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CURRENTS AND DISLOCATIONS AT THE CONTINUUM SCALE*

RICCARDO SCALAT AND NICOLAS VAN GOETHEM?

Abstract. A striking geometric property of elastic bodies with dislocations is that the defor-
mation tensor cannot be written as the gradient of a one-to-one immersion, its curl being nonzero
and equal to the density of the dislocations, a measure concentrated in the dislocation lines. In this
work, we discuss the mathematical properties of such constrained deformations and study a vari-
ational problem in finite-strain elasticity, where Cartesian maps allow us to consider deformations
in LP with 1 < p < 2, as required for dislocation-induced strain singularities. Firstly, we address
the problem of mathematical modeling of dislocations. It is a key purpose of the paper to build
a framework where dislocations are described in terms of integral 1-currents and to extract from
this theoretical setting a series of notions having a mechanical meaning in the theory of disloca-
tions. In particular, the paper aims at classifying integral 1-currents, with modeling purposes. In
the second part of the paper, two variational problems are solved for two classes of dislocations, at
the mesoscopic and at the continuum scale. By continuum it is here meant that a countable family
of dislocations is considered, allowing for branching and cluster formation, with possible complex
geometric patterns. Therefore, modeling assumptions of the defect part of the energy must also be
provided, and discussed.

Key words. Cartesian maps, integer-multiplicity currents, dislocations, finite elasticity, model-
ing, variational problem.
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1. Introduction.

Physical motivation of the problem. In single crystals, dislocations naturally
arise as closed lines where microscopic defects of the atomic structure of the material
are concentrated. At the macroscale, their presence is responsible for plastic behavior
and dissipative phenomena linked to the deformation of the medium and to the forces
exerted in the bulk or at the boundary. Consider one dislocation loop L in a continuous
medium . At the mesoscopic scale it is assumed that  \ L is an elastic body, and
thus that all dissipative (i.e., including plastic) effects are concentrated in L. Tt is
also assumed that L is a one-dimensional singularity set for the stress and strain
fields. Moreover, if a linear elastic constitutive law is chosen, classical examples of
screw and edge dislocations show that the stress and strain are not square integrable
[15], and hence that the strain energy is unbounded near L. This strongly suggests
to consider finite elasticity near the line with a less-than-quadratic strain energy,
possibly matched with a linear law at some distance from the singularities. A crucial
property of 2 assumed as a single crystal (as opposed to a polycrystal with internal
boundaries) is that the family of dislocations are free to move in the bulk and through
part of the boundary, and hence are likely to form geometrically complex structures,
called clusters (otherwise named dislocation networks). This phenomenon is enhanced
if the crystal is considered at high temperature or subjected to high temperature
gradients, since the constrained motion of dislocations on predefined glide planes
only holds for moderate temperature ranges. In this paper, overlooking on purpose
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the specific inter-dislocation dynamics [31, 32, 28] which causes attraction/repulsion
between dislocations and are responsible for their aggregation, we consider the cluster
as a mathematical object which must be described in a geometrically unified way
together and accordingly with any single dislocation loop.

Origin and nature of a dislocation singularity. One intrinsic difficulty of
mesoscopic dislocations is that there is no natural definition of the displacement field
(note that this also holds for the fictitious reference configuration), whereas the dis-
placement field jump is a physical field attached to L C € and called Burgers vector
(this is the famous Weingarten’s theorem). Counsider the current configuration 2
(taken as a bounded simply-connected set) with a single dislocation L and any sepa-
rating surface Sy, containing L. The set Q\ L is not simply-connected, but the upper
and lower subsets of Q, QT and Q~ separated by Sy, are simply-connected and in each
of them (an inverse) displacement field ug, : 2 — R3 may be defined, which will be
discontinuous at S7,. This field will define a reference configuration with a mismatch
along a surface corresponding to the image of the jump set. This is precisely what
characterizes the presence of a dislocation. Now, the map ® := (Id + ug, ) allows us
to define the associated elastic deformation tensor F' = V¢ which is also discontinuous
at Sr. (to be precise, an inverse deformation tensor!). Now, taking two curves a* in
QF with the same endpoints A and B in Sy, respectively outside and inside L, one
has:

b= /QFdl, (1.1)

where a denotes the loop from B to itself, obtained by running first o~ and then
o in the opposite direction. Otherwise said, ¢ shows a discontinuity of amplitude b
at the jump set S7 enclosed by L. Hence the distributional derivative of ¢ writes as
D¢ = F +b®@nH?_gs and it holds — Curl F = Curl (b ® nH?_gs) (where n stands
for the unit oriented normal to S). Thus by Stokes theorem and written in terms of
the dislocation density

A=10bH' |
(with 7 the oriented tangent vector to L C ), it holds
—Curl F = AT, (1.2)

which is the key geometric/kinematic constraint relating deformation and dislocations.

The variational framework. Coming back to the physics and the mathematical
properties of dislocations, we have already mentioned that in finite elasticity F' €
LP(Q,M3) with 1 < p < 2 (see e.g. [33] for examples). In fact, this property originates
from relation (1.1) which shows that F behaves asymptotically near L as the inverse of
the distance to L. Moreover, with a view to a global model, cavitation solutions cannot
be ruled out, since they are at the origin of the nucleation of dislocations from the
growth of micro-voids in the bulk [23]. Here, classical examples show that deformation
allowing for radial cavitation are such that cofFF € L9(Q,M?3) with 1 < ¢ < 3/2

1This convention — of considering the inverse deformation gradient, defined in © —, can also be
found in [1]. In fact, it is preferred to have a discontinuous reference configuration, while the current
configuration is the continuous medium containing the —possibly time-evolving— dislocation network.
Thus, the energy density of Q2 will also depend on such a F'.
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[14]. Thus, one cannot restrict to the interval 3/2 < p < 2 where some existence
results in finite elasticity already exist [22], and must allow F, cof F € LP(Q,M?3)
in the whole range 1 < p < 2. For this reason, as suggested in [22], Cartesian
maps will be considered [13]. Moreover, nucleation of dislocation loops resulting
from the collapse of a void will provoke locally high pressure gradient and hence
the behavior of the Jacobian J = detF must be controlled. Therefore, classical
pointwise conditions on J will be considered: these are the non-negativeness (to ensure
orientation preserving deformation and non-interpenetration of matter) or the fact
that J — 07 is precluded by finite energy states. Finally, to avoid any spurious (i.e.,
concentrated and dissipative) effects away from the dislocation set, we will assume
not only that detF, cof ' € LP(2, M?) but also that their distributional counterparts
have no s-dimensional (0 < s < 3) singular parts in Q\ L , that is, DetF, CofF €
LP(Q,M?) locally away from L [21]. Indeed, the dislocations induce a jump set where
the distributional Jacobian concentrates. As a consequence, the strain energy density
W, : M? — R will depend on F, cof F' and detF and will be assumed polyconvex, i.e.,
convex in each variable separately, and satisfying the growth

Wo(F) > C(IF|P + | cof F|P + | detF|P) — 3 (1.3)

for some C,8 > 0. In our problem, strain gradients play a crucial role and thus a
strain-gradient elastic energy involving F' and Curl F' will be considered. This can be
achieved by assuming that the energy takes the form W(F, Curl F) = Jo We(F)dz +
Wdcfcct( Curl F) or equivalently, in terms of the internal thermodynamic variable Az,
as W(F, L) = [, We(F)dx + Waetect (Az), since — Curl F = A} (here Az denotes the
density of the dislocation L). In particular,

Wdcfcct(AL) > C”AL”Mb(Q)v (14)

allowing us to control pathological behaviors of dislocation clusters. Note that the
defect part of the energy can also be seen as the energy depending on the concentration
of the Jacobian of the displacement (see section 5.3).

Scope and structure of the work. The variational framework is inspired by
the pioneer paper [22], where a single and fized dislocation loop is considered, and
hence minimization is achieved only with respect to the deformation tensor F. The
principal aim of this paper is to generalize the problem, and thus minimization is
made also with respect to the line location. With the aforementioned type of energy,
our aim is twofold. In a first step, to define classes of admissible deformations F' and
admissible dislocations L satisfying (i) a boundary condition in terms of dislocation
density and (ii) the geometric constraint (1.2). In a second step, to prove existence
of solutions to

min ~ W(F, L). (1.5)
F.C
— Curl F:Az

To achieve the proof of existence, a series of preliminary results must be proved
and in particular we define and carefully analyze two classes of dislocations, at the
mesoscopic and at the continuum scales. With this respect, an important result is
Theorem 4.6 which states their equivalence under certain conditions. Let us stress
that both these classes have a specific interest in terms of modeling, according to the
choice of the dislocation variable: either the line per se (i.e., a current £, which might
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be followed with time — though in this work we restrict to statics), or its associated
density (i.e., the measure Az). In the latter case, the associated line £ must not be
determined everywhere — it will be known on the geometric necessary parts. Then, the
two existence results are Theorems 5.5 and 5.6, respectively for the class of mesoscopic
and continuum dislocations.

Let us remark that by solving (1.5) we consider a statics problem, whereas dislo-
cations are known to be moving defects inside the crystal by the action of mechanical
and thermal forces [1, 16]. First, we should precise that by considering an equilibrium
problem at fixed time ¢, we indeed define a thermodynamical ground-state on the base
of which dynamical effects will be added in a second step, beyond the scope of this
paper. Second, such minimization states are reached very fast in actual crystals such
as pure copper, where resistance to dislocation motion is negligible [5]. Nonetheless,
we emphasize that the main objective of this work is not the minimization result
per se, but rather the mathematical definition of dislocations achieved by mean of
integer-multiplicity currents with coefficients in a group. A similar approach to con-
tinuum dislocations by integral currents was already suggested in [16], [17], and [9],
but without such a systematic description as we sought. It will be shown that these
well-studied mathematical objects are perfectly adapted to describe countable families
of dislocations, each of which can deform and mutually be summed, possibly forming
complex transfinite geometries (in the sense of Cantor [7]), with appropriate laws on
their Burgers vectors at dislocation junctions.

Let us emphasize that the chosen approach to minimize jointly the deformation
and the line location is more correct from a physics standpoint, since the deformation
field is inherently bound up with the dislocation density. To our knowledge, the main
results of this paper represent the first generalization in this direction. Of course, to
achieve this purpose, modeling assumptions on the defect-part of the energy must be
made, since otherwise dense clusters might appear as limit of minimizing sequences,
and hence the mesoscopicity assumption would be violated. We attempted to also
give a physical understanding on the growth assumptions, but our aim was mainly to
set a mathematical framework, where the complete problem could be studied. We are
certain that better assumptions exist, but leave these considerations for future works.
With this respect, thanks to our minimization results, the dynamics of the lines at
optimality could be analyzed and discussed in a companion paper [25]. Nevertheless,
in order to set apart the construction of the mathematical model and the discus-
sion of the definitions and assumptions, we have chosen to defer a large portion of
the model discussion to a specific section: about modeling considerations and model
justifications, cf. Appendix A.

This paper is self-contained and can be read without previous notions neither
on dislocations nor on currents. After collecting some preliminaries, in Section 3
the general notion of dislocations as described by integral currents is provided, while
in Section 4 special emphasis is given on its two subclasses of so-called mesoscopic
and continuum dislocations. In particular, the relation between these two notions
is discussed in Theorem 4.6. In Section 4.4, we discuss the admissible deformations
satisfying the constraint (1.2). In particular, we show that the class of admissible de-
formations satisfying the boundary conditions given in terms of the dislocation density
is well defined and this allows us to solve the two minimum problems of Section 5. In
section 5.3, we show how the concept of deformation in the presence of dislocations
is related to the space of functions of bounded higher variation introduced in [18].
Conclusions and plans to further extend the range of applications of this approach
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are drawn in Section 6. Lastly, in Appendix A, we propose a model discussion with
emphasis on the physical justification of the chosen formalism.

2. Preliminary notions and results. The curl of a tensor A is defined com-
ponentwise as (Curl A);; = €, Di Ay where D denotes the distributional derivative.
In particular one has

(Curl A,v¥) = —(Au, €juDrthij) = (Au, €uj Dipthij) = (A, Curl ). (2.1)

Note that with this convention one has Div Curl A = 0 in the sense of distributions,
since componentwise the divergence is classically defined as (Div A), = D;A;;.2 For
the remaining of this section, our main references are [11, 13].

2.1. Preliminaries on compact sets. Let C' be a compact set in R™. We
define IC(C) as the family of compact and non-empty subsets of C. We define the
Gromov-Hausdorff distance dg (-, ) in K(C) by

dp (A, B) := max{sup d(a, B),sup d(A,b)},
a€A beB

for all A,B € K£(C). If A is a Borel set in R™, we denote by A, the set of points at
distance less than € from A, i.e.,

Ac:={z eR":d(z,A) < ¢}.
It is known that the Gromov-Hausdorff distance satisfies
dy(A,B) =inf{e >0: AC B.and B C A.},

for all A, B € K(C), and hence the latter can be taken as an equivalent definition.
The following theorem is a standard result, whose proof can be found, for instance,
in [4, 6].

THEOREM 2.1. (Blaschke) Let C' C R™ be a compact set. Then the space K(C)
endowed with the Gromov-Hausdorff distance dy is sequentially compact.

In particular, if K, is a sequence in K(C') converging to K, than K is a compact
set. Moreover, it holds (for the proof see, e.g., [4, 6]):

THEOREM 2.2. (Golab) Let {K,} be a sequence of connected sets in K(C) con-
verging to K and such that H'(K,) < A\ < co. Then K is connected, has Hausdorff
dimension 1, and

HY(K) < liminf H(K,). (2.2)

n—oo

2.2. Currents and graphs of Sobolev functions. Let M, n be integers with
0 < M < n. We denote by AMR™ and Ap/R"™ the vector spaces of M-covectors
and M-vectors respectively. A M-vector £ is said simple if it can be written as a
single wedge product of vectors, £ = vy A vy A --- Avy. Details on exterior algebra
can be found in [19]. Let o be a multi-index, i.e., an ordered (increasing) subset of

2In this paper we therefore follow the transpose of Gurtin’s notation convention [8] but care
must be payed since the curl and divergence of tensor fields are given alternative definitions in the
literature (including the second author references [27]-[29] where it holds Curl A = —A x V).
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{1,2,...,n}. We denote by |a| the length of «, and we denote by & the complementary
set of a, i.e., the multi-index given by the ordered set {1,2,...,n}\ a.

For a n x n matrix A with real entries and for o and 8 multi-indices such that
la| + |8] = n, MEZ(A) denotes the determinant of the submatrix of A obtained by
erasing the i-th columns and the j-th rows, for all i € a and j € 3. Moreover, symbol
M (A) denotes the n-vector in A,,R?" given by

M(A):= > ola,a)ML(Aea Aeg,
|a|+[6]=n

where {e;, ;}i<n is the Euclidean basis of R*" and o(«, @) denotes the sign of the
ordered set {«, @} seen as a permutation of the set {1,2,...,n}. Accordingly,

M) = Y MR,
aE

For a matrix A € M3, symbols adj A and detA stand for the adjunct, i.e. the
transpose of the matrix of the cofactors of A, and the determinant of A, respectively.
Explicitly,

i i 1,2,3
Mi(A) = Ay, MJ(A) = Mi(A) = (cofA);;  M[177)(A) = deta, (2.3)

where T and J are the complementary set in {1,2,3} of {i} and {j}. Moreover,

M) = (14+ 4% + 3 cof(A)3 + det(4)%) 2. (2.4)
Let us also define
M(A) = (A,adj A, detd), |M(A)] == [M(A)]. (2.5)

Currents. Let  be an open set in R™. For non-negative integers M < n,
the symbol DM (Q) = D(; AMR™) stands for the topological vector space of C>°-
differential forms with degree M and compact support in €. The space of M-
dimensional currents on € is defined as Dy (Q) := (D(2; AMR™))’, the class of con-
tinuous linear functionals on DM (2). Since Dy, (1) is a dual space, it is endowed with
a natural weak topology. More precisely, the currents T), € Dy, (£2) are said to weakly
converge to T' € Dy () if and only if

<Tk, w> — <T, UJ>

for every w € DM (Q).

If S is a M-dimensional oriented submanifold in R” and S : § — Ay (R") is
a simple M-vector giving the orientation, the symbol [S] € Dy (R™) denotes the
current obtained by integration on S, that is,

[S)(w) = /S<w, SYaHM  for w e DM(Q), (2.6)

where (-, -) stands for the duality product between M-vectors and M-covectors, and
HM is the M-dimensional Hausdorff measure.
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The boundary of a current T' € Dy () is the current 0T € Dyr—1(Q2) defined by
OT (w) := T(dw) for we DM 1(Q),

where dw is the external derivative of w. A current T is said closed if 9T = 0. Using
again the duality with M-forms, if U C R™ and V' C R™ are open sets and ' : U — V
is a smooth map, it is defined the push forward of a current T' € Dy, (U) by F as

FT(w) :=T((Ffw) for we DY (V),

where F*w is the standard pull-back of w and ¢ is any C>°(U) function which is equal
to 1 on sptT N sptFw (here and below “spt” stands for support). It turns out that
F;T € Dy (V) does not depend on ¢ and satisfies

OF,T = F,oT. (2.7)
The mass of a current T € Dy, () is defined by

|T|:= sup T (w), (2.8)
weDM(Q),|w|<1

and if V' C € is an open set, we can consider the mass of T in V| i.e.,

|T|y = sup T (w). (2.9)
weDM(Q),|w|<1,
sptwCV

Not to overburden some subsequent formulae, the notation will be employed:
N(T) = |T|+1[0T|, Nu(T):=|T|v+|9T v,

whenever T € Dy (Q) and U C Q is an open set. Notice that this number, which
measures both the mass of a current and of its boundary, is not a norm.

Rectifiable currents. A set S C R" is said HM-rectifiable if it is contained in
the union of a negligible set and a countable family of C''-submanifolds. Moreover, a
HM_rectifiable set S is said a M-set if it has HM-finite measure, whereas it is said
locally finite if for each compact set K C R™ we have HM (S N K) < oco. It is well
known that at H™-a.e. point o of a HM-rectifiable set S, there exists an approximate
tangent space defined as the M-dimensional plane 7,S in R™ such that

lim o(y)dHM (y) = / o(y)dHM (y),

A=0 S, A (9) T,

for all ¢ € CO(R™), where 7, : R® — R" is the map defined by 7, (y) = A" (y — z)
with z,y € R” and A > 0.

If7: S — Ay (R") with 7(x) € T,.S is a simple unit M-vector for HM-a.e. z € 9,
and 6 : S — R is HM-integrable, we can define the current

T(w) = /S<w(x), 7(x))0(x)dHM (z)  for w e DM(Q). (2.10)

Every current for which there exists such S, 7, and 6 is said a rectifiable current, and
will be denoted by

T ={S,7,0}. (2.11)
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Integral currents. A rectifiable current 7' € Dy () is said rectifiable with
integer multiplicity if 0 takes values in Z. An integer-multiplicity current 7" such that
N(T) < oo is called integral current. The following compactness theorem for integer
multiplicity (“i.m.”) currents holds:

THEOREM 2.3 (Compactness for i.m. currents). Let {T;} C Dy (2) be a sequence
of integer multiplicity currents such that

Ny(T;) < C < +oo  forallt and U CC €.

Then there exist an integer multiplicity current T € Dy(Q) and a subsequence, still
denoted by {T;};, such that T; — T weakly in Q.

An integer-multiplicity current T' € Dy (R™) is said indecomposable if there exists
no integral current R such that R # 0 # T — R and

N(T) = N(R) + N(T — R).

The following theorem provides the decomposition of every integral current
and the structure of integer-multiplicity indecomposable 1-currents (see [11, Section
4.2.25)).

THEOREM 2.4 (Decomposition theorem). For every integral current T there
exists a sequence of indecomposable integral currents T; such that

T=YTi and N(T)=>» N(T}).

Suppose T is an indecomposable integer multiplicity 1-current on R™. Then there
exists a Lipschitz function f: [0, M(T)] — R™ with Lip(f) =1 such that

L]0, M(T)) is injective and T = f4[0, M (T)].

Moreover OT = 0 if and only if f(0) = f(M(T)).
Graphs of Sobolev functions. Given u € WP(Q,R"), we define its graph
G, C O xR™ as
Gy = {(z,u(z)) : x € Q}.
The following theorem provides a sufficient condition to guarantee that the graph is
a rectifiable set. We refer to [13, Section 3.1.5, Theorem 4] for the proof.

THEOREM 2.5. Let u € WHP(Q,R"). Then the graph G, is a H"-rectifiable set.
Moreover it holds that if all the minors of Du are integrable, then H™(G,) < oc.

Let us consider the map (Id x u) :  — Q xR" defined by (Id x u)(z) := (x, u(zx)).
If u e WHP(Q;R™) and w € D"(Q x R™), we can extend the definition of pull-back of
w also to the map Id x wu, i.e.,

(Id x wfw= Y ola,a)ws(u,u(@)M;(Du(x))dey Adey A Ady,
leef+|Bl=n

where

w(z,y) = Z Was(T,y))dz™ A dyP. (2.12)
laf+|8]=n
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This allows us to extend the definition of push-forward of a current 7" also by the
map Id x u, provided u € WHP(Q;R™). Let us consider [Q], the canonical current
given by integration on . We set G, := (Id x u)4[Q], in such a way that for all w
satisfying (2.12), it holds

Gy(w) = /Q (w(z,u(x)), M(Du(x)))dx

= oo, @)wap (x, u(z)) ME (Du(z))dz.
|a+z|n;—n /”

2.3. Cartesian maps. Let u € WP(Q;R3), and suppose u;Du; € L'(Q,R3)
for all ¢ # j. The distributional cofactor of Du, denoted as CofDu is defined compo-
nentwise by

(CofDu)ij := Djt1(tiy1Dugio)j2)) — Djta(tiv1Dugio);1)),

with indices i,j € {1,2,3} (taken mod 3 when summed and with the derivatives in-
tended in the sense of distributions). Moreover, AdjDu is the distributional adjunct
of Du, that is the transpose matrix of the distributional cofactor CofDu. In gen-
eral it is not true that the pointwise and distributional adjuncts coincide. Suppose
ui(adjDu)t € L1 (Q,R3), with (adjDu)! := (adj(Du)11, adj(Du)21, adj(Du)s1) being
the first column of adjDu. The distributional determinant of Du is the distribution
DetDu given by taking the distributional divergence of u1(adjDu)?, i.e.,

(DetDu, @) := / ui(adjDu)! Dpdz, Ve € C(Q,R?).
Q

As for the adjunct, in general DetDu and detDu differ.
Let us define for p > 1
AP(Q,R™) := {u € WHP(Q,R?) : M2 (Du) € LP(Q) Va, 8 with |a| + |8] = 3}.

In other words, a function u € AP(Q,R?) if and only if u € WP (2, R?), and adj Du,
detDu belong to LP(£2). The following result can be found in [13, Section 3].

THEOREM 2.6. If u € A (2, R™) then G, is an integer multiplicity current with
multiplicity 1 and support the rectifiable set G,, whose orientation is given by the n-
form

G ulz)) = SLDUD))

which turns out to be almost everywhere orthogonal to the approzimate tangent plane
to G,.

For p > 1, we define the class of Cartesian maps as the function class
Cart?(Q,R") := {u € AP(Q;R") : 0GuL(oxrm)= 0}. (2.13)

The following closure theorem for Cartesian maps holds (see [13, Section 3.3.3]):
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THEOREM 2.7. Let uj, € Cart?(Q,R") be a sequence such that

up —u  weakly in LP(Q,R"),
MBZ(Duy) — o2 weakly in LP(9),

Jor all o, B with || + |8] = n. Then u € Cart?(Q,R") and v2 = M (Du).

A crucial point for our purposes is that for Cartesian maps it is always true
that DetDu = detDu and AdjDu = adjDu. In particular DetDu € LP(Q2) and
AdjDu € LP(Q2,R™*™). This will be clear in Section 5.

3. Dislocation lines as currents. A dislocation in an elasto-plastic body arises
as a closed arc, or a curve connecting two points of the boundary, to which a Burgers
vector b € R? and a measure concentrated in the dislocation line (viz., the dislocation
density) are associated. Since dislocation densities fulfill linear additivity when dis-
location lines overlap, dislocations will be described by means of integer-multiplicity
1-currents with coefficients in a group. The group, in the crystallographic case, is as-
sumed isomorphic to Z3. The coefficient  represents the Burgers vector multiplicity.
Moreover, the fact that it is constant on any dislocation and that the dislocations are
closed correspond to the requirement that such currents are boundaryless (i.e., that
the density is divergence free). On the other hand, the tangent vector to the disloca-
tion line represents the current orientation. Note that integer-multiplicity 1-currents
are essentially Lipschitz curves, thanks to Theorem 2.4, and hence a description of
dislocations without using the notion of currents is also possible. However the notion
of currents, as we will see, simplifies some descriptions and provides more direct proofs
of some of the following statements.

Let us introduce the class of Burgers vectors, that is, the group of the coefficients
of the 1-integral currents representing dislocations. For simplicity this lattice will be
assumed isomorphic to Z3. Let the lattice basis {Bl, b2, 53} be fixed, and defines the
set of admissible Burgers vectors as

3
B:={becR®:33 € Z° such that b=y _ Bb"}. (3.1)
k=1

Accordingly, a dislocation whose Burgers vector belongs to the lattice B is called a
crystallographic dislocation. Without loss of generality, we will assume that b* = ey,
the k-th base vector, that is, we set B := Z3. With this definition we can identify
each dislocation with a current with coefficients in the group Z3.

Figures 1, 2, 3 show how the Frank law applies at dislocation junctions, which
indeed corresponds to how currents mutually operate, and the kind of geometries tak-
ing place when simple dislocation loops interact. It should be noticed that complex
geometries with countable many loops should also be taken into account when devel-
oping a mathematical model, since such geometries are observed in actual crystals.

In this section, we introduce the dislocation as a precise mathematical object.

3.1. b-dislocations. The first notion is the class of b-dislocations, which are
those dislocations associated to only one Burgers vector b € Z3. Let 2 be a bounded
simply-connected and smooth open set.

DEFINITION 3.1 (b-dislocation). Let b € Z3. A b-dislocation £° is a family
{L%;cqv of integral 1-currents such that
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b b

I L

ba

(c) (d)

Fig. 1: Typical indecomposable dislocation loops and the resulting dislocation currents: in (a),
a single b-dislocation loop is equivalently viewed as two indecomposable b-loops with opposite
orientations and connected by a geometrically unnecessary arc Z; the inverse property is
observed in (b) where two identical b-loops give rise to a single connected b-dislocation loop
and a geometrically unnecessary arc = where A = 0; in contrast, (c) describes two b-loops
with opposite orientation which provide a simple cluster showing subarcs with Burgers vectors
b and 2b; the general case is shown in (d) where the cluster is due to the union of two loops
with distinct Burgers vectors obeying to Frank rule.

(i) IV is finite with cardinality ky € N, B
(ii) there exist ki, Lipschitz functions @ : [0,T7] — Q with Lip(¢?) < 1 such that
£ = ([0, 71D). (3-2)
Moreover, for all 1 <i < ky, either ¢2(0) = @(T?) or ¢b(0), P2 (T}) € 9.
We set
L=y rl (3.3)
i€

The Z3-valued coefficient current associated to a b-dislocation L, denoted as ﬁb, 1
defined by

Lb(w) := L (wb), (3.4)
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- b —b
N i bs
At P by 4+ by +b3 =0 b
b1 4 b2 b2 =
>

Fig. 2: For certain combinations of Burgers vectors, the three separated loops of (a) might
intersect and form the cluster element of (b) where the Frank law at the intersection points
is satisfied.

(b) (c)

(a)

m

Fig. 3: Different kinds of cluster components: in (a) the sum of b-current dislocations
L2 4 £P2 1 L% s depicted, whereas (b) shows a single b-current constituted of three elementary
b-loops. In (c) a b-dislocation cluster writing as £° = gogﬂ(h T]] is shown: it can be viewed
as a countable chain of indecomposable b-loops interconnected with geometrically unnecessary
arcs.

for all 1-form with vector-valued coefficients w € DY (Q,R3). Here and below D (2, R3)
denotes the space of 1-forms with vector-valued smooth and compactly supported coef-
ficients. Note that w writes componentwise (with Finstein summation convention on
1) as wy, = wipdx;, with w a 2nd-rank tensor. Moreover, wb is defined componentwise
as (wb); = wyjbjdx; (with no summation on j).

Let us denote by 12, the length of the current given by (?. Thanks to the Lipschitz
ky kp Tk
continuity of the functions ¢! one has Z 2= Z / |%||dt < oo, meaning that the
i=1 =170
total length of the supporting set of the current £° (counted with possible overlapping)
is finite.
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By Theorem 2.4, one can always decompose L as follows: there is a countable
index set J° such that

=" rl, (3.5)
JjeTJr
with £% indecomposable 1-currents such that Z N (E;’-) = N(£"). The components
JjeT®

ﬁg’- are called current loops. Notice that even if the word loop usually refers to a closed
curve, we use the same word when referring to a non-closed curve (with endpoints

belonging to 01).
By definition of rectifiable current, if £? is a b-dislocation, there exists a rectifiable

set (which, by the finiteness of its measure, is a 1-set) called dislocation set and
denoted by L, such that

LO(w) = /Lb (w(x), 7°(2))0° (x)dH (x)  for w e DY(Q). (3.6)

In general L’ is not unique, and we can choose
ky
L* = J i (0,77 (3.7)
i=1

Therefore, we write £? = {L? 7, 0°}.
To any b-dislocation we associate a density A » which, since ky is finite, turns out
to be a Radon measure.

DEFINITION 3.2.  The density of a b-dislocation LY is the measure Ay €
My, (Q,M3) defined by

(Ags,w) = Lo((wh)"), (3.8)

Jor every w := [wy;] € C°(Q,M?), where we define componentwise (wb)s := wy;b;day

(j fized).

REMARK 3.3. Note that, by (3.4), if we identify smooth compactly supported
tensor-valued fields with smooth 1-forms with vector-valued coefficients, the density
and the current associated to a dislocation (3.4) turn out to coincide.

In the sequel we will use the following shortcut notation from (3.6) and (3.8):

Ao =L @b =1 Qb0° H' L. (3.9)

DEFINITION 3.4 (Geometrically necessary dislocation set). The geometric neces-
sary dislocation set L* is the support of Ar.

Note that in general the geometrically necessary dislocation set L* does not co-
incide with the dislocation set LP, since it may happen that 8 = 0 on some subset of
LY with H! positive measure. Note that if Eg’- are the indecomposable components of

L% in (3.5), we write LS’» = {L?,Tb, 6}, in such a way that

L= \Jrh rr=rruz, (3.10)
jETP

where =" is defined as the set {z € L?: 0°(z) = 0}.
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3.2. Regular dislocation. The following definition extends the notion of b-
dislocation to general dislocations. Since we are interested in the class of dislocations
with finite mass, we will call them regular.

DEFINITION 3.5 (Regular dislocation). Let By C Z3. A regular dislocation is a
sequence of b-dislocations L := {L'}pcp, whose total density (or associated current)
has finite mass. According to the previous definition, the Z3-coefficient dislocation
current, still denoted by ﬁ, and the dislocation density Az, are given by

EA = Z ﬁb, AL‘ = Z ALb. (3.11)
beB. beB.
The dislocation set L is defined as

L:= | (3.12)

beB,

so that, according to the notation (2.11), we can write £ = {L,T,0} with

T € Tanl, 0= Z sg(1°)6%, (3.13)
beB,
where sg(t%) = {1, -1} is s.t. 7 =sg(1%)7" (note that § € Z3, whereas 0° € Z.).
By (3.3), every dislocation current can also be written as

Lwy=Y Lw= > ¢ullo,T]w), (3.14)

beB, beB, 1<i<ky

for all w € D' (2, R3). Now, enumerating the family of generating functions {¢?}, we
construct a index set J = J, such that

SO 0T = Y e, 7. (3.15)

beBr 1<i<ky, JjeET

Moreover, setting S; := ¢;([0,T3]), from (3.7) and (3.12), we have L = U S;.
JjET
3.3. Canonical decomposition. Since every dislocation can be represented by
different integral 1-currents, we introduce the following notion.

DEFINITION 3.6 (Equivalence between dislocations). Two dislocations L and L'
are said geometrically equivalent if

Ap=Ap. (3.16)

Among all geometrically equivalent dislocations there exists one representation
which is sharp in the sense that it is expressed in terms of the mutually independent
elementary Burgers vectors. Since a b-dislocation £° with b = (31, B2, 83) has integer
multiplicity, it can be written by means of projections. Recalling definition (3.1) and
notation (2.11), for k = 1,2, 3 we introduce

LUk = (L 1°, 8.6}, (3.17)
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with the corresponding density A vx := LYF @ e = LY ® Brer. Observe that

3 3 3
ZALb,k = Zﬁb"k ®ep = ZTb ® Prek Hb’;'-[lLLb: Apo. (3.18)
k=1

k=1 k=1
To any regular dislocation £ we associate univoquely three currents
Li:= > L', sothat Ly = {L,T,0}, (3.19)
beEB(L)
for k =1,2,3, where 0, is defined by 6 := 3", ;5 58(7%) 86", with 7 = sg(?)7".

DEFINITION 3.7. The canonical dislocation decomposition of a regular dislocation
current L is

L= [‘,1 + [‘,2 + ﬁg, (3.20)

where Ly, is the kth component of L defined as Li(w) = Ly(wey) for all w €
DYQ,R3), and k = 1,2,3. In other words

ﬁk = {L,T, erk}.

A useful property of the decomposition (3.20) is that the three measures {Az, }5_;
operate on different (pointwise) orthogonal subspaces of C°(R3, M?).

LeEMMA 3.8. Let L be a reqular dislocation. The following assertions hold true:

(a) The currents Ly, (k= 1,2,3) are integer-multiplicity currents in ).

(b) The mass of the currents and the total variation of the associate measures
are related by

1Ll = |Lrla = 1Az, Iamy @) < 1ALl ) = [£la. (3.21)

for k=1,23.
3

(c) The geometrically necessary dislocation set reads L* := U spt(Ly) C L and
k=1
coincides with the support of the density Ar.
Proof. Assertion (a) follows by Theorem 2.3 since Z N (L") < 0o by definition

beB
of a regular dislocation. The equalities in (3.21) follow by definitions and identifying
forms with smooth functions. Moreover, by (3.18) and (3.19), it holds

3 3
Ae=> Ap=> Az, =) Li@ey, (3.22)
beEB. k=1 k=1
in such a way that inequality
[Acllam = Az llame - for k=1,2,3, (3.23)

follows by the matrix inequality | 22:1 ar®@er| > |lax®@er| = |a| for every ay, € Z3. To
prove (c), observe first that £ = {L, 7,0} and by definition of £; and Az, it easily
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3
follows that sptL; = sptAgz,. So we only need to prove that sptA, = U sptAz, .

k=1
But this is a direct consequence of the fact that Az, acts on orthogonal subspaces of
C(R3,M?3). 0O
DEFINITION 3.9 (Unnecessary dislocations). The set of unnecessary dislocations
is defined as 2= L\ L*.

4. Classes of admissible dislocations and deformations for the minimum
problem. With a view to studying the dislocation motion, two classes of dislocations
will now be introduced, the first being useful if one wishes to follow (for instance, with
time) each line as it deforms, intersect with others etc., whereas the second will be
more appropriate if the model relevant quantity is the dislocation density, instead
of the single lines themselves. In the latter case, dislocations are determined up to
the equivalence relation (3.16) and the clusters might exhibit locally dense subsets of
unnecessary dislocation segments.

4.1. Admissible dislocations.

4.1.1. Dislocations at the mesoscopic scale. At the mesoscopic scale, it
is considered that every dislocation £ has been generated by a finite number of b-
dislocation currents £°.

AssuMPTION 4.1 (Finite generation). Let £ be a regular dislocation. We assume
that the number of generating loops is finite, i.e.,

kr = Z ky < 00, (4.1)
beB,

with ky as introduced in Definition 3.1.
The class of dislocations at the mesoscale is defined as:

DEFINITION 4.2 (Mesoscopic dislocation).

MD = {L = {L ) ven, : L° takes the form (3.3) and satisfies Assumption 4.1.}.

REMARK 4.3. Recall that a finite number of generating b-dislocation currents does
not imply that the dislocation density Az is associated to a finite number of distinct
Burgers vectors, since the multiplicity on each arc of L is not limited and countably
intersections of arcs may take place (in other words, with this approach, it is accounted
for possibly large Burgers vectors, provided they are attached to small enough arcs).
Moreover, the cluster of Fig. 3(c) made of countably many loops whose lengths are
summable, and which are interconnected by unnecessary segments, turns out to be a
mesoscopic dislocation, since it can be generated by a single b-loop.

From Definition 4.2 and Assumption 4.1 the next lemma is readily proved.

LEMMA 4.4. The following properties hold for a dislocation at the mesoscopic
scale L:
(a) The density Az is a bounded Radon measure since

IAclp@y < D bl < oo. (4.2)
beB,
i=1,... ky
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(b) The dislocation current L is an integral current with coefficients in 73 satis-
fying |Llo = |Azll. In particular 0 and Oy, for k =1,2,3, are all summable
functions with respect to H Ly .

(¢) The dislocation set L of the current £ (defined in (3.12)) is a closed set with
finite H'-measure. In particular L* C L and L = L* UE.

Proof. To prove (a), observe that £ = {£’},e5, and hence ||Az| < Z | LP&b|| <

beB,
Z £ @bl < Z |12 < oo by Assumption 4.1 (i.e., the sum is made on
beB, beB,
i=1,...kp i=1,....kp

a finite number of Lipschitz loops). Statement (b) follows from (a) and property
(b) of Lemma 3.8. Property (c) is a straightforward consequence of the fact that
HN(L)< Y P<oo.D
beB
i=1,....ky

4.1.2. Dislocations at the continuum scale. A set in R is said a continuum
if it is the finite union of connected and compact 1-sets with finite 7 '-measure. Let
us recall that the geometric necessary dislocation set L* is the support of As. The
space of admissible dislocations at the continuum scale is introduced as follows:

DEFINITION 4.5 (Continuum dislocation).
CD :={Lz,T C N: there exists a continuum K such that L* C K}. (4.3)

When the context is clear, we will write L = L1 and the set of continua K for which
L* C KK will be denoted by Cr =Cp,.

In particular, every £ such that the support L* of Az consists of finitely many
connected 1-sets is an admissible dislocation at the continuum scale.

4.2. An equivalence result. In the applications, the notion of continuum dis-
locations is useful to study the cases in which Assumption 4.1 is not satisfied. More-
over, if one is not interested in the particular dislocation current associated to a given
dislocation density, mesoscopic dislocations become a superfluous notion. In fact,
crystallographic mesoscopic dislocations turn out to be equivalent to continuum dis-
locations, in the sense that, for any continuum dislocation £, there is a mesoscopic
dislocation £’ such that £ = £’ in the sense of Definition 3.6. The proof of this fact
is based on the following theorem

THEOREM 4.6. Let L be a closed integral 1-current with finite mass and whose
support L* is contained in a connected and compact set IC with finite H'-measure.
Then there exists a Lipschitz function o : S — K such that £ = oy[[S*].

The proof of Theorem 4.6 requires some preliminary lemmas.

LEMMA 4.7. Let K be a compact connected set in R™ such that H'(K) < oc.
Then there exists a Lipschitz map v : S* — K that is onto and is homotopic to the
constant map.

Proof. In the following we consider S! as a subset of the complex plane C. Let
P € K and let us consider the set

S :={¢:S' = K satisfying the following three properties:} (4.4)
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(i) 6(1) = P,

(ii) ¢ is homotopic to the constant map ¢ = P.

(ili) Let C' = ¢(S*) and L¢ = H(C). Then ¢ is Lipschitz with constant £<.

It is easily seen that S is not empty, since K is a rectifiable set. Given ¢ € S
we want to enlarge its range in order to get an onto map. To this aim, we define
the following order relation in S: we say that ¢ < ¢’ if and only if ¢(S') = C C
C' = ¢'(S1). Let {¢;};escr be a chain in S (assumed ordered by the corresponding
ordering of the indices in R), and set L; := H!(¢;(S1)). Then the sequence {L;} ;e
is nondecreasing and bounded by H!(K), so that, since the maps {¢;} are uniformly
continuous in j, there is an increasing sequence j; — supJ, and a map ¢ such that
¢;, — ¢ uniformly on S'. We claim that ¢ is an upper bound for {¢;};cs. Indeed,
denoting C; = ¢j(Sl), the increasing sequence {Cj} converges to a compact set
C C K with respect to the Gromov-Hausdorff distance. Since j — supJ, for each
k € J, it holds C), C C, and hence it remains to prove that ¢ belongs to the family S.
Setting L := H!(C), we have L < H'(K), and since L; < L, the uniform convergence
and the uniform bound Lip(¢;) < £ imply that Lip(¢) < £. Thus, (i) and (iii) are
readily fulfilled. Relation (ii) is easy to check, too. Let ®; be the homotopy map
between ®;(-, 1) = ¢; and the constant ®;(-,0) = P. Then, up to a rescaling, we may
suppose that for all z € S, the map ®,(z,-) is Lipschitz with Lip(®;(z,-)) < L. It
readily turns out that ®; are uniformly continuous in j, and uniformly converge to a
map ®. Now, it is straightforward that ® is a homotopy between ¢ and P, and the
claim is proved.

We now are in the hypotheses of the Zorn’s Lemma, so that we get a maximal
element 1 for the class S.

It remains to show that ¢ is onto. Suppose it is not the case. We set Cy, := 1(S?)
and suppose X € K \ Cy. Since Cy, is closed and K is connected, there is a Lipschitz
continuous arc « : [0, 1] — K such that a(0) € Cy, (1) = X, and a(y) € K \ Cy for
y > 0. Let x € ¥~ ((0)), and split S* = [1,2] U [z, 1]. Consider the restriction of 1
to these two intervals, i1 and 5. Then it is readily seen that the arc ¢ xaxa_1x19,
if suitably rescaled as a function on S', is a map in S that is strictly greater than 1,
contradicting the maximality of 1. Hence the thesis follows. O

LEMMA 4.8. Let K be a compact 1-set and ) : S — K be a Lipschitz continuous
map homotopic to a constant map. Then ¢3[S'] = 0.

Proof. Suppose for simplicity that K C R?. Since K is compact, K¢ is an
open set, with only one unbounded connected component A. If X € B := K¢\ A,
there exists an open ball centered in X and which does not intersect K, so that
any connected component of B has positive Lebesgue measure. Therefore, there are
at most countably many connected components in B. Let X; be a point in the -
th connected component of B. The homotopic group of Lipschitz closed arcs in K
coincides with the free group on the generators {X; }ien.

Now, if the current carried by 1 is nonzero, the decomposition Theorem implies
that there exists T = a4[S'], an undecomposable component of the 1-current v [S'].
Let X, be the homotopy class of T and set 1" = Yy[S'] — T. It turns out that the
homotopy class of T' := @y[S1] is —X,. Since K is a compact l-set, the unique
arc (up to adding 0-homotopic branches) with homotopy class X,, is the one passing
on 0X,. This means that X, is run (at least) twice, one time by « and another
time by & with opposite direction. But this contradicts the fact that ay[S'] is an
undecomposable component. Thus ¢4[S'] = 0 and the proof is complete. [0
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Now we can prove Theorem (4.6).

Proof of Theorem 4.6. By the decomposition Theorem there are loops 3; such
that £ =}, Bj:[S']. Consider a function t like in Lemma 4.7, so that there are
points x; € S* such that ¥(z;) = B;(1). Suppose for simplicity that z; = 1 and z;
are clockwise ordered on S*. Setting 1; := ¢ [z;, z;4+1], the chain

gﬁ::ﬂl*wl*ﬂg*dlg*...ﬂj*l/)j...,

as suitably rescaled, will match the required conditions, since ¥, being homotopic to
the constant map by Lemma 4.8, satisfies ¢4[S'] = 0. 0

The precise equivalence theorem is stated as follows.

THEOREM 4.9. Let L = Lp, be a continuum dislocation such that By C Z3 and
Ay is finite. Then L is a mesoscopic dislocation.

Proof. Considering the canonical dislocation current L equivalent to £ (cf. Eq.
(3.20)), the thesis follows from Eq. (3.21) and Theorem 4.6. Indeed the latter provides
three Lipschitz functions ay (k = 1,2,3) such that ays[S'] = L, hence it follows

Ap = Zakﬂ[[Slﬂ ®ep. O
k

In particular Theorem 4.9 tells us that continuum and mesoscopic dislocations
are equivalent if the energy W of the system does not depend on the particular
dislocation current, but only on its dislocation density. We remark that the thesis
does not hold true if we do not make the assumption that the set of Burgers vectors
B is crystallographic (i.e., isomorphic to Z3).

4.3. Boundary conditions for dislocations. Let us introduce the mechanical
setting for our minimization problem.

AssuMPTION 4.10. We consider a bounded smooth and simply-connected open
set 0. Let U be a bounded and smooth open set such that QN U # O, and let
OpQ:=900NU. We also denote Q :=QUU.

DEFINITION 4.11 (Boundary conditions). A boundary condition is a triple
(N, P,ap) satisfying:
(i) N >0 is a natural number.
(it) P is a triple (P;,Q;, Bp)i<i<n with {P;} and {Q;} sequences of points in
0pf, and Bp = {biD}lgigN a sequence of vectors belonging to Z3. We asso-
ciate to P the 0-current with coefficients in 73

TD = Z 6P¢bZD _6Q'L lb?
1<i<N

with §p being the Dirac delta at P.
(iii) ap = a+ o is the sum of two mesoscopic dislocations in U. We suppose
that «v is a closed current with support in ApS) consisting of M < oo loops «;
and Burgers vector bl , while o consists of the union of N dislocation loops

i with support in U\ Q, such that for all i, ; has boundary do; = 6, — dp,
and associated Burgers vector b?:) € Bp.
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From (iii) we can define A,,, = Z ap @ b, + Z ap,, ® b as the density
1<i<M 1<i<N

of the dislocation current . According to the definitions of dislocation currents given

above, we denote by &p, &, and & the corresponding currents with coefficient in Z3.

DEFINITION 4.12. We say that the boundary condition (N, P,ap) is admissible
if the following condition is satisfied: there exists a reqular dislocation L with support
in Q such that 0L = Tp. We say that a dislocation L satisfies the admissible boundary
condition (N, P,ap) if it satisfies the previous property.

As a consequence of the previous definition, it turns out that ap + £ is closed in
UuQ.

4.4. The class of admissible deformations. In the setting of Assumption
4.10, let us fix an admissible boundary condition (N, P,ap). In the sequel, whenever
we consider an admissible dislocation £, it is always supposed that such L satisfies
the boundary condition (N,P,«ap), and hence it will be convenient to still denote
the dislocation £’ := £ 4+ & by L. In other words, when referring to an admissible

dislocation current, it is intended that it has been already summed with &. We also
fix a map F € LP(Q, M?3) such that — Curl F' = (A,)T in U.

DEFINITION 4.13.

F:={(F,L) € LP(Q,M?) x MD : F satisfies (i)-(iii) below:} (4.5)

(i) The dislocation current £ = {L, T, 9} satisfies the boundary condition and the
function F := XQ\QF + xoF € LP(Q,M3) is such that — Curl F = (Az)" in

O (with x4 denoting the characteristic function of A).

(ii) For every point x € Q\ L, there is a ball B C Q\ L centered at x such that
there exists a function ¢ € Cart?(B;R3) with F = D¢ in B.

(1ii) detF > 0 almost everywhere in Q.

Let us recall that if F' = Du is the gradient of a Cartesian map in B, then it is
readily satisfied that the distributional determinant Det(F') and adjoint Adj(F’) of F’
are elements of L'(B,M?) and coincide with det(Du) and adj(Du) respectively. It is
also straightforward that smooth functions u € C'(B,R?) are Cartesian.

We will show that there exists at least one element in F with an admissible £
whose generating b-loops have finite mutual intersections coinciding with a in 0Qp.
In the following theorem, we will use the identity:

—Curl F=b®7 H' if and only if / F eqdH' =b. (4.6)
CL

for all Lipschitz-continuous closed path Cp in € enclosing once L and with unit
tangent vector ey. To check identity (4.6), observe that, if Sy, is a Lipschitz and
compact surface in  with boundary L and unit normal v, then Q\ Sy, is simply-
connected and there exists a function ¢ € WHP(Q\ Sp) such that F = V¢ in Q\ Sp.
By (4.6), ¢ has a constant jump on Sy, equal to b. Thus the distributional derivative
of ¢ writes as D¢ = Vo +b®@vH?Lg, . Multiplying by a test function v, by (2.1), one
has (Curl (b® vH?s,),v) = (b® vH?Ls,, Curl ). By Stokes theorem, this writes
componentwise as

/ yibjeiklﬁwﬂd%? = bj/ Tp1/)jpd7‘[1,
SL L
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and hence (Curl (b® vH?Ls,),%) = (b® THL), ).
THEOREM 4.14. The set F is non-empty for 1 < p < 2.

Proof. We first construct an admissible function for a simple geometry. Consider
the circle L := {(z,y,2) € R : |z]* + |y|* = R?, z = 0} as a dislocation loop with
Burgers vector b = 1ey + Baey + fB3e3 = Brhg + Bih; + B:h,, where we have used the
local basis on L, {hp,h;,h,} = Q(){e;,e,,e3}. Here, Q(I) is the matrix of rotation
around e; = h, by the angle [ (see Fig. 4(a)). Let V5 be a tubular neighborhood
of L with radius § > 0, and let (r,0,1) € [0,26] x [0,27] x [0,27R] be a system of
cylindrical coordinates in Vj chosen as follows: the origin of # is chosen in such a way
that all points (z,y,z) € Vs with 2 = 0 and |z|? + |y|* < R? satisfy 0 = a + 7/4
for some constant a > 0 (to be fixed later); the coordinate r is the distance from
the set L; [, as before, is R times the angle around the z axis. Corresponding to
these coordinates, the local cylindrical basis defined on the normal sections of Vy are
denoted by g :=(g,,9,,9,), with g, = h;.

We then consider the function F inside Vs whose components in the basis
{QR’ﬁl’ﬁz} read

R —Si%eﬁpz +e2f3p 0
F(r0.0)=¢0) | 2226 +<225 0] . (4.7)
_sm@ﬂz +Cos€ﬁz 0

T T

Here (r,0,1) are the coordinates associated to the basis system g, and ¢ is a smooth
function on [0, 27) which is non-negative in (a, a+/2), zero outside, and has integral
equal to 1. Tt is readily checked that curl F = 0 in V5 \ L. Tt is known that there
exists a solution to equation F = Vs in the simply-connected domain S = 5; :=
{(r,0,1) :a <0 <a+r/2,0<r <} with0 <[ < 27, and satisfying ¢s = 0 on
SN{0 =a}and ¢5 =bon SN{ = a+7/2}. Let V be the solid of revolution around
the z-axis generated by S. Considering the axisymmetry we then extend ¢s over the
whole V' and note that ¢s is constant on the sets Cp := {(4,0,1) : 0 < [ < 27 R} for
every a < f < a+ /2. Let Dg be the disk with boundary Cjy. For every z € Dy,
¢5(x) is defined as ¢5(z) = ¢s(y) with y € Cp; define also D := Uy (g 447 /2) Do- We
finally set ¢5 = 0in Q\ (V U D). Notice that ¢s is smooth everywhere except at the
interface I between V and D and on J := Dyyr/o U (V N {0 = a + 7/2}), where it
has a constant jump of magnitude b (cf. Fig. 4(b) above). Therefore, we introduce
b5, a C*-regularization of ¢s in a set D NV, with V a neighborhood of I, in such
a way that [[Vs|| L (pnvy < 2||Vés| L (prv) and define ' := V¢s, the absolutely
continuous part of the distributional gradient Dg (i.e., the pointwise gradient of (;35).
As for the jump set J, the jump part of Dés reads b®@ v H2_ ;. Moreover, (4.6) and
(4.7) entail that — Curl F = b® 7 H' on L. As a consequence, the function F' turns
out to be smooth outside L, vanishes outside 7" := V U D, while, from expression
(4.7), F € L?(Q) for p € [1,2), since
IEIE, ) < ClOI(RO> + 87 R2), (4.8)
for some positive constant C' independent of R and §. Moreover, by adding to F' an
appropriate multiple of the identity it is readily seen that det(F + ¢I) > 0 for some
¢ > 0, while det(F + cI), adj(F + cI) also belong to LP(2) for p € [1,2).
Finally, fix a ball B C Q\ L: in such a ball the function F' is smooth, has null
curl, and hence there exists ¢ € C°°(B) such that D¢ = F. In particular we can
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take ¢ = q~55 when the ball does not intersect the jump set J, otherwise, if it does, we
sum to ¢g the constant b at all points of B which are below J, thereby cancelling the
discontinuity due to the jump. Thus ¢ is smooth, and hence is a Cartesian map.

T=DUV
(section for fixed 1)

det (el +333_, F) >0

(a)

Fig. 4: Picture of the tube construction for the proof (a); the case of finitely many boundary
dislocation segments (b)

Let us now reproduce this argument for a finite number of circles with possible
mutual intersection in 0€2, and show that the constant ¢ > 0 multiplying the identity
can be chosen in such a way that the determinant of the resulting deformation still
remains non-negative. Let us consider a finite number of loops Ly with 1 < k < K
with the associated T} := Vi U Dy constructed as described above, and observe that
(by possibly adapting the amplitude of the solid angle Sk, i.e., replacing /2 by 7/N)
the T} s only intersect at points in Ly for some k’s, while keeping the V4’s with empty
mutual intersection (cf. Fig 4(b) below left). Let F) be defined as (4.7) with i in
place of 3 and ay, in place of a, chosen in order that fi(6,1) := B (1) cos — B (1) sind =
B cos (0 + &) — B sin (0 + L) > 0 (for instance, if 81,82 > 0, then aj, := 2F — £).

K
Defining F := Z Fy + cI, (4.8) entails that F, detF, adjF belong to L?, that
k=1

2
detF = %fk(e, DCO) +¢* >0 in Vi, (4.9)

while in Dy, one has detF > 0 provided ¢ > 3maxy{||Fi|/1~(p,)} (cf. box below
right in Fig. 4a).

Notice that the arguments presented above for a finite family of circular loops
remain valid for a Lipschitz deformation of such loops, with appropriate Lipschitz
deformations of the T,;s. In particular, it is valid for the boundary current «, and for
any finite family of curves in  joining P;’s to the @;’s without self-intersections (an
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admissible F' can l_oe constructed as above in 0 D Q and then restricted to Q with its
curl restricted to ). The proof is achieved. O

5. Existence of minimizers. Our mechanical setting for the minimum problem
is the one of Assumption 4.10. Here we propose two models in which the energy does
not depend on the particular currents generating the dislocations but only on the
density. However, we remark that in general, energies depending on the loops per se
may also be considered (but this is considered beyond the scope of this paper). In
the first existence result, the model variables are the deformation and the family of
mesoscopic dislocations. In the second existence result, the model variable is the sole
deformation, while the dislocations are sought at the continuum scale and hence are
only found in an equivalence class.

5.1. Existence result in F x MD. We are given a potential W : F x MD —
[0, +00] such that there are positive constants C' and 8 for which

W(F, L) := | We(F)da + Wacteet(Az) > C(IME)E+ Y b |lé5lpr + ke) — B,
& j<ke
(5.1)
with the notation

MG = 1 F N + Il cof Pl + || detF 7,

Let us recall that k. is defined in (4.1), {¢;};<k. are the generating loops defined in
3.3, and M(F) is the vector defined in (2.5). Here, W, is an integrable function and
Wefect, & functional defined on Radon measures. It is also assumed that

(W1) We(F) > h(detF), for a continuous real function h such that h(t) — oo as
t— 0.

(W2) W, is polyconvex, i.e., there exists a convex function g : M® x M x RT — R+
st. Wo(F) = g(M(F)), VF € F.

(W3) Waefect := W_dlefect + Wgefect’ with W&cfcct(Aﬁ) > Klkﬂ and Wgct’cct(Aﬂ) =
K2 ) <<V [lj]lzr, for some constitutive material positive parameters x1
and Ka.

(W4) W) .. is weakly lower semicontinuous, that is hkni inf Wi (A") >

Witeet(A) as AF — A weakly in M, (9, M?).
Note that assumption (W2) implies that We(F) = [, We(F)dz is weakly lower
semicontinuous, i.e., likmianc(Fk) > W.(F) as M(F¥) — M(F) weakly in
— 00
LP(Q,M3) x LP(Q,M?3) x LP(Q).

REMARK 5.1. The term involving ||¢;||p1 in the energy bound is mandatory for
mesoscopic dislocations, since it controls the length of the lines. In fact, minimizing
sequences of Lipschitz maps (describing minimizing sequences of lines) might become
locally dense, a phenomenon which should be prohibited to get existence. For a physical
viewpoint this term is questionable since dense arcs of the dislocation cluster might
be nonnecessary, and hence admissible from an energetical standpoint. This drawback
is addressed in the second existence result for continuum dislocations in Section 5.1.
Moreover, recalling (4.2), this term implies a bound on the densities.

Before stating the existence of minimizers of the problem

inf F,A 5.2
(F.,Ag)lél}'xMDW( Ac), (5.2)
— Curl F=A7}
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some technical results should be stated and proven.

LEMMA 5.2. Let (Fy, Lr) be a minimizing sequence for the problem (5.2), and
suppose detFy, — D weakly in LP(Q2). Then D > 0 a.e. in .

Proof. Let A :={D = 0} and suppose A has positive Lebesgue measure. We have
detFj, — 0 weakly in LP(A), which since detF) > 0 on A implies that liminf detF} =
0 almost everywhere in A. Indeed, if B := {x € A : liminf detF}(z) > 0} has positive
measure, then 0 = liminf [, detFj > 0 since x4 € LI(A), a contradiction. Hence
from condition (W1), we must have W(Fy, Az, ) > fA o(Fr)dx > [, h(detFy)dz.
By Fatou’s Lemma and the fact that (Fj, L) is a minimizing sequence, the contra-
diction follows, and hence A must be negligible, achieving the proof. O

LEMMA 5.3. Let vy, be a sequence of 1-currents in Q such that v, = pnuy[[0, M]]
for Lipschitz functions y,, with Lip(¢,) <1 for alln > 0. Then, there is a 1-current
v such that, up to subsequence, v, — v, and v = @y[[0, M]] for a Lipschitz function
¢ with Lip(p) < 1.

Proof. The functions ¢, are uniformly bounded and uniformly continuous on
[0, M], and by the Ascoli-Arzela Theorem there is a map ¢ : [0, M] — R?® with
Lip(¢) < 1 such that, up to subsequence, ¢,, — ¢ uniformly. So it easily follows that

TYn — Y = (Pﬁ[[[O,M]]]. 0

LEMMA 5.4. Let £, = = {Sn, Tn, On} be a sequence of uniformly bounded dislocation
currents of the form (3.20) satisfying the same boundary condition. Then there is a
dislocation current £ such that L, weakly converges to L in the sense of currents and
A, := Ar, , the sequence of densities of L, weakly converges to A € My, (Q,M?), a
n — co. Moreover, L satisfies the boundary condition, it has density A = Ag, cmd
forallk =1,2,3, (Ln)r — Lk, and (An)r — Ar = Ly, @ ey, (with the notation (3.9)).

Proof. As in (3.20), we write £,, = (Ln)1 4 (£n)2 + (£n)3, and A, = (Ay), +
(An)2 + (An)s, with (A,)r = L, ® ex. By assumption (£,)x are closed in Q and,
thanks to (3.21), (£,)r are uniformly bounded. Thus, Theorem 2.3 implies existence
of 3 integral currents {L;}3_; s.t. (L£,)r — Lk, as n — oo. Since

3

— Zﬁk(wk), (5.3)

k=1

Il
I
-

for all w € D'(Q,R?), we get £, — L := S»_, Ly. The fact that £ satisfies the
boundary condition follows from the convergence 9L, — dL. Identifying D' (Q,R3)
with C°(Q,M3) it is straightforward that A, — A = A; + Ay + A3 weakly in
My (Q,M3), with (A,)r — Ay weakly in My(Q,M?3), and A, = L£; ® e for all
k—=1,2.3. 0

Now we are ready to solve Problem (5.2).

THEOREM 5.5 (Existence in F x MD). Assume (W1) — (W4) and assume
existence of an admissible (F, L) € F x MD such that W(F,Az) < oco. Then, there
is at least a solution of the minimum problem (5.2).

Proof. Let (F,, L) be a minimizing sequence in F. Then || F,| s, |[adjFy| Le,
| detF,||L» are uniformly bounded, so that there exist F, A € LP(Q,M3), D € L?(Q)
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such that
F, = F weakly in LF(Q,M?), (5.4a)
adj F,, = A weakly in L?(Q,M?), (5.4b)
detF,, = D weakly in LP(Q). (5.4c)

By condition (i) of Definition 4.5 and since F), satisfy the same boundary condition,
we can consider F), the extensions of F), on Q) in such a way that £, = F on ( \ Q
for a fixed F. In particular, also F), satisfies the convergences (5.4a)-(5.4c) for some
F, fl, and D extensions of F , A, and D, respectively. It also follows that at the limit
F=FonQ \ © and thus F satisfies the same boundary condition. Moreover, By the
uniform bound on Z V|l in (5.1) and by (4.2), AL := — Curl F}, are uniformly
J<kr
bounded. Hence, there is a measure A € My(Q, M?) such that, as n — oo,

A, — A weakly in M, (Q, M?). (5.4d)

Now the result will follow by the direct method of the calculus of variations and
classical semicontinuity results for convex functionals, since conditions (W1) — (W4)
hold, provided the found minimizer is admissible.

It remains to check this fact. Since the energy values at (F,,, L,,) are uniformly
bounded by k. in (5.1), we can suppose that the dislocation currents L, are generated

by the same number K of 1-Lipschitz functions {¢?, }J 1 Le.,
L) =Y ¢l[0.M]J(wt) and A, =>_ @ J0,M]@bu  (5.5)
j=1 =1

for all w € D(2, R?). By Lemma 5.3, we can suppose that for every j we have
1110, M]] = [0, M]],
for some 1-Lipschitz functions {¢?} . By Lemma 5.4 we have L, — L, with £(w) :=
> cpg [[0, M) (wb?) for all w € DY, R3), and A, — >elloM]® b weakly in
My, (92, M3). Therefore, from (5.4d) we get
A= glflo, M @b (5.6)
J
Now, for a test function w € C°(Q, M?), it holds
(Curl E,,w) = (F,,, Curl w) = (F, Curl w) = (Curl F,w), (5.7)

as n — o0o. Since the first term in the left-hand side of (5.7) also tends to (—AT, w),
we finally get

—Curl F'= b @ ¢ [[0, M]]. (5.8)
J
K
Let us set L, : U @’ ([0, M]) and L : U ¢’ ([0, M]). We now want to show

Jj=1
that for every point © € Q\ L, there is a ball B C Q\ L centered at = and a
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map u € Cart?(B,R™) such that Du = F in B. Let x be such a point. By the
uniform convergence ¢/, — ¢/ | it follows that L,, tends to L in the Gromov-Hausdorff
topology, so we have BN L,, = @ for n sufficiently large. In such a ball, by hypotheses,
there are maps u,, € Cart?(B,R") satisfying Du,, = F,, and, up to summing suitable
constants to wu,, we can also suppose u,, have all zero average in B. The Poincaré
inequality provides u such that u, — u weakly in W?(B,R3). Hence Theorem 2.6
implies that A = adjF and D = detF. Thesis follows from (5.4a)-(5.4c) and Lemma
5.2. 0

We remark that with the formulation (5.1) the potential W (F, Az) depends ex-
plicitly on the dislocation current.

5.2. Second existence result. We now prove an existence result with W a
function of F' only, and where the dislocations associated to the optimal F' are geo-
metrically equivalent to a 1-set. This means that the dislocation line itself might be
locally dense and of infinite length. As for the first result, we fix a boundary condition
o and a map F € LP(Q, M?) such that — Curl F = (A,)" on U. We redefine the set
of admissible functions:

F' = {F € LP(Q,M?) : F satisfies (i)-(iii) below:} (5.9)

(i) There exists a continuum dislocation £ := L7 € CD satisfying the boundary
condition and such that £ := FXQ\Q—i—FXQ e LP (€2, M?) satisfies — Curl F' =

(Az)" in Q.
(ii) There is a continuum C such that L* C C and for every x € Q\ C, there is
a ball B C Q\ C centered at = and a function ¢ € Cart?(B;R?) satisfying
F = D¢ in B.
(iii) detF > 0 almost everywhere in 2.
We consider a slightly different set of assumptions on W : F' — R,
(W5) there are positive constants C' and 8 such that

W(F) > C([IM(F)|E + || Curl Flz, ) + G(L)) = B,
with

G(L) = inf (H'(K)+ s#K), (5.10)
KeCe
where #K represents the number of connected components of the continuum
K, and k is a material parameter. Note that by Golab Theorem, G is also
lower semi-continuous.
(W6) there exists a weakly lower semicontinuous functional Weefect such that

W(F) = We(F) + Waefeer(—( Curl F)T).

It is also assumed that We( fQ g(M(DF))dx with g as in (W2) above
and g(M(DF)) > h(detF ) for some contlnuous real function h such that
h(t) — oo as t — 0.
As mentioned for the first minimum problem, again we can assume Wyefect =
Wiiteet + Wieteer, With, for instance, W3 ;... = kG for some k > 0, whereas a typical
example for Wi . . reads

W(}cfcct(A) = /Ld}(ebv T)dHla (511)
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where b, 0, and 7 represent the Burgers vector, its multiplicity, and the tangent
vector to the dislocation L, respectively. Under suitable hypotheses on the function
, Wi toer i Proved to be lower semicontinuous in the sense of (W6) (see [9]).

Since F' is not empty, we now solve the minimum problem with these new as-
sumptions.

THEOREM 5.6 (Existence in F'). Assume (W5) and (W6) and assume existence
of an admissible F € F' with W := [, W(F) < co. Then, there exists a minimizer
to problem 1}1/fW

Proof. Let F),, be a minimizing sequence in F’'. We denote the dislocation currents
associated to F,, by £,, and their densities by A, = Ar, . Without loss of generality,
arguing as in the proof of Theorem 5.5, we can assume F,, and L, be defined on
the whole 0. By (W5), F, converges weakly to F in LP and A,, converges weakly
to a Radon measure A as n — co. Thanks to (3.21), {£,} are uniformly bounded,
so that one has by Theorem 2.3 the existence of an integer multiplicity current L
such that £,, — £, while by Lemma 5.4, A = A; = (= Curl F)T in the distribution
sense. Moreover, by admissibility, one can associate to every L, a continuum K,, C O
such that G(L,) = (H'(K,) + n#lCn) are uniformly bounded. By (W5), Blaschke
and Golab theorems, KC,, converges in the Gromov-Hausdorff sense to a continuum
K. Now we see that the support L* of Lis a subset of K. Indeed, for all forms
w € DYQ,R?) whose supports are contained in O\ K, it holds lim,_,e L (w) = 0,
thanks to the fact that £, has support in K,, which converges to K in the Gromov-
Hausdorff topology. Now ﬁ = (ﬁ, 7,0) is admissible since L* := sptA C K. Taking
any ball in '\ I, we conclude as in the proof of Theorem 5.5. O

The physical interpretation of G(£) is the following. To create a new loop at
some finite distance d from the current dislocation £, it is worth to nucleate (i.e.,
add a connected component) rather than deforming the existent dislocation, as soon
as d > k. It basically means that the continuum dislocation lies in a compact 1-set
which keeps as minimal the balance between the number of its connected subsets
(of the continuum, not of the dislocation cluster) and its length. However, it should
be admitted that (5.10) is so far a mere mathematical assumption whose physical
meaning remains to be elucidated.

5.3. A weak notion of Jacobian for displacements in the presence of
dislocations. Let us firstly introduce some conventions.

DEFINITION 5.7 (Hodge identification). For every 1-form w € D*(R3) we identify
w = w;dz;, with the vector field w = w; € CSO(RB,RB) by setting w; = w; for all
i = 1,2,3. Moreover we identify every 2-form w = w;;dz; A dr; € D*(R®) with
another vector field w € C(R3,R3) by setting w; := (—1)"tw;

As a consequence, the curl operator on C°(R? R3) satisfies

curl w = dw, (5.12)

for all w € D'(R?), where in the right-hand side we first identify w with the 1-form w,
then we compute the external derivative, and identify the resulting 2-form with the
corresponding vector field in R3.

DEFINITION 5.8. We also identify elements v € R with 2-vectors by Az(R?) >
v = vie;. Similarly, elements v € R? are seen as 1-vectors, as v = vie; € Al(R?’).
From these correspondences it is possible to identify either
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e a distribution T € D' (R?,R?) with a 2-current in Da(R?),
or
e a distribution T € D'(R3,R3) with a 1-current in Dy (R3).

In particular, thanks to this identification, we can define the Curl of a current
as follows

(Curl T,w) := (T, curl w),

where in the right-hand side we have identified the current with a distribution, and
the form with a smooth fields, as in the previous definition.

As a consequence, if £ is a l-current with finite mass, then it is a measure in
Myp(2,R3). The same holds true for 1-dimensional currents S, that are measures in
My (Q,R3). Tt is seen that the boundary of a current corresponds to its Curl , since

0S(w) = S(dw) = (S, curl w) = (Curl S, w). (5.13)
‘We now collect two classical results.

THEOREM 5.9. Let Q be a bounded and simply-connected open set. Let A €
My, (Q,R3) be a Radon measure such that Curl A\ = 0 as a distribution. Then there
exists a function with bounded variation w € BV () such that Du = \.

This theorem can be found in [20]. The following results provides a chain rule to
compute the derivative of the composition of a smooth function with a function with
bounded variation (see [3] or [30]).

THEOREM 5.10. Let u € BV (Q) with Q@ C R® a bounded open set, and let
f € CL(R3). Then the distributional derivative of f owu is given by

D(f ou) = Df(u)D*ul™ + Df(@)Du+ (f(u™) — f(u™))vg, H*LJ,, (5.14)

where @ is the Lebesgue representative of u (i.e., u(x) is the Lebesque value of u at x),
D%u and Du are the absolutely continuous part and the Cantor part of the derivative
of u. Moreover J,, is the jump set of u with unit normal v, while u™ and u™ are the
traces of u on Jy, from the two sides of J,, respectively.

Now, let us prove the following result, stating that each strain F' in the presence
of dislocations can be written by means of the gradient of a Sobolev map with value
in (S1)3.

THEOREM 5.11. Let Q be a bounded and simply-connected open set. Let L €
D1 () be a closed 1-integral current and suppose F' € L*(Q,R3) is such that Curl F =
L (with the identification (5.13)). Then there exists u € WH(Q, SY) such that F =
w1 Dug — us Duq in Q.

Proof. Since L is a closed 1-integer multiplicity current, there exists a 2-integral
current S such that —9S = L. Let us now define the distribution A € D'(Q,R?) as
follows

Ap) = S(p) + (F, ),

for all ¢ € C2°(2, R?), where we have identified the map ¢ with the 2-form >, ¢;dx;
as in Definition 5.7. The distribution X is easily seen to be a Radon measure with
finite mass. Computing the Curl of A\, we get

(Curl A, o) = S(curl @) + (F, curl ) = dS(p) + L(¢) =0,
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for all p € C=°(Q,R3), by definition of S. Then, Theorem 5.9 implies that there exists
v € SBV(Q) such that Dv = XA = S+ F. Since S is an integer multiplicity current,
there exist a 2-rectifiable set S with unit normal the vector v and an integer-valued
function 6 € L'(S,H?) such that S = (S,v,0). In particular we see that the jump
of v is given by the measure 6 - H2_g, while the absolutely continuous part of the
gradient Dv is F. We then set

u(z) = (ur(z), uz(z)) := (cos(2mv(x)), sin(2mv(x))).

The map t — 2t is of class C' on R, so formula (5.14) applies and we obtain
Diuy = (cos(2mvT(x)) — cos(2mv™ (x)))vH" LLg= 0, since v — v~ =0 € Z, and we
conclude that u; has not jump part and belongs to W1(€2). The same being true
for ug, we get u € WhH(Q, S1). Moreover Duy = — sin(27rv)F and Dug = cos(27mv)F
so that —usDuq 4+ u1Dus = F, and we have concluded. O

This result shows that if F € LP(€2, M?) is a map such that — Curl F = £ for some
integral closed current £ with coefficients in 73, then there is a map u := (u',u?,u?) €
Wh(Q, (81)3) such that —ubDjut + uiD;ub = F;; in €, for i = 1,2,3. The above
statement and the proof is found in the simpler 1-dimensional case, but it can be

generalized, as applied to every row of F.
In some sense, also the opposite of Theorem 5.11 holds true.

THEOREM 5.12. Let u € WH(Q, S') and assume that u satisfies
Curl (—ugDuy + uy Dug) € My (9, R?). (5.15)

Then there exists a closed integral 1-current L such that Curl (—usDuy + w3 Dug) =
2w L.

This Theorem is a particular case of [2, Theorem 3.8]. In general, without hy-
pothesis (5.15), Curl (—ugDuy +uj Dusg) = 2L is a closed 1-current L, possibly with
nonfinite mass. A constructive proof of Theorem 5.12 can be found in [24, Theorem
2.3.9].

In the theory of functions of bounded higher variation, introduced by Jerrard
and Soner [18], the distributional Jacobian [Ju] of a Sobolev map u € W(Q, S1) is
defined as the external derivative of the pull-back by u of the standard volume form
wo on S', that is wo = z1dry — zodz;. Noting j(u) := ufwy, then

[J(w)] = dj(w), (5.16)

which is a 2-form on Q. Using identification (5.7) and (5.8), it turns out that [Ju] is
exactly Curl (—uaDuy 4+ w3 Dus). Hence, standing to the notations of [18], condition
(5.15) is equivalent to requiring that the map u has bounded higher variation, and we
write u € B2V (Q, S1).

As a consequence we see that the class of admissible displacements in the presence
of dislocations, defined as

U= {uecWhHQ,(S"?): Curl (—ugDuy + uy Dus) is an integral
l-current with coefficients in Z*}, (5.17)
is exactly the space B2V (€, (S1))3. Let
U. = {u € B2V (Q,(S"))? : [Ju] belongs to CD,
and u € Cart?(B, (S')*) whenever BN L = 0}, (5.18)
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where we recall L := spt[Ju]. We can therefore restate our existence result in the
following form.

THEOREM 5.13. Let W satisfies (W6) with Waetect = Waioteet + Wistoets Wootoct =

k1G, and
Waeteet ([J1]) = kz|[Ju]| (), (5.19)

for some k1,k2 > 0. Then, there exists a minimizer u € U. of W(F'), where F;; =
uZiDjué - uéDjuli.

In the previous result, it is tacitly assumed that also a boundary condition is
fixed.

5.4. An example. Let Q C R? be the open set defined, in cylindrical coordi-
nates, by

Q:={0<p<R,z€ (—h,h)}.

Let Q be a e-neighborhood of € and set U := \ Q. With the following example we
show that under suitable boundary condition, the dislocation of a minimizer will not
be in U but will stay inside €. We consider the map F : 2 — M? defined as

1 0 0
F(p,0,2)=¢0)[ 0 1 0], (5.20)

for some suitable smooth functions ¢, so that it turns out that
—Cwl F=b@e;H' :nv.

This means that F' shows a screw dislocation on the z-axis # with Burgers vector
b=(0,0,53). We want to minimize the energy (5.1) satisfying (W1)-(W4)

W(F,Az) = / We(F)dr + Waetees(Ar),
Q

among all the deformations F belonging to the class (4.5) with I as boundary condi-
tion. Let us suppose that the defect part of the energy takes the form

Waeteer(Ag) = 7 / lelds+ 3 4 /S Ngie)lds + e, (5.21)

1<i<kr

for v > 0 and g > 0, two material parameters, where the mesoscopic dislocation L is
the image of k. closed loops ; with Burgers vector b, with ¢; = ¢ being a dislocation
with endpoints P := (0,0,h) and @ := (0,0,—h) and Burgers vector b; = b. Then
let us consider an admissible deformation which shows only one dislocation path °
coinciding with the segment PQ. In this case kz = 1 and the energy is

W) = [ Wel(F)do +9 / 16°(s)lds + plAgo ()] =

= [ Wo(F")dx + 2hy + 2hup.
Q
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Let us now take another admissible deformation F! with the dislocation path ¢
connecting P and @ has an intermediate point at ¢(t) = (2, ys, 2¢) € Q with Ry :=
(z2 +y2)Y/2 > 0. In this case we have

1
Waetect (L) > v / [o1(s)l|ds + Az |(Q) > 2v(RE + h?)Y/2 + 2hpuB.
0

Hence, if 2v(R7 + h?)'/2 > [, We(FO)dx + 2hy, then W(F®) < W(F'). This may
happen if

1/2
R>R;>R:= % ((/ We(F°)dx + 2hy)? — h2) :
Q

In this case, we see that the minimizer of the energy must have the dislocation path
connecting P and @ inside the cylinder {z? + y*> < R,z € (—h,h)}. In particular we
see that with our choice of boundary datum, dislocations tend to remain inside the
body €2 and not to escape from the boundary.

6. Concluding remarks. In this paper we have shown that the theory of cur-
rents is rather well suited to describe elastic deformations induced by the presence
of dislocation loops and clusters. To justify this generality, let us emphasize that
dislocations in single crystals can form complex structures, since there are no inter-
nal boundaries known to be preferential regions of concentration. After a detailed
description of the dislocations as currents, a variational problem is studied with two
optimization variables, namely the deformation gradient F' and the dislocation density
A, together related by — Curl F = AT,

Two approaches coexist in this paper. On the one hand, there is the theory of
integer-multiplicity 1-currents which is a sharp tool to describe a single dislocation
together with complex geometries such as dislocation networks, including their possi-
ble evolution in time. Thus, it would allow one to model mesoscopic plasticity, which
is due to the motion of dislocations and their mutual interaction. On the other hand,
there is a variational setting where the model variables are the deformation internal
variable F' and the defect internal variable A. From this point of view, the individu-
ality of the lines is replaced by a tensor density measure and hence all geometrically
unnecessary dislocation segments are effectless in the model. These two approaches
are connected, since the mass of a current is finite as soon as its density is bounded,
at least as long as the Burgers vectors are crystallographic, that is, when dislocation
currents are written by means of canonical dislocations.

Since Cartesian maps are considered to represent the deformation F', its adjunct
and determinant are only locally defined away from a continuum, that is CofF =
cof FF e LY (Q\ K) and DetF = detF € L (Q\ K). Moreover, the fact that the
adjunct and the determinant might be concentrated distributions on K means that
the continuum (thus not only the support of the density but also the geometrically
unnecessary parts) represents a singular set where spurious effects might take place,
such as cavitation, and hence nucleation of elementary dislocation loops. This makes
sense from a physical standpoint, since dislocations at the mesoscale are in essence
the location of field singularities. From a mathematical point of view it is due to the
fact that the currents of the minimizing sequence might have a dense limit, though
of bounded length, whereas this pathological behavior is precluded by the presence of
the embedding continuum.
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Furthermore, it is yet an open question to elucidate the structure of the distribu-
tional determinant, which one would like for physical reasons to be a Radon measure
(i.e., an extensive field) on K. To the knowledge of the authors, few results exist
about this issue, without the too restrictive assumptions of field boundedness, high
space dimension and with the range of p between 1 and 2. Let us mention a partial
answer in a companion paper [26].

The described mathematical framework will be considered for future work in
order to describe evolution problems involving the dissipation due to dislocation mo-
tion. Here a preliminary step before the complete dynamics will be the quasi-statics
problem, that is, dynamics under the assumption that optimality (i.e., global mini-
mization) is reached within each time step.

Two other extensions of this work are the analysis of the distributional deter-
minant at the continuum KC, in particular to address the open question whether it
is a measure, and homogenization of a countable family to the continuum to the
macroscale (see, eg., [10, 12]). About the latter problem let us mention that our
setting at the continuum scale, allowing for countable many dislocations was thought
with a view to homogenization, since limit passage from finite to countable families
must unavoidably be faced.
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Appendix A. Modeling discussion. So far, dislocations are mathematically
represented by currents but it is crucial to keep in mind their physical origin and
formation. A dislocation loop in the bulk results from nucleation, that is, the collapse
of a void (i.e., a cavitation formed by aggregation of vacancies) which has become
unstable. Another source of dislocations is the flux of vacancies or interstitials at the
crystal boundary. In each case, the basic dislocation is a loop which is associated to a
single Burgers vector that depends on the crystal structure. Submitted to thermal and
mechanical forces, to diffusion, annihilation, recombination and any kind of mutual
interactions, these loops might in turn deform and move inside the crystal and through
its boundary, but also form clusters which themselves will either evolve or behave as
fixed obstacle to the motion of other loops, provoking material hardening.

These considerations are at the basis of the notion of regular dislocation intro-
duced above. According to the dislocation physics, the basic object are the loops
associated to a given Burgers vector b, i.e., the functions cpé’- introduced in Definition
3.1. These simple generator loops will then be smoothly deformed and summed (in
the sense of currents) in order to form dislocation clusters. Moreover, it should be
emphasized that the limited number of Burgers vectors of the generating loops might
increase significantly as clusters are considered since Frank law applies at disloca-
tion junctions [15]. For this reason, our restriction to finite families of regular loops
associated to a finite number of distinct Burgers vectors (Assumption 4.1) does not
preclude the formation of complex structures. As a consequence, a dislocation of
this kind might be formed by countably regular loops connected by arcs which are
effectless in terms of the intrinsic geometry of the crystal, and therefore referred to
as geometrically unnecessary Z (Definition 3.9). Moreover, though being 1-sets, the
clusters might exhibit complex geometries at the countable intersections or at the sets
of accumulation points of their generating loops. It should nevertheless be specified
that since overlapping of dislocations is not acceptable from a physical viewpoint, it
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should be equivalently understood as a single curve associated to a scalar multiple of
the Burgers vector.

Let us describe a pathological case which we must avoid at our scale of matter de-
scription. Consider a countable family of loops Licz of lengths lier, with } 7, H(1;)
finite. If the set L := UL;cz turns out to be dense locally in 2, then mesoscopicity
assumption will be violated since for some points outside L there is no ball centered
at them with empty intersection with L. For this reason we introduced the notion of
continuum dislocations that corresponds to requiring that the set L will always have
finite H' measure.

Let us now describe a dislocation cluster which is not a mesoscopic dislocation.
Consider the cluster of Fig. 3(c) but instead of assuming that each loop possesses
the same Burgers vector b, suppose that the family Bz ¢ B of Burgers vectors is
non-crystallographic, that means that if Bz = {b;}ien then the ratios b;/b; is never
rational for every ¢ # j. Thus, it clearly appears that this cluster cannot be made of
regular dislocations without violating Assumption 4.1. Instead, it turns out that the
broader notion of continuum dislocation holds for this kind of pathological cluster, as
long as the sum of the length of the loops is finite. We emphasize that from a strictly
mesoscopic standpoint allowing the Burgers vectors to take countably many values
(Bz ¢ B non-crystallographic) is not physical, all the more for bounded crystals.
However it can become important to permit this limit case, for instance if one considers
homogenization, or from a statistical viewpoint, ensemble averaging of dislocations.

If £ is a regular mesoscopic dislocation, the fact that £ € CD does not imply
that H!(L) < oo, even if A is finite. Indeed continuum dislocations in CD might be
quite wild, since they can consist of countable fully disconnected loops and may admit
geometrically unnecessary arcs which are locally dense, i.e., H!(Z) = oo. Moreover,
since disconnected pieces of a dislocation can be connected by adding geometrically
unnecessary arcs = (cf. Fig 3), it might also happen that H*(Z) = oco.

The introduction of continuum dislocations might be convenient for some other
reasons. First, considering time-evolution of dislocations, this latter class, as opposed
to the former, allows us to consider an evolution of the unnecessary part Z(t) such
that H! (2(t)) — oo (or H' (2(t)) — o0) as ¢ converges to some limit time. Time-
evolution of some subset of K to a pathological = is also possible within this setting,
and it might be taken into account since unnecessary dislocations play an effective role
in dynamics (as obstacle to motion, i.e. hardening), whereas they do not contribute
to the dislocation density. Second, continuum dislocations conceptually suits better
engineer models of dislocations in which necessary and unnecessary dislocations are
treated by distinct, though coupled, equations.

REFERENCES

[1] A. ACHARYA, Driving forces and boundary conditions in continuum dislocation mechanics,
Proc. R. Soc. Lond. A, 459 (2003), pp. 1343-1363.

[2] G. ALBERTI, S. BALDO, AND G. ORLANDI, Functions with prescribed singularities, J. European
Math. Soc., 5 (2003), pp. 275-311.

[3] L. AMBROSIO, N. Fusco, AND D. PALLARA, Functions of bounded variation and free disconti-
nuity problems, Oxford Mathematical Monographs. Oxford, 2000.

[4] L. AMBROSIO AND P. TiLLl, Topics on analysis in metric spaces, Oxford Lecture Series in
Mathematics and its Applications 25. Oxford: Oxford University Press, 2004.

(5] V. BERDICHEVSKY, Continuum theory of dislocations revisited, Cont. Mech. Therm., 18 (2006),
pp. 195-222.

(6] D. BUrRAGO, Y. BURAGO, AND S. IVANOV, A course in metric geometry, American Mathematical
Society., 2001.



32]

[33]

M.

=

M.

M.

H.

L.

R. SCALA AND N. VAN GOETHEM

. CANTOR, Contributions to the founding of the theory of transfinite numbers, Dover Publ.,

New-York, 1915 (1955).

. CERMELLI AND M. E. GURTIN, On the characterization of geometrically necessary disloca-

tions in finite plasticity, J. Mech. Phys. Solids, 49 (2001), pp. 1539-1568.

. CoNTI, A. GARRONI, AND A.MASSACCESI, Modeling of dislocations and relaxation of func-

tionals on 1-currents with discrete multiplicity, (submitted), 2013.

. DE Luca, A. GARRONI, AND M. PONSIGLIONE, I'-convergence analysis of systems of edge

dislocations: the self energy regime, Arch. Ration. Mech. Anal., 206 (2012), pp. 885-910.

. FEDERER, Geometric measure theory, Springer-Verlag, Berlin, Heidelberg, New York., 1969.
. GARRONI, G. LEONI, AND M. PONSIGLIONE, Gradient theory for plasticity via homogeniza-

tion of discrete dislocations, J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 1231-1266.
GIAQUINTA, G. MoDICA, AND J. SOUCEK, Cartesian currents in the calculus of variations
1I. Variational integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 38.
Berlin: Springer, 1998.

. HENAO AND C. MORA-CORRAL, Invertibility and weak continuity of the determinant for the

modelling of cavitation and fracture in nonlinear elasticity, Arch. Ration. Mech. Anal.,
197 (2010), pp. 619-655.

. HirTH AND J. LOTHE, Theory of dislocations, Wiley, 2ed., New-York, 1982.
. HOCHRAINER, Mowving dislocations in finite plasticity: a topological approach, Z. Angew.

Math. Mech., 93 (2013), pp. 252-268.

. HOCHRAINER AND M. ZAISER, Fundamentals of a continuum theory of dislocations, Pro-

ceedings of the International conference on Statistical Mechanics of Plasticity and Related
Instabilities, 2005.

. L. JERRARD AND H. M. SONER, Functions of bounded higher variation, Indiana Univ. Math.

J., 51 (2002), pp. 645677.

. G. KraNTZ AND H. R. PARKS, Geometric Integration Theory, Cornerstones. Birkh&user,

2008.
MIRANDA, Distribuzioni aventi derivate misure insiemi di perimetro localmente finito, An.
Scuola Normale Superiore di Pisa, 18 (1964), pp. 27-56.

. MULLER, Det=det. A remark on the distributional determinant, C. R. Acad. Sci., Paris,

Sér. I 311, 1 (1990), pp. 13-17.
PALOMBARO AND S. MULLER, Ezistence of minimizers for a polyconvex energy in a crystal
with dislocations, Calc. Var., 31 (2008), pp. 473-482.

. REINA, J. MARIAN, AND M. ORTIZ, Nanovoid nucleation by vacancy aggregation and

vacancy-cluster coarsening in high-purity metallic single crystals, Physical Review B,
84 (2011), 104117.

SCALA, A wariational approach to statics and dynamics of elasto-plastic systems, PhD
thesis, Scuola Internazionale Superiore di Studi Avanzati, http://www.math.sissa.it/
publication/variational-approach-statics-and-dynamics-elasto-plastic-systems,
2014.

. ScALA AND N. VAN GOETHEM, Constraint reaction and the Peach-Kéhler force for disloca-

tion networks, (preprint: https://hal.archives-ouvertes.fr/hal-01213861), 2015.

. ScALA AND N. VAN GOETHEM, On the topological nature of dislocation singularities,

(preprint 2016).

VAN GOETHEM, Strain incompatibility in single crystals: Kréner’s formula revisited, J.
Elast., 103 (2011), pp. 95-111.

VAN GOETHEM, Thermodynamic forces in single crystals with dislocations, 7. Ang. Math.
Phys., 65 (2014), pp. 549586.

VAN GOETHEM AND F. DUPRET, A distributional approach to the geometry of 2D dislocations
at the continuum scale, Ann. Univ. Ferrara, 58 (2012), pp. 407-434.

I. VoLPERT AND S. I. HUDJAEV, Analysis in Classes of Discontinuous Functions and
Equations of Mathematical Physics, Boston Nijhoff. 1985.

. ZAISER, Dislocation patterns in crystalline solids- phenomenology and modelling, In

G. Miiller, J. J. Métois, and P. Rudolph, editors, Crystal Growth-From fundamentals
to technology. Elsevier, 2004.

M. ZBiB, M. HIRATANI, AND M. SHEHADEH, Multiscale discrete dislocation dynamics plas-
ticity, In D. Raabe, editor, Continuum Scale Simulation of Engineering Materials. Wiley,
2005.

ZuBov, Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies, Lecture notes
in physics, 47. Springer-Verlag, 1997.



