCE EQUATIONS WITH

QUADRATIC COEFFICIENTS∗
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Abstract. In this paper, we study asymptotic solutions of second-order difference equations
with quadratic coefficients. According to the parameter values, we classify the difference equations
into three cases and derive Plancherel-Rotach type asymptotic formulas of the solutions respec-
tively. As direct applications of our main results, we also provide asymptotic formulas of associated
Meixner-Pollaczek polynomials, associated Meixner polynomials, and associated Laguerre polynomi-
als, respectively.
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1. Introduction. Asymptotic analysis of orthogonal polynomials has been stud-
ied extensively in the literature. If there is an integral representation for the poly-
nomials, one may apply the classical Laplace method or the steepest-descent method
[35]; if the polynomials satisfy a second-order differential equation, the WKB method
[25] will be useful. A modern Riemann-Hilbert technique introduced by Deift and
Zhou [14] and further developed in [13] and [5] has become a powerful tool when
the weight function for the orthogonal polynomials is known and has nice analyt-
icity. Wilson [34] proposed a convexity argument to derive a complete asymptotic
expansion for certain hypergeometric series including Wilson polynomials. Recently,
a discrete analogue of Laplace method was introduced to derive asymptotic formu-
las of q-orthogonal polynomials [19, 28, 29]. However, the aforementioned techniques
are not applicable for many orthogonal polynomials that are defined directly from a
difference equation, for example, the polynomials arising from coherent states [2, 11]
and the birth-death type polynomials [12]. Also, the orthogonal polynomials in the
top hierarchies of Askey scheme always have very complicated integral representa-
tions and non-analytic weights with several singularities. For these polynomials, it
seems better to conduct asymptotic analysis from their difference equations which
are comparably much simpler. Moreover, difference equations have wide applications
not only in orthogonal polynomials, but also in continued fractions, mathematical
quantum field theory and other disciplines [3, 6, 24]. It is thus important to develop
a difference equation technique as an parallel result to the treatment of Olver [25] on
differential equations.

Some early works on asymptotic analysis of difference equations can be found in
[1, 7, 8, 9]. However, their papers were too complicated to be understood even by
other experts in asymptotics [36]. More than half a century later, Geronimo and his
collaborators [15, 16, 26] studied difference equations with varying parameters and
obtained asymptotic formulas in the outer region which is bounded away from the
polynomial zeros. In the oscillatory region where the zeros are distributed, Wong
and Li [38] derived two asymptotic solutions to the difference equations which are
linearly independent with each other. The coefficients of these two solutions can be
determined by a matching principle introduceed in [30]. In a series of work, Wang
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and Wong [31, 32, 33] developed a turning-point theory for difference equations and
studied uniform asymptotic solutions near the turning points. This theory was further
completed by Cao and Li [10]. The difference equation technique has been used in the
study of coherent state polynomials [11] and birth-death type orthogonal polynomials
[12]. We refer to [37] for an overview of asymptotic theory on liner difference equations.

In a previous paper [27], we provided Plancherel-Rotach asymptotics of second-
order difference equations with linear coefficients. The corresponding results were
applied to investigate associated orthogonal polynomials in the lowest hierarchy of
Askey scheme (i.e., associated Hermite polynomials and associated Charlier polyno-
mials). It is a natural desire to find asymptotic formulas for associated orthogonal
polynomials in higher hierarchies. Hence, we will study a class of monic polynomials
satisfying the following second-order difference equation with quadratic coefficients
[23]:

πn+1(x) = (x− dn− d0)πn(x)− (an2 + bn+ c)πn−1(x),

π0(x) = 1, π1(x) = x− d0. (1.1)

Here, the parameters a, b, c, d and d0 are all real constants. Three typical examples
in the Askey scheme of classical hypergeometric orthogonal polynomials [20] are given
below.

1. Meixner-Pollaczek polynomials: a = 1/(4 sin2 φ), b = (2λ−1)/(4 sin2 φ), c =
0, d = − cotφ, d0 = −λ cotφ with λ > 0 and 0 < φ < π;

2. Meixner polynomials: a = λ/(1 − λ)2, b = (β − 1)λ/(1 − λ)2, c = 0, d =
(1 + λ)/(1− λ), d0 = βλ/(1 − λ) with β > 0 and 0 < λ < 1;

3. Laguerre polynomials: a = 1, b = α, c = 0, d = 2, d0 = α+ 1 with α > −1.
Upon a shift on x, we may assume without loss of generality that d0 = 0. Also,

it suffices to consider the case when d ≥ 0, because when d < 0, we could introduce
a reflection pn(x) := (−1)nπn(−x) and study the polynomials pn(x) satisfying the
difference equation (1.1) with d being replaced with −d > 0.

Throughout this paper, we will also assume that a > 0. By introducing the
canonical scale x = ny, we obtain from [21, Section 4.5] that the Mhaskar-Rakhmanov-
Saff (MRS) numbers are d ± 2

√
a. These numbers are also called turning points or

transition points [32]. Following [5], we refer to the interval between MRS numbers
as a band: [d − 2

√
a, d + 2

√
a]. According to the location of the origin with respect

to the band, we classify the difference equations into three cases:

i) the origin lies in the band, namely, 0 < d < 2
√
a;

ii) the origin lies outside the band, namely, 0 < 2
√
a < d;

iii) the origin coincides with one of the MRS numbers, namely, d = 2
√
a.

It is readily seen that the Meixner-Pollaczek polynomials, Meixner polynomials and
Laguerre polynomials belong to the cases i), ii) and iii) respectively. We will study
these three cases in Sections 2-4, respectively. In Section 5, we apply our theorems to
find asymptotic formulas for associated polynomials. Finally, a brief discussion will
be given in Section 6.

2. Case I: 0 < d < 2
√
a. As mentioned before, we assume without loss of

generality that d0 = 0. The difference equation (1.1) is written as

πn+1(x) = (x − dn)πn(x)− (an2 + bn+ c)πn−1(x)

with initial conditions π0(x) = 1 and π1(x) = x.
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Theorem 2.1. Assume 0 < d < 2
√
a. Let x = ny with y ∈ C \ [d−2

√
a, d+2

√
a].

We have as n→∞,

πn(ny) ∼
(n
e

)n
[
y − d+

√
(y − d)2 − 4a

2

]n [
y − d+

√
(y − d)2 − 4a

2
√
(y − d)2 − 4a

]1/2

×
[
y − d+

√
(y − d)2 − 4a

2y

]b/(2a)

(2.1)

× exp

{
ny + d/2 + bd/(2a)√

4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]}
.

Proof. For k ≥ 1 and x away from the oscillatory region such that πk−1(x) �= 0,
we define

wk(x) :=
πk(x)

πk−1(x)
.

It follows that w1(x) = x and

wk+1(x) = x− dk − ak2 + bk + c

wk(x)
. (2.2)

Let x = ny with y ∈ C \ [d− 2
√
a, d+2

√
a]. By successive approximation, we have as

n→∞,

wk(x) =
x− dk +

√
(x− dk)2 − 4(ak2 + bk + c)

2

×
{
1 +

d

2
√
(x− dk)2 − 4(ak2 + bk + c)

+
dx− d2k + 4ak

2[(x− dk)2 − 4(ak2 + bk + c)]
+O

(
1

n2

)}
. (2.3)

Actually, the above asymptotic formula is uniform for all k = 1, · · · , n; see the proof
in appendix. Taking summation of lnwk(x) from k = 1 to k = n yields

lnπn(x) ∼
n∑

k=1

ln
x− dk +

√
(x− dk)2 − 4(ak2 + bk + c)

2

+
n∑

k=1

d

2
√
(x− dk)2 − 4(ak2 + bk + c)

+
dx− d2k + 4ak

2[(x− dk)2 − 4(ak2 + bk + c)]

∼1

2
ln

x− dn+
√
(x− dn)2 − 4(an2 + bn+ c)

x+
√
x2 − 4c

+ n lnn+ n

∫ 1

0

ln
y − dt+

√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

2
dt

+

∫ 1

0

d

2
√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

+
dy − d2t+ 4at

2[(y − dt)2 − 4(at2 + bt/n+ c/n2)]
dt.



158 X.-S. WANG

Here we have made use of ln(1+ε) ∼ ε as ε→ 0 and the trapezoidal rule. Denote the
right-hand side of the above formula as I1 + n lnn+ nI2 + I3. It is readily seen that

I1 ∼ 1

2
ln

y − d+
√

(y − d)2 − 4a

2y
,

and

I2 ∼
∫ 1

0

ln
y − dt+

√
(y − dt)2 − 4at2

2
dt

−
∫ 1

0

2bt

n
√
(y − dt)2 − 4at2[y − dt+

√
(y − dt)2 − 4at2]

dt;

I3 ∼
∫ 1

0

d

2
√
(y − dt)2 − 4at2

+
dy − d2t+ 4at

2[(y − dt)2 − 4at2]
dt.

By an integration by parts, we have

∫ 1

0

ln[y − dt+
√
(y − dt)2 − 4at2]dt

= ln[y − d+
√
(y − d)2 − 4a]

+
y√

4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]
− 1.

Next, we observe that

∫ 1

0

2bt

n
√
(y − dt)2 − 4at2[y − dt+

√
(y − dt)2 − 4at2]

dt

=

∫ 1

0

b[y − dt−
√
(y − dt)2 − 4at2]

2atn
√
(y − dt)2 − 4at2

dt

=
−b
2an

{
d√

4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]

+ ln
y − d+

√
(y − d)2 − 4a

2y

}
.

Finally, we have

∫ 1

0

d

2
√
(y − dt)2 − 4at2

+
dy − d2t+ 4at

2[(y − dt)2 − 4at2]
dt

=
d

2
√
4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]
− 1

4
ln

(y − d)2 − 4a

y2
.
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To sum up, we have the following asymptotic formula for πn(x) with x = ny and
y ∈ C \ [d− 2

√
a, d+ 2

√
a].

πn(ny)

∼
( n

2e

)n [
y − d+

√
(y − d)2 − 4a

]n+1/2+b/(2a)

(2y)−1/2−b/(2a)

(
y2

(y − d)2 − 4a

)1/4

× exp

{
ny + d/2 + bd/(2a)√

4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]}

∼
(n
e

)n
[
y − d+

√
(y − d)2 − 4a

2

]n [
y − d+

√
(y − d)2 − 4a

2
√
(y − d)2 − 4a

]1/2

×
[
y − d+

√
(y − d)2 − 4a

2y

]b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

4a− d2

[
arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)]}
.

This ends our proof.

To find the asymptotic behavior of πn(ny) near the oscillatory region, we need
the following lemma.

Lemma 2.2. Let πn(x) be a class of polynomials satisfying the following second-

order linear difference equation:

πn+1(x) = (x−An)πn(x) −Bnπn−1(x) (2.4)

with initial conditions given by

π0(x) = 1, π1(x) = x−A0. (2.5)

Assume that for some scaling x = sny, we have asymptotic formula πn(sny) ∼ Φ(n, y)
for y ∈ C \ Γ̄, where Γ is a finite union of some open smooth curves on the complex

plane such that Φ(n, y) has singularities at the points of Γ̄ \ Γ. Furthermore, assume

that Φ(n, y) is analytic for y ∈ C\Γ̄ and it can be analytically continued from both sides

of Γ, denoted by Φ+(n, y) and Φ−(n, y) respectively. If the ratio Φ+(n, y)/Φ−(n, y)
is exponentially large on one side and exponentially small on the other side of Γ as

n→∞, we then have

πn(sny) ∼ Φ+(n, y) + Φ−(n, y)

for y in a complex neighborhood of any compact subset of Γ.

Proof. Note that Φ(n, y) is an asymptotic solution of the difference equation (2.4)
with branch cut Γ. By analytic continuation, we obtain two linearly independent
asymptotic solutions Φ+(n, y) and Φ−(n, y) satisfying the equation (2.4). These two
solutions may not satisfy the initial conditions (2.5). But πn(sny) can be asymptoti-
cally expressed as a linear combination of Φ±(n, y), namely,

πn(sny) ∼ C1Φ
+(n, y) + C2Φ

−(n, y)

for y in a complex neighborhood of any compact subset of Γ. Since πn(sny) ∼ Φ+(n, y)
on one side and πn(sny) ∼ Φ−(n, y) on the other side of Γ, we conclude that C1 =
C2 = 1. This ends the proof.
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Now, we are ready to prove the following asymptotic formulas of πn(ny) near the
oscillatory region.

Theorem 2.3. Assume 0 < d < 2
√
a. For y in a complex neighborhood of a

compact subset of (0, d+ 2
√
a), we have as n→∞,

πn(ny) ∼
(
n
√
a

e

)n [
a

4a− (y − d)2

]1/4 (√
a

y

)b/(2a)

× exp

[
ny + d/2 + bd/(2a)√

4a− d2
arccos

(
d

2
√
a

)]
(2.6)

× 2 cos

{(
n+ 1/2 +

b

2a

)
arccos

(
y − d

2
√
a

)
− π

4

+
ny + d/2 + bd/(2a)√

4a− d2
ln
−
√
(4a− d2)[4a− (y − d)2] + d(y − d) + 4a

2y
√
a

}
.

For y in a complex neighborhood of a compact subset of (d − 2
√
a, 0), we have as

n→∞,

πn(ny) ∼
(
n
√
a

e

)n [
a

4a− (y − d)2

]1/4 (√
a

−y
)b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

4a− d2

[
−π + arccos

(
d

2
√
a

)]}
(2.7)

× 2 cos

{(
n+ 1/2 +

b

2a

)
arccos

(
y − d

2
√
a

)
− π

4
− bπ

2a

+
ny + d/2 + bd/(2a)√

4a− d2
ln
−
√
(4a− d2)[4a− (y − d)2] + d(y − d) + 4a

−2y√a
}
.

Proof. Note that for 0 < d < 2
√
a and y ∈ C \ [d− 2

√
a, d+ 2

√
a], we can write

arcsin

(
dy + 4a− d2

2y
√
a

)
− arcsin

(
d

2
√
a

)

= i ln
dy − (d2 − 4a) + i

√
4a− d2

√
(y − d)2 − 4a

(d+ i
√
4a− d2)y

.

It follows from (2.1) that πn(ny) ∼ Φ(n, y) for y ∈ C \ Γ̄, where Γ := (d − 2
√
a, 0) ∪

(0, d+ 2
√
a) and

φ(n, y)

:=
(n
e

)n
[
y − d+

√
(y − d)2 − 4a

2

]n [
y − d+

√
(y − d)2 − 4a

2
√
(y − d)2 − 4a

]1/2

×
[
y − d+

√
(y − d)2 − 4a

2y

]b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

4a− d2
× i ln

dy − (d2 − 4a) + i
√
4a− d2

√
(y − d)2 − 4a

(d+ i
√
4a− d2)y

}
.
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Taking one side limits on the branch cut Γ, we obtain

φ±(n, y)

=
(n
e

)n

(
√
a)n

[ √
a√

4a− (y − d)2

]1/2 (√
a

y

)b/(2a)

× exp

[
±i

(
n+

1

2
+

b

2a

)
arccos

(
y − d

2
√
a

)
∓ iπ

4

]

× exp

{
ny + d/2 + bd/(2a)√

4a− d2
arccos

(
d

2
√
a

)}

× exp

{
±iny + d/2 + bd/(2a)√

4a− d2
ln

dy − (d2 − 4a)−√4a− d2
√
4a− (y − d)2

2
√
ay

}

for y ∈ (0, d+ 2
√
a). Thus, (2.6) follows from Lemma 2.2.

Similarly, for y ∈ (d− 2
√
a, 0), we have

φ±(n, y)

=

(
n
√
a

e

)n
[ √

a√
4a− (y − d)2

]1/2 (√
a

−y
)b/(2a)

× exp

[
±i

(
n+

1

2
+

b

2a

)
arccos

(
y − d

2
√
a

)
∓ iπ

4
∓ πb

2a

]

× exp

{
ny + d/2 + bd/(2a)√

4a− d2

[
−π + arccos

(
d

2
√
a

)]}

× exp

{
±iny + d/2 + bd/(2a)√

4a− d2
ln

dy − (d2 − 4a)−√4a− d2
√
4a− (y − d)2

−2√ay

}
.

A direct application of Lemma 2.2 yields (2.7).

3. Case II: 0 < 2
√
a < d.

Theorem 3.1. Assume 0 < 2
√
a < d. Let x = ny with y ∈ C \ [0, d+ 2

√
a]. We

have as n→∞,

πn(ny)

∼
(n
e

)n
[
y − d+

√
(y − d)2 − 4a

2

]n [
y − d+

√
(y − d)2 − 4a

2
√
(y − d)2 − 4a

]1/2

(3.1)

×
[
y − d+

√
(y − d)2 − 4a

2y

]b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

d2 − 4a
ln

(d+
√
d2 − 4a)y

dy − (d2 − 4a) +
√
d2 − 4a

√
(y − d)2 − 4a

}
.
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Proof. Similar to the proof of Theorem 2.1, we have

lnπn(x) ∼
n∑

k=1

ln
x− dk +

√
(x− dk)2 − 4(ak2 + bk + c)

2

+

n∑
k=1

d

2
√
(x− dk)2 − 4(ak2 + bk + c)

+
dx− d2k + 4ak

2[(x− dk)2 − 4(ak2 + bk + c)]

∼1

2
ln

x− dn+
√
(x− dn)2 − 4(an2 + bn+ c)

x+
√
x2 − 4c

+ n lnn+ n

∫ 1

0

ln
y − dt+

√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

2
dt

+

∫ 1

0

d

2
√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

+
dy − d2t+ 4at

2[(y − dt)2 − 4(at2 + bt/n+ c/n2)]
dt.

Denote the right-hand side as I1 + n lnn+ nI2 + I3. It is readily seen that

I1 ∼ 1

2
ln

y − d+
√

(y − d)2 − 4a

2y
,

and

I2 ∼
∫ 1

0

ln
y − dt+

√
(y − dt)2 − 4at2

2
dt

−
∫ 1

0

2bt

n
√
(y − dt)2 − 4at2[y − dt+

√
(y − dt)2 − 4at2]

dt;

I3 ∼
∫ 1

0

d

2
√
(y − dt)2 − 4at2

+
dy − d2t+ 4at

2[(y − dt)2 − 4at2]
dt.

We calculate the following three integrals.∫ 1

0

ln[y − dt+
√
(y − dt)2 − 4at2]dt

=− 1 + ln[y − d+
√
(y − d)2 − 4a]

+
y√

d2 − 4a
ln

dy − (d2 − 4a)−√d2 − 4a
√
(y − d)2 − 4a

(d−√d2 − 4a)y
;

and ∫ 1

0

2bt

n
√
(y − dt)2 − 4at2[y − dt+

√
(y − dt)2 − 4at2]

dt

=
−b
2an

{
ln

y − d+
√
(y − d)2 − 4a

2y

+
d√

d2 − 4a
ln

dy − (d2 − 4a)−√d2 − 4a
√
(y − d)2 − 4a

(d−√d2 − 4a)y

}
;
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and

∫ 1

0

d

2
√
(y − dt)2 − 4at2

+
dy − d2t+ 4at

2[(y − dt)2 − 4at2]
dt

=
d

2
√
d2 − 4a

ln
dy − (d2 − 4a)−√d2 − 4a

√
(y − d)2 − 4a

(d−√d2 − 4a)y
− 1

4
ln

(y − d)2 − 4a

y2
.

To sum up, we have

πn(ny) ∼
(n
e

)n
[
y − d+

√
(y − d)2 − 4a

2

]n [
y − d+

√
(y − d)2 − 4a

2
√
(y − d)2 − 4a

]1/2

×
[
y − d+

√
(y − d)2 − 4a

2y

]b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

d2 − 4a
ln

(d+
√
d2 − 4a)y

dy − (d2 − 4a) +
√
d2 − 4a

√
(y − d)2 − 4a

}
.

This proves (3.1).

Theorem 3.2. Assume 0 < 2
√
a < d. For y in a complex neighborhood of a

compact subset of (d− 2
√
a, d+ 2

√
a), we have as n→∞,

πn(ny) ∼
(
n
√
a

e

)n [
a

4a− (y − d)2

]1/4 (√
a

y

)b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

d2 − 4a
ln

2
√
a

d−√d2 − 4a

}

× 2 cos

{(
n+ 1/2 +

b

2a

)
arccos

(
y − d

2
√
a

)
− π

4

−ny + d/2 + bd/(2a)√
d2 − 4a

arccos

[
dy − (d2 − 4a)

2
√
ay

]}
. (3.2)

For y in a complex neighborhood of a compact subset of (0, d − 2
√
a), we have as

n→∞,

πn(ny)

∼
(−n

e

)n
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

2

]n

×
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

2
√

(2
√
a− y + d)(−2√a− y + d)

]1/2

(3.3)

×
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

2y

]b/(2a)

2 cos

[
π
ny + d/2 + bd/(2a)√

d2 − 4a
− πb/(2a)

]

× exp

{
ny + d/2 + bd/(2a)√

d2 − 4a
ln

(d+
√
d2 − 4a)y

−dy + (d2 − 4a) +
√
d2 − 4a

√
(2
√
a− y + d)(−2√a− y + d)

}
.



164 X.-S. WANG

Proof. Applying Lemma 2.2 to (3.1) gives (3.2). To obtain (3.3), we first rewrite
(3.1) as

πn(ny)

∼
(−n

e

)n
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

2

]n

×
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

2
√

(2
√
a− y + d)(−2√a− y + d)

]1/2

×
[
d− y +

√
(2
√
a− y + d)(−2√a− y + d)

−2y

]b/(2a)

× exp

{
ny + d/2 + bd/(2a)√

d2 − 4a
ln

−(d+
√
d2 − 4a)y

−dy + (d2 − 4a) +
√
d2 − 4a

√
(2
√
a− y + d)(−2√a− y + d)

}
.

Coupling the above formula with Lemma 2.2 yields (3.3).

4. Case III: d = 2
√
a.

Theorem 4.1. Assume d = 2
√
a. Let x = ny with y ∈ C \ [0, 2d]. We have as

n→∞,

πn(ny)

∼
(n
e

)n
(
y − d+

√
y2 − 2yd

2

)n (
y − d+

√
y2 − 2yd

2y

)2b/d2+1/2 (
y − 2d

y

)−1/4

× exp

[(
n

d
+

2b

yd2
+

1

2y

)(
y −

√
y2 − 2yd

)]
. (4.1)

Proof. Similar to the proof of Theorem 2.1, we have

lnπn(x) ∼
n∑

k=1

ln
x− dk +

√
(x− dk)2 − 4(ak2 + bk + c)

2

+

n∑
k=1

d

2
√
(x− dk)2 − 4(ak2 + bk + c)

+
dx

2[(x− dk)2 − 4(ak2 + bk + c)]

∼1

2
ln

x− dn+
√
(x− dn)2 − 4(an2 + bn+ c)

x+
√
x2 − 4c

+ n lnn+ n

∫ 1

0

ln
y − dt+

√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

2
dt

+

∫ 1

0

d

2
√
(y − dt)2 − 4(at2 + bt/n+ c/n2)

+
dy

2[(y − dt)2 − 4(at2 + bt/n+ c/n2)]
dt.

Denote the right-hand side as I1 + n lnn+ nI2 + I3. It is readily seen that

I1 ∼ 1

2
ln

y − d+
√
y2 − 2yd

2y
,
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and

I2 ∼
∫ 1

0

ln
y − dt+

√
y2 − 2ydt

2
dt−

∫ 1

0

2bt

n
√
y2 − 2ydt[y − dt+

√
y2 − 2ydt]

dt;

I3 ∼
∫ 1

0

d

2
√
y2 − 2ydt

+
d

2[y − 2dt]
dt =

y −
√
y2 − 2yd

2y
− 1

4
ln

y − 2d

y
.

Note that∫ 1

0

ln
y − dt+

√
y2 − 2ydt

2
dt =

y − d−
√
y2 − 2yd

d
+ ln

y − d+
√

y2 − 2yd

2
;

∫ 1

0

2bt

n
√
y2 − 2ydt[y − dt+

√
y2 − 2ydt]

dt

=
2b

nyd2

[√
y2 − 2yd− y − y ln

y − d+
√
y2 − 2yd

2y

]
.

We have

I2 ∼y − d−
√
y2 − 2yd

d
+ ln

y − d+
√
y2 − 2yd

2

− 2b

nyd2

[√
y2 − 2yd− y − y ln

y − d+
√
y2 − 2yd

2y

]
.

Combining the asymptotic formulas for I1, I2 and I3, we have

πn(ny)

∼
(n
e

)n
(
y − d+

√
y2 − 2yd

2

)n (
y − d+

√
y2 − 2yd

2y

)2b/d2+1/2 (
y − 2d

y

)−1/4

× exp

[(
n

d
+

2b

yd2
+

1

2y

)(
y −

√
y2 − 2yd

)]
.

This gives (4.1).

Theorem 4.2. Assume d = 2
√
a. For y in a complex neighborhood of a compact

subset of (0, 2d), we have as n→∞,

πn(ny)

∼
(n
e

)n
(
d

2

)n (
d

2y

)2b/d2+1/2 (
2d− y

y

)−1/4

exp

[
y

(
n

d
+

2b

yd2
+

1

2y

)]

× 2 cos

[(
n+

2b

d2
+

1

2

)
arccos

y − d

d
− π

4
−
(
n

d
+

2b

yd2
+

1

2y

)√
2yd− y2

]
. (4.2)

Proof. Coupling Lemma 2.2 with Theorem 4.1 yields (4.2).

5. Associated polynomials. In this section, we will investigate asymptotic
behaviors of associated polynomials when their degree tends to infinity.
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5.1. Associated Laguerre polynomials. The (monic) associated Laguerre
polynomials are defined by replacing n with n+ γ in the difference equation satisfied
by Laguerre polynomials; see [4]. The resulting difference equation becomes

πγ
n+1(x) = (x− 2n− 2γ − α− 1)πγ

n(x) − (n+ γ)(n+ α+ γ)πγ
n−1(x);

πγ
0 (x) = 1, πγ

1 (x) = x− 2γ − α− 1.
(5.1)

Noting that a = 1, b = α+2γ and d = 2, the associated Laguerre polynomials belong
to the third case: d = 2

√
a. A direct application of Theorems 4.1 and 4.2 yields the

following results.

Corollary 5.1. Let x = ny + 2γ + α + 1. For any y ∈ C \ [0, 4], we have as

n→∞,

πγ
n(x) ∼

(n
e

)n
(
y − 2 +

√
y2 − 4y

2

)n (
y − 2 +

√
y2 − 4y

2y

)(2γ+α+1)/2(
y − 4

y

)−1/4

× exp

[(
n

2
+

α+ 2γ

2y
+

1

2y

)(
y −

√
y2 − 4y

)]
. (5.2)

For y in a complex neighborhood of a compact subset of (0, 4), we have as n→∞,

πγ
n(x)

∼
(n
e

)n
(
1

y

)(2γ+α+1)/2 (
y

4− y

)1/4

exp

(
ny + 2γ + α+ 1

2

)

× 2 cos

(
2n+ 2γ + α+ 1

2
arccos

y − 2

2
− π

4
− ny + 2γ + α+ 1

2y

√
4y − y2

)
. (5.3)

5.2. Associated Meixner polynomials. The (monic) associated Meixner
polynomials [17, 22] satisfy the following difference equation.

πγ
n+1(x) =

[
x− (1 + λ)(n+ γ) + βλ

1− λ

]
πγ
n(x)−

λ(n+ γ)(n+ γ + β − 1)

(1− λ)2
πγ
n−1(x);

πγ
0 (x) = 1, πγ

1 (x) = x− (1 + λ)γ + βλ

1− λ
.

(5.4)

Noting that a = λ/(1 − λ)2, b = λ(2γ + β − 1)/(1 − λ)2 and d = (1 + λ)/(1 − λ),
the associated Meixner polynomials belong to the second case: 0 < 2

√
a < d. For the

sake of simplicity, we define

y± := d± 2
√
a =

(1±
√
λ)2

1− λ
=

1±
√
λ

1∓
√
λ
. (5.5)

A direct application of Theorems 3.1 and 3.2 yields the following results.

Corollary 5.2. Let x = ny + [(1 + λ)γ + βλ]/(1 − λ). For any y ∈ C \ [0, y+],
we have as n→∞,

πn(x) ∼
(n
e

)n
(√

y − y− +
√
y − y+

2

)2n+2γ+β
y(1−β)/2−γ

(y − y−)1/4(y − y+)1/4

× exp

{[
ny +

(1 + λ)(γ + β/2)

(1 − λ)

]
ln

(
√
y
−
+
√
y
+
)2y

(
√
y−y − 1 +

√
y+y − 1)2

}
. (5.6)
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For y in a complex neighborhood of a compact subset of (y−, y+), we have as n→∞,

πn(x) ∼
(n
e

)n λn(1−y)/2−λ(γ+β/2)/(1−λ)y(1−β)/2−γ

(1− λ)n+γ+β/2(y+ − y)1/4(y − y−)1/4

× 2 cos

{
(n+ γ + β/2) arccos

(
y − d

2
√
a

)
− π

4

−
[
ny +

(1 + λ)(γ + β/2)

(1 − λ)

]
arccos

(
dy − 1

2
√
ay

)}
, (5.7)

where a = λ/(1− λ)2 and d = (1 + λ)/(1− λ). For y in a complex neighborhood of a

compact subset of (0, y−), we have as n→∞,

πn(x) ∼
(−n

e

)n (√
y− − y +

√
y+ − y

2

)2n+2γ+β
y(1−β)/2−γ

(y+ − y)1/4(y− − y)1/4

× 2 cos

[
πny +

πλ(2γ + β)

1− λ
+

π

2

]

× exp

{[
ny +

(1 + λ)(γ + β/2)

(1− λ)

]
ln

(
√
y
−
+
√
y
+
)2y

(
√
1− y−y +

√
1− y+y)2

}
. (5.8)

5.3. Associated Meixner-Pollaczek polynomials. The (monic) associated
Meixner-Pollaczek polynomials satisfy the following difference equation.

πγ
n+1(x) =

(
x+

n+ γ + λ

tanφ

)
πγ
n(x) −

(n+ γ)(n+ γ + 2λ− 1)

4 sin2 φ
πγ
n−1(x);

πγ
0 (x) = 1, πγ

1 (x) = x+
γ + λ

tanφ
.

(5.9)

The associated Meixner-Pollaczek polynomials can be viewed as the special case of
the associated Wilson polynomials introduced in [18]. Without loss of generality, we
may assume π/2 < φ < π so that d = − cotφ > 0. Noting that a = 1/(4 sin2 φ) and
b = (2γ + 2λ− 1)/(4 sin2 φ), the associated Meixner-Pollaczek polynomials belong to
the first case: 0 < d < 2

√
a. For the sake of simplicity, we define

y± := d± 2
√
a =

− cosφ± 1

sinφ
. (5.10)

A simple calculation gives y+ = tan(φ/2) and y− = − cot(φ/2). We apply Theorems
2.1 and 2.3 to (5.9) and obtain the following results.

Corollary 5.3. Let x = ny − (γ + λ)/ tanφ. For any y ∈ C \ [y−, y+], we have

as n→∞,

πn(x) ∼
(n
e

)n
[√

y − y+ +
√
y − y−

2

]2n+2γ+2λ
y1/2−γ−λ

(y − y−)1/4(y − y+)1/4

× exp

{
[ny − (γ + λ) cotφ]

[
arcsin

(
sinφ− y cosφ

y

)
− φ+

π

2

]}
. (5.11)



168 X.-S. WANG

For y in a complex neighborhood of a compact subset of (0, y+), we have as n→∞,

πn(x) ∼
(n
e

)n y1/2−γ−λ

(y − y−)1/4(y+ − y)1/4(2 sinφ)n+γ+λ
exp {[ny − (γ + λ) cotφ](π − φ)}

× 2 cos

{
(n+ γ + λ) arccos(y sinφ+ cosφ) − π

4

+ [ny − (γ + λ) cotφ] ln
−
√
(y − y−)(y+ − y)− y cotφ+ 1

y cscφ

}
. (5.12)

For y in a complex neighborhood of a compact subset of (y−, 0), we have as n→∞,

πn(x) ∼
(n
e

)n (−y)1/2−γ−λ

(y − y−)1/4(y+ − y)1/4(2 sinφ)n+γ+λ
exp {[ny − (γ + λ) cotφ](−φ)}

× 2 cos

{
(n+ γ + λ) arccos(y sinφ+ cosφ)− π(γ + λ− 1

4
)

+ [ny − (γ + λ) cotφ] ln
−
√
(y − y−)(y+ − y)− y cotφ+ 1

−y cscφ
}
. (5.13)

6. Discussions. We have studied a family of orthogonal polynomials satisfying a
general difference equation with quadratic coefficients. By introducing the Plancherel-
Rotach scale x = ny, we obtain asymptotic formulas of the orthogonal polynomials in
the outer and oscillatory regions, respectively. Applications of our results are given
to several associated orthogonal polynomials on the second level (Laguerre polyno-
mials) and third level (Meixner polynomials and Meixner-Pollaczek polynomials) of
Askey scheme. It is noted that the parameter c does not appear in the leading term
approximation. The main reason is that in the quadratic expression an2 + bn+ c, the
value of c is negligible when n is large. However, we expect this parameter to play
an important role when the scaled variable y is close to the origin. In a forthcoming
paper, we will study uniform asymptotic behavior of the orthogonal polynomials for
y in a neighborhood of the origin.

Appendix: Proof of asymptotic formula (2.3). For simplicity, we denote
Ak := x− dk and Bk := ak2 + bk + c. The equation (2.2) is rewritten as

wk+1 = Ak −Bk/wk.

Next, we introduce

uk :=
Ak +

√
A2

k − 4Bk

2
, vk :=

Ak −
√
A2

k − 4Bk

2
, δk :=

uk − uk+1

uk − vk
.

It is readily seen that |δk| ≤ L/n for some L > 0 and all 1 ≤ k ≤ n. Let wk =
uk(1+δk+εk). We want to show by induction that εk = O(1/n2). Since Bk/uk = vk,
we have from the recurrence relation that

uk+1(1 + δk+1 + εk+1) = Ak − vk(1 + δk + εk)
−1.

In view of Ak − vk = uk, the above equation can be written as

uk+1 + uk+1δk+1 + uk+1εk+1 = uk + vkδk + vkεk + vk[1− δk − εk − (1 + δk + εk)
−1].
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Since uk − uk+1 = ukδk − vkδk, we have

uk+1εk+1 = vkεk + (ukδk − uk+1δk+1) + vk[1 − δk − εk − (1 + δk + εk)
−1].

It follows that

|εk+1| ≤ | vk
uk+1

| · |εk|+ |ukδk − uk+1δk+1

uk+1
|+ | vk

uk+1
[1− δk − εk − (1 + δk + εk)

−1]|.

Since x = ny with y ∈ C \ [d−2
√
a, d+2

√
a], we have |vk/uk+1| < r for some constant

r ∈ (0, 1) and all 1 ≤ k ≤ n − 1. Furthermore, we choose a large M > 0 such that
|ε1| ≤M/n2 and

|ukδk − uk+1δk+1

uk+1
|+ | vk

uk+1
| · sup

|t|≤L+1

|1− t

n
− (1 +

t

n
)−1| ≤ M(1− r)

n2

for all large n. If |εk| ≤M/n2, we choose n > M such that |δk + εk| ≤ (L+ 1)/n. It
follows that

|εk+1| ≤ rM

n2
+

M(1− r)

n2
≤ M

n2
.

Therefore, εk = O(1/n2) uniformly for 1 ≤ k ≤ n. Next, we observe that

uk − uk+1 =
Ak −Ak+1 +

√
A2

k − 4Bk −
√
A2

k+1 − 4Bk+1

2

=
Ak −Ak+1

2
+

A2
k −A2

k+1 + 4Bk+1 − 4Bk

4
√
A2

k − 4Bk

+O(
1

n
)

=
d

2
+

dx− d2k + 4ak

2
√
A2

k − 4Bk

+O(
1

n
).

Thus, we obtain

δk =
d

2
√
A2

k − 4Bk

+
dx− d2k + 4ak

2(A2
k − 4Bk)

+O(
1

n2
).

This ends the proof of (2.3).

Acknowledgments. We would like to thank the anonymous referee for her/his
report which leads to a better presentation of this paper. We are grateful of Professor
Edward B. Saff for his continuous encouragement and insightful suggestions on our
research of asymptotic analysis and difference equations.

REFERENCES

[1] C. R. Adams, On the irregular cases of the linear ordinary difference equation, Trans. Amer.
Math. Soc., 30 (1928), pp. 507–541.

[2] S. T. Ali and M. E. H. Ismail, Some orthogonal polynomials arising from coherent states, J.
Phys. A, 45 (2012), 125203.

[3] G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook. Part I, Berlin, New York:
Springer-Verlag, 2005.

[4] R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edin-
burgh Sect. A, 96 (1984), pp. 15–37.



170 X.-S. WANG

[5] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete Orthog-
onal Polynomials. Asymptotics and Applications, Annals of Mathematics Studies, 164.
Princeton University Press, Princeton, NJ, 2007.

[6] B. C. Berndt, Ramanujan’s Notebooks. Part II, Springer-Verlag, New York, 1989.
[7] G. D. Birkhoff, General theory of linear difference equations, Trans. Amer. Math. Soc., 12

(1911), pp. 243–284.
[8] G. D. Birkhoff, Formal theory of irregular linear difference equations, Acta Math., 54 (1930),

pp. 205–246.
[9] G. D. Birkhoff and W. J. Trjitzinsky, Analytic theory of singular difference equations,

Acta Math., 60 (1933), pp. 1–89.
[10] L.-H. Cao and Y.-T. Li, Linear difference equations with a transition point at the origin,

Anal. Appl., 12 (2014), pp. 75–106.
[11] D. Dai, W. Hu, and X.-S. Wang, Uniform asymptotics of orthogonal polynomials arising from

coherent states, SIGMA Symmetry Integrability Geom. Methods Appl., 11 (2015), 070, 17
pages.

[12] D. Dai, M. E. H. Ismail, and X.-S. Wang, Plancherel-Rotach asymptotic expansion for some
polynomials from indeterminate moment problems, Constr. Approx., 40 (2014), pp. 61–104.

[13] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Strong
asymptotics of orthogonal polynomials with respect to exponential weights, Comm. Pure
Appl. Math., 52 (1999), pp. 1491–1552.

[14] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems.
Asymptotic for the MKdV equation, Ann. of Math., 137 (1993), pp. 295–368.

[15] J. S. Geronimo, D. Smith, and T. Dale, WKB (Liouville-Green) analysis of second order
difference equations and applications, J. Approx. Theory, 69 (1992), pp. 269–301.

[16] J. S. Geronimo, D. Smith, and W. Van Assche, Strong asymptotics for orthogonal polynomi-
als with regularly and slowly varying recurrence coefficients, J. Approx. Theory, 72 (1993),
pp. 141–158.

[17] M. E. H. Ismail, J. Letessier, and G. Valent, Linear birth and death models and associated
Laguerre and Meixner polynomials, J. Approx. Theory, 55 (1988), pp. 337–348.

[18] M. E. H. Ismail, J. Letessier, G. Valent, and J. Wimp, Two families of associated Wilson
polynomials, Canad. J. Math., 42 (1990), pp. 659–695.

[19] M. E. H. Ismail and R. Zhang, Chaotic and periodic asymptotics for q-orthogonal polynomials,
Int. Math. Res. Not. 2006, Art. ID 83274, 33 pp.

[20] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials
and Their q-Analogues, Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2010.

[21] A. B. J. Kuijlaars and W. Van Assche, The asymptotic zero distribution of orthogonal
polynomials with varying recurrence coefficients, J. Approx. Theory, 99 (1999), pp. 167–
197.

[22] J. Letessier, A. Ronveaux, and G. Valent, Fourth-order difference equation for the associ-
ated Meixner and Charlier polynomials, J. Comput. Appl. Math., 71 (1996), pp. 331–341.

[23] D. R. Masson, Difference equations, continued fractions, Jacobi matrices and orthogonal
polynomials. Nonlinear numerical methods and rational approximation (Wilrijk, 1987),
pp. 239*-257, Math. Appl., 43, Reidel, Dordrecht, 1988.

[24] D. R. Masson, Difference equations revisited. Mathematical quantum field theory and related
topics (Montreal, PQ, 1987), pp. 73–82, CMS Conf. Proc., 9, Amer. Math. Soc., Providence,
RI, 1988.

[25] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
Reprinted by A. K. Peters, Wellesley, MA, 1997.

[26] W. Van Assche and J. S. Geronimo, Asymptotics for orthogonal polynomials with regularly
varying recurrence coefficients, Rocky Mountain J. Math., 19 (1989), pp. 39–49.

[27] X.-S. Wang, Plancherel-Rotach asymptotics of second-order difference equations with linear
coefficients, J. Approx. Theory, 188 (2014), pp. 1–18.

[28] X.-S. Wang and R. Wong, Discrete analogues of Laplace’s approximation, Asymptot. Anal.,
54 (2007), pp. 165–180.

[29] X.-S. Wang and R. Wong, Uniform asymptotics of some q-orthogonal polynomials, J. Math.
Anal. Appl., 364 (2010), pp. 79–87.

[30] X.-S. Wang and R. Wong, Asymptotics of orthogonal polynomials via recurrence relations,
Anal. Appl., 10 (2012), pp. 215–235.

[31] Z. Wang and R. Wong, Uniform asymptotic expansion of Jν(νa) via a difference equation,
Numer. Math., 91 (2002), pp. 147–193.

[32] Z. Wang and R. Wong, Asymptotic expansions for second-order linear difference equations



ASYMPTOTIC ANALYSIS OF DIFFERENCE EQUATIONS 171

with a turning point, Numer. Math., 94 (2003), pp. 147–194.
[33] Z. Wang and R. Wong, Linear difference equations with transition points, Math.

Comp., 74 (2005), pp. 629–653.
[34] J. A. Wilson, Asymptotics for the 4F3 polynomials, J. Approx. Theory, 66 (1991), pp. 58–71.
[35] R. Wong, Asymptotic Approximations of Integrals, Academic Press, Boston, 1989. (Reprinted

by SIAM, Philadelphia, PA, 2001.)
[36] R. Wong, A panoramic view of asymptotics, Foundations of computational mathematics, Hong

Kong 2008, pp. 190–235, London Math. Soc. Lecture Note Ser., 363, Cambridge Univ.
Press, Cambridge, 2009.

[37] R. Wong, Asymptotics of linear recurrences, Anal. Appl., 12 (2014), pp. 463–484.
[38] R. Wong and H. Li, Asymptotic expansions for second-order linear difference equations, J.

Comput. Appl. Math., 41 (1992), pp. 65–94.



172 X.-S. WANG


