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A SPECTRAL REPRESENTATION FOR SPIN-WEIGHTED
SPHEROIDAL WAVE OPERATORS WITH COMPLEX ASPHERICAL

PARAMETER∗

FELIX FINSTER† AND JOEL SMOLLER‡

Abstract. A family of spectral decompositions of the spin-weighted spheroidal wave operator
is constructed for complex aspherical parameters with bounded imaginary part. As the operator is
not symmetric, its spectrum is complex and Jordan chains may appear. We prove uniform upper
bounds for the length of the Jordan chains and the norms of the idempotent operators mapping onto
the invariant subspaces. The completeness of the spectral decomposition is proven.
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1. Introduction and Statement of Results. The spin-weighted spheroidal
wave equation arises in the study of electromagnetic, gravitational and neutrino-
field perturbations of rotating black holes when separating variables in the so-
called Teukolsky master equation (see [2, 22] or the survey paper [7]). In the
spin-weighted spheroidal wave equation, the spin of the wave enters as a parame-
ter s ∈ {0, 12 , 1, 32 , 2, . . .}. We are mainly interested in the cases s = 1 of an electro-
magnetic and s = 2 of a gravitational field. If s is an integer, the spin-weighted wave
equation is the eigenvalue equation

AΨ = λΨ , (1.1)

where the spin-weighted spheroidal wave operator A is an elliptic operator with
smooth coefficients on the unit sphere S2. More specifically, choosing polar coor-
dinates ϑ ∈ (0, π) and ϕ ∈ [0, 2π), we have (see for example [24])

A = − ∂

∂ cosϑ
sin2 ϑ

∂

∂ cosϑ
+

1

sin2 ϑ

(
Ω sin2 ϑ+ i

∂

∂ϕ
− s cosϑ

)2

.

Here Ω ∈ C is the aspherical parameter. In the special case Ω = 0, we obtain the
spin-weighted Laplacian on the sphere, whose eigenvalues and eigenfunctions can be
given explicitly [14]. In the case s = 0 and Ω �= 0, one gets the spheroidal wave
operator ([13, 8]). Setting Ω = 0 and s = 0, one simply obtains the Laplacian
on the sphere. We consider A on the Hilbert space H = L2(S2) with domain of
definition D(A) = C∞(S2). We remark that A clearly is an elliptic operator on
the sphere. However, even in the case s = 0 and for real Ω, in general there is no
Riemannian metric on the sphere which realizes the spheroidal wave operator as the
Laplace-Beltrami operator. Thus the spheroidal wave operator cannot be be identified
with the Laplace-Beltrami operator on a Riemannian manifold. For general spin, this
means in particular that the methods used for spin-weighted spherical harmonics
in [17, Section 4.15] do not seem to generalize to the spheroidal situation.
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As the spin-weighted spheroidal wave operator is axisymmetric, we can separate
out the ϕ-dependence with a plane wave ansatz,

Ψ(ϑ, ϕ) = e−ikϕ Θ(ϑ) with k ∈ Z .

Then A becomes the ordinary differential operator

Ak := − ∂

∂ cosϑ
sin2 ϑ

∂

∂ cosϑ
+

1

sin2 ϑ

(
Ω sin2 ϑ+ k − s cosϑ

)2
. (1.2)

This operator acts on the vectors in H with the prescribed φ-dependence, which we
denote by Hk,

Hk := L2(S2) ∩ {e−ikϕ Θ(ϑ) |Θ : (0, π)→ C} .

The domain of definition reduces to

D(Ak) = C∞(S2) ∩Hk .

The Hilbert space Hk can be identified with

Hk = L2((0, π), sin ϑ dϑ) .

Also, one can considerAk as an ordinary differential operator on this Hilbert space, for
example with the domain of definition C∞((0, π)) ∩ L2((0, π). However, when doing
so, one still needs to specify boundary conditions at ϑ = 0, π. As will be explained in
detail in Section 2 below, the correct boundary conditions are that the limits

lim
ϑ→0,π

Θ(ϑ) must exist . (1.3)

In this formulation as a pure ODE problem, the spheroidal wave equation (1.2) can
also be used in the case of half-integer spin (to describe neutrino or Rarita-Schwinger
fields), if k is chosen to be a half-integer. Thus in what follows, we fix the parameters s
and k such that

2s ∈ N0 and k − s ∈ Z . (1.4)

We are interested in the case that Ω is complex. Then the potential in (1.2) is
complex, so that the operator Ak is not a symmetric operator on Hk. As a conse-
quence, the spectral theorem in Hilbert spaces does not apply. The spectrum will
in general be complex. Moreover, the operator need not be diagonalizable, because
Jordan chains may form. The main task of the present paper is to control the length
of these Jordan chains to obtain a decomposition of the Hilbert space into invariant
subspaces of Ak. This is our main result:

Theorem 1.1. For any s and k in the range (1.4) and any c > 0, we let U ⊂ C

be the strip

|ImΩ| < c . (1.5)

Then there is a positive integer N and a family of bounded linear operators Qn(Ω)
on Hk defined for all n ∈ N ∪ {0} and Ω ∈ U with the following properties:

(i) The image of the operator Q0 is an N -dimensional invariant subspace of Ak.
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(ii) For every n ≥ 1, the image of the operator Qn is an at most two-dimensional
invariant subspace of Ak.

(iii) The Qn are uniformly bounded in L(Hk), i.e. for all n ∈ N∪{0} and Ω ∈ U ,

‖Qn‖ ≤ c2 (1.6)

for a suitable constant c2 = c2(s, k, c) (here ‖·‖ denotes the sup-norm on Hk).
(iv) The Qn are idempotent and mutually orthogonal in the sense that

QnQn′ = δn,n′ Qn for all n, n′ ∈ N ∪ {0} .
(v) The Qn are complete in the sense that for every Ω ∈ U ,

∞∑
n=0

Qn = 11 (1.7)

with strong convergence of the series.

Note that the operators Qn are in general not symmetric (i.e. Q∗
n �= Qn). This corre-

sponds to the fact that for non-symmetric operators, the eigenvectors corresponding
to different eigenvalues are in general not orthogonal.

2. Reformulation as a Sturm-Liouville Problem. We first bring the oper-
ator (1.2) to the standard Sturm-Liouville form (for more details see [12, Section 2]).
To this end, we first write the operator in the variable u = ϑ ∈ (0, π),

Ak = − 1

sinu

d

du
sinu

d

du
+

1

sin2 u

(
Ω sin2 u+ k − s cosu

)2
.

Introducing the function φ by

φ =
√
sinuΘ , (2.1)

we get the eigenvalue equation

Hφ = λφ , (2.2)

where H has the form of a one-dimensional Hamiltonian

H = − d2

du2
+W (2.3)

where W is the complex potential

W = −1

4

cos2 u

sin2 u
− 1

2
+

1

sin2 u
(Ω sin2 u+ k − s cosu)2 (2.4)

= Ω2 sin2 u+

(
k2 + s2 − 1

4

)
1

sin2 u
+ 2Ωk − s2 − 1

4
(2.5)

− 2sΩcosu− 2sk
cosu

sin2 u
. (2.6)

For what follows, it is usually most convenient to write (2.2) as the the Sturm-Liouville
equation (

− d2

du2
+ V

)
φ = 0 , (2.7)
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where V is the potential

V = Ω2 sin2 u+

(
k2 + s2 − 1

4

)
1

sin2 u
− 2sΩcosu− 2sk

cosu

sin2 u
− μ , (2.8)

and μ is the constant

μ = λ− 2Ωk + s2 +
1

4
. (2.9)

The transformation (2.1) from Θ to Y becomes a unitary transformation if the in-
tegration measure in the corresponding Hilbert spaces is transformed from sinu du
to du. Hence the eigenvalue equation (1.1) on Hk is equivalent to (2.7) on the Hilbert
space L2((0, π), du).

If the potential V were continuous on the interval [0, π], we would get a well-
defined boundary problem by imposing Dirichlet or Neumann or more general mixed
boundary values at 0 and π (for details see [3, Chapter 12]). In our situation, there
is the complication that the potential (2.8) has poles at the boundary points. As a
consequence, the fundamental solutions will also have singularities, so that it is no
longer obvious how to introduce suitable boundary conditions. In the case when s
is an integer, the correct boundary values can be determined by going back to the
eigenfunctions on the sphere (1.1), as we now explain. Due to elliptic regularity
theory, the eigenfunctions Ψ of the angular operator (1.1) are smooth functions on
the sphere. Therefore, we obtain (1.3) as a necessary condition. In view of the
transformation (2.1), this implies that the limits

lim
u↘0

u− 1
2 φ(u) and lim

u↗π
(π − u)−

1
2 φ(u) must exist . (2.10)

These boundary conditions can also be understood by looking at the asymptotics of
the solutions of (2.7) near the boundary points. Namely, expanding the potential (2.8)
near the boundary points, we obtain

V (u) =
1

u2

(
(k − s)2 − 1

4

)
+ O

(
u−1

)
V (u) =

1

(π − u)2

(
(k + s)2 − 1

4

)
+ O

(
(π − u)−1

)
.

If the factors k ± s are non-zero, the solutions have the asymptotics

φ(u) ∼ u
1
2±|k−s| (1+O(u)

)
and φ(u) ∼ (π−u)

1
2±|k+s| (1+O(π−u)

)
. (2.11)

If on the other hand, the factors k ± s are zero, the asymptotic solutions involve an
additional logarithm (for detail see [12, Sections 7 and 8]),

φ(u) = c1
√
u+ c2

√
u log u+ O(u) if k = s (2.12)

φ(u) = c1
√
π − u+ c2

√
π − u log(π − u) + O(π − u) if k = −s . (2.13)

In each case, the boundary conditions (2.10) single out one of the two fundamental
solutions. In this way, the conditions (2.10) give mathematically reasonable boundary
conditions. We remark that in the case (2.11), our boundary conditions are equivalent
to Dirichlet boundary conditions. Alternatively, these boundary conditions could be
implemented simply by demanding that the eigenfunctions must be square integrable
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(note that, in view of (1.4), the parameter k − s is always an integer). In the excep-
tional cases (2.12) and (2.13), however, both fundamental solutions satisfy Dirichlet
boundary conditions and are square integrable. Thus in these cases, it is essential to
state the boundary conditions in the form (2.10).

In order to bring the boundary conditions (2.10) into a more tractable form, it
is convenient to work with solutions of the corresponding Riccati equation: For any
solution φ of the Sturm-Liouville equation (2.7), the function y := φ′/φ satisfies the
corresponding Riccati equation

y′ = V − y2 . (2.14)

Using the results and methods in [10, 12], we can construct a solution y of the Riccati
equation with rigorous error bounds. With this in mind, let us assume that a solution y
of the Riccati equation is known. Then a particular solution of the corresponding
Sturm-Liouville equation is obtained by integration,

φ(u) = exp
(ˆ u

u0

y
)
. (2.15)

The general solution can be constructed by integrating the equation for the Wronskian.
Namely, if φ̂ is another solution of the Sturm-Liouville equation, the Wronskian

w(φ, φ̂) := φ′φ̂− φφ̂′

is a constant, and thus

φ̂(u) = φ(u)

(
φ̂(u0)

φ(u0)
−
ˆ u

u0

w(φ, φ̂)

φ2

)
. (2.16)

In particular, this relation can be used to construct solutions of the Sturm-
Liouville equation (2.7) which satisfy the boundary conditions (2.10). We denote
these solutions by φD

L and φD

R (where the subscript D refers to “Dirichlet”, and L/R to
the left and right boundary points at u = 0 and u = π, respectively). To this end, we
let φL and φR be generic solutions which do not satisfy the boundary conditions (2.10),
i.e.

φL(u) ∼
{

u
1
2−|k−s| (1 + O(u)

)
if k �= s√

u log u
(
1 + O(u)

)
if k = s

φR(u) ∼
{

(π − u)
1
2−|k+s| (1 + O(π − u)

)
if k �= −s√

π − u log(π − u)
(
1 + O(π − u)

)
if k = −s .

Then, using (2.16), the solutions which do satisfy (2.10) are given (up to irrelevant
prefactors) by

φD

L(u) = φL(u)

ˆ u

0

1

φ2
L

and φD

R(u) = −φR(u)

ˆ π

u

1

φ2
R

. (2.17)

If φ is a solution of (2.7) subject to the boundary conditions (2.10), then this
solution must be a multiple of both φD

L and φD

R. Hence φD

L and φD

R are linearly
dependent, and their Wronskian vanishes,

w
(
φD

L, φ
D

R

)
= 0 . (2.18)
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Fig. 1. Typical plot of the potential V .

In this way, we have reformulated the existence problem for solutions satisfying the
boundary conditions (2.10) in terms of the vanishing of the Wronskian (2.18). More
generally, the Wronskian can be used to describe the spectrum of the Hamiltonian.
Namely, we just saw that if the Wronskian vanishes, then there is an eigensolution
which satisfies the boundary conditions (2.7). Conversely, if the Wronskian is non-
zero, we may introduce the Green’s function by

sλ(u, u
′) =

1

w(φD

L, φ
D

R)
×
{
φD

L(u) φ
D

R(u
′) if u ≤ u′

φD

L(u
′) φD

R(u) if u′ < u .
(2.19)

By direct computation one verifies that the Green’s function satisfies the equation

(H − λ) sλ(u, u
′) = δ(u − u′) .

Thus taking sλ(u, u
′) as the integral kernel of a corresponding operator sλ on Hk =

L2((0, π), du), this operator is a bounded inverse of the operator (H − λ). Thus λ
is in the resolvent set, and sλ is the resolvent. We conclude that the spectrum of H ,
defined as the complement of the resolvent set, is given as the set of all λ for which the
Wronskian (2.18) vanishes for non-trivial solutions φD

L and φD

R satisfying the boundary
conditions (2.10) at u = 0 and u = π, respectively.

3. The Qualitative Behavior of the Spectrum. We now explain qualita-
tively how the spectrum of the angular operator looks and how this qualitative be-
havior can be understood. This will also motivate and explain the statements in
Theorem 1.1. Before discussing the effect of the imaginary part, we consider the sit-
uation that Ω and λ are real, so that V is real-valued. Then the spectrum can be
understood most easily by considering the Sturm-Liouville equation (2.2) as a one-
dimensional Schrödinger equation with Hamiltonian (2.3). As shown on the left of
Figure 1, the potential looks typically like a double-well potential. This potential is ap-
proximately symmetric (because the quadratic terms in Ω are symmetric around π/2
according to (2.5), but the terms (2.6) are anti-symmetric). If instead of a double-well
potential we had a single-well potential, the nth eigenvalue could be computed approx-
imately for large n by the Bohr-Sommerfeld-Wilson quantization condition (see [16,
§48] or [19, eq. (2.5.51)])

˛
p dq = 2πn ,
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where one integrates momentum along a closed classical path of the particle. Thus,
denoting the zeros of V = W − λ by u� and ur (with u� < ur < π/2), we obtain

ˆ ur

u�

2
√
λn −W du = 2πn . (3.1)

From this formula, the expected eigenvalue gaps can be computed by

π ≈
ˆ ur(n+1)

u�(n+1)

√
λn+1 −W du−

ˆ ur(n)

u�(n)

√
λn −W du ≈

ˆ ur

u�

λn+1 − λn

2
√
λn −W

du

so that

λn+1 − λn ≈ 2π

(ˆ ur

u�

1√
λn −W

du

)−1

. (3.2)

In particular, for the large eigenvalues we obtain Weyl’s asymptotics (see [21, Sec-
tion 11.6])

λn � n2 , λn+1 − λn � n (as n→∞) . (3.3)

Another spectral region of interest is if λ lies near the minimum of the potential.
Approximating W by a quadratic potential and using that W ′′ � Ω2, in this case we
obtain the scaling

λn � n |Ω| , λn+1 − λn � |Ω| (if 1� n� |Ω|) . (3.4)

These formulas describe the behavior of the eigenvalues if we had a single-well po-
tential. The eigenvalues of the double-well potential can be understood by considering
two Hamiltonians with a single-well potential and by weakly coupling them together
via a potential barrier (see for example [20, Section 3.3]). If our double-well potential
was symmetric about π/2, the two single-well Hamiltonians would have degenerate
eigenvalues. Coupling them together slightly removes the degeneracy, leading to the
well-known eigenfunctions with even and odd parity (similar as considered for example
in [20, Sections 3.4 and 3.5]). In this way, we would end up with pairs of eigenvalues.
These pairs would be separated by spectral gaps having the behavior (3.2). Since in
our situation, the double-well potential is not symmetric about π/2, we do not know
a-priori whether the eigenvalues of the two single-well Hamiltonians are degenerate
or not. But we can conclude that the eigenvalues of the double-well Hamiltonian can
appear at most in pairs, separated by gaps which again scale according to (3.2). If λ
is chosen much larger than the potential barrier, the eigenfunctions no longer see a
double-well potential. Therefore, Weyl’s asymptotics (3.3) should again hold for the
large eigenvalues.

These simple qualitative arguments already allow us to understand the statement
of Theorem 1.1 in the special case of a real potential. Namely, the operator Q0 is
the spectral projection on all the small eigenvalues, for which the Born-Sommerfeld
rule is not a good approximation. The operators Q1, Q2, . . . are spectral projection
operators corresponding to one or two eigenvalues (depending on whether there is a
spectral pair or not).

Before moving on to the complex potential, we remark that in the case k = ±s,
the potential at the pole goes to minus infinity (for a typical example see Figure 2).
However, it turns out that, using the known asymptotics of the wave functions near
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Fig. 2. The poles of ReV in the case k = s (left) and k �= s (right).

the pole, the above qualitative arguments still go through if we choose u� ∼ |Ω|− 1
2

close to the inflection point of the potential.
We next discuss the situation for a complex potential. One potential method is

to treat the imaginary part of W as a slightly non-selfadjoint perturbation (see [15,
V.4.5] or as the application to the spheroidal wave operator in [8, Section 8]). For this
method to be applicable, the imaginary part of the potential must be small compared
to the gaps, i.e.

| ImW | ≤ λn+1 − λn . (3.5)

For any fixed Ω, this condition will be satisfied for sufficiently large n in view of Weyl’s
asymptotics (3.3). But the inequality (3.5) cannot be satisfied uniformly in Ω, as the
following argument shows: Using (1.5) in (2.4), one sees that

sup
(0,π)

| ImW | � c |Ω|

with a constant c which may be large. Therefore, the inequality (3.5) is in general
violated if we are in the asymptotic regime (3.4). By choosing Ω large, one can arrange
that this asymptotic regime includes arbitrarily many eigenvalues. We conclude that
ImW cannot in general be treated as a slightly non-selfadjoint perturbation. This
means qualitatively that the imaginary part of W shifts the eigenvalues considerably
on the scale of the gaps. The eigenvalues will typically move into the complex plane.
Moreover, degeneracies and Jordan chains may form.

In order to locate the spectrum in the complex plane, for a complex potential
whose real part has a single well one can again use the Bohr-Sommerfeld condi-
tion (3.1), which now makes a statement on both the real and imaginary parts of the
integral on the left (3.1). Treating the imaginary part of λ−W as a perturbation, we
thus obtain to first order ˆ ur

u�

√
Re

(
λn −W

)
du = πn (3.6)

ˆ ur

u�

Im(λn −W )√
Re(λn −W )

du = 0 . (3.7)

We will prove that these relations really make it possible to locate the spectrum in
the complex plane. Applying these relations naively, we find for the Hamiltonian with
the single-well potential that the real part of the eigenvalues behaves just as discussed
for the real potential. The imaginary part of the potential, however, must be adjusted



SPIN-WEIGHTED SPHEROIDAL WAVE OPERATORS 43

such that (3.7) holds. In particular, we again find that the spectral points form at
most pairs, separated by spectral gaps which scale similar to (3.2). If the two spectral
points of the pair coincide, a Jordan chain of length at most two may form. In this
way, one can understand all statements of Theorem 1.1.

4. Overview of the Proof of the Main Theorem. Making the above quali-
tative arguments precise requires an intricate combination of different mathematical
methods. In order to facilitate reading, we now give a short overview of the proof
of Theorem 1.1. In Section 5, we collect general statements on Sturm-Liouville oper-
ators with a complex potential. We show that the spectrum is purely discrete, and
that the Hilbert space can be decomposed into a direct sum of invariant subspaces.
Moreover, idempotent operators mapping onto these invariant subspaces can be con-
structed using contour integral methods. In Section 6 we introduce a useful method
for analyzing the oscillatory behavior of solutions of the Sturm-Liouville equation
of the form (2.17). These estimates are essential for locating the spectrum and for
making the Bohr-Sommerfeld condition (3.6) precise.

Our proof involves a deformation argument where we continuously deform a real
potential to our complex potential (Section 16). Moreover, in our proof we will some-
times be able to treat the imaginary part of the potential as a perturbation (cf.
Section 8). The starting point of these methods is to have detailed information on
the spectrum and the spectral gaps for a real potential. These estimates are worked
out in Section 7.

In Section 8 we employ the method of slightly non-selfadjoint perturbations to
obtain the desired spectral representation provided that Ω lies in bounded set (see
Proposition 8.1). Therefore, all the subsequent sections are devoted to the problem
of getting estimates for large |Ω|, uniformly in the spectral parameter λ.

In Section 9 we derive an a-priori estimate for the imaginary parts of all eigen-
values. The method is to evaluate an expectation value (see (9.1)) giving an equation
which makes the Bohr-Sommerfeld condition (3.7) precise. This a-priori estimate
is needed in order to distinguish the different cases and regions in Section 10. In
Section 12 we shall return to the method and refine it considerably.

For the remaining estimates we shall construct approximate solutions of the
Sturm-Liouville equation by glueing together WKB, Airy and parabolic cylinder func-
tions as well as asymptotic solutions near the poles at u = 0 and u = π. Moreover,
we derive rigorous error bounds. In Section 10 we give an overview of the different
cases and regions and explain how to locate the spectrum. The detailed estimates are
worked out in Section 11.

Section 12 gives refined integral estimates of the imaginary part of the potential
(see Propositions 12.1 and 12.2). These estimates make use of the specific form of our
potential and will be needed several times in the subsequent sections.

In order to show that the Jordan chains have length at most two, our method
is to show that if λ0 is an eigenvalue, then there is an annular region around λ0

which contains at most one other eigenvalue (see Figure 7). In order to construct this
annular region, we differentiate the equations with respect to λ and use an implicit
function argument. The λ-derivatives are computed and estimated in Section 13. The
construction of the annular regions is given in Section 14.

Section 15 is devoted to estimates of the Green’s function. Here the main task is
to estimate the Wronskian w(φD

L, φ
D

R) of the fundamental solutions in (2.17).
In Section 16 we continuously deform the potential from a real potential to our

complex potential. Combining all the results from the previous sections, we can track
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the eigenvalues and control the spectral gaps. We also derive uniform norm estimates
for the operators Qn and show that their sum converges strongly to the identity.

5. General Functional Analytic Results. In order to get into the standard
functional analytic framework, we consider the Sturm-Liouville operator (2.3) as an
operator on the Hilbert space L2((0, π)). As the dense domain of definition we choose
those function in C2((0, π))∩L2((0, π)) which satisfy the boundary conditions (2.10).

Lemma 5.1. The spectrum of the Hamiltonian (2.3) is discrete and has no limit
points.

Proof. For Sturm-Liouville equations with a continuous potential, this is proved
in [3, Chapter 12]. Since the potential (2.8) has poles at u = 0 and u = π, we give the
proof in detail. For any λ ∈ C, we choose non-trivial solutions φL and φR with the
generic asymptotic behavior (2.17). These solutions can be chosen to depend locally
holomorphically on λ in the sense that every λ0 ∈ C has an open neighborhood U such
that the functions φL and φR are holomorphic in λ ∈ U (these holomorphic families
can be constructed for example by taking the solutions of the Sturm-Liouville equation
for variable λ but fixed boundary values at some u ∈ (0, π)). Then the functions φD

L

and φD

R defined by (2.17) as well as their Wronskian in (2.18) are also holomorphic
in λ ∈ U .

Let us show that the function w(φD

L, φ
D

R) does not vanish identically. If this were
the case, by analytic continuation we would conclude that w(φD

L, φ
D

R) vanishes iden-
tically for all λ ∈ C. Thus for every λ ∈ C there would exist a non-trivial solution φ
satisfying the boundary conditions (2.10). On the other hand, the computation

d2

du2
|φ|2 = 2

∣∣φ′∣∣2 + 2|φ|2 Re(W − λ)

shows that if λ is large and negative, then the absolute square of φ is convex away
from small neighborhoods of the poles at 0, π. But this convexity is incompatible with
the asymptotics near the poles in (2.10), a contradiction.

The result follows because holomorphic functions which do not vanish identically
have isolated zeros.

For a self-adjoint operator, one can construct the spectral projection operators
by integrating the resolvent along a closed contour. In our non-selfadjoint setting,
where the operator need not be diagonalizable, we cannot expect to obtain a spectral
decomposition. But we can detect invariant subspaces:

Lemma 5.2. Let Γ be a closed contour which lies entirely in the resolvent set and
encloses points in the spectrum with winding number one. Then the contour integral

QΓ := − 1

2πi

‰
Γ

sλ dλ (5.1)

defines a bounded linear operator whose image is the invariant subspace corresponding
to the spectral points enclosed by Γ.

The operator QΓ is idempotent. Moreover, the product of two operators QΓ

and QΓ′ is given by

QΓ QΓ′ = QΓ̃ , (5.2)

where Γ̃ is any contour which encloses precisely all the spectral points enclosed by Γ
and Γ′, all with winding number one.
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Proof. We first show that QΓ is idempotent. Multiplying the identity

(H − λ)− (H − λ′) = λ′ − λ

for λ �= λ′ from the left by sλ and from the right by sλ′ , one obtains the resolvent
identity (see for example [18, Theorem VI.5])

sλ sλ′ =
1

λ− λ′ (sλ − sλ′) .

We let Γ′ be a contour obtained by continuously deforming the contour Γ in the
resolvent set such that every point of Γ is enclosed by Γ′ with winding number one.
Then, using the resolvent identity,

QΓ QΓ = QΓ QΓ′ = − 1

4π2

‰
Γ

dλ

‰
Γ′

dλ′ 1

λ− λ′ (sλ − sλ′)

= − 1

4π2

‰
Γ

( ‰
Γ′

dλ′

λ− λ′

)
sλ dλ+

1

4π2

‰
Γ′

( ‰
Γ

dλ

λ− λ′

)
sλ′ dλ′ . (5.3)

Carrying out the inner contour integrals with residues, the integral in the first sum-
mand gives −2πi, whereas the integral in the second summand vanishes. We conclude
that QΓ QΓ = QΓ.

In order to prove the more general formula (5.2), it is convenient to deform the
contours and to decompose each contour integral into a finite sum of integrals where
each contour encloses only one spectral point. Then, in view of the idempotence of
the Qλ, it remains to prove (5.2) in the case that Γ and Γ′ enclose different points of
the spectrum. By continuously deforming Γ′ without crossing spectral points we can
again arrange that the contours Γ and Γ′ do not intersect. As in (5.3), we obtain

QΓQΓ′ = − 1

4π2

‰
Γ

( ‰
Γ′

dλ′

λ− λ′

)
sλ dλ+

1

4π2

‰
Γ′

( ‰
Γ

dλ

λ− λ′

)
sλ′ dλ′ . (5.4)

Since the contours enclose different points in the spectrum, no point of Γ is enclosed
by Γ′ and vice versa. Hence the inner integrals in (5.4) vanish, proving that QΓ QΓ′ =
0.

It remains to show that the image of QΓ consists of the invariant subspaces
corresponding to all the spectral points enclosed in Γ. Let Ω ⊂ C be the open set
enclosed by Γ. Since the spectral points are isolated, we may decompose Ω into a
finite number of subsets such that the boundary of each subset is a closed contour
enclosing only one spectral point. Thus it suffices to consider the situation that Γ
encloses exactly one spectral point λ0. Since the Wronskian in (2.19) is holomorphic
in λ, the resolvent sλ at λ0 has a pole of finite order n. Iterating the identity

HQΓ = − 1

2πi

‰
Γ

(λsλ − 11) dλ = − 1

2πi

‰
Γ

λ sλ dλ ,

we obtain

(H − λ0)
nQΓ = − 1

2πi

‰
Γ

(λ− λ0)
n sλ dλ = 0 ,

where in the last step we used that the integrand is holomorphic. Hence every vec-
tor in the image of QΓ is contained in the invariant subspace corresponding to λ0.
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Conversely, let ψ be a vector in this invariant subspace. Then there is N ∈ N such
that (H − λ0)

Nψ = 0, and thus

0 =
(
(H − λ) + (λ− λ0)

)N
ψ =

N∑
k=0

(
N
k

)
(λ− λ0)

N−k (H − λ)kψ .

Multiplying by sλ and solving for sλψ, we obtain

sλψ = −
N∑

k=1

(
N
k

)
(λ− λ0)

−k (H − λ)k−1 ψ .

Taking the contour integral, a computation with residues yields

QΓψ =
1

2πi

N∑
k=1

(
N
k

) ‰
Γ

(H − λ)k−1ψ

(λ− λ0)k
dλ =

1

2πi

N∑
k=1

(
N
k

) ‰
Γ

ψ

(λ− λ0)
dλ

=

N∑
k=1

(
N
k

)
(−1)k−1 ψ = ψ −

N∑
k=0

(
N
k

)
(−1)k ψ = ψ − (1− 1)Nψ = ψ .

Hence ψ really lies in the image of Qλ. This concludes the proof.

This lemma also shows that the dimension of the invariant subspace is at most
the order of the pole of the resolvent.

The next lemma bounds the resolvent away from the real axis.

Lemma 5.3. If

inf
(0,π)

| ImV | > 0 , (5.5)

then the Wronskian in (2.18) has no zeros. Moreover, the resolvent is bounded by

‖sλ‖ ≤
(
inf
(0,π)

| ImV |
)−1

(where ‖ · ‖ denotes the sup-norm on Hk).

Proof. Since ImV is continuous, the condition (5.5) implies that ImV is either
always positive or always negative. We only give the proof in the first case because
the second case is similar. If the Wronskian in (2.18) is zero, there is a non-trivial
solution φ of the Sturm-Liouville equation (2.7) with the asymptotics (2.10). In the
case k ± s �= 0, differentiating the asymptotics (2.11), one sees that

φ(u) ∼ u
1
2+|k−s| (1 + O(u)

)
and φ′(u) ∼ u− 1

2+|k−s| (1 + O(u)
)
.

As a consequence, we do not get boundary terms when integrating by parts as follows,

0 = 〈φ | (−∂2
u + V )φ〉L2 = 〈∂uφ | ∂uφ〉L2 + 〈φ |V φ〉L2 . (5.6)

Taking the imaginary part, we conclude that

0 =

ˆ π

0

ImV |φ|2 , (5.7)
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Reλ

R

Im λ

inf(0,π) | ImW |

√
R

Γ1(R)

Γ2(R)

Fig. 3. The contour Γ.

in contradiction to (5.5). In the case k = s, the situation is a bit more subtle because
differentiating the asymptotics (2.12), one sees that

φ(u) = c1
√
u+ O(u) and φ′(u) =

c1
2
√
u
+ O

(
u0

)
.

This implies that integrating by parts in (5.6) we get real-valued boundary terms, so
that (5.7) again holds. The remaining case k = −s is treated similarly by differenti-
ating (2.13).

Next, setting ψ = sλφ and again integrating by parts, we obtain

‖ψ‖ ‖φ‖ ≥ ∣∣〈ψ|φ〉L2

∣∣ = ∣∣〈ψ|(−∂2
u + V )ψ〉L2

∣∣ ≥ ∣∣ Im〈ψ|V ψ〉L2

∣∣ ≥ ‖ψ‖2 inf
(0,π)

ImV ,

implying that

‖φ‖ ≥ ‖sλφ‖ inf
(0,π)

ImV .

Since this inequality holds for all φ ∈ Hk, the result follows.

We are now in the position to state a general completeness result. The method is
based on an idea in [1, proof of Theorem 2.12] and was used previously in [9]. First,
we write the potential (2.8) and (2.9) in the form

V = W − λ

with W independent of λ. For given R > 0, we consider the two contours Γ1 and Γ2

in the complex λ-plane defined by

Γ1 = ∂BR(0) ∩
{
Imλ < − inf

(0,π)
| ImW | −

√
R
}

Γ2 = ∂BR(0) ∩
{
Imλ > inf

(0,π)
| ImW |+

√
R
}
.

and set Γ(R) = Γ1 ∪ Γ2 (see Figure 3).
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Theorem 5.4. For any φ ∈ C∞
0 ((0, π)),

φ(u) = − 1

2πi
lim

R→∞

ˆ
Γ(R)

(sλφ)(u) dλ . (5.8)

Proof. Since the length of the contour S1 ∪ S2 := ∂BR(0) \ Γ(R) only grows
like

√
R, ∣∣∣∣∣

‰
∂BR(0)

dλ

λ
−
ˆ
Γ(R)

dλ

λ

∣∣∣∣∣ ≤ 1

R

ˆ
S1∪S2

|dλ| R→∞−→ 0 .

As a consequence,

1

2πi
lim

R→∞

ˆ
Γ(R)

dλ

λ
= 1 . (5.9)

Since our contours lie in the resolvent set, we know that for every λ ∈ Γ((R),

φ = sλ (−∂2
u +W − λ)φ .

Dividing by λ and integrating over Γ(R), we can apply (5.9) to obtain

φ(u) =
1

2πi
lim

R→∞

ˆ
Γ(R)

dλ

λ

(
sλ

(− ∂2
u +W − λ

)
φ
)
(u)

= − 1

2πi
lim

R→∞

ˆ
Γ(R)

{(
sλφ

)
(u) − 1

λ

(
sλ (−∂2

u +W )φ
)
(u)

}
dλ .

But the second term in the curly brackets vanishes in the limit, because by Lemma 5.3,∣∣∣∣∣
ˆ
Γ(R)

(
sλ (−∂2

u +W )φ
)
(u)

dλ

λ

∣∣∣∣∣ ≤
ˆ
Γ(R)

C√
R

|dλ|
|λ| ≤ 2πC√

R
.

Thus (5.8) holds.

This theorem shows that the operatorsQΓ defined by (5.1) converge to the identity
if Γ tends to a contour which encloses the whole spectrum. The advantage of this
method is that it does not require a functional analytic framework, but only uses
properties of the Green’s function sλ(u, u

′). The drawback is that one obtains strong
convergence only on a the dense subspace of test functions. In order to prove strong
convergence on the whole Hilbert space, we will rely on the theory of slightly non-
selfadjoint perturbations (see Section 8 and Section 16.4).

6. An Osculating Circle to the ζ-Curve. In order to locate the spectrum, we
need to find the zeros of the Wronskian in (2.18). The main difficulty is to understand
the behavior of the integrals in (2.17). To this goal, we now develop a method referred
to as the “osculating circle method.” For ease in notation, we only consider the
solution φD

L and omit the subscript L. We denote the integral in (2.17) by

ζ(u) :=

ˆ u

0

1

φ2
. (6.1)

Then

φD = ζ φ , (6.2)
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ζ

p

R

ζ(u) 2ϑ
ζ ′

Fig. 4. The osculating circle to the curve ζ(u).

making it possible to relate the behavior of φD to properties of the function ζ(u).
In order to clarify the evolution of the function ζ(u) in the complex plane, it is

useful to consider the osculating circle to the curve ζ at a point ζ(u) (see Figure 4).
The curvature K of the curve ζ(u) and the radius R of the osculating circle are given
by (see for example [4, Theorem 5.1.6])

K = − Im(ζ′′ ζ′)
|ζ′|3 , R =

1

|K| . (6.3)

The center p of the osculating circle is

p = ζ − i

K

ζ′

|ζ′| . (6.4)

Moreover, we introduce the angle ϑ as the argument of φ,

φ = |φ| eiϑ . (6.5)

Then

ζ′

|ζ′| =
|φ|2
φ2

= e−2iϑ ,

so that (6.4) becomes

ζ = p+
i

K
e−2iϑ . (6.6)

In order to simplify the computations, we always choose the phase and normalization
of φ such that

φ(u0)
2 Im y(u0) = 1 (6.7)

for some u0 which will be specified later. Moreover, we set

y0 = y(u0) . (6.8)

Using the definition (6.1) of ζ as well as the differential equation (2.7), we obtain
useful formulas for ϑ, K, p and their derivatives.

Lemma 6.1.

ϑ′ = Im y . (6.9)
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Furthermore,

K(u) = 2 |φ|2 Im y , p(u) = ζ − i

2φ2 Im y
(6.10)

K ′(u) = 2 |φ|2 ImV , p′(u) =
i

2φ2 Im2 y
ImV . (6.11)

and

R′(u) = − ImV

2 |φ|2 Im y | Im y| . (6.12)

Before coming to the proof, we point out that for a real potential, this lemma shows
that K, p and R are constant. Thus for a real potential, the curve ζ(u) lies on a fixed
circle with radius R centered at p. The position of ζ on the circle is described by the
angle ϑ, and its evolution is described completely by (6.9). Moreover, we point out
that |p′| = |R′|, which can be understood from the fact that the point ζ stays on the
circle as the osculating circles move.

Proof of Lemma 6.1. A direct computation yields

ζ′ =
1

φ2
, ζ′′ = −2 φ′

φ3
= −2y

φ2

ϑ′ = −1

2

d

du
Im log ζ′ = −1

2
Im

ζ′′

ζ′
= Im

(
φ2 φ′

φ3

)
= Im y

Im(ζ′′ ζ′) = −2 Im y

|φ|4 .

This gives (6.9) as well as the formula for K in (6.10). Using this formula in (6.4), we
obtain the second equation in (6.10).

Next, we write out the real and imaginary parts of the Riccati equation (2.14),

Re y′ = ReV − Re2 y + Im2 y (6.13)

Im y′ = ImV − 2Re y Im y . (6.14)

Using (6.14), we obtain

K ′ = 2|φ|2 Im(y′) + 4Re y |φ|2 Im y = 2 ImV |φ|2 ,
giving the formula for K ′ in (6.11). Moreover,

p′ = ζ′ +
i

2 Im2 y
Im(y′)

1

φ2
+

i

2 Im y

2

φ3
φ′

=
1

φ2
+

i

2 Im2 y

(
ImV − 2Re y Im y

) 1

φ2
+

i

2 Im y

2

φ2
y

=
1

φ2
+

i ImV

2φ2 Im2 y
− i

φ2 Im y
Re y +

i

φ2 Im y
y =

i ImV

2φ2 Im2 y
.

Finally, we differentiate (6.3),

R′ = −KK ′

|K| 32 ,

and using (6.10) and (6.11) gives (6.12).
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7. Estimates for a Real Potential. In Section 16 we shall consider a homo-
topy of the potential which joins the potential V with its real part. In preparation
for this analysis, we now derive eigenvalue estimates for a Sturm-Liouville equation
with a real potential. More precisely, we replace the potential in the Sturm-Liouville
equation (2.7) by its real part,(

− d2

du2
+ReV

)
φ = 0 , (7.1)

where V is again given by (2.8) and (2.9). We can assume that λ is real, so that the
equation can be written in the Schrödinger form (2.2) with the Hamiltonian

H = − d2

du2
+ReW . (7.2)

This Hamiltonian has a unique self-adjoint extension, as the following consideration
shows: In the case k �= s, the asymptotics in (2.11) shows that one of the fundamental
solutions is square-integrable near u = 0, whereas the other fundamental solution is
not. Using Weyl’s notion, the Sturm-Liouville operator is in the limit point case at u =
0 (see [3, Sections 9.2, 9.3]. In the case k = s, on the other hand, according to (2.12)
both fundamental solutions are square integrable. This is the so-called limiting circle
case (see [3, Sections 9.4]). In all of these cases, our boundary conditions (2.10) give
rise to a unique self-adjoint extension (for details see [3, Sections 9.2, 9.3, 9.4] or [5,
Chapter XIII.2]).

For ease in notation, we denote the selfadjoint extension of (7.2) again by H , and
its domain of definition D(H). For the analysis of the spectrum, it is again useful to
consider the Riccati equation corresponding to (7.1), which we write as

y′ = ReV − y2 , (7.3)

where we again set y := φ′/φ. We consider complex-valued solutions of this equation.
A direct computation (see also [8, eq. (3.8)]) shows the product |φ|2 Im y is a constant,

w := |φ|2 Im y = const . (7.4)

This implies in particular that the function y cannot cross the real axis.

7.1. A Node Theorem. The classical node theorem (see for example [23, The-
orem 14.10]) states that the nth eigenfunction of a Sturm-Liouville operator has ex-
actly (n− 1) zeros. We now state and prove this node theorem in our setting. In the
subsequent Sections 7.2 and 7.3, we will apply the node theorem to obtain eigenvalue
estimates and the Weyl asymptotics. There are two reasons why we decided to give
the proof of the node theorem in detail. First, due to our singular boundary con-
ditions, the proof given in most textbooks does not apply to our problem. Second,
our proof works with osculating circles and complex solutions of the corresponding
Riccati equation. It can be used as an introduction to the methods needed later in
this paper.

Proposition 7.1. The spectrum of the Hamiltonian (7.2) is a discrete subset
of R which is bounded from below. Numbering the eigenvalues in increasing order,
λ0 ≤ λ1 ≤ . . ., the eigenfunction corresponding to λn has exactly n zeros on the open
interval (0, π). Moreover, choosing λ = λn, any solution y of the Riccati equation (7.3)
with Im y > 0 satisfies the relationˆ π

0

Im y = (n+ 1)π . (7.5)
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Proof. We let φ1 and φ2 be two real-valued fundamental solutions of the
ODE (7.1). Since their Wronskian

w := φ′
1φ2 − φ1φ

′
2

is a non-zero constant, the functions φ1 and φ2 cannot have common zeros. Hence
the complex solution φ := φ1 + iφ2 has no zeros. By choosing suitable fundamental
solutions, we can arrange that the corresponding solution of the Riccati equation (7.3)
satisfies (7.4) with w = 1, so that

|φ|2 Im y ≡ 1 . (7.6)

The relations (6.2) and (6.1) define a solution φD which satisfies the boundary
condition at u = 0. The boundary conditions at u = π are satisfied if and only
if ζ(π) = 0. Hence the condition for an eigenvalue can be stated as

ζ(π) = 0 . (7.7)

In order to control the behavior of the function ζ, we again use the osculating circle
method of Section 6. For a real potential, the relations (6.11) show that the center
and the radius of the osculating circle are fixed. Moreover, combining the first identity
in (6.10) with (7.6), one sees that K = 2. Hence the formula (6.6) simplifies to

ζ(u) = p+
i

2
e−2iϑ , (7.8)

where ϑ satisfies the differential equation (6.9). As a consequence, the eigenvalue
condition (7.7) can be written as

ˆ π

0

Im y ∈ πZ . (7.9)

The above formulas are valid if we let y be any solution of the Riccati equation
in the upper half plane and if we satisfy (6.7) (and consequently also (7.6)) by letting

φ(u) =
1

Im y(u0)
exp

( ˆ u

u0

y
)
. (7.10)

We now consider in particular a family of solutions y parametrized by λ ∈ R such
that

lim
u↗π

φ2(u) ∂λy(u) = 0 for all λ ∈ R . (7.11)

Such a family exists in view of the asymptotics near u = π as worked out in [12,
Section 8] (namely, one chooses φ with the asymptotics as in [12, Section 8] with
coefficients adjusted such that the leading asymptotics is independent of λ, implying
that ∂λy vanishes to leading order).

Differentiating (2.14) and (6.8) with respect to λ and using that ∂λV = −1 gives

y′λ = −1− 2yyλ , yλ(u0) = ∂λy0 . (7.12)

Solving this linear ODE by integration, we obtain

φ2yλ = φ2(u0) ∂λy0 −
ˆ u

u0

φ2 ,
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so that

yλ(u) =
φ2(u0)

φ2(u)
∂λy0 − 1

φ2(u)

ˆ u

u0

φ2 . (7.13)

Integrating this differential equation with respect to λ yields
ˆ π

0

yλ = φ2(u0) ∂λy0 ζ
∣∣π
0
−
ˆ π

0

(
1

φ2(u)

ˆ u

u0

φ2

)
du . (7.14)

In the last integral we perform the transformations
ˆ π

u0

du

ˆ u

u0

dv · · · =
ˆ π

u0

dv

ˆ π

v

du

ˆ u0

0

du

ˆ u

u0

dv · · · = −
ˆ u0

0

du

ˆ u0

u

dv · · · = −
ˆ u0

0

dv

ˆ v

0

du · · ·

to obtain ˆ π

0

(
1

φ2(u)

ˆ u

u0

φ2

)
du =

ˆ π

u0

φ2(v) ζ
∣∣π
v
dv −

ˆ u0

0

φ2(v) ζ
∣∣v
0
dv .

Taking the limit u0 ↗ π and using (7.11), the relation (7.14) simplifies to
ˆ π

0

∂λy =

ˆ u0

0

φ2ζ =

ˆ u0

0

φφD .

The representation for φφD derived in Lemma 7.3 below shows that the function φφD

has a non-negative imaginary part, and that its imaginary part is even strictly positive
on a set of positive measure. Therefore,

ˆ π

0

∂λ Im y > 0 for all λ ∈ R ,

showing that for our family of functions y, the integral (7.9) is indeed strictly increas-
ing in λ.

Combining this strict monotonicity of the integral (7.9) with the continuous de-
pendence on the parameter λ, the intermediate value theorem gives rise to eigen-
functions λn which are uniquely characterized by their number of zeros. Since the
integral (7.9) is strictly positive, converges to zero as λ → −∞ and tends to infinity
as λ → ∞ (using the WKB asymptotics), we conclude that there is a sequence of
eigenvalues λ0 < λ1 < . . . and that the eigenfunction corresponding to λn has pre-
cisely n zeros in the open interval (0, π). Moreover, we conclude that (7.5) holds for
the family of functions y satisfying (7.11).

In order to show that (7.5) holds for any smooth family of solutions y with Im y >
0, we use the following continuity argument: For any fixed λ = λn, we denote the
solution satisfying (7.11) by y0, and let y be any other solution with Im y > 0. For
any τ ∈ [0, 1], we let (yτ ) be the family of solutions of (7.3) with initial conditions

yτ (
π
2 ) = τ y0(

π
2 ) + (1− τ) y(π2 ) .

Then the condition (7.9) is satisfied for any τ ,
ˆ π

0

Im yτ ∈ πZ .
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By continuity, this integral is independent of τ . We conclude that (7.5) holds for
any τ ∈ [0, 1], and in particular for τ = 1.

Remark 7.2. We remark that for a real potential, the eigenvalue condition (7.9)
can also be understood without going through the osculating circle estimates, as we
now explain. Since the real and imaginary parts of φ form a fundamental system, the
solution φD can be represented as

φD = c Im(e−iαφ) (7.15)

for a suitable phase α and a complex prefactor c. The zeros of φD are then determined
by the phase of φ,

φD = 0 ⇐⇒ argφ ∈ α+ πZ .

In particular, for φD to satisfy the Dirichlet boundary conditions, it follows that

argφ
∣∣π
0
∈ πZ .

Differentiating gives

d

du
argφ =

d

du
Im logφ = Im

φ′

φ
= Im y , (7.16)

and applying the fundamental theorem of calculus again gives (7.9). Moreover, one
sees again that the integral in (7.9) gives π times the number of zeros on (0, π) plus
one. Using the osculating circle method has the advantage that with (6.2) we have
an explicit formula for φD, making it unnecessary to think about how the angle α
in (7.15) is to be chosen.

We append the lemma which shows that the integrand Im(φφD) has a definite
sign.

Lemma 7.3. For every solution φ satisfying the normalization condition (6.7)
(for any u0 ∈ (0, π)),

Im
(
φ(u)φD(u)

)
=

1

2
|φ(u)|2

(
1− φ(u)2

|φ(u)|2 lim
v↘0

|φ(v)|2
φ(v)2

)
.

Proof. Clearly, φD is a linear combination of the fundamental solutions φ and φ,
i.e.

φD = αφ+ β φ (7.17)

for suitable coefficients α, β ∈ C. In order to compute these coefficients, we compute
the Wronskians of φD with both φ and φ. First, using the ansatz (7.17), we get

w(φ, φD) = β w(φ, φ) , w(φ, φD) = −α w(φ, φ) .

Next, using the representation (6.2) and (6.1), we obtain

w(φ, φD) = φ′φζ − φ (φζ)′ = −φ2 ζ′ = −1

w(φ, φD) = φ
′
φζ − φ

(
φζ)′ = −w(φ, φ) ζ − |φ|2 ζ′ = −w(φ, φ) ζ − |φ|

2

φ2
.
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Comparing these formulas, we can compute α and β. We obtain that for any v ∈ (0, π),

α = ζ(v) +
1

w(φ, φ)

|φ(v)|2
φ(v)2

, β = − 1

w(φ, φ)
.

Finally, the normalization condition (6.7) implies that w(φ, φ′) = 2i. Computing
ImφφD using the above relations, taking the limit v ↘ 0 and using that limv↘0 ζ(v) =
0, we obtain the result.

7.2. Lower Bounds for Small Eigenvalues. In order to obtain eigenvalue
estimates, we need to count the number of zeros of the function φD. Our method is
to decompose the domain (0, π) into subintervals on which the potential ReV has a
definite sign. On every interval where ReV is positive, the number of zeros is a-priori
bounded:

Lemma 7.4. If I is a closed interval with ReV |I ≥ 0, then φD has at most one
zero on I.

Proof. Assume conversely that there is more than one zero on I. We choose two
neighboring zeros u1 < u2. Then, possibly by flipping the sign of φ we can arrange
that φD|(u1,u2) > 0. As a consequence, the function φD is convex on [u1, u2] (for details
and other estimates using this convexity property see [8, Section 5]). This implies that
φD is non-positive on (u1, u2), a contradiction.

Lemma 7.5. Let y be any solution of the Riccati equation (7.3) with Im y > 0.
Then the number Z of zeros of φD on an open interval I ⊂ (0, π) is bounded by

−1 + 1

π

ˆ
I

Im y ≤ Z < 1 +
1

π

ˆ
I

Im y .

Proof. One method of proof is to consider the osculating circle for a real po-
tential (7.8) and to note that the change of the phase ϑ is given by the differential
equation (6.9). Finally, the representation (6.2) shows that the zeros of φD coincide
with the zeros of ζ. An alternative method is to use the representation (7.15) with φ
according to (7.10), and to make use of the fact that argφ satisfies the differential
equation (7.16).

Combining the node theorem of Proposition 7.1 with the last two lemmas, we
obtain the following corollary.

Corollary 7.6. Let I1, . . . , Ik ⊂ (0, π) be open intervals such that ReV is non-
negative on the complement of I1 ∪ · · · ∪ Ik. On the I� we choose any solutions y� of
the Riccati equation (7.3) with Im y� > 0. Then for the N th eigenvalue λN ,

π (N − 2k − 1) <
k∑

�=1

ˆ
I�

Im y� ≤ π (N + k) .

We now apply this corollary to the spheroidal wave operator. We restrict attention
to lower bounds for the eigenvalues, but remark that upper bounds could be derived
with similar methods.

Proposition 7.7. For every constant c3 > 0 and any parameters k, s, there is
N = N(c3, k, s) ∈ N such that for all Ω in the range (1.5) with |Ω| sufficiently large,
the N th eigenvalue is bounded from below by

λN ≥ c3 |Ω| . (7.18)
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Proof. In order to prove (7.18) we consider λ ≤ c3 |Ω| for large |Ω|. Then, due to
the summand Ω2 sin2 u in (2.8), the real part of the potential is non-negative except in
a neighborhood of u = 0 and u = π. By symmetry, it suffices to analyze the behavior
in a neighborhood of u = 0. Then the estimate

ReV ≥ − 1

4u2
− (c3 + 1)|Ω|+ |Ω|2

2
u2 + |Ω|2 O(u3) (7.19)

shows that the potential is positive if

u > u1 := 2(c3 + 1) |Ω|− 1
2 . (7.20)

We begin with the case k �= s. In this case, the estimate (7.19) is improved to

ReV ≥ 3

4u2
− (c3 + 1)|Ω|+ |Ω|2

2
u2 + |Ω|2 O(u3) .

In particular, we conclude that for large |Ω|,

ReV ≥ −2 (c3 + 1)|Ω| (if k �= s) . (7.21)

We choose a (possibly empty) interval (u−, u+) such that ReV is negative inside and
non-negative outside this interval. In view of (7.20) we may choose u−, u+ ≤ u1. In
order to count the zeros of φD on the interval (u−, u+) we can assume that the mini-
mum u0 of ReV lies in the interval (u−, u+) (because otherwise the interval (u−, u+)
is empty, and there is nothing to do). We consider the solution y of the Riccati
equation (7.3) with initial conditions

y(u0) = i
√
|ReV (u0)| . (7.22)

We now apply the T-method (see [12, Theorem 3.2] or [6, Lemma 4.1]), choosing α ≡
0. Then U = ReV , σ ≡ 0 and

D =
ReV ′

2

(see [12, eqns. (3.3)–(3.5)]). Using that ReV is monotone increasing on [u0, u+) and
monotone decreasing on (u−, u0], we obtain

T (u) =

∣∣∣∣ReV (u0)

ReV (u)

∣∣∣∣
1
2

,

giving rise to an invariant disk estimate with center m(u) = iβ(u) and radius R given
by

β(u) =
1

2

(
|ReV (u0)| 12 + |ReV (u)| |ReV (u0)|− 1

2

)
R(u) =

1

2

(
|ReV (u0)| 12 − |ReV (u)| |ReV (u0)|− 1

2

)
.

In particular, one sees that

Im y ≤
√
|ReV (u0)| on (u−, u+) .



SPIN-WEIGHTED SPHEROIDAL WAVE OPERATORS 57

As a consequence,

ˆ u+

u−

Im y ≤
√
|ReV (u0)| |u+ − u−| ≤

√
|ReV (u0)| u1 ≤

(
2(c3 + 1)

) 3
2 ,

where in the last step we applied (7.20) and (7.21).
In the case k = s, on the other hand, the function ReV tends to minus infinity

as u ↘ 0. We choose u− = 0 and u+ ≤ u1 with ReV (u+) = 0. We first apply the
invariant disk estimate near the pole as worked out in [12, Section 8.1]. This estimate

applies up to some ũ � |Ω|− 1
2 . Choosing ũ such that ReV is monotone increasing on

the interval (ũ, u1), on the remaining interval [ũ, u1] we can again use the T -method
with α ≡ 0. Again, this gives rise to the estimate

ˆ u+

u−

Im y ≤ C(c3) .

Working out similar estimates near u = π, we can apply Corollary 7.6 with k = 2.
We conclude that we can choose N such that for all sufficiently large |Ω|, the chosen λ
is smaller than the N th eigenvalue. This concludes the proof.

7.3. Weyl’s Asymptotics. In the next lemma we show that our boundary
conditions (2.10) give rise to the usual Weyl asymptotics.

Lemma 7.8. The spectrum of the Hamiltonian (7.2) with boundary condi-
tions (2.10) lies on the real axis and consist of points λ0 < λ1 < · · · . For large n, the
eigenvalues and gaps have the asymptotics

λn = n2 + O(n)

λn+1 − λn = 2n+ O(n0) .

Proof. We consider the family of solutions y of the Riccati equation (7.3) with
initial conditions

y(π2 ) = i
√
λ for λ ∈ R

+ .

Asymptotically for large λ, the potential ReV becomes nearly constant according
to (2.8), except at the poles at u = 0 and u = π. In the case k �= s, one can control
the behavior near the poles by using the T -method similar as explained after (7.22).
We thus obtain asymptotically

ˆ π

0

Im y =
√
λ π + O

( 1√
λ

)
. (7.23)

In the case k = ±s, one can use the asymptotics of the fundamental solutions as
worked out in [12, Sections 7 and 8] to again obtain (7.23).

Combining (7.23) with (7.5) gives the result.

8. Slightly Non-Selfadjoint Perturbations. We now prove Theorem 1.1 un-
der the additional assumption that Ω is restricted to a bounded set:

Proposition 8.1. Let U ⊂ C be a bounded set. Then for any s and k in
the range (1.4), there is a positive integer N and a family of operators Qn(Ω) on Hk
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defined for all n ∈ N∪{0} and Ω ∈ U which has the properties (i)–(v) in the statement
of Theorem 1.1.

This proposition differs from Theorem 1.1 by the fact that here the parameter N
may depend on the set U , whereas in Theorem 1.1 the parameter N is to be cho-
sen uniformly for all Ω in the unbounded strip (1.5). This uniformity in Ω is the
main difficulty of the present paper; its proof will be the concern of the remaining
Sections 13–16.

Proof of Proposition 8.1. We again consider the Hamiltonian (7.2) with a real
potential with boundary conditions (2.10) Choosing contours which enclose each of
the eigenvalues λ0, λ1, . . . with winding number one, the contour integral (5.1) defines
idempotent operators Qn, n ∈ 0, 1, . . .. Since H is formally self-adjoint, these oper-
ators are symmetric, implying that the Qn are orthogonal projection operators onto
mutually orthogonal subspaces. For any λ ∈ C \ {λ0, λ1, . . .}, we define the resolvent
of the self-adjoint problem by

sλ =

∞∑
n=0

1

λ− λn
Qn .

Here the sum converges absolutely in L(H). Moreover, the resolvent satisfies the
identities(

− d2

du2
+ReW − λ11

)
sλ = 11 and ‖Qλ‖ = sup

n∈N∪{0}

1

|λ− λn| .

Our method for treating the imaginary part of the potential is to use the theory
of slightly self-adjoint perturbations (see [15, V.4.5]), similar as worked out in [8,
Section 8] or [3, Chapter 12]. We first note that, since the poles in (2.5) are real-
valued, the imaginary part of the potential is bounded,

| ImW (u)| ≤ C for all u ∈ (0, π) and Ω ∈ U (8.1)

(where the constant C clearly depends on U). Next, using Weyl’s asymptotics of
Lemma 7.8, we can choose N so large that

|λn+1 − λn| ≥ 4C for all n ≥ N .

We choose contours Γn (for n ≥ N) as circles centered at λn with radius 2C. Moreover,
we choose Γ0 as a circle which encloses the eigenvalues λ0, . . . , λN−1, and whose
distance to the spectrum is at least 2C (see Figure 5). Then for any λ on one of these
contours,

‖sλ‖ ≤ 1

2C
. (8.2)

This makes it possible to define the resolvent for the Hamiltonian (2.3) with the
complex potential, which we denote for clarity by a tilde, via a Neumann series,

s̃λ :=

∞∑
k=0

(− sλ ImW
)k
sλ . (8.3)

We now integrate this resolvent along the contours Γn,

Q̃n := − 1

2πi

‰
Γn

s̃λ dλ , n ∈ {0, N,N + 1, . . .} . (8.4)
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λN+1λN

Imλ

λN+2

Γ0
ΓN ΓN+1 ΓN+2

Reλ

≥ 4C

λ0

· · ·λ1 λN−1

= 2C

Fig. 5. Contour integrals for slightly non-selfadjoint perturbations.

As explained in [15, V.4.5], these operators are idempotent and map onto the invariant
subspaces corresponding to the spectral points enclosed by the contour. Moreover, it
is shown in [15, V.4.5] that the spectral projections are complete. The bound (1.6)
follows immediately by estimating the contour integral (8.4) and the Neumann se-
ries (8.3) using (8.2) and (8.1).

9. An A-Priori Estimate for ImV . Assume that λ ∈ C is an eigenvalue. We
let φD be a corresponding eigenfunction. This function satisfies the Dirichlet boundary
conditions at u = 0 and u = π. Therefore, the corresponding functions φD

L and φD

R

as defined by (2.17) are both multiples of φD. Multiplying the differential equation
for φD by φD and integrating, we obtain

0 =

ˆ π

0

φD

(
− d2

du2
+ V

)
φD (
)

=

ˆ π

0

(
− d2

du2
+ V

)
φDφD =

ˆ π

0

(V − V ) φDφD , (9.1)

where in (�) we integrated by parts and used the asymptotics for the decaying solution
in (2.11) and (2.12), (2.13) to conclude that the boundary terms vanish. We thus
obtain the relation

ˆ π

0

ImV |φD|2 = 0 . (9.2)

This identity immediately gives rise to the following a-priori estimate.

Lemma 9.1. Suppose that λ ∈ C is an eigenvalue. Then

| Imλ|, | ImV | ≤ C |Ω|

with a constant C which is independent of λ and Ω.

Proof. Using the explicit form of the potential (2.8) together with (1.5), one sees
that ∣∣ ImV − Imλ

∣∣ ≤ 2 c |Ω|+ const . (9.3)

The integral equation (9.2) implies that the function ImV must change sign on the
interval (0, π). As a consequence, the absolute value of Imλ is bounded by the right
side of (9.3). This gives the result.

10. Overview of the Estimates for a Complex Potential. We now enter
the general estimates. Recall that our equations involve the parameters k, s, Ω and λ.
We always keep k and s fixed. The parameters Ω and λ, however, may vary in a certain



60 F. FINSTER AND J. SMOLLER

parameter range to be specified later on, and we must make sure that our estimates
are uniform in these parameters. In order to keep track of the dependence on Ω and λ,
we adopt the convention that

all constants are independent of Ω and λ ,

but they may depend on k and s. Moreover, in order to have a compact and clear
notation, we always denote constants which may be increased during our construc-
tions by capital letters C1,C2, . . .. However, constants with small letters c1, c2, . . . are
determined at the beginning and are fixed throughout. We use the symbol

� · · · for ≤ c · · ·

with a constant c which is independent of the capital constants Cl (and may thus be
fixed right away, without the need to increase it later on).

When increasing the constants Cl, we must keep track of the mutual dependences
of these constants. To this end, we adopt the convention that the constant Cl may
depend on all previous constants C1, . . . ,Cl−1, but is independent of the subsequent
constants Cl+1, . . .. In particular, we may choose the capital constants such that C1 �
C2 � · · · . This dependence of the constants implies that increasing Cl may also
make it necessary to increase the subsequent constants Cl+1,Cl+2, . . .. For brevity,
when we write “possibly after increasing Cl” we implicitly mean that the subsequent
constants Cl+1,Cl+2, . . . are also suitably increased.

10.1. Different Cases and Regions. In view of Proposition 8.1, it suffices to
consider the case that |Ω| is large. Thus in what follows we always assume that

|Ω| ≥ C4 .

Since the imaginary part of Ω is bounded by (1.5), by increasing C4 we can always
arrange that

|ReΩ|2 ≥ 3

4
|Ω|2 .

Furthermore, Lemma 9.1 gives us an a-priori bound on the imaginary part of the
eigenvalues,

Imλ � |Ω| . (10.1)

Moreover, in view of Proposition 7.7, we know in the case of a real potential that by
choosing N sufficiently large, it suffices to consider the case that λ is real and λ� |Ω|.
With this in mind, in our estimates we may restrict attention to the case

Reλ ≥ C5 |Ω| . (10.2)

This inequality will be justified a-posteriori by showing that if we deform the potential
continuously starting from a real potential and ending with our complex potential V ,
then the inequality (10.2) will be preserved for all spectral points λn with n ≥ N (for
details see Section 16.3).
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For large |Ω|, the real part of the potential looks qualitatively like a double-well
potential (see the left of Figure 1). More quantitatively, in the region [π3 ,

2π
3 ] away

from the poles at u = 0 and u = π, according to (2.8) we have

ReV = Re(Ω2) sin2 u− Reλ+ O(Ω) (10.3)

ReV ′ = 2Re(Ω2) sinu cosu+ O(Ω) (10.4)

ReV ′′ = 2Re(Ω2) cos(2u) + O(Ω) . (10.5)

In particular, one sees that ReV has a unique local maximum at a point near π
2 ,

which we denote by umax,

ReV ′(umax) = 0 and umax =
π

2
+ O

(|Ω|−1
)
.

Moreover, the real part of the potential is concave near this maximum,

−2|Ω|2 ≤ ReV ′′ ≤ −|Ω|
2

2
on

[π
3
,
2π

3

]
. (10.6)

As the intervals (0, umax] and [umax, π) can be treated similarly, we mainly restrict
attention to the interval (0, umax]. The value of the real part of the potential at its
local maximum distinguishes different cases:⎧⎪⎨

⎪⎩
WKB case if ReV (umax) < −C1 |Ω|
parabolic cylinder case if −C1 |Ω| ≤ ReV (umax) < C1 |Ω|
Airy case if ReV (umax) ≥ C1 |Ω| .

(10.7)

Here C1 is a new constant which later on we will choose sufficiently large.
In each of the above cases, we estimate the solution by considering different

regions, as we now explain. First, we distinguish the pole region as the interval (0, u�)
with

u� :=
C1√
Reλ

. (10.8)

To the right of the pole region, there is a (possibly empty) WKB region (u�, ur). The
definition of ur depends on the different cases. In the WKB case, we simply set ur =
umax. In the parabolic cylinder case, the fact that the function ReV is concave (10.6)
implies that there is a unique point ur ∈ (π3 , umax) with ReV (ur) = −C1 |Ω|. In the
Airy case, we make use of the following result.

Lemma 10.1. In the Airy case, there are unique points ur, u+ in the interval

u < u < min
(
umax, u

)
(10.9)

with

ReV (ur) = −ν , ReV (u+) = ν , (10.10)

where u, u and ν are defined by

u =

√
Reλ

2 |Ω| , u = 4

√
Reλ

|Ω| (10.11)

ν = min
(1
4

(
C
2
5 |Ω|2 Reλ

) 1
3 ,

1

2

(
C
2
1 |Ω|2 ReV (umax)

) 1
3

)
. (10.12)
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Proof. We first show that ReV is strictly increasing on the interval (u, umax).
First, according to (10.4), by increasing C4 we can arrange that the function ReV is
strictly increasing on the interval (π8 ,

3π
8 ). Moreover, the concavity of Re V implies

that ReV is also monotone increasing on the interval [3π8 , umax). On the remaining
interval (u, π

8 ], we have the estimate

ReV ′ ≥ |Ω|2
2

u− c

u3
≥

( |Ω|2
2
− c

u4

)
u

≥
(
1

2
− 16 c |Ω|2

Re2 λ

)
|Ω|2 u ≥

(
1

2
− 16 c

C2
5

)
|Ω|2 u ≥ |Ω|2

4
u > 0 , (10.13)

where in the last step we possibly increased C5. We conclude that ReV is strictly
increasing on the whole interval (u, umax).

Next, at u we have the estimate

ReV (u) ≤ |Ω|2 u2 +
c

u2
− Reλ =

Reλ

4
+

4c |Ω|2
Reλ

− Reλ

≤ Reλ

4
+

4c

C2
5

Reλ− Reλ ≤ −Reλ

2
,

where in the last step we possibly again increased C5. Moreover, if u < umax, we have
the estimate

ReV (u) ≥ 1

4
|Ω|2 u2 − c

u2
− Reλ ≥ 4 Reλ− 4c |Ω|2

Reλ
− Reλ

≥ 4 Reλ− 4c

C2
5

Reλ− Reλ ≥ Reλ ,

where in the last step we possibly again increased C5. Next, it follows from the
definition of ν in (10.12) and (10.2) that ν < Reλ/4. Hence

ReV (u) < −ν and ReV
(
min(u, umax)

)
> ν .

Now the existence of solutions ur and u+ of (10.10) follows from the intermediate value
theorem. Uniqueness is an immediate consequence of the above strict monotonicity
of ReV .

To summarize, the point ur is defined by⎧⎪⎨
⎪⎩

ur = umax in the WKB case

ReV (ur) = −C1 |Ω| in the parabolic cylinder case

ReV (ur) = −ν in the Airy case .

(10.14)

In the Airy case, the interval (u+, umax) with u+ as in (10.10) is another WKB region
to the right of the zero of ReV . We thus obtain the following regions:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

pole region (0, u�) in all cases

WKB region (u�, ur) in all cases

parabolic cylinder region (ur, umax) in the parabolic cylinder case

Airy region (ur, u+) in the Airy case

WKB region with ReV > 0 (u+, umax) in the Airy case .

(10.15)
The different cases are illustrated in Figure 6.
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ReV

ur

WKB case parabolic cylinder case Airy case

umax

ur

umax

ur

u+

C1 |Ω|

−C1 |Ω|

ν

−ν

Fig. 6. The different cases.

10.2. Locating the Eigenvalues. Our general strategy is to construct a spe-
cial solution yL of the Riccati equation (2.14) on the interval (0, umax], and a special
solution yR on the interval [umax, π). These solutions are defined by the initial condi-
tions

yL
(
uL
0

)
= yL0 , yR

(
uR
0

)
= yR0 , (10.16)

where uL
0 and uR

0 are chosen near the poles at u = 0 respectively u = π (for details
see Section 11.2 and 11.3 below). We choose these special solutions in such a way
that our estimates become as simple as possible. This means in particular that these
solutions have no singularities. Then we introduce corresponding smooth solutions of
the Sturm-Liouville equation (2.7) by integration (cf. (2.15)),

φL(u) := exp

(ˆ u

yL

)
, φR(u) := exp

(ˆ u

yR

)
, (10.17)

both normalized according to (6.7). These solutions will not satisfy the Dirichlet
boundary conditions (2.10). By introducing the functions φD

L and φD

R again by (2.17),
we obtain solutions which do satisfy the Dirichlet boundary conditions. In order to
locate the eigenvalues, we must analyze the eigenvalue condition (2.18). It is most
convenient to evaluate the Wronskian at umax,

w
(
φD

L, φ
D

R

)∣∣
umax

= 0 . (10.18)

Similar to (6.1) and (6.2) we set

ζL(u) =

ˆ u

0

1

φ2
L

, φD

L = φL ζL , (10.19)

ζR(u) = −
ˆ π

u

1

φ2
R

, φD

R = φR ζR . (10.20)

Differentiating these relations, we obtain

(φD

L)
′

φD

L

=
φ′
L

φL
+

ζ′L
ζL

= yL +
1

φ2
LζL
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and thus

w(φD

L, φ
D

R) = φD

L φD

R

(
(φD

L)
′

φD

L

− (φD

R)
′

φD

R

)

= φD

L φD

R

(
yL +

1

φ2
LζL

− yR − 1

φ2
RζR

)

= φL ζL φR ζR

(
yL +

1

φ2
LζL

− yR − 1

φ2
RζR

)
. (10.21)

Therefore, the eigenvalue condition (10.18) can be written alternatively as

(
yL − yR

)
+

1

φ2
LζL

− 1

φ2
RζR

= 0 . (10.22)

Indeed, in this form the eigenvalue condition is most suited for our analysis. Our
main task is to analyze the behavior of the functions yL and yR as well as the derived
functions φL, φR and ζL, ζR (obtained by (10.17) and (10.19), (10.20)).

11. Estimates in Different Regions.

11.1. Estimates in the WKB Region (u�, ur). The name “WKB region”
suggests that in these regions the WKB solutions should be a good approximation.
This really is the case, in the following sense:

Proposition 11.1. For any δ > 0 and for sufficiently large C1, the WKB con-
ditions

|V ′|
|V | 32 ,

|V ′′|
|V |2 ,

|V ′′′|
|V | 52 < δ (11.1)

hold in the WKB regions (u�, ur) and (u+, umax) (see (10.15)), uniformly in Ω and λ.

For the significance of the inequalities (11.1) we also refer to [12, eq. (4.1)] and the
estimates in [12, Section 4].

The proof of this proposition is split up into several lemmas. The proof will be
completed at the end of this section.

Lemma 11.2. Possibly by increasing C1, we can arrange that in the region u > u�,
the potential and its derivatives are bounded by

|W | ≤ |Ω|2 u2 +
Reλ

2
, |V ′| � |Ω|2 u+

(Re λ)
3
2

C3
1

|V ′′| � |Ω|2 + (Reλ)2

C4
1

, |V ′′′| � |Ω|2 + (Reλ)
5
2

C5
1

.

Proof. Using the explicit form of the potentials in (2.5), (2.6) and (2.8), we obtain

|W | ≤ |Ω|2 u2 +
c

u2
�

≤ |Ω|2 u2 +
c

C2
1

Reλ
(
)

≤ |Ω|2 u2 +
Reλ

2

|V ′| ≤ 2|Ω|2 u+
c

u3
�

� |Ω|2 u+
(Reλ)

3
2

C3
1

|V ′′| � |Ω|2 + 1

u4
�

� |Ω|2 + (Reλ)2

C4
1

, |V ′′′| � |Ω|2 + c

u5
�

� |Ω|2 + (Reλ)
5
2

C5
1

,
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where in (�) we possibly increased C1.

Lemma 11.3. The statement of Proposition 11.1 holds in the region

u� < u < u , (11.2)

where u is again defined by (10.11).

Proof. Using (2.8), we obtain

|V (u)| ≥ |Reλ| − |W | ≥ Reλ

2
− |Ω|2u2 ≥ Reλ

4
� Reλ . (11.3)

Hence

|V ′| � |Ω|2 u+
(Reλ)

3
2

C3
1

� |Ω|
√
Reλ+

(Reλ)
3
2

C3
1

|V ′|
|V | 32 �

|Ω|
Reλ

+
1

C3
1

�
1

C5
+

1

C3
1

|V ′′|
|V |2 �

|Ω|2
(Reλ)2

+
1

C4
1

�
1

C2
5

+
1

C4
1

|V ′′′|
|V | 52 �

|Ω|2
(Reλ)

5
2

+
1

C5
1

�
1

C
5
2
5 C

1
2
4

+
1

C5
1

,

giving the result.

It remains to consider the complement of the region (11.2). This complement is
empty unless

√
Reλ

2 |Ω| ≤
π

2
.

Therefore, in what follows we can assume that

Reλ � |Ω|2 . (11.4)

Moreover,

u ≥
√
Reλ

2 |Ω| ≥
√
Reλ|
2 |Ω| ≥

√
C5

2
√
|Ω| �

1√
|Ω| . (11.5)

Lemma 11.4. Under the assumptions of Proposition 11.1,

|V ′′|
|V |2 ,

|V ′′′|
|V | 52 < δ .

Proof. From (10.10), (10.12), (10.1) and (10.2) we know that

|V | ≥ ν � min
(
C5 |Ω|,C1 |Ω|

)
= C1 |Ω| .

Combining this inequality with (11.4) and (11.5), the derivatives of the potential can
be estimated by

|V ′′| � |Ω|2 + 1

u4
� |Ω|2 + |Ω|2 � |Ω|2

|V ′′′| � |Ω|2 + c

u5
� |Ω|2 + |Ω| 52 � |Ω| 52 .
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As a consequence,

|V ′′|
|V |2 �

|Ω|2
C2
1 |Ω|2

=
1

C2
1

,
|V ′′′|
|V | 52 �

|Ω| 52
C

5
2
1 |Ω|

5
2

=
1

C
5
2
1

,

completing the proof.

It remains to estimate the term involving the first derivatives in (11.1).

Lemma 11.5. The statement of Proposition 11.1 holds in the region

u ≥ u ,

where u is again defined by (10.11).

Proof. We can bound the potential from below by

ReV ≥ |Ω|2
4

u2 − Reλ �
|Ω|2
8

u2 .

Hence

|V ′|
|V | 32 �

|Ω|2 u
|Ω|3 u3

+
(Reλ)

3
2

C3
1 |Ω|3 u3

�
|Ω|
Reλ

+
1

C3
1

≤ 1

C5
+

1

C3
1

,

giving the result.

It remains to estimate the term involving the first derivatives in (11.1) in the
region

u < u < u . (11.6)

We begin with a lemma in the Airy case.

Lemma 11.6. The statement of Proposition 11.1 holds in the Airy case if

(
C
2
5 |Ω|2 Reλ

) 1
3 ≤ 2

(
C
2
1 |Ω|2 ReV (umax)

) 1
3 . (11.7)

Proof. In view of (10.12), the assumptions imply that

ν =
1

4

(
C
2
5 |Ω|2 Reλ

) 1
3 . (11.8)

Moreover, according to (10.10), we know that |V | ≥ ν. Hence

|V ′| � |Ω|2 u+
c

u3
� |Ω|2 u

(
1 +

1

|Ω|2 u4

)

� |Ω|2 u
(
1 +

|Ω|2
Re2 λ

)
(10.2)

� |Ω|2 u
(10.11)

� |Ω|
√
Reλ

|V ′|
|V | 32 �

|Ω| √Reλ

ν
3
2

(11.8)

�
1

C5
.

This concludes the proof.
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Thus in the Airy case, in what follows we may assume that (11.7) is violated.
Since in the WKB region under consideration, we stay away from the zeros of ReV
in the sense that |ReV | ≥ ν with ν as in (10.12), it follows that

|ReV | ≥ 1

2

(
C
2
1 |Ω|2 ReV (umax)

) 1
3 in the Airy case . (11.9)

We now return to the analysis of the region (11.6), without specifying whether we
are in the WKB, the Airy or the parabolic cylinder case. As a consequence of (11.6),

|V ′| � |Ω|2 u+
1

u3
� |Ω|

√
Reλ � |Ω|2 ,

where in the last step we again applied (11.4). From this inequality, we obtain the
desired estimate provided that one of the following two inequalities holds:

|V (u)| ≥ C2 |Ω| 43 or ReV (umax) ≥ |Ω|2
C1

. (11.10)

Namely, the first inequality implies that

|V ′|
|V | 32 �

|Ω|2
C

3
2
2 |Ω|2

=
1

C
3
2
2

. (11.11)

On the other hand, if the second inequality in (11.10) holds, we are in the Airy case
(possibly after increasing C4), so that (11.9) yields the estimate

|V | ≥ (
C
2
1 |Ω|2 ReV (umax)

) 1
3 ≥ C

1
3
1 |Ω|

4
3 .

This implies that the first inequality in (11.10) again holds (for C2 = C
1
3
1 ), making it

possible to again use the estimate (11.11).
It remains to consider the case that both inequalities in (11.10) are violated, i.e.

|V (u)| < C2 |Ω| 43 and ReV (umax) <
|Ω|2
C1

.

In this case, |ReV (u)−ReV (umax)| � |Ω|2/C1, implying that u ≈ umax (more precisely,
by increasing C1 we can make |u − umax| arbitrarily small, uniformly in Ω and λ).
Since ReV is concave near umax (10.6), we may integrate this inequality to obtain

|Ω|2
2
|u− umax| ≤ |V ′(u)| ≤ |Ω|2 |u− umax|

|Ω|2
4

(u− umax)
2 ≤ ReV (umax)− ReV (u) ≤ |Ω|2

2
(u− umax)

2 .

Hence

|V ′(u)| � |Ω|
√
ReV (umax)− ReV (u) ≤ |Ω|

(√
|ReV (umax)|+

√
|V (u)|

)
In the case |ReV (umax)| ≤ |V (u)|, it follows that

|V ′(u)|
|V (u)| 32 ≤

2 |Ω|
|V (u)| �

|Ω|
C1 |Ω| =

1

C1
,
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giving the result. In the remaining case |ReV (umax)| > |V (u)|, we know from (10.14)
and (10.7) that we are in the Airy case. Hence, again using (11.9), we obtain

|V ′(u)|
|V (u)| 32 ≤

2 |Ω|
√
ReV (umax)

|V (u)| 32 �
2

3
2 |Ω|

√
|ReV (umax)|√

C2
1 |Ω|2 |ReV (umax)|

=
2

3
2

C1
.

This concludes the proof of Proposition 11.1.

11.2. Estimates in the Pole Region in the Case k = s. In this section,
we analyze the pole region (0, u�) in the case k = s. We consider the solution φL as
defined by (10.16) and (10.17). For ease in notation, we omit all subscripts L. The
parameter u0 in (10.16) is chosen as

u0 :=
1

2
|Ω|− 1

2 . (11.12)

Possibly by increasing C5, we can arrange that u0 > u� (cf. (10.8) and (10.2)), so
that u0 lies in the WKB region. We choose the initial values at u0 in (10.16) equal
to the value φ′

WKB
/φWKB for the WKB approximation,

y0 =
√
V (u0)− V ′(y0)

4V (y0)
and Im

√
V (u0) > 0 . (11.13)

We expand the potential near u = 0,

V (u) = − 1

4u2
− μ+Ω2 u2 + O

(|Ω|u2
)
+ O

(|Ω|2 u4
)
. (11.14)

Lemma 11.7. For any δ > 0, we can arrange by increasing C5 that
ˆ u�

0

1

|φ|2 ≤ δ ,

uniformly in Ω and λ.

Proof. Using the asymptotics as worked out in [12, Section 7.1], on the inter-
val (0, u0) the solution φ has the form

φ(u) ≈ −c√u
(
K0(

√
μu) +

(
arg

√
μ− log(2) + γ + i

)
I0(
√
μu)

)
, (11.15)

where c is the constant (see [12, eqn. (7.3)])

c =

√
2π

arg
√
μ− log(2) + γ + i

(and μ is related to λ and Ω by (2.9)). As specified in [12, Section 8.1], the error
in (11.15) becomes arbitrarily small for large |Ω|. Note that c is bounded uniformly
in μ. For small u, the function φ has the asymptotics (see [12, Section 7.1])

φ(u) = −c (√u log |√μu|+ i
√
u+ O(

√
μu)

)
. (11.16)

In particular, using that
ˆ u

0

1

u (1 + log2(
√
μu)

= arctan
(
log(

√
μu)

)
+

π

2
,
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one sees that 1/|φ|2 is integrable. Hence

lim
v↘0

ˆ v

0

1

|φ|2 = 0 , uniformly in μ .

In view of (10.8), by increasing C5 we can make
√
μu� as small as we like. This gives

the result.

11.3. Estimates in the Pole Region in the Case k �= s. We now analyze
the pole region (0, u�) in the case k �= s. We again consider the solution φL as defined
by (10.16) and (10.17) and omit all subscripts L. The parameter u0 in (10.16) is
chosen as the minimum of ReV ,

ReV ′(u0) = 0 . (11.17)

Introducing the abbreviation

Λ = (k − s)2 − 1

4
,

the potential near u = 0 has the expansion

V (u) =
Λ

u2
− μ+Ω2 u2 + O

(|Ω|u2
)
+ O

(|Ω|2 u4
)
. (11.18)

Computing the zero of the derivative, we obtain

u0 = Λ
1
4 |Ω|− 1

2 + O
(|Ω|− 3

2

)
, (11.19)

so that for large Ω we have the estimates

1

2
Λ

1
4 |Ω|− 1

2 ≤ u0 ≤ 2Λ
1
4 |Ω|− 1

2 . (11.20)

Possibly by increasing the constant C5 in (10.2), we can again arrange that u0 > u�, so
that u0 lies in the WKB region. We again choose the initial values at u0 in agreement
with the WKB approximation (11.13).

Lemma 11.8. For any δ > 0, we can arrange by increasing C5 that

ˆ u�

0

1

|φ|2 ≤ δ ,

uniformly in Ω and λ.

Proof. Using the asymptotics as worked out in [12, Section 7.2], the solution φ
has the form

φ(u) ≈ c
√
uK|k−s|

(−√μu
)
, (11.21)

where c is the constant

c =

√
− 2

π
.



70 F. FINSTER AND J. SMOLLER

As specified in [12, Section 8.2], the error in (11.21) becomes arbitrarily small for
large |Ω|. For small u, the function φ has the asymptotics (see [12, Section 7.2])

φ(u) = c
(n− 1)!√

2μ
1
4

(
−
√
μu

2

) 1
2−|k−s|

(1 + O(u))

− c

√
2

|k − s|!μ 1
4

(√
μu

2

) 1
2+|k−s|

(1 + O(u)) .

(11.22)

In particular, one sees that |φ| has a pole at u = 0 and is thus bounded from below
near u = 0. Hence

lim
v↘0

ˆ v

0

1

|φ|2 = 0 , uniformly in μ .

In view of (10.8), by increasing C5 we can make
√
μu� as small as we like. This gives

the result.

11.4. Estimates in the Parabolic Cylinder Region. In the next proposition
we estimate the Riccati solution in the parabolic cylinder region.

Proposition 11.9. Assume that in the parabolic cylinder region [ur, umax], one
of the following two conditions hold:

(a) The potential has a positive imaginary part, ImV |[ur ,u+] ≥ 0.

(b) The imaginary part of the potential has a zero on [uL
r , u

R
r ].

Moreover, assume that the Riccati solution begins in the upper half plane, Im y(ur) ≥
0. Then there is a constant C2 (depending on C1) such that for large |Ω|, the solution
on the interval [ur, umax] can be estimated in terms of y(ur) by

|y(u)| ≤ C2 |y(ur)|

Im y(u) ≥ Im y(ur)

C2

|φ(ur)|
C2

≤ |φ(u)| ≤ C2 |φ(ur)| .

Proof. We set ν = C1|Ω|. Using that the function ReV is concave near umax, we
obtain

(umax − ur)
2 �

ν

|Ω|2 (11.23)

and thus

ν (umax − ur)
2 � C

2
1 .

Our strategy is to estimate y using the T -method as introduced in [12, Section 3.2]
choosing

α =
√
2ν and β̃ = 0 . (11.24)

Hence

Ṽ = α2 = 2ν and U = ReV − α2 ≤ −ν . (11.25)
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In case (a), our method is to apply [12, Theorem 3.3] for g ≡ 0. The
terms E1, . . . , E4 are estimated as follows,

E2 = E4 = 0

|E1| � 1√
ν
|ReV − Re Ṽ |+ ReV ′

ν
�
√
ν +

ReV ′

ν

|E3| � | ImV |√
ν

(
)

�
|Ω|√
ν
,

where in (�) we used (10.1) as well as the fact that

∣∣ Im(Ω2)
∣∣ � |Ω|∣∣ ImΩ

∣∣ (1.5)

� |Ω| .
As a consequence, we can apply Lemma 11.10 to obtain
ˆ umax

ur

(
|E1|+ |E3|

)
�
√
ν (umax − ur) +

1

ν

ˆ umax

ur

ReV ′ +
|Ω|√
ν
(umax − ur)

=
√
ν (umax − ur) +

1

ν

(
ReV (umax)− ReV (ur)

)
+
|Ω|
ν

√
ν (umax − ur)

� C1 + 2 + C1
|Ω|
ν
≤ C1 + 3 .

This concludes the proof in case (a).
In case (b), the imaginary part of V could be negative. Therefore, in order to

apply [12, Theorem 3.3] we need to choose the function g positive in accordance with
the inequality

g ≥ T − 1 . (11.26)

We choose α and β̃ as in (11.24) and g = |Ω| 12 . Then the error terms E1, E2 and E3

estimated just as above. Estimating ImV with the help of the mean value theorem
by

| ImV | ≤ (u+
r − u−

r ) sup
[uL

r ,uR
r ]

|V ′| � |Ω| (uR
r − uL

r )

(where in the last step we used the explicit form of the potential (2.8)), the error
term E4, is estimated by

ˆ umax

ur

|E4| = g

ˆ umax

ur

| ImV |√
|U | � g

ˆ umax

ur

|Ω| (uR
r − uL

r )√
ν

�
g |Ω|√

ν
(uR

r − uL
r )

2
(11.23)

�
g
√
ν

|Ω| =
g
√
C1√
|Ω| =

√
C1

|Ω| 14 .

This can be made arbitrarily small by increasing |Ω|, implying that the inequal-
ity (11.26) holds. This concludes the proof.

11.5. Estimates in the Airy Region. We proceed with estimates in the Airy
region. We first recall that it remains to consider the interval (10.9). For this interval
to be non-empty, we can again assume that (11.4) holds,

Reλ � |Ω|2 and thus |ReV | � |Ω|2 . (11.27)
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We begin with a preparatory lemma.

Lemma 11.10. In the Airy region, the function ReV is strictly monotone. More-
over,

ν (u+ − ur)
2
� C

2
1 . (11.28)

Proof. The strict monotonicity was already shown in the proof of Lemma 10.1.
In preparation for the estimate (11.28), we recall that the region (ur, u+) is contained
in the interval (u, u) (see Lemma 10.1), and thus

ur, u+ �

√
Reλ

|Ω| . (11.29)

We consider the regions (u, 3π
8 ) and [ 3π8 , umax) separately. In the region (u, 3π

8 ),
we know from (10.13) that ReV ′ � |Ω|2u. Moreover, the method in (10.13) also gives
the reverse inequality,

ReV ′ ≤ |Ω|2 u+
c

u3
�

(
1 +

1

|Ω|2u4

)
|Ω|2u

�

(
1 +

|Ω|2
Re2 λ

)
|Ω|2u � |Ω|2u ,

where in the last step we used (11.29) and (10.1). We conclude that

ReV ′|(ur ,u+) � |Ω|2u � |Ω|
√
Reλ .

As a consequence, the mean value theorems

(u+ − ur) inf
(ur ,u+)

ReV ′ ≤ 2ν ≤ (u+ − ur) sup
(ur ,u+)

ReV ′

give rise to the estimate

u+ − ur �
ν

|Ω| √Reλ

and thus

ν (u+ − ur)
2
�

ν3

|Ω|2 Reλ
. (11.30)

In order to estimate this further, we need to determine the scaling of ν. Using the
estimate for the second derivative in (10.5) with the fact that ReV has a maximum
at umax and no zero on the interval (3π8 , umax), we conclude that

ReV (umax) � |Ω|2 .

Combining this inequality with the first inequality in (11.27), we find that the first
term in (10.12) can be bounded in terms of the second term. More precisely, we obtain
the inequality

ν3 � min
(
C
2
5,C

2
1

) |Ω|2 Reλ = C
2
1 |Ω|2 .
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Using this inequality in (11.30) gives

ν (u+ − ur)
2
� C

2
1 .

This concludes the proof on the interval (u, 3π
8 ).

It remains the consider the region (3π8 , umax). We make use of the concavity
of ReV , (10.5). Denoting the zero of ReV by u1, we obtain

ReV (umax) � |Ω|2 (umax − u1)
2 . (11.31)

On the other hand, for the potential to have a zero near π
2 , the spectral parameter

must scale like λ � |Ω|2. Therefore, the second term in (10.12) can be estimated in
terms of the first, so that

ν3 � min
(
C
2
1,C

2
5

) |Ω|2 ReV (umax) = C
2
1 |Ω|2 ReV (umax) . (11.32)

Since ν < ReV (umax)/2 (cf. (10.12) and (10.7)), the estimate (11.31) can be extended
to

ReV (umax) � |Ω|2 (umax − u)2 for all u ∈ [ur, u+] . (11.33)

Moreover,

ReV ′(u) � |Ω|2 (umax − u) for all u ∈ [ur, u+] . (11.34)

We now combine the estimates (11.32), (11.33) and (11.34) to obtain

u+ − ur �
ν

ReV ′

ν (u+ − ur)
2
�

ν3

Re2 V ′ �
C2
1 |Ω|2 ReV (umax)

Re2 V ′

�
C2
1 |Ω|4 (umax − u)2

|Ω|4 (umax − u)2
= C

2
1 .

This concludes the proof.

We now estimate the Riccati solution in the Airy region.

Proposition 11.11. Assume that in in the Airy region [ur, u+], one of the
following two conditions hold:

(a) The potential has a positive imaginary part, ImV |[ur,u+] ≥ 0.
(b) The imaginary part of the potential is small in the sense that

| ImV | ≤ |Ω|1−δ for a suitable constant δ > 0 .

Moreover, assume that the Riccati solution begins in the upper half plane, Im y(ur) ≥
0. Then there is a constant C2 (depending on C1) such that for large |Ω|, the solution
on the interval [ur, u+] can be estimated in terms of y(ur) by

|y(u)| ≤ C2 |y(ur)| (11.35)

Im y(u) ≥ Im y(ur)

C2
(11.36)

|φ(ur)|
C2

≤ |φ(u)| ≤ C2 |φ(ur)| . (11.37)
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Proof. As in the proof of Proposition 11.9 we use the T -method choosing α and β̃
as in (11.24). Then Ṽ and U are again estimated by (11.25).

In case (a), we apply [12, Theorem 3.3] for g ≡ 0. The error terms E1, . . . , E4 are
estimated as follows,

E2 = E4 = 0

|E1| � 1√
ν
|ReV − Re Ṽ |+ ReV ′

ν
�
√
ν +

ReV ′

ν

|E3| � | ImV |√
ν

�
|Ω|√
ν
.

As a consequence, we can apply Lemma 11.10 to obtain

ˆ u+

ur

(
|E1|+ |E3|

)
�
√
ν (u+ − ur) +

1

ν

ˆ u+

ur

ReV ′ +
|Ω|√
ν
(u+ − ur)

=
√
ν (u+ − ur) +

1

ν

(
ReV (u+)− ReV (ur)

)
+
|Ω|
ν

√
ν (u+ − ur)

� C1 + 2 + C1
|Ω|
ν

.

Finally, by combining (10.12) with (10.1), (10.2) and (10.7), we conclude that ν � |Ω|.
This concludes the proof in case (a).

In the remaining case (b), we choose g as

g = |Ω| δ2 .

Then the error term E4 is estimated by

ˆ umax

ur

|E4| = g

ˆ u+

ur

| ImV |√
|U | � g |Ω|1−δ (u+ − ur)√

ν

(11.28)

� g |Ω|1−δ

√
C1

ν
�
|Ω|− δ

2√
C1

.

This concludes the proof.

In the next lemma we compare the imaginary part of the potential on the two
Airy regions [uL

r , u
L
+] and [uR

r , u
R
+].

Lemma 11.12. In the Airy case, one of the following three statements holds:
(i) ImV |[uL

r ,uL
+] ≥ 0 and ImV |[uR

r ,uR
+] ≥ 0

(ii) ImV |[uL
r ,uL

+] ≤ 0 and ImV |[uR
r ,uR

+] ≤ 0

(iii)
∣∣ ImV |[uL

r ,uL
+]

∣∣ � √
|Ω| and

∣∣ ImV |[uR
r ,uR

+]

∣∣ � √
|Ω|.

Proof. We first consider the case that the Airy regions are near the poles in the
sense that uL

+, (π−uR
+) � |Ω|−

1
4 . Then the factor sin2 u in (2.8) is bounded by |Ω|− 1

2 ,

implying that Im(V + λ) is bounded by
√
|Ω|. Therefore, depending on the value

of Imλ, we are in one of the above cases (i)–(iii).
It remains to consider the case that the Airy regions are away from the poles. Then

the factors 1/(sin2 u) in (2.8) is bounded by
√
|Ω. As a consequence, the imaginary

part of V can be related to its real part by

ImV =
2 ImΩ

ReΩ
ReV + (const) + O

(√|Ω|) .
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The function ReV has a zero vL/R in each of the intervals [uL
r , u

L
+] and [uR

r , u
R
+]. It

follows that at these zeros, the imaginary part of the potential has the form

ImV (vL/R) = (const) + O
(√|Ω|) .

It remains to show that on each of the intervals [uL
r , u

L
+] and [uL

r , u
L
+], the total

variation of the function ImV is �
√
Ω|. By symmetry, it suffices to consider the

interval [uL
r , u

L
+]. For ease in notation, we omit then index L. We then obtain

TV|[ur ,u+] ImV ≤ (uL
+ − uL

r ) sup
[uL

r ,uL
+]

∣∣ ImV ′∣∣
�
√
ν (uL

+ − uL
r )
|Ω|√
ν

(11.28)

�
|Ω|√
ν
�

√
|Ω|
C1

.

This concludes the proof.

11.6. Estimates on the Interval [u+, umax]. It remains to estimate the solution
in the Airy case on the interval [u+, umax] (see (10.15) and (10.10)).

Lemma 11.13. For any ε > 0, by increasing C1 one can arrange thatˆ umax

u+

1

|φ|2 ≤ ε .

Moreover,

|φ(u)| � 1

(Re V (u))
1
4

e
´
u

u+
Re

√
V
. (11.38)

Proof. In Proposition 11.1 it was shown that the WKB conditions (11.1) are
satisfied on the interval [u+, umax]. Thus the solution is well-approximated by the
WKB solution

φ ≈ 1

(ReV )
1
4

(
C1 e

´
u

u+

√
V
+ C2 e

− ´ u
u+

√
V
)
, (11.39)

with error terms which are under control in view of the estimates in [12]. Note that
one of the fundamental solutions in (11.39) is exponentially increasing, whereas the
other is exponentially decaying.

Combining the estimate of Proposition 11.1 at u = ur with the estimates (11.35)
and (11.36) on the interval [ur, u+] and taking into account the normalization (6.7),
one sees that the coefficient of the exponentially increasing fundamental solution
in (11.39) is bounded away from zero, and that |φ(u+)| � |ReV (u+)|− 1

4 . This
gives (11.38). Next, we increase C5 to a new constant C̃3. Denoting the corresponding
boundary of the Airy region by ũ+, we obtain

|φ| � 1

(ReV )
1
4

e
´ ũ+
u+

Re
√
V e
´
u

ũ+
Re

√
V
.

As a consequence,ˆ umax

ũ+

1

|φ|2 � −e−2
´ ũ+
u+

Re
√
V

ˆ umax

ũ+

d

du

(
e
−2
´
u

ũ+
Re

√
V
)

= e−2
´ ũ+
u+

Re
√
V

(
1− e

−2
´
umax
ũ+

Re
√
V
)
≤ e−2

´ ũ+
u+

Re
√
V . (11.40)
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The integral in the last exponent can be estimated from above by
√
ν (ũ+ − u+).

Applying Lemma 11.10, this term can be made arbitrarily large by increasing C1

(and consequently C5). As a consequence, the last exponent in (11.40) can be made
arbitrarily small. This gives the result.

12. Integral Estimates of ImV . In this section we shall derive the following
estimates.

Proposition 12.1. For all eigenvalues λ, the following inequality holds,ˆ ur

u�

| ImV |√
|V | � 1 .

Proposition 12.2. For any δ > 0, by increasing C1 one can arrange that that
for all eigenvalues λ in the WKB case and the parabolic cylinder case the following
inequality holds: ∣∣∣∣

ˆ ur

u�

ImV√
|V |

∣∣∣∣ < δ . (12.1)

12.1. Elementary Estimates of the Potential. We begin with integral esti-
mates of our potential.

Lemma 12.3. The function ReV is monotone increasing on the interval [u0, ur].
Moreover, ˆ ur

u0

1

|ReV | 32 �
1

C1 |Ω|2 . (12.2)

Proof. In order to prove the monotonicity of ReV , we first recall that in the
proof of Lemma 10.1 we already showed that ReV is monotone increasing on the
interval (u, umax). On the remaining interval [u0, u], we need to consider the cases k =
s and k �= s separately. In the case k = s, the monotonicity of ReV is obvious
from (11.14). In the case k �= s, we see from (11.18) that ReV is convex. Combining
this with the fact that u0 is chosen as a minimum of ReV (see (11.17)), we conclude
again that ReV is monotone increasing on the interval [u0, u].

For the integral estimate (12.2), we first consider the interval (u�, u2) with

u2 = min
(
ur,

√
C1 |Ω|− 1

2

)
. (12.3)

Then the desired estimate is obtained by using that the integration range scales
like |Ω|− 1

2 . On the remaining interval (u2, ur) we consider the regions (u2,
π
6 )

and (π6 , ur) separately. In the first region, we approximate ReV by the quadratic
potential

|ReV | ≥ a− c (u− u2)
2 , (12.4)

with parameters a, c > 0 to be specified below. Applying Lemma 9.1, it follows by
explicit computation that

ˆ min(ur,
π
6 )

u2

1

|V | 32 ≤
ˆ min(ur ,

π
6 )

u2

1(
a− c (u− u2)2

) 3
2

=
u− u2

a
√
a− c (u− u2)2

∣∣∣∣
min(ur,

π
6 )

≤ u− u2

a
√
C1 |Ω|

∣∣∣∣
min(ur ,

π
6 )

,
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where in the last step we used that we are in the WKB region (see (10.15), (10.14)
and (10.12)). Since the quadratic polynomial a− c(u− u2)

2 is positive, we know that

u− u2 ≤
√

a

c
,

implying that

ˆ min(ur ,
π
6 )

u2

1

|V | 32 ≤
1√

C1ac |Ω|
.

Using that a ≥ C1 |Ω| and c � |Ω|2, we obtain the desired estimate.
On the remaining interval [π6 , ur], we estimate ReV on the interval [u0, ur] by the

quadratic polynomial

|ReV | ≥ a+ b (ur − u) + c (ur − u)2 , (12.5)

where the values of the positive coefficients a, b and c will be estimated below. It
follows by explicit computation that

ˆ ur

u0

1

|ReV | 32 ≤
ˆ ur

u0

(
a+ b (ur − u) + c (ur − u)2

)− 3
2

≤
ˆ ur

−∞

(
a+ b (ur − u) + c (ur − u)2

)− 3
2

=
2√

a b+ 2a
√
c
.

It remains to analyze the coefficients a, b and c. In view of (10.12), (10.14) and (10.12),
we can choose a ≥ C5|Ω|. Moreover, the expansions (10.3)–(10.5) show that we can
choose either b � |Ω|2 or c � |Ω|2. This concludes the proof.

Lemma 12.4. For any δ > 0 there is a constant C = C(δ) such that the following
inequality holds,

ˆ min
(
ur ,

π
2−δ

)
u�

1√
|V | ≤

C

|Ω| . (12.6)

Moreover, there is a constant C such that

ˆ ur

u�

1√
|V | ≤ C

log |Ω|
|Ω| . (12.7)

Proof. As in the previous lemma, we first consider the interval (u�, u2) with u2

according to (12.3). Then, according to (10.7) and (10.15), (10.14), (10.12) and (11.3),
we know that

|ReV |∣∣
(u�,ur)

� C1 |Ω|

and thus ˆ u2

u0

1√
|V | �

u2 − u0√
C1 |Ω|

.

The desired estimate is obtained by using that the integration range scales like |Ω|− 1
2 .
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It remains to consider the interval (u2, ur). We consider the regions (u2,
π
6 ) and

(π6 , ur) separately. In the first region, the first and second derivatives of ReV are
non-negative. We again estimate ReV by the quadratic polynomial (12.4), where
the values of the positive coefficients a and c will be estimated below. It follows by
explicit computation that

ˆ min(ur ,
π
6 )

u2

1√
|V | ≤

ˆ min(ur ,
π
6 )

u2

1√
a− c (u− u2)2

=
1√
c
arctan

( √
c (u− u2)√

a− c (u− u2)2

)∣∣∣∣
min(ur,

π
6 )

.

Since the arctan is bounded, it suffices to note that c � |Ω|2 to obtain the desired
1/|Ω| behavior.

On the remaining interval (π6 , ur), we again estimate ReV by the quadratic poly-
nomial (12.5), where the values of the positive coefficients a, b and c will be estimated
below. An explicit computation yields

ˆ ur

u2

1√
|V | ≤

ˆ ur

u2

1√
a+ b (ur − u) + c (ur − u)2

=
1√
c
log

(
b+ 2c (ur − u) + 2

√
c
√
a+ b (ur − u) + c (ur − u)2

)∣∣∣u2

ur

. (12.8)

It remains to analyze the argument of the logarithm. From the explicit form of the
potential (2.8) we know that we may choose b, c � |Ω|2. If a � |Ω|2 is large, the
logarithm in (12.8) is given approximately by log(2

√
c
√
a). As a consequence, the

difference of the logarithms at the upper and lower boundary points is uniformly
bounded. Using that c � |Ω|2, we obtain the desired estimate.

It remains to consider the case that a � |Ω|2. Then the arguments of the logarithm
scale like |Ω|2, both at the upper and lower boundary point. As a consequence, the
logarithm is again uniformly bounded, giving the desired estimate. This concludes
the proof of the inequality (12.6).

In order to prove (12.7), we first note that the estimate (12.6) fails to hold in
general if δ = 0. The problem is that in this case, the parameter b in (12.8) could be
small, leading to a factor log |Ω|. This gives (12.7).

Applying Lemma 9.1 to (12.7), we obtain the estimate

ˆ ur

u�

| ImV |√
|V | � log |Ω| .

Unfortunately, the factor log |Ω| is not good enough for our purposes. The next lemma
shows that, if ImV vanishes at the right boundary point, then we get an estimate
without such a logarithmic factor.

Lemma 12.5. Assume that ũ ∈ (u�, ur) is a point where ImV (ũ) = 0. Then

ˆ ũ

u�

| ImV |√
|V | � 1 .

Proof. Combining Lemma 9.1 with Lemma 12.4, it remains to consider the
case ur >

π
2−δ. Moreover, it remains to estimate the integral over the interval (π6 , ur).
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We again estimate ReV by the quadratic polynomial (12.5) with positive coefficients a,
b and c. Moreover, we estimate ImV by

| ImV (u)| � |Ω| (ũ− u) .

We thus obtain

ˆ ũ

u2

| ImV |√
|V | �

ˆ ũ

u2

|Ω| (ũ− u)√
a+ b (ur − u) + c (ur − u)2

≤
ˆ ur

u2

|Ω| (ur − u)√
a+ b (ur − u) + c (ur − u)2

≤ Ω

2c

ˆ ur

u2

2c (ur − u) + b√
a+ b (ur − u) + c (ur − u)2

=
Ω

c

√
a+ b (ur − u) + c (ur − u)2

∣∣∣u2

ur

.

The result follows because c � |Ω|2 and the argument of the square root is bounded
by � |Ω|2.

12.2. Estimates on the Interval (0, u�). Lemma 12.6. For any δ̃ > 0, we
can arrange by increasing C5 that

ˆ u�

0

| ImV |
∣∣φD

L

∣∣2 ≤ δ̃ ,

uniformly in Ω and λ.

Proof. We begin with the case k = s. Using the asymptotics as in the proof of
Lemma 11.7, we find that on the interval (0, u�),

|φL(u)| ≤ 2 |c| √u log(
√
μu)

|ζL(u)| ≤ 1

|c|2
(
arctan

(
log(

√
μu)

)
+

π

2

)
�

1

log(
√
μu)

,

uniformly in μ. As a consequence,

|φD

L|2 � u uniformly in μ .

Applying Lemma 9.1, we obtain

ˆ u�

0

| ImV |
∣∣φD

L

∣∣2 � |Ω|u2
�

(10.8)

≤ C2
1 |Ω|
Reλ

(10.2)

≤ C2
1

C5
.

This gives the result.
In the case k �= s, we work similarly with the asymptotics (11.22),

|φ| � |μ|−L
2 u

1
2−L

ˆ u

0

1

|φ|2 � |μ|L u2L

|φD

L| � |μ|
L
2 uL+ 1

2

ˆ u�

0

| ImV | |φD

L|2 � |Ω| |μ|L u2L+2
�

(10.8)

�
C
2L+2
1 |Ω|
|Reλ|

(10.2)

≤ C
2L+2
1

C5
.

This concludes the proof.
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12.3. WKB Representation of φD

L. We again let φD

L be the solutions (2.17)
with φL defined by (10.17) and (10.16)). In this section, we shall approximate φD

L

on the interval (u�, ur) by a suitable WKB wave function. Our starting point is the
WKB approximation of φL

φL ≈ φWKB =
cWKB

4
√
V

e
´
u

u0

√
V
. (12.9)

In order to comply with the initial conditions (6.7), we must choose

c2
WKB

=

√
V (u0)

Im
√
V (u0)

.

In the next proposition, we compute what this approximation means for the osculating
circles as introduced in Section 6.

Proposition 12.7. On the interval [u�, ur], the radius and center of the oscu-
lating circle are given by

p ≈ ζ(u0) +
1

2c2WKB

and R ≈ 1

2
e
−2
´
u

u0
Re

√
V
, (12.10)

where the error can be made arbitrarily small by increasing C1.

Proof. Using the WKB approximation (12.9), we obtain

y =
φ′

φ
≈
√
V − V ′

4V

and thus

ζ(u)− ζ(u0) =

ˆ u

u0

1

φ2
≈ 1

c2WKB

ˆ u

u0

√
V (τ) e

−2
´
τ

u0

√
V
dτ

= − 1

2c2
WKB

ˆ u

u0

d

dτ
e
−2
´
τ

u0

√
V
dτ = − 1

2c2
WKB

(
e
−2
´
u

u0

√
V − 1

)
.

(12.11)

It is remarkable that the integral can be carried out explicitly, giving a simple expres-
sion for ζ(u).

We next compute φD

L. Using (12.9) and (12.11), we obtain

φD

L(u) = φL(u) ζL(u) = φL

(ˆ u0

0

1

φ2
+
(
ζ(u)− ζ(u0)

))

≈ cWKB

4
√
V

e
´
u

u0

√
V

(ˆ u0

0

1

φ2
− 1

2c2
WKB

(
e
−2
´
u

u0

√
V − 1

))
.

Hence

φD

L(u) ≈
1

2cWKB

(
α
4
√
V

e
´
u

u0

√
V − 1

4
√
V

e
− ´ u

u0

√
V

)
, (12.12)

where α is the constant

α = 1 + 2 c2WKB

ˆ u0

0

1

φ2
.



SPIN-WEIGHTED SPHEROIDAL WAVE OPERATORS 81

Lemma 12.8. By choosing C5 sufficiently large, we can make the expression∣∣∣|α| − 1
∣∣∣

arbitrarily small.

Proof. Choosing C5 sufficiently large, we can arrange that the potential at u0 is
approximately real and negative (cf. (11.12), (11.14) and (11.19), (11.18)). Hence

c2
WKB

≈ i ,

implying that

|α| ≈
∣∣∣1 + 2i

ˆ u0

0

1

φ2

∣∣∣ = ∣∣1 + 2iζ(u0)
∣∣ , (12.13)

with an arbitrarily small error. Next, using the initial conditions (6.7) in (6.10), we
obtain

p(u0) = ζ(u0)− i

2
and R(u0) =

1

2
.

Solving for ζ(u0) and substituting into (12.13), one finds that |α| ≈ 2 |p(u0)|, and thus∣∣∣|α| − 1
∣∣∣ ≤ 2

∣∣|p(u0)| −R(u0)
∣∣ .

Since ζ(0) = 0, we know that |p(0)| = R(0). Hence

∣∣|p(u0)| −R(u0)
∣∣ ≤ ˆ u0

0

(|p′|+ |R′|) .
In view of (6.10) and (6.12), we know that |p′| = |R′|. Hence our task is to show that
the total variation of R on the interval (0, u0) is arbitrarily small. Since R(u0) =

1
2 , it

suffices to show that the total variation of logR is small. Thus, according to (6.12),
it remains to estimate the integral

ˆ u0

0

|R′|
R

=

ˆ u0

0

| ImV |
Im y

.

In view of the estimates in Sections 11.2 and 11.3, we know that

Im y � Reμ .

Hence
ˆ u0

0

| ImV |
Im y

�
u0

Reμ
�
|Ω|
Reμ

.

By choosing C5 sufficiently large, we can make this expression arbitrarily small.

Using this lemma in formula (12.12), we obtain the estimate

|φD

L(u)|2 �
1√
|V | cosh

(
2

ˆ u

u0

Re
√
V

)
. (12.14)
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12.4. Integral Estimates of WKB Solutions.

Lemma 12.9. Assume that ũ ∈ (u�, ur) is a point where ImV (ũ) = 0. Then

ˆ ũ

u�

| ImV | |φD

L|2 � 1 .

Proof. We can work with the WKB approximation (12.14). According to
Lemma 12.5, we know that∣∣∣∣

ˆ ũ

u0

Re
√
V

∣∣∣∣ �
ˆ ũ

ur

| ImV |√
|V | � 1 ,

giving uniform control of the absolute value of the hyperbolic cosine in (12.14). As a
consequence,

ˆ ũ

u�

| ImV | |φD

L|2 �

ˆ ũ

u�

| ImV |√
|V | � 1 ,

where in the last step we again applied Lemma 12.5. This concludes the proof.

Next, we take the absolute square of the WKB approximation (12.12),

∣∣φD

L(u)
∣∣2 ≈ |α|2

4 |cWKB|2
1√
|V | e

2
´
u

u0
Re

√
V
+

1

4 |cWKB|2
1√
|V | e

−2
´
u

u0
Re

√
V

(12.15)

+
1

2 |cWKB|2
1√
|V | Re

(
α e

2i
´
u

u0
Im

√
V
)
. (12.16)

The integrand of the last term is oscillatory. As a consequence, the resulting integral
is small, as quantified in the next lemma.

Lemma 12.10. For any δ > 0, by increasing C1 one can arrange that that for all
eigenvalues λ the following inequality holds:

ˆ ur

u�

| ImV |√
|V | e

2i
´
u

u0
Im

√
V
< δ .

Proof. Since on the interval (0, π
2 ), the function ImV changes signs only once, it

suffices to show that for any ũ1, ũ2 ∈ [u�, ur],∣∣∣∣∣
ˆ ũ2

ũ1

ImV√
|V | e

2i
´
u

u0
Im

√
V

∣∣∣∣∣ < δ .

Integrating by parts,

ˆ ũ2

ũ1

ImV√
|V | e

2i
´
u

u0
Im

√
V
=

ˆ ũ2

ũ1

ImV√
|V |

1

2i Im
√
V

d

du
e
2i
´
u

u0
Im

√
V

=
ImV√
|V |

1

2i Im
√
V

e
2i
´
u

u0
Im

√
V

∣∣∣∣
ũ2

ũ1

−
ˆ ũ2

ũ1

d

du

(
ImV√
|V |

1

2i Im
√
V

)
e
2i
´
u

u0
Im

√
V
,
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we obtain the estimate∣∣∣∣∣
ˆ ũ2

ũ1

ImV√
|V | e

2i
´
u

u0
Im

√
V

∣∣∣∣∣
≤ | ImV |

2 |V |

∣∣∣∣
ũ1

+
| ImV |
2 |V |

∣∣∣∣
ũ2

+

ˆ ũ2

ũ1

∣∣∣∣∣ ddu
(

ImV

2
√
|V | Im√V

)∣∣∣∣∣
�
| ImV |
|ReV |

∣∣∣∣
ũ1

+
| ImV |
|ReV |

∣∣∣∣
ũ2

+

ˆ ũ2

ũ1

| ImV ′|
|ReV | +

ˆ ũ2

ũ1

| ImV ′|2
|ReV |2 +

ˆ ũ2

ũ1

|ReV ′| | ImV |
|ReV |2 .

All the terms except for the last summand can immediately be estimated in the desired
way using the explicit form of our potential. For the last term we use the monotonicity
of ReV (see Lemma 12.3) to obtain

ˆ ũ2

ũ1

|ReV ′| | ImV |
|ReV |2 � |Ω|

ˆ ũ2

ũ1

|ReV ′|
|ReV |2 ≤ |Ω| sup

[ũ1,ũ2]

|V |−1 .

This gives the result.

Keeping track of the constants, we now write φD as

φD(u) =

{
cL φD

L if u ≤ π
2

cR φD

R if u > π
2 ,

(12.17)

where cL and cR are non-zero complex numbers (and φD

L and φD

R are again the solu-
tions (2.17) with φL and φR defined by (10.17) and (10.16)).

Lemma 12.11. If |cL/cR| ≤ 1, then

ˆ π

π
2

| ImV | |φD|2 � |cR|2 . (12.18)

Proof. We again denote the zeros of ImV by ũL and ũR. Lemma 12.6 and
Lemma 12.9 imply that (ˆ ũL

0

+

ˆ π
2

ũR

)
| ImV | |φD|2 � |cR|2 .

Moreover, using the representation (12.17) in (9.2), we obtain

ˆ ũR

π
2

| ImV | |φD|2 � |cR|2 .

This gives the result.

Lemma 12.12. If |cL/cR| ≤ 1, then

ˆ ur

u0

| ImV |√
|V | � 1 .
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Proof. The strategy is to combine Lemma 12.11 with the fact that the potential
is approximately symmetric with respect to reflections at u = π

2 . In order to make
this approximate symmetry precise, we consider the homotopy

Vτ (u) := τ V (u) + (1− τ)V (π − u) for τ ∈ [0, 1] . (12.19)

Then the mean value theorem implies that

∣∣ReV1(u)− ReV2(u)
∣∣ ≤ sup

τ∈[0,1]

∣∣∣∣ ddτ ReVτ (u)

∣∣∣∣ ,
and similarly for the imaginary part. Using that the function sin2 u in (2.8) is reflection
symmetric, one finds that∣∣ReV1(u)− ReV2(u)

∣∣ � |Ω| and
∣∣ ImV1(u)− ImV2(u)

∣∣ � 1 . (12.20)

This implies that the WKB approximation holds on the “reflected WKB-region” [π−
ur, π − u0]. Using the WKB approximation (12.15) and (12.16) in (12.18), the oscil-
latory contribution (12.16) was estimated in Lemma 12.10. Noting that one of the
factors exp(±2 ´ uu0

Re
√
V ) in (12.15) is greater than one, Lemma 12.11 implies that

ˆ π−u0

π−ur

| ImV |√
|V | � 1 .

Again applying the reflection argument and the mean value theorem, it remains
to show that ˆ ur

u0

∣∣∣∣ ddτ
(
ImVτ√

Vτ

)∣∣∣∣ � 1 .

Again using the explicit form of the potential (2.8),∣∣∣∣ ddτ
(
ImVτ√

Vτ

)∣∣∣∣ =
∣∣∣∣ Im ∂τVτ√

Vτ

∣∣∣∣+
∣∣∣∣∣ (∂τVτ ) ImVτ

V
3
2
τ

∣∣∣∣∣ � 1√
|Ω| +

|Ω|2
|V | 32 .

Integrating this inequality from u0 to ur, we can apply Lemma 12.3 to obtain the
result.

Proof of Proposition 12.1. It suffices to consider the case |cL/cR| ≤ 1 and to show
that

ˆ uL
r

uL
l

| ImV |√
|V | +

ˆ uR
l

uR
r

| ImV |√
|V | � 1 .

Then case |cL/cR| > 1 can be treated similarly by exchanging the left and right
subintervals with the reflection u↔ π − u.

On the interval [uR
r , u

R
l ], we argue as in the proof of Lemma 12.11 to obtain

ˆ uR
l

uR
r

| ImV |√
|V | � 1 .

On the interval [uL
l , u

L
r ] we consider different subintervals: The region from u� to u0 is

estimated in Lemma 12.4. The region from u0 to ur, on the other hand, is estimated
in Lemma 12.12. This concludes the proof.
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12.5. Estimates in the WKB and Parabolic Cylinder Cases. We now
give the proof of Proposition 12.2. Our strategy is to refine the method of Section 9
and to combine it with the “reflection argument” which was already used in the proof
of Lemma 12.12. Another ingredient is Proposition 12.1 (whose proof was completed
in the previous section).

We will apply Proposition 12.1 in the following way. In the WKB region, we know
from (10.1), (10.2) and (10.14) that

| ImV | � |Ω| and ReV � −C1 |Ω|
and thus

| ImV |
|ReV | �

1

C1
in the WKB region .

As a consequence, we may expand the square root of the potential as

√
V =

√
ReV + i ImV = i

√
|ReV | − i ImV = i

√
|ReV |+ ImV√

|ReV | + · · · ,

showing that

Re
√
V =

ImV√
|V |

(
1 + O

( 1

C1

))
. (12.21)

In particular,

∣∣Re√V
∣∣ � | ImV |√

|V | ,

and applying Proposition 12.1, we conclude that
ˆ ur

u�

∣∣Re√V
∣∣ � 1 . (12.22)

This shows that that the exponentials and hyperbolic cosine in the WKB approxima-
tion (see (12.9), (12.12), (12.14) and (12.15), (12.16)) are uniformly bounded.

We again assume that λ ∈ C is an eigenvalue and φD the corresponding eigen-
function. Moreover, assume that we are in the WKB case or the parabolic cylinder
case (but not in the Airy case, which is excluded in Proposition 12.2). Using the
representation (12.17) in (9.2), we obtain the identity

|cL|2
ˆ π

2

0

ImV |φD

L|2 + |cR|2
ˆ π

π
2

ImV |φD

R|2 = 0 . (12.23)

Denoting the integrands by f ,

f(u) :=

{
ImV |φD

L|2 if u ≤ π
2

ImV |φD

R|2 if u > π
2 ,

we decompose f into its even and odd parts,

f = f+ + f− with f±(u) :=
1

2

(
f(u)± f(π − u)

)
. (12.24)
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Then we can rewrite (12.23) as

0 = |cL|2
ˆ π

2

0

(f+ + f−) + |cR|2
ˆ π

π
2

(f+ + f−)

= |cL|2
ˆ π

2

0

(f+ + f−) + |cR|2
ˆ π

2

0

(f+ − f−)

=
(
|cL|2 + |cR|2

) ˆ π
2

0

f+ +
(
|cL|2 − |cR|2

)ˆ π
2

0

f− .

Since the constants cL and cR are non-zero, we obtain the inequality∣∣∣∣
ˆ π

2

0

f+

∣∣∣∣ ≤
∣∣∣∣
ˆ π

2

0

f−

∣∣∣∣ .
Combining this estimate with (12.24), we obtain the inequality

∣∣∣∣
ˆ π

2

0

ImV |φD

L|2
∣∣∣∣ =

∣∣∣∣
ˆ π

2

0

(f+ + f−)
∣∣∣∣ ≤ 2

∣∣∣∣
ˆ π

2

0

f−

∣∣∣∣ . (12.25)

We now estimate the right side of this inequality obtain the following result.

Lemma 12.13. For any δ > 0, by increasing C1 one can arrange that that for all
eigenvalues λ in the WKB case and the parabolic cylinder case the following inequality
holds: ∣∣∣∣

ˆ ur

u�

ImV |φD

L|2
∣∣∣∣ < δ .

Proof. We introduce the “parity transformation” P which reflects at the point π
2 ,

P : (0, π)→ (0, π) , Pu = π − u .

Then (12.25) can be written as

∣∣∣∣
ˆ π

2

0

ImV |φD

L|2
∣∣∣∣ ≤

∣∣∣∣
ˆ π

2

0

(
ImV |φD

L|2 − Im(V ◦ P )
∣∣φD

R ◦ P
∣∣2)∣∣∣∣ .

On the interval (0, u�), this integral can be estimated by Lemma 12.6, where we
choose δ̃ = δ/16. Moreover, in view of the estimates of Lemma 11.9, in the parabolic
cylinder case we may estimate the functions φD and ζ at the point umax in terms of
their values at ur. This shows that the integral over [ur,

π
2 ] can be made smaller

than δ/8. We conclude that

∣∣∣∣
ˆ π

2

0

ImV |φD

L|2
∣∣∣∣ ≤

∣∣∣∣
ˆ ur

u�

(
ImV |φD

L|2 − Im(V ◦ P )
∣∣φD

R ◦ P
∣∣2)∣∣∣∣+ δ

4
. (12.26)

We next specify the wave functions φD

L and φD

R. Using (12.15) and (12.16) together
with Lemma 12.8 and Lemma 12.10, we know that in the integral on the right side
of (12.26), the factor |φD

L|2 may be replaced by the function

1

2
√
|V | cosh

(
2

ˆ u

u0

Re
√
V

)
,
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making an error which can be made arbitrarily small by increasing C1 (here we use
Proposition 12.1 to conclude that a small pointwise error gives rise to a small error of
the integral). Moreover, using (12.21), we may replace Re

√
V by ImV/

√
|V |, again

making an arbitrarily small error. Therefore, setting

ρD

L(u) :=
1

2
√
|V | cosh

(
2

ˆ u

u0

ImV√
|V |

)
, (12.27)

we can arrange that ∣∣∣∣
ˆ ur

u�

ImV |φD

L|2 −
ˆ ur

u�

ImV ρD

L

∣∣∣∣ ≤ δ

8
. (12.28)

Using the same argument on the interval [π2 , π], we conclude that

∣∣∣∣
ˆ π

2

0

ImV |φD

L|2
∣∣∣∣ ≤

∣∣∣∣
ˆ ur

u�

(
ImV ρD

L − Im(V ◦ P )
(
ρD

R ◦ P
))∣∣∣∣+ δ

2

≤
∣∣∣∣
ˆ ur

u�

Im
(
V − V ◦ P )

ρD

L

∣∣∣∣ (12.29)

+

∣∣∣∣
ˆ ur

u�

Im(V ◦ P )
(
ρD

L −
(
ρD

R ◦ P
))∣∣∣∣+ δ

2
. (12.30)

We next estimate the integrals in (12.29) and (12.30) after each other. In order
to estimate (12.29), we first note that, from the explicit form of the potential (2.8),
it is obvious that ∣∣ Im (

V − V ◦ P )∣∣ � 1 .

As a consequence,ˆ ur

u�

∣∣ Im (
V − V ◦ P )∣∣ |ρD

L| �
ˆ ur

u�

|ρD

L| �
ˆ ur

u�

1√
|V | ,

where in the last step we again used Proposition 12.1 to conclude that the hyperbolic
cosine in (12.27) is uniformly bounded. Using the estimate (12.7) in Lemma 12.4, we
conclude that ˆ ur

u�

∣∣ Im (
V − V ◦ P )∣∣ |ρD

L| �
log |Ω|
|Ω| ,

which tends to zero for large |Ω| and can thus be made smaller than δ/4.
In order to estimate (12.30), we again use the homotopy (12.19). Setting

u0(τ) = τuL
0 + (1− τ)uR

0

ρD

τ =
1

2
√
|Vτ |

cosh

(
2

ˆ u

u0(τ)

ImVτ√
|Vτ |

)
,

we again use the mean value theorem to obtain

∣∣ρD

L −
(
ρD

R ◦ P
)∣∣ = ∣∣ρD

1 − ρD

0

∣∣ ≤ sup
τ∈[0,1]

∣∣∣ d
dτ

ρD

τ

∣∣∣
� sup

τ

1√
|Vτ |

(
|∂τVτ |
|Vτ | +

| ImVτ |√
|Vτ |

∣∣∂τu0(τ)
∣∣ + ˆ u

u0(τ)

( |∂τ ImVτ |√
|Vτ |

+
|∂τ ImVτ ∂τVτ |

|Vτ | 32
))
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(where we again used (12.22) to conclude that the hyperbolic cosine is uniformly
bounded). Using that (see also (12.20))

∣∣∂τ ReV ∣∣ � |Ω| , ∣∣∂τ ImV
∣∣ � 1 and

∣∣∂τu0(τ)
∣∣ � 1√

|Ω| ,

a straightforward computation shows that for any δ̃ > 0, we can arrange that

∣∣ρD

L −
(
ρD

R ◦ P
)∣∣ ≤ δ̃√

|V | .

Hence ∣∣∣∣
ˆ ur

u�

Im(V ◦ P )
(
ρD

L −
(
ρD

R ◦ P
))∣∣∣∣ ≤ δ̃

ˆ ur

u�

| Im(V ◦ P )|√
|V | � δ̃ ,

where in the last step we again applied Proposition 12.1. By choosing δ̃ sufficiently
small, we can arrange that∣∣∣∣

ˆ ur

u�

Im(V ◦ P )
(
ρD

L −
(
ρD

R ◦ P
))∣∣∣∣ ≤ δ

4
.

This concludes the proof.

Proof of Proposition 12.2. The remaining task is to estimate the integral in (12.1)
from above by the integral in the statement of Lemma 12.13. Applying (12.28), we
obtain ∣∣∣∣

ˆ ur

u�

ImV |φD

L|2
∣∣∣∣ ≥

∣∣∣∣
ˆ ur

u�

ImV ρD

L

∣∣∣∣− δ .

Moreover, using (12.27), we obtain

ˆ ur

u�

ImV ρD

L =

ˆ ur

u�

ImV

2
√
|V | cosh

(
2

ˆ u

u0

ImV√
|V |

)
=

1

4

ˆ ur

u�

d

du
sinh

(
2

ˆ u

u0

ImV√
|V |

)

=
1

4
sinh

(
2

ˆ ur

u0

ImV√
|V |

)
− 1

4
sinh

(
2

ˆ u�

u0

ImV√
|V |

)
.

In the last summand we can use the estimate
ˆ u�

u0

| ImV |√
|V | �

|Ω|√
C1|Ω|

(u0 − u�) �
1√
C1

to conclude that this summand can be made arbitrarily small. In the first summand,
on the other hand, we apply the inequality | sinhx| ≥ |x|. This gives the result.

13. The λ-Dependence of the Osculating Circles. In view of the result of
Proposition 8.1, it remains to consider the situation for large |Ω|. In this regime,
Weyl’s asymptotics as worked out in Lemma 7.8 is of no use, because we have no
control of how the error terms O(n) and O(n0) depend on Ω. In particular, we
cannot expect that the gaps between the eigenvalues for a real potential are so large
that the imaginary part of the potential can be treated as a slightly non-selfadjoint
perturbation. As a consequence, we must analyze the spectrum of the Hamiltonian
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with the complex potential (2.3) in detail. As a technical tool, we will again work with
the osculating circle estimates as developed in Section 6. As a refinement, we need to
analyze in detail how the osculating circles depend on the spectral parameter λ. In
view of (2.8) and (2.9), we know that

Vλ := ∂λV ≡ −1 . (13.1)

Moreover, we choose u0 in (6.8) independent of λ (where y0 clearly depends on λ).
In the following computations, we treat Reλ and Imλ as two independent real

variables. Then for any function f(λ) which is complex differentiable, we have

∂

∂Reλ
f = fλ ,

∂

∂ Imλ
f = lim

h↘0

f(λ+ ih)− f(λ)

h
= ifλ .

In the next lemma we compute the λ-derivatives of φ.

Lemma 13.1. Choosing the initial conditions (6.7),

∂

∂Reλ
logφ(u) = − Im yλ(u0)

2 Im y(u0)
+

ˆ u

u0

yλ

∂

∂ Imλ
logφ(u) = − Re yλ(u0)

2 Im y(u0)
+ i

ˆ u

u0

yλ .

Proof. Differentiating (6.7) and (2.15) with respect to λ gives

∂

∂ Reλ
logφ(u0) = −1

2

Im yλ(u0)

Im y(u0)

∂

∂ Imλ
logφ(u0) = −1

2

Re yλ(u0)

Im y(u0)

∂

∂u

∂

∂Reλ
logφ(u) =

∂

∂Reλ
y(u) = yλ(u)

∂

∂u

∂

∂ Imλ
logφ(u) =

∂

∂ Imλ
y(u) = iyλ(u) .

Integrating the last two differential equations from u0 to u gives the result.

We next compute the second mixed derivatives of K and p.

Lemma 13.2. Choosing the initial conditions (6.7),

∂

∂ Reλ

∂

∂u
logK(u, λ) = − ImV Im yλ

Im2 y
(13.2)

∂

∂Reλ

∂

∂u
p(u, λ) = −i ImV

φ2 Im2 y

(
Im yλ
Im y

− Im yλ(u0)

2 Im y(u0)
+

ˆ u

u0

yλ

)
(13.3)

∂

∂ Imλ

∂

∂u
logK(u, λ) = − 1

Im y
− ImV Re yλ

Im2 y
(13.4)

∂

∂ Imλ

∂

∂u
p(u, λ) = − i

2φ2 Im2 y

− i
ImV

φ2 Im2 y

(
Re yλ
Im y

− Re yλ(u0)

2 Im y(u0)
+ i

ˆ u

u0

yλ

)
. (13.5)
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Proof. Comparing (6.13) and (6.14), one sees that

∂

∂u
logK(u, λ) =

ImV

Im y
.

Differentiating with respect to λ gives

∂

∂Reλ

∂

∂u
logK(u, λ) =

∂

∂Reλ

ImV

Im y

∂

∂ Imλ

∂

∂u
logK(u, λ) =

∂

∂ Imλ

ImV

Im y
,

and using (13.1) gives (13.2) and (13.4). In order to derive (13.3) and (13.5), we first
apply (6.10) to obtain

K
∂

∂Reλ

∂

∂u
p(u, λ) = K

∂

∂Reλ

(
i ImV

2φ2 Im2 y

)

= ie−2iϑ ImV

Im y

(
−2 ∂

∂ Reλ
logφ− 2

Im yλ
Im y

)

K
∂

∂ Imλ

∂

∂u
p(u, λ) = K

∂

∂ Imλ

(
i ImV

2φ2 Im2 y

)

= ie−2iϑ 1

Im y

(
−1− 2 ImV

∂

∂ Imλ
logφ− 2 ImV

Re yλ
Im y

)
.

Applying Lemma 13.1 gives

K
∂

∂Reλ

∂

∂u
p(u, λ) = −2ie−2iϑ ImV

Im y

(
Im yλ
Im y

− Im yλ(u0)

2 Im y(u0)
+

ˆ u

u0

yλ

)

K
∂

∂ Imλ

∂

∂u
p(u, λ) = − ie−2iϑ

Im y
− 2ie−2iϑ ImV

Im y

(
Re yλ
Im y

− Re yλ(u0)

2 Im y(u0)
+ i

ˆ u

u0

yλ

)
.

Using (6.10) and (6.5) gives the result.

13.1. General Estimates in the WKB Region. In the previous section,
we derived general formulas for the λ-derivatives of the center and radius of the
osculating circles. We want to use these formulas in order to control the behavior of
the osculating circles in the WKB region (u�, ur). We now work out the corresponding
estimates in general, stating the assumptions needed for the estimates to work (see
eqs (13.6), (13.7), (13.8) and (13.9) below). We also derive explicit formulas for the
error terms (see eqs (13.11)–(13.13) below). The remaining task will be to justify the
above assumptions and to control the error terms. This will be done subsequently in
the different cases in the following Sections 13.2–13.3.

Consider an interval I = [ua, ub] ⊂ (0, π
2 ]. We assume that on I the following

inequalities hold for suitable constants C, c > 1,

ˆ ub

ua

| ImV |
Im y

≤ c (13.6)√
|ReV |
C

≤ Im y ≤ C
√
|ReV | . (13.7)
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Lemma 13.3. Assume that u0 ∈ I and that (13.6) and (13.7) hold. Then the
function K(u) (cf. (6.10)) is bounded on the interval I by

1

c̃
≤ K(u) ≤ c̃ ,

where c̃ = ec.

Proof. Comparing (6.10) with (6.7), we know that K(u0) = 2. Moreover,
from (6.10) and (6.11) we obtain

d

du
logK =

K ′

K
=

ImV

Im y
.

Integrating and using (13.6) gives the result.

We now estimate the terms appearing in Lemma 13.2. We again consider an
interval I = [ua, ub]. We assume that on I the inequalities (13.6) and (13.7) hold and
that the following inequalities hold for suitable constants C, c > 1,ˆ u

ua

|Re y|√
|ReV | ≤

c√
|ReV (u)| (13.8)

|ReV (u)| ≤ C2 inf
[ua,u]

|ReV | . (13.9)

Lemma 13.4. Under the assumptions (13.6)–(13.9), there is a constant c1 =
c1(c, C) such that on I,

|yλ(u)| ≤ c1

(
1√

|ReV (u)| + |∂λy0|
)
.

More precisely,∣∣∣∣yλ(u)− i

2 Im y(u)

∣∣∣∣ ≤ c1

(
1√

|ReV0|
+ |∂λy0|

) √
|ReV |√
|ReV0|

+ c1
√
|ReV (u)|

ˆ u

ua

1

|ReV |
( | ImV |

Im y
+ |Re y|

)
.

(13.10)

Proof. We integrate by parts to obtain
ˆ u

ua

φ2 =

ˆ u

ua

|φ|2
2i Im y(u)

d

du

(
φ2

|φ|2
)

=
φ2

2i Im y(u)

∣∣∣∣
u

ua

−
ˆ u

ua

d

du

( |φ|2
2i Im y(u)

)
φ2

|φ|2

=
φ2

2i Im y

∣∣∣∣
u

ua

+ 2i

ˆ u

ua

φ2

Im y

(
Re y − ImV

4 Im y

)
.

Using this relation in (7.13) gives

yλ(u) =
φ2(ua)

φ2(u)

(
∂λy0 +

1

2i Im y(ua)

)

− 1

2i Im y(u)
− 2i

φ2(u)

ˆ u

ua

φ2

Im y

(
Re y − ImV

4 Im y

)
.
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We now estimate the resulting terms:

∣∣∣∣φ2(ua)

φ2(u)
∂λy0

∣∣∣∣ ≤ c̃
Im y(u)

Im y(ua)
|∂λy0| ≤ C2c̃

|∂λy0|√
|ReV0|

√
|ReV (u)| ≤ C3c̃ |∂λy0|∣∣∣∣φ2(ua)

φ2(u)

1

2i Im y(ua)

∣∣∣∣ ≤ c̃
Im y(u)

Im2 y(ua)
≤ C3c̃

|ReV0|
√
|ReV (u)| ≤ C5c̃√

|ReV (u)|∣∣∣∣ 1

2y(u)

∣∣∣∣ ≤ C

2

1√
|ReV (u)| .

Moreover,

∣∣∣∣ 2

φ2(u)

ˆ u

ua

φ2

Im y

(
Re y − ImV

4 Im y

) ∣∣∣∣ ≤ 2c̃2 Im y

ˆ u

ua

1

Im2 y

∣∣∣∣Re y − ImV

4 Im y

∣∣∣∣
≤ 2C3c̃2

√
|ReV (u)|

ˆ u

ua

1

|ReV |

∣∣∣∣Re y − ImV

4 Im y

∣∣∣∣
≤ 5

2
cC3c̃2

√
|ReV (u)|

infI |ReV | ≤
5

2

cC5c̃2√
|ReV (u)| .

Combining all the terms gives the results.

Proposition 13.5. Under the assumptions (13.6)–(13.9), the following inequal-
ities hold,

∣∣∣∣ ∂

∂ Imλ
logK(u, λ)

∣∣ub

ua
+

ˆ ub

ua

1

Im y

∣∣∣∣ ≤ E∣∣∣∣ ∂

∂Reλ
logK(u, λ)

∣∣∣ub

ua

∣∣∣∣ ≤ E∣∣∣∣∂p(u, λ)∂ Reλ

∣∣∣ub

ua

∣∣∣∣+
∣∣∣∣∂p(u, λ)∂ Imλ

∣∣∣ub

ua

∣∣∣∣ ≤ E ,

where the error term E is given by

E = c2

ˆ ub

ua

( | ImV |
|ReV | +

| ImV (ub)|
|ReV (ub)|

)(
1√

|ReV (u)| + |∂λy0|
)

(13.11)

+
c2

|ReV (ub)| + c2

ˆ ub

ua

|Re y|
|ReV | (13.12)

+ c2

ˆ ub

ua

{
Im2 V

|ReV | 32 +
| ImV ′|+ |Re y| | ImV |

|ReV |
}

×
[ ˆ u

ua

(
1√
|ReV | + |∂λy0|

)]
du (13.13)

with a constant c2 = c2(c, C).

Proof. We integrate the formulas of Lemma 13.2 from ua to ub. Possibly after
integrating by parts, we apply (13.7)–(13.9) and Lemma 13.4. More precisely, we
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estimate the individual terms as follows:ˆ ub

ua

∣∣∣∣ ImV Im yλ

Im2 y

∣∣∣∣ ≤ C2 c1

ˆ ub

ua

| ImV |
|ReV |

(
1√

|ReV (u)| + |∂λy0|
)

ˆ ub

ua

∣∣∣∣ ImV

φ2 Im2 y

(
Im yλ
Im y

− Im yλ(ua)

2 Im y(ua)

)∣∣∣∣
≤ c̃

ˆ ub

ua

∣∣∣∣ ImV

Im y

(
Im yλ
Im y

− Im yλ(ua)

2 Im y(ua)

)∣∣∣∣ ≤ C2 c̃ c1

ˆ ub

ua

| ImV |
|ReV |

(
1√
|ReV | + |∂λy0|

)
ˆ ub

ua

∣∣∣∣ ImV

φ2 Im2 y

(
Re yλ
Im y

− Re yλ(ua)

2 Im y(ua)

)∣∣∣∣ ≤ C2 c̃ c1

ˆ ub

ua

| ImV |
|ReV |

(
1√
|ReV | + |∂λy0|

)
ˆ ub

ua

1

φ2 Im2 y
=

ˆ ub

ua

1

|φ|2 Im2 y

|φ|2
φ2

=

ˆ ub

ua

i

2 |φ|2 Im3 y

d

du

( |φ|2
φ2

)

=
i

2φ2 Im3 y

∣∣∣∣
ub

ua

− i

2

ˆ ub

ua

d

du

(
1

|φ|2 Im3 y

) |φ|2
φ2

=
i

2φ2 Im3 y

∣∣∣∣
ub

ua

+
3i

2

ˆ ub

ua

1

φ2 Im3 y

(
ImV

Im y
− 4

3
Re y

)

=⇒
∣∣∣∣
ˆ ub

ua

1

φ2 Im2 y

∣∣∣∣ ≤ C2c̃ (1 + C2)

2 |ReV (ub)| + 2C2c̃

ˆ ub

ua

1

|ReV |
( | ImV |

Im y
+ |Re y|

)
ˆ ub

ua

ImV

φ2 Im2 y

ˆ u

ua

yλ =

ˆ ub

ua

|φ|2
φ2

ImV

|φ|2 Im2 y

ˆ u

ua

yλ

=

ˆ ub

ua

d

du

( |φ|2
φ2

)
i ImV

2|φ|2 Im3 y

ˆ u

ua

yλ

=
i ImV (ub)

2φ2(ub) Im
3 y(ub)

ˆ ub

ua

yλ −
ˆ ub

ua

|φ|2
φ2

d

du

(
i ImV

2|φ|2 Im3 y

ˆ u

ua

yλ

)

= − i

2

ˆ ub

ua

ImV Im yλ

φ2 Im3 y

+
i

2

ˆ ub

ua

3 Im2 V − Im y ImV ′ − 4 ImV Im y Re y

φ2 Im4 y

ˆ u

ua

yλ

=⇒
∣∣∣∣
ˆ ub

ua

ImV

φ2 Im2 y

ˆ u

ua

yλ

∣∣∣∣ ≤ c1C
2c̃

2

| ImV (ub)|
|ReV (ub)|

ˆ ub

ua

(
1√

|ReV (u)| + |∂λy0|
)

+
c1C

2c̃

2

ˆ ub

ua

| ImV |
|ReV |

(
1√

|ReV (u)| + |∂λy0|
)

+
c1C

2c̃

2

ˆ ub

ua

du

(
3C Im2 V

|ReV | 32 +
| ImV ′|
|ReV | +

4| ImV | |Re y|
|ReV |

)

×
ˆ u

ua

(
1√

|ReV (u)| + |∂λy0|
)
.

Combining all the terms gives the result.

13.2. Estimates on the Interval [u0, ur]. We shall now apply the estimates
of Section 13.1 on the interval [u0, ur] (see (10.14), (11.12) and (11.17)). Our task
is to show that the inequalities (13.6), (13.7), (13.8) and (13.9) hold. Moreover, we
need to estimate the error terms E in (13.11)–(13.13). We begin by collecting a few
properties of our potential.
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Lemma 13.6. At the points u0 and u (see (11.12), (11.19) and (10.11)), for
sufficiently large C5 the potential satisfies the inequalities∣∣ReV (u0)− Reλ

∣∣ � |Ω| (13.14)

|V ′(u0)| � |Ω| 32 , |V ′′(u0)| � |Ω|2 (13.15)

ReV (u0) ≤ 9

8
ReV (u) < 0 . (13.16)

Proof. The inequalities (13.14) and (13.15) follow immediately from (11.12),
(11.14) and (11.19), (11.18). Combining (13.14) with (10.2), we find that for suf-
ficiently large C5,

ReV (u0) ≤ −15

16
Reλ .

Moreover, similar as in the proof of Lemma 10.1, again for large C5 one obtains

ReV (u) ≥ 16

17
|Ω|2 u2 − c

u2
− Reλ =

16

17

Reλ

4
− 4c |Ω|2

Reλ
− Reλ

= −13

17

Reλ

4
− 4c |Ω|2

Reλ
≥ −14

17
Reλ .

Combining these inequalities gives (13.16).

Lemma 13.7. Assume that the condition (13.6) holds. Then the condi-
tions (13.7), (13.8) and (13.9) are satisfied on the interval [u0, ur]. Moreover, choos-
ing c1 and c2 sufficiently large, we can arrange that the error terms E (13.11)–(13.13)
are bounded by

E ≤ 1

20

ˆ ur

u0

1√
|ReV | . (13.17)

Proof. The inequality (13.9) follows immediately from Lemma 12.3. Since the
WKB conditions are satisfied by Proposition 11.1, we know that

y ≈
√
V − V ′

4V
. (13.18)

The results of the analysis in [12, 11] gives us rigorous bounds for the error of this
approximation. This implies (13.7) for sufficiently large C.

In preparation for proving the other inequalities, we need a few estimates for the
potential. First, from the explicit form of the potential (2.8), it is obvious that

|V ′′|, |V ′′′| � |Ω|2 and | ImV ′| � |Ω| . (13.19)

Estimating the potential without derivatives is a bit more subtle because the con-
stant λ comes into play. We first note that by construction of ur (see (10.14), (10.12),
(10.7) and (10.2)), we know that

ReV ≤ −C1 |Ω| . (13.20)

Moreover, using (10.1) in (9.3), the imaginary part of the potential is uniformly
bounded,

| ImV | � |Ω| . (13.21)
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Therefore, by increasing C1 we can arrange that the real part of the potential domi-
nates its imaginary part in the sense that

|ReV |
| ImV | � C1 . (13.22)

We now come to the proof of (13.8). We first need to estimate the real part of y.
Using (13.22), we may express (13.18) in terms of the real and imaginary parts of V
to obtain

y ≈ i
√
−ReV − i ImV − V ′

4V
≈ i
√
−ReV +

ImV√−ReV
− V ′

4V
.

Hence

|Re y| � | ImV |√−ReV
+
|V ′|
|V | (13.23)

(where the errors are again under control in view of (13.22) and the fact that the
WKB conditions are satisfied). The last estimate implies that

ˆ u

u0

|Re y|√
|ReV | �

ˆ u

u0

| ImV |
|ReV | +

ˆ u

u0

|V ′|
|V | 32 . (13.24)

In the first integral on the right, we apply (13.9) to obtain

ˆ u

u0

| ImV |
|ReV | ≤

C√
|ReV (u)|

ˆ u

u0

| ImV |√
|ReV | �

1√
|ReV (u)| ,

where in the last step we again used the WKB approximation (13.18) together with
the inequality (13.6). The second integral in (13.24) can be estimated by

ˆ u

u0

|V ′|
|V | 32 �

ˆ u

u0

|V ′|
|ReV | 32 ≤

ˆ u

u0

ReV ′

|ReV | 32 +

ˆ u

u0

| ImV ′|
|ReV | 32

(13.19)

�

ˆ u

u0

( 1√
|ReV |

)′
+

|Ω|
|ReV (u)| 32 �

1√
|ReV (u)| +

|Ω|
|Ω|

√
|ReV (u)| ,

where in the last line we also used again the monotonicity statement of Lemma 12.3
together with (13.20). Combining the obtained inequalities gives (13.8).

In order to prove (13.17), we first estimate the term ∂λy0. Differentiating (11.13)
and using the monotonicity of ReV as well as the results of Lemma 13.6, we obtain

|∂λy0| � 1√
|ReV (u)| .

For this reason, we may disregard the term ∂λy0 in (13.11) and (13.13). In order to
estimate the integral (13.11), we simply bound the first bracket in the integrand by

| ImV |
|ReV |

(13.22)

�
1

C1
. (13.25)
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The first summand in (13.12) can be the estimated with the help the monotonicity
of ReV by

1

|ReV (ur)| ≤
9

|ReV (ur)| −
8

|ReV (u)|
(13.16)

≤ 9

|ReV (ur)| −
9

|ReV (u0)|
= 9

ˆ ur

u0

( 1

ReV

)′
= 9

ˆ ur

u0

ReV ′

ReV 2
≤
ˆ ur

u0

10√
|ReV |

|V ′|
|V | 32 ,

where in the last step we used again that the real part of V dominates the imaginary
part and that ReV is monotone. Now the factor |V ′|/|V | 32 is small in view of the
WKB property established in Proposition 11.1.

To estimate the integrand in (13.12), we fist use (13.23),

|Re y|
|ReV | �

| ImV |
|ReV | 32 +

|V ′|
|ReV | |V | �

2√
|ReV |

[ | ImV |
|ReV | +

|V ′|
|V | 32

]
.

Now the square bracket can be made arbitrarily small by applying again (13.25) and
Proposition 11.1.

It remains to estimate the nested integral (13.13). We first exchange the orders
of integration,

ˆ ur

u0

du

{
Im2 V

|ReV | 32 +
| ImV ′|+ |Re y| | ImV |

|ReV |
} ˆ u

u0

dτ√
|ReV (τ)|

=

ˆ ur

u0

dτ√
|ReV (τ)|

ˆ ur

τ

{
Im2 V

|ReV | 32 +
| ImV ′|+ |Re y| | ImV |

|ReV |
}
du . (13.26)

Now we estimate the inner integral term by term. The first term can be estimated
with the help of (13.21) and Lemma 12.3,

ˆ ur

τ

Im2 V

|ReV | 32 �

ˆ ur

τ

|Ω|
|ReV | 32 �

1

C1
.

Next, using (13.19) and (13.20), we find that

ˆ ur

τ

| ImV ′|
|ReV | �

1

C1
(ur − τ) �

1

C1
.

In order to estimate the remaining term involving Re y in (13.26), we first ap-
ply (13.23). Then the first summand on the right of (13.23) gives rise to a contribution
which is precisely of the form of the first summand in the curly brackets in (13.13).
Hence it remains to consider the term

ˆ ur

τ

| ImV |
|ReV |

|V ′|
|V | ≤

ˆ ur

τ

| ImV | | ImV ′|+ReV ′

|V |2 ,

where in the last step we applied Lemma 12.3. The first summand on the right can
be estimated with the help of (13.21) and (13.19) by

ˆ ur

τ

| ImV | | ImV ′|
|V |2 �

ˆ ur

τ

|Ω|2
|V |2

(13.20)

�
|Ω| 32√
C1

ˆ ur

τ

1

|V | 32 �
1√
|Ω|C3

1

,
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where in the last step we again applied Lemma 12.3. The remaining second summand
on the right is estimated as follows,

ˆ ur

τ

| ImV | ReV
′

|V |2 � |Ω|
ˆ ur

τ

ReV ′

(ReV )2
≤ |Ω|
|ReV (ur)| �

1

C1
,

where we again applied Lemma 12.3. This concludes the proof.

13.3. Estimates on the Interval [u�, u0]. In preparation, we note that, us-
ing (10.1) in (9.3), we again obtain the following uniform bound for ImV ,

| ImV | � |Ω| . (13.27)

We treat the cases k = s and k �= s separately.

Lemma 13.8. (Case k = s) Assume that k = s. On the interval [u�, u0], the
conditions (13.6)–(13.9) are satisfied. Moreover, by choosing C1 sufficiently large, we
can arrange that the error terms E (13.11)–(13.13) are bounded by

E ≤ 1

20

ˆ u0

u�

1√
|V .

Proof. Near the pole, the potential has the following asymptotic expansion
(cf. (11.12) and (11.14)),

ReV ≤ −3

4
|Ω| − Reμ+ O(1) ≤ −|Ω|

2
− Reμ ≤ −Reμ � Reλ (13.28)

V ′(u) =
1

2u3
+ 2Ω2u+ O

(|Ω|u)+ O
(|Ω|2u3

)
. (13.29)

Since (13.29) has a positive real part, we know that ReV is monotone increasing.
This implies (13.9) if we also keep in mind that the imaginary part of V is dominated
by the real part in view of (13.28) and (13.19). Moreover, using the results of the
analysis in [12, 11], we know that (13.18) holds with rigorous error bounds. This
implies (13.7) for sufficiently large C. The inequality (13.6) follows from the estimate

ˆ u0

u�

| ImV |
Im y

�

ˆ u0

u�

| ImV |√
|ReV |

(13.28)

�
1√
Reμ

ˆ u0

u�

| ImV |
(13.27)

�
u0 |Ω|
|Reλ| �

1√
C5

, (13.30)

where in the last step we used (10.2) and (11.12). In order to prove (13.8), we again
apply (13.24) and estimate the two resulting integrals by

ˆ u

u�

| ImV |
|ReV | ≤

1√
|ReV (u)|

ˆ u

u�

| ImV |√
|ReV |

(13.30)

≤ 1√
C5 |ReV (u)|ˆ u

u�

|V ′|
|V | 32 ≤

ˆ u

u�

ReV ′

(−ReV )
3
2

+

ˆ u

u�

| ImV ′|
|ReV | 32

≤ 2

ˆ u

u�

d

du

(
1√−ReV

)
+

1√
|ReV (u)|

ˆ u

u�

| ImV ′|
|ReV |

�
1√

−ReV (u)
+

1√
|ReV (u)|

u0 |Ω|
Reλ

�
1√
|V (u)| +

1√
|V (u)|

1

C5

√
|Ω| .
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In order to estimate E, we proceed exactly as in the proof of Lemma 13.7, using
the following estimates:

ˆ u0

u�

| ImV |2
|ReV | 32

(13.28)

�
u0 |Ω|2
(Re λ)

3
2

�
1

(C5)
3
2ˆ u0

u�

| ImV ′|
|V |

(13.28)

�
u0 |Ω|
Reλ

�
1

C5

√
|Ω|

|V ′|
(13.29)

�
1

u3
�

+ |Ω|2 u0

(10.8)

�
(Reλ)

3
2

C3
1

+ |Ω| 32
(10.2)

�
(Reλ)

3
2

C3
1ˆ u0

u�

| ImV | |V ′|
|V |2

(13.28)

�
u0 |Ω|
(Re λ)2

(Reλ)
3
2

C3
1

(10.2)

�
1

C3
1

√
C5

.

This concludes the proof.

In the case k �= s, the function ReV is monotone decreasing on the interval [u�, u0].
Therefore, when applying the estimates in Section 13.1 we need to proceed backwards
in u, starting from u0. Therefore, the conditions (13.8) and (13.9) need to be replaced
by

ˆ u0

u

|Re y|√
|V | ≤

c√
|V (u)| (13.31)

|ReV (u)| ≤ C2 inf
[u,u0]

|ReV | . (13.32)

Lemma 13.9. (Case k �= s) Assume that k �= s. Then on the interval [u�, u0], the
conditions (13.6), (13.7) and (13.31), (13.32) are satisfied. Moreover, by choosing C1

sufficiently large, we can arrange that the error terms E (13.11)–(13.13) are bounded
by

E ≤ 1

20

ˆ u0

u�

1√
|V .

Proof. Near the pole, the potential has the following asymptotic expansion
(cf. (11.20) and (11.18)),

ReV ≤ −Reμ

2
+ 8

√
Λ |Ω| ≤ −Reμ

4
� −Reλ (13.33)

V ′(u) = −2Λ

u3
+ 2Ω2u+ O

(|Ω|u)+ O
(|Ω|2u3

)
. (13.34)

Since ReV is convex on (0, u0] and has its minimum at u0, we know that the
function ReV is monotone decreasing on the interval (0, u0]. This implies (13.32).
Moreover, using the results of the analysis in [12, 11], we know that (13.18) holds
with rigorous error bounds. This implies (13.7) for sufficiently large C. The inequal-
ity (13.6) follows from the estimate

ˆ u0

u�

| ImV |
Im y

�

ˆ u0

u�

| ImV |√
|ReV | ≤

u0 |Ω|√
Reλ

�
1√
C5

, (13.35)
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where we used (13.33), (13.27) and (11.20). In order to prove (13.31), we again
apply (13.24) and estimate the two resulting integrals by

ˆ u0

u

| ImV |
|ReV | ≤

1√
|ReV (u)|

ˆ u0

u

| ImV |√
|ReV |

(13.35)

�
1√

C5 |V (u)|ˆ u0

u

|V ′|
|V | 32 ≤

ˆ u0

u

(−ReV ′)

(−ReV )
3
2

+

ˆ u0

u

| ImV ′|
|ReV | 32

≤ 2

ˆ u0

u

d

du

(
1√−ReV

)
+

1√
|ReV (u)|

ˆ u0

u

| ImV ′|
|ReV |

�
1√

−ReV (u)
+

1√
|ReV (u)|

u0 |Ω|
|ReV (u)| �

1√
|V (u)| ,

where in the last step we applied (11.20), (13.33) and (10.2).
In order to estimate E, we proceed exactly as in the proof of Lemma 13.7, using

the following estimates:

ˆ u0

u�

| ImV |2
|V | 32

(13.33)

�
u0 |Ω|2
(Reλ)

3
2

�
1

(C5)
3
2

ˆ u0

u�

| ImV ′|
|V |

(13.33)

�
u0 |Ω|
Reλ

�
1

C5

√
|Ω|

|V ′|
(13.34)

�
1

u3
�

+ |Ω|2 u0

(10.8)

�
(Reλ)

3
2

C3
1

+ |Ω| 32
(10.2)

�
(Re λ)

3
2

C3
1ˆ u0

u�

| ImV | |V ′|
|V |2

(13.33)

�
u0 |Ω|
(Reλ)2

(Reλ)
3
2

C3
1

(10.2)

�
1

C3
1

√
C5

.

This concludes the proof.

14. Annular Regions where |ζL| is Bounded Below. We now construct
regions in the complex λ-plane in which |ζL| is bounded below. For given λ0 and Δλ >
0 we introduce the annular region

AL(λ0) :=
{
λ ∈ C

∣∣∣ ∣∣Re(λ− λ0)
∣∣ ∈ (Δλ, 5Δλ)

and
∣∣ Im(λ− λ0)

∣∣ ∈ (Δλ, 5Δλ)
} (14.1)

(see Figure 7). We again choose u� and ur as the boundaries of the WKB regions
(see (10.8), (10.14)). With these choices, we have the following result.

Proposition 14.1. For sufficiently large |Ω|, the following statement holds:
Choose any ε < 1/(1000). Suppose that for a given λ0,

|ζL(umax)| ≤ ε . (14.2)

Then, choosing

Δλ = 75 ε

(ˆ ur

u�

1√
|V |

∣∣∣∣
λ0

)−1

, (14.3)
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Δλ

5Δλ

�

λ0

AL(λ0)

Fig. 7. Annular regions.

it follows that

ε < |ζL(umax)| < 1000 ε for all λ ∈ AL(λ0) .

The remainder of this section is devoted to the proof of this proposition.

14.1. Estimates in the WKB Region. We again consider the family of so-
lutions of the Riccati equation (2.14) with initial conditions (10.16) and (11.13)
(where u0 is given by (11.12) or (11.17)). We again let φ be the corresponding
solution of the Sturm-Liouville equation normalized according to (6.7).

Proposition 14.2. Assume thatˆ ur

u�

√
|V | ≥ C3 . (14.4)

Moreover, assume that on [u�, ur] the WKB conditions in Proposition 11.1 as well as
the inequalities (13.6)–(13.9) are satisfied. Then by choosing the constants C1, . . .C3

sufficiently large, we can arrange that the following statement holds. Choosing Δλ
according to (14.3), for every λ ∈ AL(λ0),

35 ε ≤
∣∣∣ϑ(λ)∣∣ur

u�
− ϑ(λ0)

∣∣ur

u�

∣∣∣ ≤ 190 ε

70 ε ≤
∣∣∣ logK(λ)

∣∣ur

u�
− logK(λ0)

∣∣ur

u�

∣∣∣ ≤ 380 ε ,

with an arbitrarily small error.

Proof. We analyze what the condition (14.4) means. Combining the estimate

C3 ≤
ˆ ur

u�

√
|V | =

ˆ ur

u�

|V |√
|V | ≤ sup

[u�,ur]

|V |
ˆ ur

u�

1√
|V |

with (14.3), we conclude that

Δλ ≤ 64 ε

C3
sup

(u�,ur)

|V | . (14.5)

This shows that varying λ on the scale Δλ keeps the form of the potential V un-
changed, up to an arbitrarily small error.

By choosing the constants c1 and c2 sufficiently large, we can arrange that the as-
sumptions of Lemma 13.4 and Proposition 13.5 hold. Possibly by further increasing c1
and c2, we can arrange that on the interval [u0, ur], the WKB approximation

y ≈
√
V − V ′

4V
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holds with an arbitrarily small error. Moreover, we can make the error term E in
Proposition 13.5 as well as the right side in (13.10) as small as we like. Hence on the
interval (u0, ur) and at λ = λ0,

∂

∂ Reλ
ϑ
∣∣ur

u0
=

ˆ ur

u0

Im yλ ≈
ˆ ur

u0

1

2 Im y
≈
ˆ ur

u0

1

2 Im
√
V

∂

∂ Imλ
ϑ
∣∣ur

u0
≈ 0

∂

∂Reλ
logK(u, λ)

∣∣ur

u0
≈ 0

∂

∂ Imλ
logK(u, λ)

∣∣ur

u0
≈ −
ˆ ur

u0

1

Im y
≈ −

ˆ ur

u0

1

Im
√
V

∂p(u, λ)

∂Reλ

∣∣∣ur

u0

,
∂p(u, λ)

∂ Imλ

∣∣∣ur

u0

≈ 0 ,

where ≈ means “up to an arbitrarily small error.”
Since according to (14.5), the form of the potential is nearly constant on the

scale Δλ, it follows that for any λ ∈ AL(λ0),

ϑ(λ)
∣∣ur

u0
− ϑ(λ0)

∣∣ur

u0
≈ Re(λ− λ0)

ˆ u

u0

1

2 Im
√
V

∣∣∣∣
λ0

≈ Re(λ− λ0)

32Δλ

logK(λ)
∣∣ur

u0
− logK(λ0)

∣∣ur

u0
≈ − Im(λ − λ0)

ˆ u

u0

1

Im
√
V

∣∣∣∣
λ0

≈ − Im(λ− λ0)

16Δλ
.

Using the form of the annular region, we obtain the result.

14.2. Estimates of ∂λζL in the Airy and Parabolic Cylinder Regions.
Before obtaining the estimates, we explain how we can arrange that the imaginary
part of the potential satisfies the assumptions (a) or (b) in Proposition 11.9 and
Proposition 11.11. To this end, we make use of the fact that taking the complex
conjugate of the Sturm-Liouville equation (2.7) is again of Sturm-Liouville form,(

− d2

du2
+ V

)
φ = 0 , (14.6)

but now with the opposite sign of ImV . For the construction of the resolvent, we are
free work either with the original equation or with the complex conjugate equation
because if the resolvent of (14.6) has been constructed, the corresponding resolvent
of (2.7) is obtained simply by complex conjugation, preserving all our estimates.
With this in mind, we can proceed as follows: In the parabolic cylinder region, the
function ImV either has a zero, or it is everywhere positive or negative. If it has a
zero, we are in case (b) of Proposition 11.9. If it is everywhere positive, we are in
case (a) of Proposition 11.9. If it is everywhere negative, we work with the complex
conjugate equation and are again in case (a). If we are in the Airy case, Lemma 11.12
gives three possible cases. In case (i), we may apply Proposition 11.11 in case (a). In
case (ii), we work with the complex conjugate equation and again apply case (a) in
Proposition 11.11. Finally, in case (iii) the assumption (b) in Proposition 11.11 are
satisfied for δ < 1

2 . We conclude that with this procedure, the assumptions (a) or (b)
in Proposition 11.9 and Proposition (11.11) can always be satisfied. In what follows,
we can take them for granted.
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We consider the interval [ur, v], where (cf. (10.15))

v =

⎧⎨
⎩

u+ in the Airy case
umax in the parabolic cylinder case
umax in the WKB case .

(14.7)

The following lemma is trivial in the WKB case because in this case the interval [ur, v]
reduces to a single point (cf. (10.14) and (14.7)). But in the Airy and parabolic
cylinder cases, the next lemma gives control of the region near the zero of ReV .

Lemma 14.3. For any u ∈ [ur, v],∣∣∂λζL(u)− ∂λζL(ur)
∣∣

≤ 2C2
2

|φ(ur)|2
(∣∣∂λ logφ(ur)

∣∣ (u− ur) +
C2
2

2

∣∣∂λy(ur)
∣∣ (u − ur)

2 +
C4
2

6
(u− ur)

3

)
.

Proof. We first integrate the differential equation (7.12) from ur to u to obtain

φ2∂λy
∣∣u
ur

=

ˆ u

ur

φ2 .

In the parabolic cylinder case, we now apply Proposition 11.9. Similarly, in the
Airy case, we apply Proposition 11.11. This gives∣∣φ2(u)∂λy(u)

∣∣ ≤ ∣∣φ2(ur)∂λy(ur)
∣∣ + C

2
2 |φ(ur)|2 (u− ur) (14.8)

Next, we want to estimate ∂λ logφ. Differentiating the relation ∂u logφ = y with
respect to λ, we obtain

∂

∂u

∂

∂λ
log φ = ∂λy .

Integrating from ur to u gives

∂λ logφ
∣∣u
ur

=

ˆ u

ur

∂λy .

Now we can apply (14.8) and again Proposition 11.9, respectively Proposition 11.11
to obtain

∣∣∂λ logφ(u)∣∣− ∣∣∂λ logφ(ur)
∣∣ ≤ C2

2

|φ(ur)|2
ˆ u

ur

∣∣φ2∂λy
∣∣

≤ C2
2

|φ(ur)|2
(∣∣φ2(ur)∂λy(ur)

∣∣ (u− ur) +
C2
2

2
|φ(ur)|2 (u− ur)

2

)

= C
2
2

∣∣∂λy(ur)
∣∣ (u− ur) +

C4
2

2
(u− ur)

2 .

Finally, we compute the λ-derivative of ζL,

∂λζL
∣∣u
ur

=

ˆ u

ur

1

φ2
= −2

ˆ u

ur

1

φ2
∂λ logφ
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Using the above estimate for ∂λ logφ(u), we obtain

∣∣∂λζL(u)− ∂λζL(ur)
∣∣ ≤ 2C2

2

|φ(ur)|2
ˆ u

ur

∣∣∂λ logφ∣∣
≤ 2C2

2

|φ(ur)|2
ˆ u

u−

(∣∣∂λ logφ(ur)
∣∣+ C

2
2

∣∣∂λy(ur)
∣∣ (u− ur) +

C4
2

2
(u − ur)

2

)
.

Carrying out the integral gives the result.

14.3. Proof of the Lower Bound for |ζL|. According to the estimates near
the poles (Lemmas 11.7 and 11.8), by suitably increasing C5 we can arrange that∣∣ζL(u�)

∣∣ < δ . (14.9)

As is obvious from the expansion of the potential in (11.14) and (11.18), by further
increasing C5 we can arrange that on [u�, u0],

−ReV ≥ Reλ

2
≥ C5

2
|Ω| .

Using furthermore that ImV is bounded by � |Ω| (see again (10.1) and (9.3)), pos-
sibly by again increasing c3 we can again arrange that the real part of the potential
dominates the imaginary part. Henceˆ u0

u�

Re
√
V ≤ 2

ˆ u0

u�

ImV√
|ReV | � (u0 − u�)

|Ω|√
C5 |Ω|

�
u0√
C5

|Ω| 12 . (14.10)

In view of the value of u0 as given in (11.12) and (11.19), one concludes that by
further increasing C5, we can make the left side in (14.10) as small as we like. In
view of the formula for the radius of the osculating circle in the WKB region (12.10),
this means that that R is constant on the interval [u�, u0], up to an arbitrarily small
error. Since R(u0) = 1

2 (as is again obvious from (12.10)), we can thus arrange by
choosing δ sufficiently small that ∣∣∣R(u�)− 1

2

∣∣∣ ≤ ε . (14.11)

Combining (14.9) with (14.11) and using that ζL lies on the osculating circle with
center p, the triangle inequality gives∣∣∣|p(u�)| − 1

2

∣∣∣ ≤ 2ε .

Moreover, we know from (12.10) that p is nearly constant in the WKB region. Thus
we can arrange that ∣∣∣|p| − 1

2

∣∣∣ ≤ 5

2
ε on [u�, ur] .

Combining (14.2) with the estimates of Lemma 11.13, we obtain the following
estimates,

|ζL(λ)|
∣∣
umax

≥
∣∣∣ζL(λ)∣∣u+

− ζL(λ0)
∣∣
u+

∣∣∣− 3ε

≥
∣∣∣ζL(λ)∣∣ur

− ζL(λ0)
∣∣
ur

∣∣∣ − ∣∣∣ζL(λ)∣∣u+

ur
− ζL(λ0)

∣∣u+

ur

∣∣∣− 3ε

|ζL(λ)|
∣∣
umax

≤
∣∣∣ζL(λ)∣∣ur

− ζL(λ0)
∣∣
ur

∣∣∣ + ∣∣∣ζL(λ)∣∣u+

ur
− ζL(λ0)

∣∣u+

ur

∣∣∣+ 3ε .
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In order to estimate |ζL(λ)
∣∣
ur
−ζL(λ0)

∣∣
ur
, we go back to the osculating circle estimates

of Proposition 14.2. Knowing that at u�, the function ζL is small (14.9) and the
osculating circle has a radius close to one half (14.11), the mean value theorem yields∣∣∣ logK(λ)|u�

− logK(λ0)|u�

∣∣∣ = ∣∣∣ logR(λ)|u�
− logR(λ0)|u�

∣∣∣ = 1

R̃

∣∣∣R(λ)|u�
−R(λ0)|u�

∣∣∣
≤

(
1

2
− ε

)− 1
2

2ε ≤ 5ε

2
.

Moreover, elementary trigonometry shows that the angles satisfy the inequality(
1

2
− ε

)
2 sin

∣∣∣∣ϑ(λ)|u�
− ϑ(λ0)|u�

2

∣∣∣∣ ≤ ∣∣∣|ζ(λ)|u�
− ζ(λ0)|u�

∣∣∣ ≤ 2ε

and thus

∣∣∣ϑ(λ)|u�
− ϑ(λ0)|u�

∣∣∣ ≤ 2 arcsin

((
1

2
− ε

)−1

ε

)
≤ 5ε .

In order to control the behavior on the interval [u�, ur], we apply Proposition 14.2
(note that the condition (13.6) is satisfied in view of Proposition 12.1). It follows that
one of the following two inequalities holds:

30 ε ≤
∣∣∣ϑ(λ)∣∣ur

− ϑ(λ0)
∣∣
ur

∣∣∣ ≤ 200 ε

60 ε ≤
∣∣∣ logK(λ)

∣∣
ur
− logK(λ0)

∣∣
ur

∣∣∣ ≤ 400 ε .

This in turn implies that the change of |ζL| can be estimated from below and above
by ∣∣∣ζL(λ)|ur

− ζL(λ0)|ur

∣∣∣ ≥ 10 ε R(λ0)|ur
−
∣∣∣p(λ)|ur

− p(λ0)|ur

∣∣∣ ≥ 4ε∣∣∣ζL(λ)|ur
− ζL(λ0)|ur

∣∣∣ ≤ 400 ε R(λ0)|ur
+
∣∣∣p(λ)|ur

− p(λ0)|ur

∣∣∣ ≤ 500 ε .

Finally, the estimate of Lemma 14.3 shows that the change of ζL in the Airy
region or the parabolic cylinder region is much smaller than the change of ζL in the
WKB region. In particular, by choosing |Ω| sufficiently large (and noting that the size
of the parabolic cylinder and Airy regions tends to zero as |Ω| → ∞), we can arrange
that ∣∣∣ζL(λ)∣∣u+

ur
− ζL(λ0)

∣∣u+

ur

∣∣∣ ≤ ε .

This concludes the proof of Proposition 14.1.

15. The Green’s Function for a Double-Well Potential. The goal of this
section is to derive pointwise estimates of the Green’s function. For the statement of
the result, we need the parameter û defined as follows. If ReV (umax) ≤ 0, we simply
set û = umax (this case includes the WBK case and part of the parabolic cylinder case).
If conversely Re V (umax) > 0, we denote the zeros of the real part of the potential in
the parabolic cylinder or Airy regions by vL/R,

ReV (vL) = 0 = ReV (vR) and vL < umax < vR .
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Then û is defined by the requirement that

ˆ û

vL

Re
√
V =

ˆ vR

û

Re
√
V . (15.1)

Since our potential is almost symmetric around π
2 , the points û and umax are all close

to π
2 . Working with our definitions has the advantage that we do not need to quantify

how close these points are.
Here is the main result of this section.

Proposition 15.1. Assume that for suitable constants C, δ > 0, the following
inequalities hold,

∣∣ζL(û) φ2
L(û)

∣∣, ∣∣ζR(û) φ2
R(û)

∣∣ ≥ 4

|yL(û)− yR(û)| (15.2)

|ζL| ≤ C on (0, û] , |ζR| ≤ C on [û, π) (15.3)∣∣ζL(û)∣∣, ∣∣ζR(û)∣∣ ≥ δ . (15.4)

Then, setting

Σ = min
(∣∣φL(û)

∣∣2, ∣∣φR(û)
∣∣2) ∣∣(yL − yR

)
(û)

∣∣ , (15.5)

the kernel of the Green’s function sλ(u, u
′) for 0 < u ≤ u′ < π is bounded by∣∣sλ(u, u′)

∣∣ �⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

δ2

∣∣φD

L(u)φ
D

R(u
′)
∣∣

Σ
if u < û and u′ > û(

C

δ
+

C

δ2Σ

)∣∣φR(u)φ
D

R(u
′)
∣∣ if u, u′ > uR

+(
C

δ
+

C

δ2Σ

)∣∣φD

L(u)φL(u
′)
∣∣ if u, u′ < uL

+{
1

δΣ
+
(1
δ
+

1

δ2Σ

)ˆ u

û

1

|φR|2
} ∣∣φR(u)φ

D

R(u
′)
∣∣ if û ≤ u ≤ uR

+{
1

δΣ
+
(1
δ
+

1

δ2Σ

) ˆ û

u′

1

|φL|2
} ∣∣φD

L(u)φL(u
′)
∣∣ if uL

+ ≤ u′ ≤ û .

We begin by estimating the Wronskian from below.

Lemma 15.2. Assume that (15.2) holds. Then

∣∣w(φD

L, φ
D

R)
∣∣ ≥ 1

2

∣∣∣ζL(û) ζR(û)w(φL, φR)
∣∣∣ .

Proof. We evaluate (10.21) at u = û, take the absolute value and use the inequal-
ities (15.2). This gives

∣∣w(φD

L, φ
D

R)
∣∣ ≥ 1

2

∣∣φL ζL φR ζR (yL − yR)
∣∣(û) = 1

2

∣∣ζL ζR w(φL, φR)
∣∣(û) ,

concluding the proof.
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In order to estimate the Green’s function, we need to control both φD

L and φD

R on
the whole interval (0, π). The estimates so far, however, only give us control of φD

L on
the interval (0, π

2 ) (and similarly of φD

R on the interval [π2 , π]). The following lemma
gives a formula for φD

L on the remaining interval [π2 , π].

Lemma 15.3. For any u ∈ [π2 , π],

φD

L(u) = φR(u)

(
ζL(û)

φL(û)

φR(û)
+ ζR

∣∣∣u
û

lim
v↘0

φR(v)

φL(v)

)
, (15.6)

where

lim
v↘0

φR(v)

φL(v)
=

φR(û)

φL(û)
+ w(φL, φR) ζL(û) . (15.7)

Proof. First,

φD

L(u) = φR(u)
φD

L(u)

φR(u)
= φR(u)

φD

L(û)

φR(û)
+ φR(u)

ˆ u

û

(φD

L

φR

)′
(τ) dτ .

Computing the derivative on the right gives

(φD

L

φR

)′
=

(φD

L)
′φR − φD

L(φR)
′

φ2
R

=
w(φD

L, φR)

φ2
R

.

Integrating this equation from û to u, we obtain

φD

L(u) = φR(u)
φD

L(û)

φR(û)
+ w(φD

L, φR) φR(u)

ˆ u

û

1

φ2
R

.

The Wronskian appearing here is most conveniently computed asymptotically at the
origin,

w(φD

L, φR) = lim
v↘0

(
(φD

L)
′(v)φR(v)− φD

L(v) (φR)
′(v)

)
= lim

v↘0

φR(v)

φL(v)
,

where in the last step we differentiated (2.17) and used the asymptotics of the funda-
mental solutions as stated in (2.11), (2.12) and (2.13). Applying (6.2) gives (15.6).

In order to prove (15.7), we begin with the computation

φR(v) = φL(v)
φR(v)

φL(v)
= φL(v)

φR(û)

φL(û)
− φL(v)

ˆ û

v

(φR

φL

)′

= φL(v)
φR(û)

φL(û)
+ φL(v)

ˆ û

v

w(φL, φR)

φ2
L

.

We now divide by φL(v) and take the limit v ↘ 0. This concludes the proof.

Proof of Proposition 15.1. Applying Lemma 15.2, our task is to estimate the
absolute value of the expression

E :=
φD

L(u)φ
D

R(u
′)

ζL(û) ζR(û)w(φL, φR)
for all 0 < u ≤ u′ ≤ π . (15.8)
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We consider the different cases after each other. In the case u < û and u′ > û, we
apply (15.4) to (15.8) to obtain

|E| ≤ 1

δ2

∣∣φD

L(u)φ
D

R(u
′)
∣∣

w(φL, φR)
.

Using that ∣∣w(φL, φR)
∣∣ = ∣∣φL(û)φR(û) (yL − yR)(û)

∣∣ ≥ Σ ,

we obtain the desired estimate.
Using the symmetry under reflections at π

2 , it remains to consider the case u, u′ ≥
û. Applying Lemma 15.3, a straightforward computation yields

E = −ζR(û)− ζR(u)

ζR(û)
φR(u)φR(u

′) ζR(u′) (15.9)

− 1

yL(û)− yR(û)

ζR(û)− ζR(u)

ζL(û)φL(û)2 ζR(û)
φR(u)φR(u

′) ζR(u′) (15.10)

− 1

yL(û)− yR(û)

1

ζR(û)φR(û)2
φR(u)φR(u

′) ζR(u′) . (15.11)

In the case u > uR
+, we estimate these terms by

|(15.9)| ≤ C

δ

∣∣φR(u)φ
D

R(u
′)
∣∣

|(15.10)| ≤ C

δ2Σ

∣∣φR(u)φ
D

R(u
′)
∣∣

|(15.11)| ≤ 1

δΣ

∣∣φR(u)φ
D

R(u
′)
∣∣

giving the desired estimate.
In the remaining case û ≤ u ≤ uR

+, we use the identity

∣∣ζR(û)− ζR(u)
∣∣ = ∣∣∣∣

ˆ u

û

1

φ2
R

∣∣∣∣
to obtain

|(15.9)| ≤ 1

δ

∣∣φR(u)φ
D

R(u
′)
∣∣ ∣∣∣∣
ˆ u

û

1

φ2
R

∣∣∣∣
|(15.10)| ≤ 1

δ2Σ

∣∣φR(u)φ
D

R(u
′)
∣∣ ∣∣∣∣
ˆ u

û

1

φ2
R

∣∣∣∣
|(15.11)| ≤ 1

δΣ

∣∣φR(u)φ
D

R(u
′)
∣∣ .

This gives the result.

16. Deforming the Potential. In the following estimates, we distinguish the
cases that the real part of the potential is positive and large near u = umax or that
it is negative or small there. We refer to these cases as the double-well case and
the single-well case, respectively. Qualitatively speaking, in the double-well case
the potential looks like in the Airy case, whereas the single-well case comprises the
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WKB and parabolic cylinder cases. However, these regions are not exactly the same,
making it necessary to use a new notation. The important difference is that the
single- and double-well cases are defined without referring to the constants C1,C4, . . ..
Instead, we work with the integrals (15.1) and introduce a new constant K > 0 (which
will be specified Section 16.1 below). More precisely, if ReV (umax) = 0, we are by
definition in the single-well case. If ReV (umax) > 0 (so that û is defined by (15.1)),
we distinguish the ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
single-well case :

ˆ vR

vL

Re
√
V ≤ K

double-well case :

ˆ vR

vL

Re
√
V > K .

(16.1)

16.1. Estimates in the Double-Well Case.

Lemma 16.1. By choosing K sufficiently large, we can arrange that in the double-
well case the following estimates hold:

∣∣φL(û)
∣∣, ∣∣φR(û)

∣∣ � 1
4
√
|V | e

´
û

vL
Re

√
V

(16.2)

∣∣yL(û)− yR(û)
∣∣ ≥√

|V (û)| . (16.3)

Moreover, the function Σ defined by (15.5) is bounded by

Σ � exp

(
2

ˆ û

vL

Re
√
V

)
. (16.4)

Proof. If K is chosen sufficiently large, we know from the estimates in Section 11.6
that the function |φL| (and similarly |φR|) can be approximated by the WKB wave
function (11.39). Moreover, as stated after (11.39), the coefficient of the exponen-
tially increasing fundamental solution is non-zero. This implies (16.2). Moreover,
differentiating (11.39), one finds that yL(û) ≈

√
V (û). Similarly, yR(û) ≈ −

√
V (û),

proving (16.3).
Finally, the estimate (16.4) follows immediately by using (16.2) and (16.3)

in (15.5).

From now on, we choose K so large that the the statement of this lemma applies.

Lemma 16.2. For any ε > 0, by increasing K we can arrange that for every
eigenvalue λ0, ∣∣ζL(û)∣∣ < ε

2
or

∣∣ζR(û)∣∣ < ε

2
. (16.5)

Proof. Let λ0 be an eigenvalue. Then the eigenvalue condition (10.22) is satisfied
at u = û, implying that

1

|φ2
LζL|

+
1

|φ2
RζR|

≥ |yL − yR| at û .

Applying Lemma 16.1, we obtain

1

|ζL(û)| +
1

|ζR(û)| � exp

(
2

ˆ û

vL

Re
√
V

)
≥ e2K .
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Applying again the argument after (11.40), by increasing C1 we can make the
exponential factors as small as we like. Hence, for any given ε > 0 we can arrange
that

1

|ζL(û)| +
1

|ζR(û)| ≥
2

ε
.

This gives the claim.

We now apply Proposition 14.1. In order to combine estimates for ζL and ζR, we
modify (14.3) according to

Δλ := 75 εmin

{( ˆ uL
r

uL
�

1√
|V |

∣∣∣∣
λ0

)−1

,

ˆ uR
�

uR
r

1√
|V |

∣∣∣∣
λ0

)−1
}

. (16.6)

Thus we choose Δλ so small that we can work with the same Δλ both for ζL and ζR.
Decreasing Δλ in this way can be described equivalently by making the parameter ε
in Proposition (14.1) smaller. The reason why this procedure is unproblematic is that
the parameter ε is changed at most by a uniform constant:

Lemma 16.3.

ˆ uL
r

uL
�

1√
|V |

∣∣∣∣
λ0

�
ˆ uR

�

uR
r

1√
|V |

∣∣∣∣
λ0

.

Proof. Similar as in the proof of Lemma 12.12 and Section 12.5, we make use of
the fact that the potential is approximately reflection symmetric around u = π

2 . We
thus obtain∣∣∣∣∣
ˆ uL

r

uL
�

1√
|V |

∣∣∣∣
λ0

−
ˆ uR

�

uR
r

1√
|V |

∣∣∣∣
λ0

∣∣∣∣∣ �
ˆ uL

r

uL
�

∣∣V (u)− V (π − u)
∣∣

|V | 32 �
|Ω|

C1 |Ω|
ˆ uL

r

uL
�

1√
|V | .

This gives the result.

Lemma 16.4. Let λ0 be an eigenvalue. Then, under the assumptions of the above
Lemmas 16.1 and 16.2, there is a closed contour Γ of length at most 20Δλ such that

|ζL|, |ζR| ≥ ε along Γ .

Proof. Let λ0 be an eigenvalue. Using Lemma 16.2, we can arrange that (16.5)
holds. Without loss of generality we may assume that

∣∣ζL(û)∣∣ < ε

2
,

because otherwise we repeat the proof with L and R interchanged. Applying Propo-
sition 14.1, we know that |ζL(û)| > ε inside the annular region AL(λ0). We choose
a contour Γ inside AL(λ0) close to the inner boundary (see the left of Figure 8). If
the inequality |ζR(û)| > ε holds along the contour Γ, there is nothing left to prove.
Otherwise, there is a point ν on Γ such that |ζR(û)| ≤ ε. Again applying Proposi-
tion 14.1, it follows that |ζR(û) > ε inside the annular region AR(ν). This makes it
possible to choose the contour Γ as shown on the right of Figure 8.
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AL(λ0)

Γ Γ

AL(λ0)

AR(ν)

Fig. 8. Choice of the closed contour Γ.

Proposition 16.5. The resolvent sλ exists along Γ and is bounded by

∣∣sλ(u, u′)
∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
− ´ vR

vL
Re

√
V ∣∣φD

L(u)φ
D

R(u
′)
∣∣ if u < û and u′ > û∣∣φR(u)φ

D

R(u
′)
∣∣ if u, u′ > uR

+∣∣φD

L(u)φL(u
′)
∣∣ if u, u′ < uL

+

e−2
´
vR
u

Re
√
V
∣∣φR(u)φ

D

R(u
′)
∣∣ if û ≤ u ≤ uR

+

e
−2
´
u′

vL
Re

√
V ∣∣φD

L(u)φL(u
′)
∣∣ if uL

+ ≤ u′ ≤ û .

Proof. We apply Proposition 15.1. By symmetry, in the estimates it suffices to
consider the index L.

We begin by estimating |ζL|. In the WKB region, the total variation of the ra-
dius R of the osculating circle is under uniform control by Proposition 12.1. In the
region (0, u�) near the pole, on the other hand, this total variation is even small
by Lemma 12.6. In the Airy region, Proposition 11.11 provides uniform estimates.
Finally, Lemma 11.13 controls the total variation of ζL on the interval [u+, û]. Com-
bining these results, we conclude that

|ζL| � 1 on (0, û] .

This gives (15.3). Moreover, we know from Lemma 16.4 that (15.4) holds for δ = ε.
We conclude that the assumptions (15.3) and (15.4) in Proposition 15.1 are satisfied.

Let us verify the assumption (15.2). From (16.2) and (16.3) we know that

∣∣ζL(û)φ2
L(û)

∣∣ � 1√
|V | exp

(
2

ˆ û

vL

Re
√
V

)
�

e2K

|yL(û)− yR(û)| .

Thus by further increasing K we can arrange (15.2). Therefore, Proposition 15.1
applies.

We estimate the integrals over 1/φ2
R by

ˆ u

û

1

|φR|2 �

ˆ u

û

Re
√
V e−2

´
uR
0

v
Re

√
V dv =

1

2

ˆ u

û

d

dv
e−2

´
uR
0

v
Re

√
V

�

(
e−2

´
uR
0

u
Re

√
V − e−2

´ uR
0

û
Re

√
V

)
� e−2

´
vR
u

Re
√
V .

Using the lower bound for Σ in (16.4) as well as (15.1) gives the desired estimate.
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16.2. Estimates in the Single-Well Case. In the previous section we chose
the parameter K. We now proceed with estimates in the single-well case for this fixed
value of K.

Proposition 16.6. There is a suitable choice of ε < 1/(1000) such that for
sufficiently large C1 the following statement holds. If λ0 is eigenvalue in the single-
well case, then the resolvent exists inside the annulus AL(λ0) (defined by (14.1)) and
is bounded by ∣∣sλ(u, u′)

∣∣ � c
∣∣φD

L(u)φ
D

R(u
′)
∣∣ if u ≤ u′

(where the constant c may depend on K and ε).

Proof. Let λ0 be an eigenvalue. Then the eigenvalue condition (10.22) holds
for any u ∈ (0, π). We now choose a specific value ŭ where the analysis of the
expression in (10.22) is particularly simple. To this end, we consider the osculating
circle corresponding to φL on the interval (0, ur). According to Lemma 12.6 , we can
make |ζ(u�)| arbitrarily small. Thus for any δ > 0 by increasing C1 we can arrange
that ∣∣R(u�)− |p(u�)|

∣∣ < δ .

Next, in the WKB region (u�, ur), we know from Proposition 12.7 that the center p
of the osculating circle is approximately fixed, whereas the change of the radius R is
given explicitly in terms of the integral of Re

√
V . Using the estimate (12.21) together

with Proposition 12.2, for any given δ > 0 we can arrange that that∣∣R(ur)− |p(ur)|
∣∣ < δ .

If we start at u = ur and decrease u, the function ζ(u) will move along the osculating
circle with an angular velocity as given by (6.9). We choose ŭ as the largest value
of u where the angle ϑ is such that ζ is close to the origin, i.e.∣∣ζL(ŭ)∣∣ < 2δ . (16.7)

In what follows, we evaluate all functions at the point ŭ. For ease in notation,
we shall omit the arguments of these functions. From the estimates in Section 11 we
know that

|φL|2, |φR|2 � 1√
|V | (16.8)

(where the constants in the upper and lower bounds may depend on K). Moreover,∣∣yL − yR
∣∣ � √

|V | . (16.9)

Therefore, the eigenvalue condition (10.22) gives rise to the estimate

1

|ζR| �
1

|ζL| −
∣∣yL − yR

∣∣√
|V | �

1

δ
,

implying that ∣∣ζR∣∣ � δ . (16.10)
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Combining (16.7) and (16.10) we conclude that for any δ̃ > 0, we can arrange by
increasing C1 that at ŭ, ∣∣ζL∣∣, ∣∣ζR∣∣ < δ̃ .

We now vary the spectral parameter λ (for fixed ŭ and K). Our goal is to analyze
how the left side of (10.22) depends on λ. To this end, it is most convenient to include
the phase of the factor φ2 into the corresponding factor ζ. Thus, using the notation
in (6.5), we set

z = e2iϑζ so that φ2ζ = |φ|2 z .

Then, according to (6.6),

z = p e2iϑ +
i

K
.

Hence (10.21) can be written as

w(φD

L, φ
D

R)

φD

Lφ
D

R

= yL − yR +
1

|φL|2zL −
1

|φR|2zR = yL − yR +
|φR|2zR − |φL|2zL
|φL|2zL |φR|2zR .

It follows that ∣∣∣∣w(φD

L, φ
D

R)

φD

Lφ
D

R

∣∣∣∣ ≥
∣∣∣∣ |φR|2zR − |φL|2zL
|φL|2zL |φR|2zR

∣∣∣∣− ∣∣yL − yR
∣∣ .

Now we can vary the angle ϑ and the radius R = |K|−1 of the osculating circles using
the formulas in Proposition 13.5. Keeping in mind that the variation of ϑR and KR

involves a minus sign (because we consider the differential equations backwards in u),
one sees that the variations of Re zL and Re zR (and similarly of Im zL and Im zR)
have opposite signs.

We now choose λ in the annulus AL(λ0) as defined by (14.1). The resulting
variations of zL and zR are obtained by integrating the infinitesimal variations, exactly
as explained in the proof of Proposition 14.1. Given ε > 0, by choosing δ̃ sufficiently
small we can arrange the variation is much larger than z at λ = λ0 (see the formulas of
Proposition 14.2). Thus the above consideration for the sign of infinitesimal variations
implies that Re zL and Re zR (and similarly Im zL and Im zR) have opposite signs.
This gives rise to the inequality∣∣|φR|2zR − |φL|2zL

∣∣ ≥ ∣∣φ2
LzL

∣∣ .
It follows that inside the annulus AL(λ0),∣∣∣∣w(φD

L, φ
D

R)

φD

Lφ
D

R

∣∣∣∣ ≥ 1∣∣φ2
RζR

∣∣ − ∣∣yL − yR
∣∣ .

Using (16.8) and (16.9) together with the fact that |ζL| and |ζR| are uniformly bounded
from above, we conclude after choosing ε sufficiently small, the first summand ma-
jorizes the second summand, i.e.∣∣∣∣w(φD

L, φ
D

R)

φD

Lφ
D

R

∣∣∣∣ � 1∣∣φ2
RζR

∣∣ .
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Multiplying this inequality by |φD

L| = |ζLφL and |φD

R|, we obtain

∣∣w(φD

L, φ
D

R)
∣∣ �

∣∣φLζL
∣∣

|φR| .

Using again that |ζL| = |zL| is bounded from below, we conclude that∣∣w(φD

L, φ
D

R)
∣∣ � 1 .

Finally, we use this estimate in (2.19). This concludes the proof.

16.3. Tracking the Eigenvalues. We are now in the position to complete
the proof of Theorem 1.1. In order to locate the eigenvalues, we use the following
deformation argument. We consider for τ ∈ [0, 1] the homotopy

Vτ = ReV + τ ImV

with V as in (2.7). Then at τ = 0, the potential is real. As a consequence, the
Sturm-Liouville operator is self-adjoint. It has a purely discrete spectrum with real
eigenvalues. If τ > 0, on the other hand, the potential is complex. Our method is to
track each eigenvalue as τ is increased.

At τ = 0, we choose the contours as shown in Figure 5, with N chosen as follows.
First, we choose N at least as large as in Proposition 7.7 for c4 so large that the
eigenvalue λN satisfies the inequality (10.2). The next lemma makes it possible to
arrange a spectral gap.

Lemma 16.7. By increasing N at most by four, we can arrange that for a suitable
constant c > 0 and large |Ω|,

λN − λN−1 ≥ c |Ω| . (16.11)

Proof. In preparation, we want to show that there is a constant c1 > 0 such that
for sufficiently large |Ω|, the eigenvalues of the Hamiltonian (7.2) satisfy the inequality

λN+4 − λN ≥ c1 |Ω| . (16.12)

To this end, we first note that the analysis in the proof of Proposition 7.7 shows that
the solution φD has no zeros on the interval (0, uL

−) near the pole at u = 0. Similarly,
the solution φD has no zeros on the interval (uR

−, π) near the pole at u = π. Moreover,
on the interval (uL

+, u
R
+) where the potential is non-negative, we know from Lemma 7.4

that φD has at most one zero. Therefore, counting the number of zeros of φD on the
intervals (uL

−, u
L
+) and (uL

−, u
L
+), this number differs at λN+4 and λN at least by three.

As a consequence, on one of the intervals (uL
−, u

L
+) or (uL

−, u
L
+), the number of zeros

of φD differs at least by two. By symmetry, we may assume without loss of generality
that this is the case on the interval (uL

−, u
L
+). It follows from Lemma 7.5 that

ˆ uL
+

uL
−

(
Im y|λN+4 − Im y|λN

)
≥ π .

Applying the mean-value theorem in the parameter λ, we obtain

(
λN+4 − λN

)
sup

λ∈[λN ,λN+4]

ˆ uL
+

uL
−

∣∣∂λy∣∣ ≥ π .
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In order to estimate ∂λy, we use the formula (7.13). Inserting the asymptotic expan-
sions near the poles (see (11.15) and (11.22)) and using the rigorous estimates in [12,
Section 5 and 8], a straightforward computation gives the inequality (16.12).

The inequality (16.12) shows that for any Ω, one can choose N such that (16.11)
holds (for c = c1/4). In order to show that N can be chosen uniformly in Ω (for
large |Ω|), we make use of the fact that the leading powers in Ω in the potential (2.8)
are symmetric around u = π

2 . This implies the small eigenvalues have the same
asymptotics as ReΩ → ±∞ (with the corresponding eigenfunctions transforming
as φn(u)→ φn(π − u)). As a consequence, we can choose N such that (16.12) holds
for all Ω with |Ω| sufficiently large.

For the chosen N , we choose the contour Γ0 such that it encloses the lowest N
eigenvalues, where N is chosen at least as large as in Proposition 7.7. The other
contours enclose one eigenvalue (see Figure 5). Then all eigenvalues not enclosed
by Γ0 satisfy the inequality (10.2).

Now we continuously change the parameter τ and follow each of the eigenval-
ues. We also continuously deform the contours Γ0, Γ1, . . . such that they enclose the
corresponding points in the spectrum. If λ0 is an eigenvalue in the single-well case,
according to Proposition 16.6 the resolvent is well-defined and bounded along a closed
contour Γ in the annular region AL(λ0) (which can be chosen for example as on the
left of Figure 8). For an eigenvalue λ0 in the double-well case, on the other hand, there
are two possible subcases. Either the eigenvalue is isolated in the sense that we can
again choose the contour as on the left of Figure 7. Or else the eigenvalue can be close
to another point in the spectrum, in which case we choose the contour as on the right
of Figure 8. In both subcases, the resolvent estimate of Proposition 16.5 applies.
Finally, we enclose the remaining N lowest spectral points again by a contour Γ0.
Defining the corresponding operators Qn by

Qn := − 1

2πi

‰
Γn

sλ dλ , n ∈ N0 ,

we obtain a family of operators.
For clarity, we point out that spectral points may move from the single-well case

to the double-well case and vice versa. Moreover, the contours Γn do not need to
be chosen continuously in τ . Indeed, if two eigenvalues come close together, the
corresponding contours must be changed discontinuously because the two contours
enclosing the two eigenvalues (as on the left of Figure 8) must be joined to form one
contour (as on the right of Figure 8). As a consequence, the operators Qn will in
general not depend continuously in τ .

It remains to verify a-posteriori that the inequality (10.2) holds for all τ ∈ [0, 1]
and for all spectral points not enclosed by Γ0. To this end, we first point out that
the eigenvalues may change considerably compared to the size of the gaps between
neighboring eigenvalues (this is why the theory of slightly self-adjoint perturbations
does not apply here). But the previous methods tell us how the eigenvalues change
in τ (in particular see Section 6, Section 10.2 and Section 12.3). In simple terms,
these results show that the eigenvalues must satisfy the complex Bohr-Sommerfeld
condition (3.6) with well-defined errors. Combining this formula with the mean value
theorem ∣∣∣√V1 −

√
V0

∣∣∣ ≤ sup
τ∈[0,1]

| ImV |√
|Vτ |

(16.13)
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and using that on the interval (u�, ur) the absolute value of the potential is larger
than C1 |Ω|, whereas | ImV | � |Ω|, one sees that the eigenvalues change in such a way
that (10.2) remains valid.

16.4. Uniform Boundedness of the Qn and Completeness. It remains
to verify that the constructed operators Q0, Q1, . . . at τ = 1 have all the required
properties. The idempotence and mutual orthogonality of these operators follows im-
mediately from Lemma 5.2. We now proceed by estimating the sup-norm of the op-
erators Qn. For the operator Q0 we again apply the theory of slightly non-selfadjoint
perturbations:

Proposition 16.8. There is a constant c2 such that for all sufficiently large |Ω|,
‖Q0‖ ≤ c2 .

Proof. In view of the gap estimate (16.11), by increasing |Ω| we can arrange that
| ImV | is much smaller than the gap. This makes it possible to find a contour Γ0

enclosing the first N spectral point whose distance to the spectrum is much larger
than | ImV |. This makes it possible to estimate the corresponding contour integral
in (8.4) for n = 0 by estimating the Neumann series (8.3). This gives the result.

We next estimate the operators Q� with � ≥ 1. We begin with a preparatory
lemma.

Lemma 16.9. Along the contours Γ1,Γ2, . . ., the Hilbert-Schmidt norm of the
resolvent is bounded by

‖sλ‖HS �

ˆ uL
r

uL
�

1√
|V |

∣∣∣∣
λ0

+

ˆ uR
�

uR
r

1√
|V |

∣∣∣∣
λ0

.

(with λ0 as in (16.6)).

Proof. The Hilbert-Schmidt norm of the resolvent can be expressed in terms of
its kernel by

‖sλ‖2HS =

ˆ π

0

du

ˆ π

0

du′ ∣∣sλ(u, u′)
∣∣2 .

We begin with the single-well case. Proposition 16.6 gives the estimate

‖sλ‖2HS
≤ 2

ˆ π

0

du

ˆ π

u

du′ ∣∣φD

L(u)φ
D

R(u
′)
∣∣2

= 2

ˆ π

0

du

ˆ π

u

du′ ∣∣ζL(u)φL(u) ζR(u
′)φD

R(u
′)
∣∣2 . (16.14)

Near the pole at u = 0, the functions φL and φR may have a pole (see (11.22)). On
the other hand, the function ζL(u) vanishes at u = 0. As a result, the integrand
in (16.14) is bounded near the poles, as the following argument shows. We introduce
the functions ρL and ρR by

ρL(u) = sup
(0,u]

|ζL| and ρR(u) = sup
[u,π)

|ζR| .

Then the integrand in (16.14) can be bounded by∣∣ζL(u)φL(u) ζR(u
′)φD

R(u
′)
∣∣2 ≤ ρL(u) |φL(u)|2ρR(u) ρL(u) |φR(u

′)|2ρR(u) ,
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giving rise to the estimate

‖sλ‖2HS
�

∏
c=L,R

ˆ π

0

ρL(u) |φc(u)|2 ρR(u) . (16.15)

In order to estimate the obtained integrand near u = 0, we first note that ζR is
uniformly bounded. Considering the asymptotics near u = 0 (see (11.16) and (11.22)),
one sees that the function |φc|2 may have a pole at u = 0. But in this case, inserting
the asymptotics into (6.1), one finds that |ζL| (and therefore also ρL) tends to zero at
the inverse rate. We thus conclude that the integrand in (16.15) is indeed bounded
near the poles.

Away from the poles, we can use the asymptotics (16.8) to obtain the result. This
concludes the proof in the single-well case.

In the double-well case, we work similarly with the resolvent estimate of Propo-
sition 16.5. The behavior near the poles is estimated just as in the single-well case.
The only additional issue is the behavior on the interval [uL

+, u
R
+] in the Airy case.

In this case, combining the exponential factor exp(−2 ´ vR
u

Re
√
V ) with the WKB

asymptotics gives rise to the estimate

e−2
´
vR
u

Re
√
V
∣∣φD

R(u)φR(u
′)
∣∣ � 1

4
√
|V (u)| |V (u′)| e

−2
´
min(u′,vR)
u

Re
√
V .

A straightforward computation using the exponentially decaying factor on the right
gives the result.

Proposition 16.10. There is a constant c2 such that the operators Q1, Q2, . . .
are bounded by

‖Qn‖ ≤ c2 ,

uniformly in Ω.

Proof. We estimate the contour integrals by

‖Qn‖ ≤ L(Γn) sup
λ∈Γn

‖sλ‖ ,

where L(Γn) denotes the length of the contour. The length of the contour is bounded
by 20Δλ with Δλ as given by (16.6) (this is obvious in the single-well case, whereas
in the double-well case it was proven in Lemma 16.4). Applying Lemma 16.9 and
Lemma 16.3 and using that the Hilbert-Schmidt norm majorizes the sup-norm, the
result follows.

It remains to prove completeness in the sense of (1.7) with strong convergence of
the series. Since completeness is a statement for fixed Ω, we can rely on the theory of
slightly non-selfadjoint perturbations. Namely, Proposition 8.1 yields that there is Ñ
(which might be much larger that the parameter N in the statement of Theorem 1.1)
a family of operators Q̃0, Q̃1, . . . with the completeness property

∞∑
ñ=0

Q̃ñ = 11 with strong convergence .
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The spectral decompositions (Qn) and (Q̃ñ) are related to each other simply by form-
ing finite sums, i.e.

∑
n∈Λ

Qn =
∑
ñ∈Λ̃

Q̃ñ (with Λ, Λ̃ ⊂ N0)

whenever the operators on the left and right describe the same spectral points. In
particular, for large n, the operators Qn are sums of one or two of the operators Q̃ñ.
This implies that the series in (1.7) also converges strongly. Since every the spectral
point is taken into account in exactly one of the operators Qn, it follows that

∞∑
n=0

Qn =

∞∑
ñ=0

Q̃ñ with strong convergence .

This concludes the proof of Theorem 1.1.
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