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Abstract. In [18], the author established a defect relation for holomorphic mappings from C

into the projective variety X ⊂ PN (C) intersecting divisors of X coming from hypersurfaces in PN .
The purpose of this paper is to do some further generalizations. It contains two major parts: (I) We
extend the defect relation to effective divisors on X with Pic(X) = Z. (II) We extend the defect
relation to meromorphic mappings from parabolic manifolds into X ⊂ PN .
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1. Introduction. Let f : C → Pn(C) be a linearly non-degenerate holomor-
phic map, and Hj , 1 ≤ j ≤ q, be hyperplanes in Pn(C) in general position. In
1933, H. Cartan (see [4]) proved the defect relation (or a Second Main Theorem)
q

∑

j=1

δf (Hj) ≤ n+ 1. Recently, the author (see [18]) extended H. Cartan’s result to

algebraically nondegenerate holomorphic curves f : C → X ⊂ PN (C) and obtained
q

∑

j=1

δf (Dj) ≤ dimX + 1, where X is a smooth projective variety and D1, . . . , Dq are

hypersurfaces in PN (C) located in general position in X .

To get a more precise statement, we introduce some standard notations in Nevan-
linna theory: Let f : C → PN (C) be a holomorphic map. Let f = (f0, . . . , fN ) be a
reduced representative of f , where f0, . . . , fN are entire functions on C and have no
common zeros. The Nevanlinna-Cartan characteristic function Tf (r) is defined by

Tf(r) =
1

2π

∫ 2π

0

log ||f(reiθ)||dθ

where

‖f(z)‖ = max{|f0(z)|, . . . , |fN (z)|}.

The above definition is independent, up to an additive constant, of the choice of the
reduced representation of f . Let D be a hypersurface in PN(C) of degree d and let
Q be the homogeneous polynomial of degree d defining D. The proximity function is
defined as

mf (r,D) =

∫ 2π

0

log
‖f(reiθ)‖d‖Q‖
|Q(f)(reiθ)|

dθ

2π
,
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where ‖Q‖ is the maximum of the absolute values of the coefficients of Q. To define
the counting function, let nf(r,D) be the number of zeros of Q ◦ f in the disk |z| < r,
counting multiplicity. The counting function is then defined by

Nf (r,D) =

∫ r

1

nf (t,D)

t
dt.

The Poisson-Jensen formula implies:

The First Main Theorem. Let f : C → P
N (C) be a holomorphic map, and let

D be a hypersurface in PN (C) of degree d. If f(C) 6⊂ D, then for every real number
r with 0 < r < ∞,

mf(r,D) +Nf(r,D) = dTf(r) +O(1),

where O(1) is a constant independent of r.

Let X ⊂ PN (C) be a smooth complex projective variety of dimension n ≥ 1. Let
D1, . . . , Dq be hypersurfaces in PN (C), where q > n. The hypersurfaces D1, . . . , Dq

are said to be in general position in X if for every subset {i0, . . . , in} ⊂ {1, . . . , q},
X ∩ suppDi0 ∩ · · · ∩ suppDin = ∅,

where supp(D) means the support of the divisor D. A map f : C → X is said
to be algebraically non-degenerate if the image of f is not contained in any proper
subvarieties of X . The following result, which extends the result of H. Cartan, was
proved in [18].

Theorem A [18]. Let X ⊂ PN(C) be a smooth complex projective variety. Let
D1, . . . , Dq be hypersurfaces in P

N (C) of degree dj, located in general position in X.
Let f : C → X be an algebraically non-degenerate holomorphic map. Then, for every
ǫ > 0,

q
∑

j=1

d−1
j mf (r,Dj) ≤ (dimX + 1 + ǫ)Tf(r) ‖E

where ‖E means that the inequality holds for all r except a set E ⊂ (0,+∞) with finite
Lebesgue measure.

Define the defect of f with respect to a hypersurface D of degree d by

δf (D) = lim inf
r→+∞

mf (r,D)

dTf (r)
= 1− lim sup

r→+∞

Nf (r,D)

dTf (r)
.

Then Theorem A gives

Corollary A (Defect Relation). Under the same assumptions in Theorem A,
we have

q
∑

j=1

δf (Dj) ≤ dimX + 1.

The purpose of this paper is to generalize the above results. This paper con-
tains two major parts: (I) We extend Theorem A to effective divisors on X with
Pic(X) = Z, where Pic(X) is the Picard group of X , by verifying that in the case
Pic(X) = Z every effective divisor on X is cut out by a hypersurface in the ambient
projective space, as assumed in Theorem A; (II) We extend Theorem A to meromor-
phic mappings from parabolic manifolds into X ⊂ PN .
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2. Divisors on projective variety X with Pic(X) = Z. Theorem A (so
the defect relation in Corollary A) only applies to those divisors on X which are
cut out by hypersurfaces in an ambient projective space. For a general non-singular
projective variety, it is far from true that (multiples of) effective divisors are cut out
by hypersurfaces in the ambient projective space. In this section we prove that, for a
nonsingular projective variety X with Pic(X) = Z, up to taking multiples, effective
divisors are cut out by hypersurfaces. Therefore Theorem A in above can be applied.

Lemma 2.1. Let X ⊆ P
N be a nonsingular projective variety. Assume that

Pic(X) = Z. Let D be an effective divisor on X. Then there exists a positive integer
k such that kD is the restriction to X of some hypersurface in PN .

Proof. Consider the line bundle OX(D), which represents an element in Pic(X).
Due to Pic(X) = Z, there exist positive integers m,κ such that OX(mD) = OX(κ) as
elements of Pic(X). We are free to multiply this equality with an arbitrary positive
integer m̃, obtaining OX(m̃mD) = OX(m̃κ). Consider the short exact sequence

0 → IX(m̃κ) → OPN (m̃κ) → OX(m̃κ) → 0.

The corresponding long exact sequence starts with

0 →H0(PN , IX(m̃κ)) → H0(PN ,OPN (m̃κ)) → H0(X,OX(m̃κ))

→H1(PN , IX(m̃κ)).

Due to Serre’s Vanishing Theorem, H1(PN , IX(m̃κ)) = 0 when m̃ is sufficiently large.
Thus, all sections in H0(X,OX(m̃κ)) extend to sections in H0(PN ,OPN (m̃κ)) when m̃
is sufficiently large. In particular, sections s ∈ H0(X,OX(m̃mD))= H0(X,OX(m̃κ))
with

(s) = m̃mD

extend. However, the sections of OPN (m̃κ) correspond to homogeneous polynomials
of degree m̃κ in C[X0, . . . , XN ]. Thus, m̃mD is indeed defined by the restriction to
X of a homogeneous polynomial in C[X0, . . . , XN ] when m̃ is sufficiently large. This
proves the lemma.

Let X ⊆ PN be a nonsingular projective variety and let L :→ X be an ample line
bundle over X . Denote by ‖ · ‖ a Herimitian fiber metric on L and ω be its Chern
form. Let f : C → X be a holomorphic mapping. We set

Tf(r, L) =

∫ r

1

dt

t

∫

{z||z|<t}

f∗ω,

and call it the characteristic function of f with respect to L. It is easy to check that
it is independent, up to a bounded term, of the choice of the Hermitian fiber metric
on L. Let D = (σ) ∈ |L| with ‖σ‖ < 1 on X , where |L| is the complete system of L.
Assume that f(C) is not contained in SuppD. We define the approximity function of
f with respect to D by

mf (r,D) =

∫ 2π

0

log

(

1

‖σ(f(reiθ))‖

)

dθ

2π
.
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To define the counting function for D = (σ) ∈ |L|, let nf (r,D) be the number of
zeros of σ ◦ f in the disk |z| < r, counting multiplicity. The counting function is then
defined by

Nf (r,D) =

∫ r

1

nf (t,D)

t
dt.

The Poincare-Lelong formula implies that (The First Main Theorem)

Tf (r, L) = mf (r,D) +Nf(r,D) +O(1)

for all D ∈ |L| with f(C) 6⊂ Supp(D), where O(1) stands for a bounded term as
r → +∞.

Let f and D be as above (with the assumption that D is ample), we define
Nevvanlinna’s deficiency δf (D) by

δf (D) = lim inf
r→+∞

mf (r,D)

Tf(r,OX(D))
= 1− lim sup

r→+∞

Nf (r,D)

Tf (r,OX(D))
,

where OX(D) is the line bundle over X associated to the divisor D. Note that
the Nevvanlinna’s deficiency δf (D) only depends on f and D (independent of the
choice of the metrics on O(D)). We also note that for any integer positive integer
k, nf (r, kD) = knf (r,D) and Tf (r,OX(kD)) = kTf(r,OX(D)), thus, for any integer
positive integer k,

δf (kD) = δf(D).

This notion extends to any effective divisor D since we can always write D = D1−D2

with D1, D2 being very ample.

The first result, among the two main results in this paper, is the following Theo-
rem.

Theorem 1 [Defect Relation]. Let X be a non-singular projective variety of
dimension n with Pic(X) = Z. Let D1, . . . , Dq be effective divisors on X located
in general position (i.e. for every subset {i0, . . . , in} ⊂ {1, . . . , q}, suppDi0 ∩ · · · ∩
suppDin = ∅). Let f : C → X be an algebraically nondegenerate holomorphic map.
Then

q
∑

j=1

δf (Dj) ≤ dimX + 1.

In particular, if q ≥ dimX + 2, then every holomorphic map f : C → X \D, where
D =

∑q
j=1 Dj, must be algebraically degenerate, i.e., the image of f must be contained

in a proper subvariety of X.

Proof. By Lemma 2.1, there exist positive integers, say kj , 1 ≤ j ≤ q, such
that kjDj are defined by the restriction to X of homogeneous polynomials Qj in
C[X0, . . . , XN ]. From Corollary A, we get

q
∑

j=1

δf (kjDj) ≤ dimX + 1.
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But, as we noted in above,

δf (kjDj) = δf (Dj),

hence

q
∑

j=1

δf (Dj) ≤ dimX + 1.

This proves Theorem 1.

Next, we exhibit a large class of nonsingular projective varieties that satisfy the
condition Pic(X) = Z, namely those of sufficiently small codimension. We refer
the reader to [10] or [13, section 3.2] for more on the algebraic geometry behind
this question, which is essentially the problem of extending the Lefschetz Hyperplane
Theorem to nonsingular varieties that are not complete intersections. In particular,
the theorems of [2], [12], and, in the case of a general ground field of characteristic
zero, [14] apply. For our purposes, we simply state the following proposition, which
is an immediate consequence of these theorems.

Proposition 2.1. Let X ⊂ PN be a nonsingular projective variety of dimension
n. If 2n−N ≥ 2, then restriction yields an isomorphism

Pic(PN)
∼=→ Pic(X).

Since Pic(PN) = Z, the proposition gives the following immediate consequence
of Corollary.

Corollary 2.1. Let X ⊆ PN be a nonsingular projective variety. Assume
that 2 dimX − N ≥ 2 holds. Let D =

∑q
j=1 Dj be an effective divisor on X such

that Dj , 1 ≤ j ≤ q, are in general position. Let f : C → X be an algebraically
nondegenerate holomorphic map. Then

q
∑

j=1

δf (Dj) ≤ dimX + 1.

In particular, if q ≥ dimX + 2, then every holomorphic map f : C → X \D must be
algebraically degenerate, i.e., the image of f must be contained in a proper subvariety
of X.

We make a remark here about the nature of the condition 2 dimX − N ≥ 2. It
is well-known that, by general linear projections, any nonsingular projective variety
of dimension n can be embedded in PN with N = 2n + 1. Thus, for an arbitrary
nonsingular projective variety, one can always find an embedding with 2n−N = −1.
In particular, Corollary 2.1 applies to many interesting special projective varieties such
as hypersurfaces, appropriate complete intersections, and certain Grassmannians, such
as G(2, 5) embedded into P9 under the Plücker embedding. Note that the latter is
not a complete intersection due to Bézout’s Theorem, because its degree is (the prime
number) 5, while it is not contained in any hyperplane.

3. The second main theorem on parabolic manifolds. In this section, we
extend Theorem A to meromorphic mappings from parabolic manifolds to algebraic
variety X ⊂ PN .
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3.1. The result of Stoll-Wong. H. Cartan’s defect relation mentioned in the
introduction was also proved by L. Ahlfor’s in 1941 (see [1]) with a different method.
Ahlfors method was indeed more geometrical, which is a magnificent demonstration
of the interplay between topology, geometry and analysis, on holomorphic curves.
Ahlfors’ theory was extended to parabolic Riemann surfaces by H. Weyl and J. Weyl
in the famous monograph [25] published in 1943. Modern treatment of this theory
can also be found in Wu [28]. Extension of the theory to higher dimension was first
achieved by Stoll in a series of papers [21], [22] in late forties and early fifties. In
the sixties and early seventies, value distribution theory attracted the attention of
many mathematicians, notably the works of Carlson-Griffiths [3], Griffiths-King [9]
extending the theory to algebraic manifolds in the equi-dimensional case. However
in this article we shall restrict ourselves to the ideas of Stoll in extending the defect
relation to a larger case of manifolds other than Cm.

In extending the defect relation, the class of manifolds should be large enough so
as to include all affine algebraic manifolds and, on the other hand, manifolds in this
class should not admit any non-constant bounded holomorphic functions (otherwise
we cannot expect to have a nice simple defect relation). Such manifolds can be
produced by the following procedure (cf. Stoll [21]). For simplicity we consider only
the case of Kahler manifolds. Let M be a complex manifold of dimension m with
Kahler metric g and ω the associated Kahler form. Choose a sequence of relatively
compact domains with smooth boundaries {Gj}, Gj ⊂⊂ Gj+1 and ∪Gj = M . Solve
the Dirichlet problem for the Laplace-Beltrami operator △ on Gj −G0,

△uj = 0 on Gj −G0(1.1)

uj =

{

0 on M −Gj

1 on G0
.(1.2)

The harmonic condition (1.1) is equivalent to

ddcuj ∧ ωm−1 = 0(1.3)

where dc =
√
−1(∂̄ − ∂). Define constants

Cj = −
∫

∂Gj

dcuj ∧ ωm−1.

These constants are strictly positive (by Hopf’s lemma) and satisfies Cj ≥ Ck if k ≥ j
(by maximum principle). Thus the limit

C∞(M) = lim
j→∞

Cj ≥ 0

exists and is called the capacity of M at infinity.

Proposition 3.1.1. A connected Kahler manifold M with zero capacity at in-
finity does not admit any non-constant bounded holomorphic function.

Proof. Let ω be the fundamental Kahler form and suppose there is a bounded
non-constant holomorphic function f , say |f | ≤ 1. Then by (1.2) we have,

0 < λ =

∫

G0

ddc log(1 + |f |2) ∧ ωm−1 =

∫

G0

ujdd
c log(1 + |f |2) ∧ ωm−1.
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From (1.1), (1.2) and Stoke’s theorem, the last term above is equal to

∫

∂G0−∂Gj

log(1 + |f |2)dcuj ∧ ωm−1 ≤ −
∫

∂Gj

log(1 + |f |2)dcuj ∧ ωm−1 ≤ Cj log 2.

Thus we have 0 < λ ≤ Cj log 2, for any j. This is a contradiction since Cj → 0 as
j → ∞.

The concept of zero capacity above depends on the metric, thus it is desirable
to have more intrinsic notion of “parabolicity”. The following definition defining
parabolicity via the homogeneous complex Monge-Ampere equation is due to Stoll
(cf. [23]).

Definition 3.1.1. A continuous non-negative function τ on a complex manifold
Mm is parabolic if

(i) τ is C∞ on M∗ = M − {τ = 0};
(ii) τ is plurisubharmonic on M and is strictly plurisubharmonic at some point

of M∗;
(iii) the function u = log τ satisfies the complex homogeneous Monge-Ampere

equation on M∗, i.e.

det(uαβ̄) ≡ 0 on M∗

where uαβ̄ = ∂2u/∂z∂z̄.

A complex manifold M is parabolic if there exists a continuous exhaustion τ :
M → [0,∞) which is parabolic on the complement of some compact set K. Examples
of parabolic manifolds include (1) Open parabolic Riemann surfaces (as in the classical
sense); (2) Euclidean space Cm (with τ(z) = |z|2); (3) An affine algebraic manifold
as it can be realized a finite branched cover π : M → Cm (with τ(z) = |π(z)|2).

On a parabolic manifold (M, τ) take r0 so that the set Mr0 = {τ < r0} contains
the exceptional compact set K. For any r > r0, the function

ur =







0 on M −Mr
log r−log τ
log r−log r0

on Mr −Mr0

1 on Mr0

solves the Dirichelt problem (1.2) and (1.3) with ω = ddc log τ . Capacity can be
defined as before. It is easy to verify that, since τ is unbounded, the capacity at
infinity C∞(M) vanishes. We thus have, from Proposition 3.1.1,

Corollary 3.1.1. Let M be a parabolic manifold then C∞(M) = 0 so it does
not admit any non-constant bounded holomorphic function.

The following defect relation on parabolic manifolds is due to Stoll [23] and Wong
[26]).

Theorem 3.1.1 (Stoll-Wong). Let (M, τ) be a parabolic manifold and let f : M →
Pn be a linearly non-degenerate meromorphic map. Let H1, . . . , Hq be hyperplanes in
general position in Pn, then

q
∑

j=1

δf (Hj) ≤ n+ 1 +
n(n+ 1)

2
Rf + 3n(n+ 1)Yf .
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The term Rf , which vanishes in the case of Cm, reflects the topology of the
manifold M . The appearance of the term Yf (called the majorant defect) is due
mainly to technicality. Due to the global nature of the theorem, it is necessary to
define the derivatives (first and higher orders) of f by a global (meromorphic) vector
field Z in such a way that f ∧Zf ∧· · ·∧Znf 6≡ 0. The term Yf occurs in the estimate
of the growth of Z, for which one does not have good control in general. A natural
way of constructing Z with ”good” growth condition is to take the (complex) gradient
vector field Z of τ . However, Z is in general not holomorphic. If Z is holomorphic,
then the term Yf vanishes, this is the case for parabolic Riemann surfaces and for
affine algebraic manifolds.

Corollary 3.1.2. If M is algebraic, theorem 3.1.1 reduces to

(i)

q
∑

j=1

δf (Hj) ≤ n+ 1 if f is transcendental

(ii)

q
∑

j=1

δf(Hj) ≤ n+ 1 +
n(n+ 1)

2

deg(M)

deg(f)
, if f is rational.

3.2. Meromorphic mappings on M . Throughout the rest of the paper, we
shall assume that M is parabolic with the parabolic exhaustion τ . Assume that
dimM = m. Take r0 > 1 so that the set Mr0 = {τ < r0} contains the exceptional
compact set K. For r0 ≤ r ∈ R and A ⊆ M define

A[r] = {x ∈ A | r0 < τ(x) ≤ r2}, A(r) = {x ∈ A | r0 < τ(x) < r2},

A〈r〉 = {x ∈ A | τ(x) = r2}, A∗ = {x ∈ A | τ(x) > r0},

υ = ddcτ, ω = ddc log τ, σ = dc log τ ∧ ωm−1.

Define

R̂τ = {r ∈ R
+ | dτ(x) 6= 0 for all x ∈ M〈r〉}.

Then R+\R̂τ has measure zero. If r ∈ R̂τ , the boundary ∂M(r) = M〈r〉 is a compact,
real, (2m− 1)-dimensional submanifold of class C∞ of M , oriented to the exterior of

M〈r〉. By Stoll ([23], p. 133), for all r ∈ R̂τ ,

ς :=

∫

M〈r〉

σ(1.4)

is a positive constant, independent of r. From now on, we always assume that r > r0
and r ∈ R̂τ .

Let A 6= ∅ be a nonempty open subset of M such that S = M −A is analytic. Let
f : M → Pn(C) be holomorphic on A. The closure Γ of the graph {(x, f(x))|x ∈ A} in
M×Pn(C) is called the closed graph of f . The map f is said to be meromorphic on M
if (i) Γ is analytic inM×Pn(C) and (ii) Γ(f)∩(K×Pn(C)) is compact for each compact
subset K ⊆ M , i.e. the projection ρ : Γ(f) → M is proper. If f is meromorphic, then
the set of indeterminacy If = {x ∈ M |#ρ−1(x) > 1} is analytic with dim If ≤ m− 2
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and is contained in S. f extends holomorphically to f : M − If → Pn(C) such
that we can assume, a posteriori, that S = If . If m = 1, If is necessarily empty and
f : M → Pn(C) is holomorphic. GivenM,A, S and a holomorphic map f : A → Pn(C)
as above. A holomorphic map f(6≡ 0) : U → Cn+1 on an open and connected subset
U of M is said to be a representation of f if f(x) = P(f(x)) for all x ∈ A ∩ U with
f(x) 6= 0. A representation f is said to be reduced if dim f−1(0) ≤ m − 2. The map
f is meromorphic if and only if for every point p ∈ M , there is a representation
f : U → Cn+1 of f with p ∈ U . If so, a representation f is reduced if and only if
U ∩ If = f−1(0). There is also a reduced representation at every point p ∈ M .

3.3. The associated maps. To define the associated maps of f , we need to

assume that there exists a holomorphic form B of bidegree (m − 1, 0) on

M . Let f be a holomorphic vector-valued function on an open subset U of M . If
z = (z1, . . . , zm) is a chart with Uz ∩U 6= ∅, then the B-derivative f ′B,z = f ′ on U ∩Uz

for z is defined by df ∧B = f ′dz1 ∧ · · · ∧ dzm. The operation can be iterated so that
the k-th B-derivative f (k) is defined: f (k) = (f (k−1))′. Put f (0) = f . Abbreviate

fk = f ∧ f ′ ∧ · · · ∧ f (k) : U → ∧k+1
C

n+1.

Let f : M → Pn(C) be a meromorphic map. If fk 6≡ 0 for one choice of a reduced
representation f : U → Cn+1 on a chart Uz, then fk 6≡ 0 for all possible choices
and f is said to be general of order k for B. In this case, the k-th associated map
fk : M → P(

∧k+1
Cn+1) is well-defined as a meromorphic map by fk|U = P(fk) for all

possible choices of f and chart z. We say that f is general for B if f is general of order
k for B for all k, 1 ≤ k ≤ n. The basic existence theorem for a holomorphic (m− 1)-
form B on M is due to W. Stoll. He (see [23]) proved the following statement: Let
M be a connected Stein manifold and let f : M → Pn(C) be a linearly nondegenerate
meromorphic map. Then there exists a holomorphic (m− 1)-form B on M such that
f is general for B. If dimM = 1, we may take B ≡ 1. If M is affine algebraic with
the exhaustion τ defined as above and dimM ≥ 2, then the form B can be chosen so
that

mim−1B ∧ B̄ ≤ (1 + τ)n−1(ddcτ)m−1

where im−1 =

(√
−1

2π

)

(m− 1)!(−1)(m−1)(m−2)/2.

3.4. The majorant function. For a general parabolic Stein manifold (M, τ),
even though the existence of B exists by Stoll’s result above, in general, it may not
have a polynomial type estimate as for affine algebraic manifolds. To overcome this
difficulty, Stoll [23] postulates the existence of a majorant function such that

mim−1B ∧ B̄ ≤ Y (r)υm−1(1.5)

on M [r]. Such function Y (r) is called a majorant for B. The majorant function Y (r)
introduces an extra term in the Second Main Theorem.

3.5. The Plücker formula. Let f : M → Pn(C) be a meromorphic map which
is linearly non-degenerate, hence f is general for B. Let fk be the kth associated map
of f . Let Ωk be the Fubini-Study form on Pn(

∧k+1
Cn+1). Then we have (see [23],

or [27] Lemma 1.10)

mim−1f
∗
k (Ωk)B ∧ B̄ =

‖fk−1‖‖fk+1‖
‖fk−1‖

m!dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m.(1.6)
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Define the kth characteristic function

Tfk(r) =

∫ r

r0

dt

t2m−1

∫

M [t]

f∗
k (Ωk) ∧ υm−1.

It is known that Tfn(r) ≡ 0. Denote Tf−1(r) ≡ 0.

Let ν be a divisor on M with S = supp ν. The counting function of ν is defined
to be

Nν(r) =

∫ r

r0

nν(t)
dt

t
(1.7)

where

nν(t) = t2−2m

∫

S[t]

νυm−1 =

∫

S∗[t]

νωm−1 + nν(0), if m > 1,

nν(t) =
∑

z∈S[t]

ν(z), if m = 1.

Let dk be the zero divisor of fk ( when k = n, we obtain the Wronskian divisor dn).
The divisor lk = dk−1 − 2dk + dk+1 ≥ 0 is called the kth stationary index, here we
assume that d−1 = 0. Let Ik be the indeterminacy of fk. On M − Ik define,

h2
k :=

mim−1f
∗
k (Ωk) ∧B ∧ B̄

υm
.(1.8)

and define

Sk(r) =

∫

M〈r〉

log h2
k σ.(1.9)

Theorem 3.5.1 [Plücker Formula] ([23], Theorem 7.6]).

Nlk(r) + Tfk−1
(r)− 2Tfk(r) + Tfk+1

(r) = Sk(r) − Sk(r0) +Ricτ (r).

The function Ricτ(r) is called the Ricci function (c.f. [23], or see (3.2) in
[27]). It depends only on the geometry (topology) of the manifold M. The other
terms of Plucker Formula are analytic invariants. The Ricci function is the in-
tegrated Euler characteristic. For affine algebraic manifolds π : M → Cm, we

have lim
r→+∞

Ricτ(r)

log r
= dπ=degree of the branching divisor of π.

3.6. Projective distance. Denote by C
∗n+1 the dual space of Cn+1. For 0 ≤

k ≤ n, let ⌊:
(

∧k+1
Cn+1

)

× C∗n+1 → ∧k
Cn+1 be the interior product defined in

the usual way. Let x ∈ P(
∧k+1

Cn+1) with representative ξ ∈ ∧k+1
Cn+1 − {0} and

let a ∈ P(C∗n+1) with representative α ∈ C∗n+1 − {0}, the projective distance

between x and a is defined by

0 ≤ ‖x; a‖ =
‖ξ⌊α‖
‖ξ‖‖α‖ ≤ 1,
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where the norm on on
∧k

Cn+1 is induced by the standard norm on Cn+1. Note that
the above definition is independent of choice of the representatives α and ξ. Note
that a hyperplane H in Pn(C) can also be regarded as a point in Pn(C∗). Hence, for
every meromorphic map f : M → Pn(C), ‖fk(z);H‖ is defined for z ∈ M . This gives
a distance function (from fk(z) to H) on M . For a hyperplane H in P

n(C), define
the proximity function

mfk(r,H) =

∫

M〈r〉

log
1

‖fk;H‖σ.

For a hyperplane H in Pn(C), define an H−divisor ν = µH
fk

as in Stoll [23] let
Nfk(r,H) = Nν(r) as defined in (1.7).

Theorem 3.6.1 [First Main Theorem] ([23], (8.21), P.153). Let f : M → Pn(C)
be a meromorphic map which is general for B. Then, for every hyperplane H ∈ Pn(C)
and for every 0 ≤ k ≤ n, we have

Tfk(r) ≥ Nfk(r,H) +mfk(r,H)−mfk(r0, H).

Similarly, let D be a hypersurface in Pn(C) of degree d. Assume that f(M) 6⊂ D.
Let Q be the homogeneous polynomial (form) of degree d defining D. The proximity
function mf (r,D) is defined as,

mf (r,D) =

∫

M〈r〉

log
‖f(z)‖d‖Q‖
|Q(f)(z)| σ.

Let Nf(r,D) = Nν(r), with ν = µQ(f) as defined in (1.7).

Theorem 3.6.2 [First Main Theorem]. Let f : M → Pn(C) be a holomorphic
map, and let D be a hypersurface in Pn(C) of degree d. If f(M) 6⊂ D, then

mf (r,D) +Nf (r,D) = dTf (r) +O(1),

where O(1) is a constant independent of r.

3.7. The Ahlfors’ Estimate. We first recall the following theorem.

Theorem 3.7.1 [Ahlfors Estimate] ([23], Theorem 10.3). Let H be a hyperplane
in Pn(C). Then for any 0 < λ < 1, we have

∫ r

r0

dt

t2m−1

∫

M [t]

‖fk+1;H‖2
‖fk;H‖2−2λ

h2
kυ

m ≤ 8Y (r)

λ2
(λTfk(r) + ς),

where ς is defined in (1.4).

To re-formulate Theorem 3.7.1 to meet our purpose, we recall the following Cal-
culus lemma.

Lemma 3.7.1 (Calculus Lemma). Let T (r) ≥ 0 (r ≥ r0 ≥ 0) be a monotone
increasing function. For an arbitrary ǫ > 0

d

dr
T (r) ≤ T (r) · log1+ǫ T (r) ‖E(ǫ)
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where ‖E(ǫ) means that the inequality holds for all r except a set Eǫ (depends on ǫ)
with finite Lebesgue measure.

Proof. Since T (r) is monotone increasing, the derivative T ′(r) exists almost ev-
erywhere. We may assume that T (r) 6≡ 0. Set

E(ǫ) =
{

r ≥ r0 | T ′(r) ≥ T (r) · log1+ǫ T (r)
}

.

Then

meas(E(ǫ)) =

∫

E(ǫ)

dr ≤
∫ ∞

r1

T ′(r)

T (r) · log1+ǫ T (r)
dr < +∞

which proves the lemma.

The typical use of the calculus lemma is as follows:

Lemma 3.7.2. Let h be a nonnegative measurable function on M such that hυm

is locally integrable. Let T be a function defined by

T (r) =

∫ r

r0

dt

t2m−1

∫

M [t]

hυm.

Then, for an arbitrary ǫ > 0,

∫

M〈r〉

hσ ≤ T (r) log1+ǫ T (r)
(

log(r2m−1T (r) log1+ǫ T (r))
)1+ǫ ‖E(ǫ).

Proof. Notice that

∫

M [r]

hυm = m

∫

M [r]

hτm−1dτ ∧ σ = 2m

∫ r

0

(∫

M<r>

hσ

)

t2m−1dt.

Hence

2m

∫

M〈r〉

hσ = r−(2m−1) d

dr

(

r2m−1 dT

dr

)

.

Thus may apply the Calculus lemma twice, first to the function r2m−1T ′(r) and then
to the function T ′(r). This proves the result.

Lemma 3.7.3. Let Sk(r) be defined in (1.9). Then

Sk(r) ≤ ς(log+ Tfk(r) + log+ Y (r) + 2 log+ log r)‖E

where E ⊂ [r0,+∞) is a set with finite measure, and ς is given in (1.4).

Proof. We wish to applying Lemma 3.7.2 to h2
k which is defined in (1.8). To do

so, we first notice

∫ r

r0

dt

t2m−1

∫

M [t]

h2
kυ

m = mim−1

∫

M [t]

f∗
kΩ ∧B ∧ B̄

≤ Y (r)

∫ r

r0

dt

t2m−1

∫

M [t]

f∗
kΩ ∧ υm−1 = Y (r)Tfk (r).
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Hence, Lemma 3.7.2 with ǫ = 1
∫

M〈r〉

h
2
kσ ≤ Y (r)Tfk(r)[log(Y (r)Tfk(r))]

2
{

log[r2m−1
Y (r)Tfk(r) log

2(Y (r)Tfk(r))]
}2

‖E

where E ⊂ [r0,+∞) is a set with finite measure. Hence

Sk(r) =
ς

2

∫

M〈r〉

log h2
k

σ

ς
≤ ς

2
log

∫

M〈r〉

h2
k

σ

ς

≤ ς

2
[log+ Tfk(r) + log+ Y (r) + 4 log+ logTfk(r) + 4 log+ log+ Y (r) + 2 log+ log r

+2 log+ log+ log+ Y (r) + 2 log+ log+ log+ Tfk(r) +O(1)] ‖E .

By enlarging E if necessary, we can assume that 4 log+ log+ logTfk(r)) ≤
log+ Tfk(r) ‖E , 8 log+ log Y (r) ≤ logTfk(r) ‖E , 4 log+ log+ log Y (r) ≤ log+ Y (r) ‖E ,
8 log+ log Y (r) ≤ log+ Y (r) ‖E and O(1) ≤ log+ log r ‖E . Thus we get

Sk(r) ≤ ς(log+ Y (r) + log+ Tfk(r) + 2 log+ log r) ‖E .

This proves the Lemma.

Theorem 3.7.2. For 0 ≤ k ≤ n− 1,

Tfk(r) ≤ 2(k + 1)Tf(r) + k(k + 1)Ricτ (r) + k(k + 1)ς [log+ Y (r) + 2 log+ log r] ‖E .

where E ⊂ (r0,∞) is a set with finite measure.

Proof. Summering Theorem 3.5.1 (the Plucker formula) from p = 0 to p = k, we
get

Tfk(r) − (k + 1)T0(r) ≤
k(k + 1)

2
Ricτ (r) +

∑

0≤p≤k−1

(k − p)Sp(r),

where T0(r) = Tf(r). This, together with Lemma 3.7.3, yields

Tfk(r) ≤ (k + 1)Tf(r) +
k(k + 1)

2
Ricτ (r)

+
k(k + 1)

2
ς [log+ Y (r) + log+ T (r) + 2 log+ log r]‖E

where T (r) = max0≤p≤k Tfp(r). Notice that above inequality holds for all k with
k = 0, 1, ..., n− 1, hence

T (r) = max
0≤p≤k

Tfp(r) ≤ (k + 1)Tf(r) +
k(k + 1)

2
Ricτ (r)

+
k(k + 1)

2
ς [log+ Y (r) + log+ T (r) + 2 log+ log r]‖E .

Using k(k+1)
2 ς log+ T (r) ≤ 1

2T (r) ‖E for some E ⊂ (r0,∞) with finite measure since
f is linearly non-degenerate, we derive

T (r) ≤ 2(k + 1)Tf(r) + k(k + 1)Ricτ(r) + k(k + 1)ς [log+ Y (r) + 2 log+ log r] ‖E.

Noticing that Tfk(r) ≤ T (r), the above implies that the inequality in Theorem 3.7.2
holds.
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Theorem 3.7.3 (Ahlfors Estimate II). Let H be a hyperplane in Pn(C). Let
Λ(r) = mink{1/(1 + Tfk(r))}. Then, for every 0 ≤ k ≤ n− 1,

log+
∫

M〈r〉

( ‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
k

)

σ

≤ 2 log+ Tf(r) + 2 log+ Ricτ(r) + log+ Y (r) + 10 log+ logTf(r) + 9 log+ log+ Ricτ (r)

10 log+ log+ Y (r) + 4 log+ log r ‖E .

where E ⊂ [r0,+∞) is a set with finite measure.

Proof. Define functions

Kk(r) =

∫ r

r0

dt

t2m−1

∫

M [t]

‖fk+1;H‖2
‖fk;H‖2−2Λ∗

h2
kυ

m

where Λ∗ = Λ ◦ τ1/2. By Lemma 3.7.2 with ǫ = 1, we have

∫

M〈r〉

‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
kσ ≤ Kk(r) log

2 Kk(r)
[

log(r2m−1Kk(r) log
2 Kk(r))

]2 ‖E.

(1.10)

On the other hand, noticing that Λ is a decreasing function, we have ‖fk;H‖Λ∗ ≤
‖fk;H‖Λ(r). Hence by Ahlfors’ estimate with λ = Λ(r), we have

Kk(r) =

∫ r

r0

dt

t2m−1

∫

M [t]

‖fk+1;H‖2
‖fk;H‖2−2Λ∗

h2
kυ

m(1.11)

≤ 8Y (r)

Λ2(r)
(Λ(r)Tfk (r) + ς)

≤ 8Y (r)(1 + Tfk(r))
2

(

Tfk(r)

1 + Tfk(r)
+ ς

)

≤ 9(1 + ς)T 2
k (r)Y (r).

Combining (1.10) and (1.11),

log+
∫

M〈r〉

‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
kσ

≤ 2 log+ Tfk(r) + log+ Y (r) + 8 log+ log+ Tfk(r) + 4 log+ log+ Y (r)

+2 log+ log+ log Y (r) + 2 log+ log+ log+ Tfk(r) + 2 log+ log r +O(1) ‖E.

By enlarge E if necessary, we can assume that 2 log+ log+ log+ Tfk(r) ≤
log+ log Tfk(r) ‖E , 2 log+ log+ log+ Y (r) ≤ log+ log+ Y (r) ‖E and O(1) ≤
log+ log r ‖E . Thus we get

log+
∫

M〈r〉

‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
kσ

≤ 2 log+ Tfk(r) + log+ Y (r) + 9 log+ log+ Tfk(r) + 5 log+ log+ Y (r) + 3 log+ log r ‖E .
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Now use Theorem 3.7.2, the above inequality becomes

log+
∫

M〈r〉

‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
kσ

≤ 2 log+ Tf(r) + 2 log+ Ricτ(r) + log+ Y (r) + 9 log+ log+ Tf(r) + 7 log+ log Y (r)

+9 log+ log+ Ricτ(r) + 9 log+ log+ log+ Y (r) + 9 log+ log+ log r

+2 log+ log r +O(1) ‖E .

Again, by enlarge E if necessary, we can assume that 9 log+ log+ log Y (r) ≤
log+ log+ Y (r) ‖E, 9 log+ log+ log r ≤ log+ log r ‖E , and O(1) ≤ log+ log r ‖E . Hence

log+
∫

M〈r〉

‖fk+1;H‖2
‖fk;H‖2−2Λ(r)

h2
kσ

≤ 2 log+ Tf (r) + 2 log+ Ricτ (r) + log+ Y (r) + 10 log+ logTf (r)

+9 log+ log+ Ricτ (r) + 10 log+ log+ Y (r) + 4 log+ log r ‖E .

This concludes the proof.

3.8. A slight generalization of Wong-Stoll’s theorem. In this subsection,
we extend the Second Main Theorem of Wong-Stoll to the case where the given
hyperplanes H1, . . . , Hq in Pn(C) are not necessarily in general position.

To establish the value distribution theory on parabolic manifolds M , similar to
[23], we make the following assumptions on M(c.f. subsection 3.1-3.4): (i) M is a
connected complex manifold of dimension m; (ii) there exists a parabolic exhaustion
function τ on M ; (iii) For every integer n and every linearly non-degenerate map
f : M → Pn(C), there is a holomorphic differential form B of degree (m− 1, 0) on M
such that f is general for B and

mim−1B ∧ B̄ ≤ Y (r)υm−1

on M [r] for some real positive valued function Y (r) on M , which is independent of f
(Y is called a majorant for B) where, for any positive integer m,

im =

(
√
−1

2π

)m

(−1)
m(m−1)

2 m!.

A complex manifold M with the assumptions (i)-(iii) is called an admissible parabolic
manifold. Throughout this paper, we shall work on admissible parabolic manifolds.

Theorem 3.8.1. Let M be an admissible parabolic manifold of complex dimension
m. Let f : M → Pn(C) be a meromorphic map which is linearly non-degenerate. Let
ǫ > 0 and let H1, ..., Hq be arbitrary hyperplanes in Pn(C). Then

∫

M〈r〉

max
K

∑

j∈K

log
1

‖f(z);Hj‖
σ ≤ (n+ 1)Tf(r) +

n(n+ 1)

2
Ricτ (r, s0)

−Ndn
(r, s0) + ς

n(n+ 1)

2
[log+ Tf(r) + log+ Ricτ (r) +

1

2
log+ Y (r)

+5 log+ logTf(r) + 5 log+ log+ Ricτ(r) + 5 log+ log+ Y (r) + 3 log+ log+ r] ‖E
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where E ⊂ [r0,+∞) is a set with finite measure, and the max is taken over all subsets
K of {1, . . . , q} such that the linear forms Hj , j ∈ K, are linearly independent.

Proof. Denote by K ⊂ {1, ..., q} such that linear forms {Hk, k ∈ K}, are lin-
early independent. Without loss of generality, we may assume q ≥ n + 1 and
that #K = n + 1. Let T be the set of all the injective maps µ : {0, 1, . . . , n} →
{1, . . . , q} such that Hµ(0), . . . , Hµ(n) are linearly independent. Denote by Γ =

max1≤j≤q{
∑n−1

k=0 mfk(s0, Hj)} and Λ(r) = mink{1/(1 + Tfk(r))}. For any µ ∈ T, z 6∈
If , the Product to Sum Estimate (see [27] Lemma 1.12), with λ = Λ(r), reads

n
∏

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

≤ ck





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)





n−k

,

where ck > 0 is a constant. Since ‖fn;Hµ(j)‖ is a constant for any 0 ≤ j ≤ n, we have

n
∏

j=0

1

‖f(z);Hµ(j)‖2
=

n−1
∏

k=0

n
∏

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

·
n−1
∏

k=0

n
∏

j=0

1

‖fk(z);Hµ(j)‖2Λ(r)

≤ c

n−1
∏

k=0





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)





n−k

·
n−1
∏

k=0

n
∏

j=0

1

‖fk(z);Hµ(j)‖2Λ(r)
,

where c > 1 is a constant. Therefore, we have

∫

M〈r〉

max
K

∑

j∈K

log
1

‖f(z);Hj‖2
σ(1.12)

=

∫

M〈r〉

max
µ∈T

log





n
∏

j=0

1

‖f(z);Hµ(j)‖2



 σ

≤
n−1
∑

k=0

∫

M〈r〉

max
µ∈T

log





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)





n−k

σ

+

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z);Hµ(j)‖2Λ(r)
σ +O(1)

=

n−1
∑

k=0

(n− k)

∫

M〈r〉

logmax
µ∈T





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

h2
k



 σ

−2

n−1
∑

k=0

(n− k)Sk(r) +

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z);Hµ(j)‖2Λ(r)
σ +O(1)

where, in above, hk is defined by (1.8), Sk(r) is defined by (1.9). We now estimate
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each term appearing the above inequality. First,

∫

M〈r〉

logmax
µ∈T





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

h2
k



σ

= κ

∫

M〈r〉

logmax
µ∈T





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

h2
k





σ

κ

≤ κ log

∫

M〈r〉

max
µ∈T





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

h2
k





σ

κ

≤ κ max
1≤j≤q

log+
∫

M〈r〉

( ‖fk+1(z);Hj‖2
‖fk(z);Hj‖2−2Λ(r)

h2
k

)

σ + C′.

By Theorem 3.7.3,

max
1≤j≤q

log+
∫

M〈r〉

( ‖fk+1(z);Hj‖2
‖fk(z);Hj‖2−2Λ(r)

h2
k

)

σ

≤ 2 log+ Tf (r) + 2 log+ Ricτ (r) + log+ Y (r) + 10 log+ logTf(r) + 9 log+ log+ Ricτ(r)

+10 log+ log+ Y (r) + 4 log+ log r. ‖E.

Hence,

n−1
∑

k=0

∫

M〈r〉

logmax
µ∈T





n
∑

j=0

‖fk+1(z);Hµ(j)‖2
‖fk(z);Hµ(j)‖2−2Λ(r)

h2
k





n−k

σ(1.13)

≤ n(n+ 1)ς [log+ Tf(r) + log+ Ricτ (r) +
1

2
log+ Y (r) + 5 log+ logTf (r)

+5 log+ log+ Ricτ(r) + 5 log+ log+ Y (r) + 2 log+ log r] ‖E.

Next, using Theorem 3.5.1 (the Plücker formula), we have

Nlk(r) + Tfk−1
(r) − 2Tfk(r) + Tfk+1

(r) = Sk(r) − Sk(r0) +Ricτ (r).

Noticing that Tfn(r) = 0,

(1.14)
n−1
∑

k=0

(n− k)Sk(r) = Ndn
(r) − (n+ 1)Tf (r)−

n(n+ 1)

2
Ricτ(r) +O(1).



520 M. RU

Finally, by the First Main Theorem,

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

max
µ∈T

log
1

‖fk(z);Hµ(j)‖2Λ(r)
σ(1.15)

≤
∑

µ∈T

n−1
∑

k=0

n
∑

j=0

∫

M〈r〉

2Λ(r) log
1

‖fk(z);Hµ(j)‖
σ +O(1)

=
∑

µ∈T

n−1
∑

k=0

n
∑

j=0

2Λ(r)mfk (r,Hµ(j)) +O(1)

≤
n−1
∑

k=0

n
∑

j=0

2q!Λ(r)(Tfk (r) +mfk(s0, Hµ(j))) +O(1)

≤ O(1).

Combining (1.12), (1.13), (1.14), and (1.15), we have
∫

M〈r〉

max
K

∑

j∈K

log
1

‖f(z);Hj‖
σ ≤ (n+ 1)Tf(r) +

n(n+ 1)

2
Ricτ (r, s0)−Ndn

(r, s0)

+ς
n(n+ 1)

2
[log+ Tf(r) + log+Ricτ (r) +

1

2
log+ Y (r) + 5 log+ log Tf(r)

+5 log+ log+ Ricτ(r) + 5 log+ log+ Y (r) + 3 log+ log+ r] ‖E .

3.9. The main result. We are now ready to state the second result of our two
main theorems in the paper which extends Theorem A to meromorphic mappings on
parabolic manifolds.

Theorem 2. Let M be an admissible parabolic manifold of dimension m. Let
f : M → X ⊂ PN (C) be an algebraically non-degenerate meromorphic map, where X
is a smooth algebraic variety. Let D1, ..., Dq be hypersurfaces in PN (C) of degree dj
in general position in X. Then for every ǫ > 0, we have

q
∑

j=1

d−1
j mf (r,Dj) ≤ (dimX + 1 + ǫ)Tf(r) + c1,ǫRicτ(r)

+ c2,ǫ[log
+ Tf (r) + log+ Ricτ(r) +

1

2
log+ Y (r) + 5 log+ log+ Tf(r)

+ 5 log+ log+ Ricτ (r) + 5 log+ log+ Y (r) + 3 log+ log+ r] ‖E

where E ⊂ [r0,+∞) is a set with finite measure, c1,ǫ and c2,ǫ are two positive constants
depending on ǫ which are explicitly given in the proof below.

We note that Ricτ (r) is called the Ricci function which depends only on the
geometry (topology) of the manifold M . An important class of admissible parabolic
manifolds consists of affine algebraic manifolds. In this case, there exists a finite
branched covering π : M → Cm. If we take τ = ‖π‖2, Stoll [23] showed that there
exists a holomorphic differential form B of degree (m − 1, 0) on M (c.f. [23] or [27])
such that

mim−1B ∧ B̄ ≤ (1 + |τ |)m−1(ddcτ)m−1.
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Hence, we can take Y (r) = (1 + r2)m−1. Further, we can show (c.f. [23] or [27]) that

dπ = lim
r→+∞

Ricτ(r, s0)

log r

exists and equals the degree of the branching divisor of π. The Theorem 2 thus implies
the following corollary in the case that M is affine algebraic manifold.

Corollary. Let M be an affine algebraic manifold of complex dimension m.
Let π : M → Cm be a finite branched covering. Let f : M → X ⊂ PN (C) be an
algebraically non-degenerate meromorphic map. Let D1, ..., Dq be a finite collection
of hypersurfaces in PN (C) in general position in X. Assume that f is transcendental.
Then

q
∑

j=1

δf (Dj) ≤ dimX + 1.

Proof of Theorem 2. For given hypersurfaces D1, . . . , Dq defined by Q1, . . . , Qq,
assuming they have the same degree (WLOG), say d. The proof depends on the
Key inequality (see below) which allows us to the transfer from the (study of )
hypersurfaces to the hyperplanes. To state and prove the Key inequality, we consider
the map χ : X → Pq−1(C) defined by χ(w) = [Q1(w) : · · · : Qq(w)]. It is a finite
morphism since D1, . . . Dq are in general position. Let Z = χ(X). We have that Z is
a complex subvariety of Pq−1, dimZ = dimX = n and

△ := degZ ≤ dn degX.

We shall study the map χ ◦ f : C → Z ⊂ Pq−1(C).

We first introduce some notation: Let Z ⊂ P
l be a projective variety of dimension

n (with l = q − 1 in the above case). Denote by C[x0, . . . , xl]m the vector space of
homogeneous polynomials in C[x0, . . . , xl] of degree m (including 0). Let IZ be the
prime ideal in C[x0, . . . , xl] defining Z. Put (IZ)m = C[x0, . . . , xl]m∩IZ . The Hilbert
polynomial HZ(m) of Z is defined by

HZ(m) := dim(C[x0, . . . , xl]m/IZ(m)).

The Hilbert Weight of Z with respect to the weight c ∈ Rl+1 is defined by

SZ(m, c) = max





HZ (m)
∑

i=1

ai · c



 ,

where the maximum is taken over all sets of monomials xa1 , . . . ,xaHZ (m) whose residue
classes modulo IZ form a basis of C[x0, . . . , xl]m/(IZ)m, where for x = (x0, . . . , xl),
a = (a0, . . . , al) ∈ Z

l+1
+ , xa = xa0

0 · · ·xal

l . We need the following lemma to estimate
(get a lower bound) of Hilbert Weight SZ(m, c).

Lemma 3.9.1 (see [18]). Let Z ⊂ Pl be an algebraic variety of dimension n and
degree △. Let m > △ be an integer and let c = (c0, . . . , cl) ∈ Rl+1. Let {i0, . . . , in}
be a subset of {0, . . . , l} such that

{x = [x0 : · · · : xl) ∈ P
l | xi0 = · · · = xin = 0} ∩ Z = ∅.
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Then

1

mHZ(m)
SZ(m, c) ≥ 1

(n+ 1)
(ci0 + · · ·+ cin)−

(2n+ 1)△
m

(

max
0≤i≤l

ci

)

.

Now with the above Z = χ(X) ⊂ Pq−1, consider the vector space Vm =
C[x1, . . . , xq]m/(IZ)m, and fix a basis φ0, . . . , φnm

where nm = HZ(m) − 1. Con-
sider the map

F = [φ0(χ ◦ f) : · · · : φnm
(χ ◦ f)] : M → P

nm .

Let {Uλ, λ ∈ Λ} be an open covering of M , and let fλ : Uλ → CN+1 be a re-
duced representation of f on Uλ. Write, on Uλ, Fλ = (F0,λ, . . . , Fnm,λ) where
Fi,λ = φi(Q1(f), . . . , Qq(f)) for i = 0, 1, . . . , nm. Note that Fλ is a reduced repre-
sentation of F on Uλ. Define,

cj(z) = log
‖fλ(z)‖d‖Qj‖
|Qj(fλ)(z)|

, 1 ≤ j ≤ q,

which, we note that, is independent of the choice of fλ (hence is independent of
λ), so cj are globally defined functions on M . Let c(z) = (c1(z), . . . , cq(z)). With
this given weight c(z), take monomials (which depends on z) xa1 , . . . ,xaHZ (m) whose
residue classes modulo IZ form a basis of Vm = C[x1, . . . , xq]m/(IZ)m and which
reaches the max. in the Hilbert weight SZ(m, c(z)). For each 1 ≤ j ≤ HZ(m), write
xaj = Lj,z(φ0, . . . φnm

) then, for Lj,z are linear forms which are linearly independent
for each fixed z. Note that the linear forms depends on z, but there are only finitely
many of them in total. We then have the following key inequality which transfers
the study of hyerpsurfaces for f into the study of linear forms for the map F (so we
can apply Cartan’s result for F ).

Key Inequality. For each z ∈ Uλ and linear forms Lj,z, 1 ≤ j ≤ HZ(m) =
nm + 1, chosen above, we have

q
∑

j=1

log
‖fλ(z)‖d‖Qj‖
|Qj(fλ)(z)|

≤ n+ 1

mHZ(m)

HZ(m)
∑

j=1

log
‖Fλ(z)‖

|Lj,z(Fλ)(z)|

+
(2n+ 1)△

m

(

max
0≤i≤q

log
‖fλ(z)‖‖Qi‖
|Qi(fλ)(z)|

)

+O(1),

where O(1) denotes a bounded term which is independent of z.

We note that terms on both left and right hand sides are is independent of the
choice of fλ (hence is independent of λ). Thus the inequality indeed holds on M .

Proof. For every b = [b0 : · · · : bN ] ∈ P
N(C), consider the function

‖b, Dj‖ =
|Qj(b)|

‖b‖d‖Qj‖
,

where ‖b‖ = max0≤j≤N |bj | and ‖Qj‖ is the maximum of the absolute values of the
coefficients of Qj. By the “in general position” condition, at each point b ∈ X , there
‖b, Dj‖ can be zero for no more than n indicies j ∈ {1, . . . , q}. For the remaining
indices j, we have ‖b, Dj‖ > 0 and by the continuity of these functions and the
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compactness of V , there exists C > 0 such that ‖b, Dj‖ > C for all b ∈ V and all
Dj , except for at most n of them. Hence, for z ∈ Uλ, there is i0, . . . , in (which may
depend on z) such that

q
∑

j=1

log
‖fλ(z)‖d‖Qj‖
|Qj(fλ)(z)|

≤
n
∑

t=0

log
‖fλ(z)‖d‖Qit‖
|Qit(fλ)(z)|

.

With cj(z) = log
‖fλ(z)‖

d‖Qj‖
|Qj(fλ)(z)|

and c(z) = (c1(z), . . . , cq(z)), and by applying Lemma
3.9.1, we get

1

mHZ(m)
SZ(m, c(z)) ≥ 1

(n+ 1)
(ci0(z) + · · ·+ cin(z))−

(2n+ 1)△
m

(

max
1≤i≤q

ci(z)

)

,

which gives

n
∑

t=0

log
‖fλ(z)‖

d‖Qit‖

|Qit(fλ)(z)|
≤

(n+ 1)SZ(m,c(z))

mHZ(m)
+

(n+ 1)(2n+ 1)△

m

(

max
0≤i≤q

log
‖fλ(z)‖‖Qi‖

|Qi(fλ)(z)|

)

.

Therefore,

q
∑

j=1

log
‖fλ(z)‖

d‖Qj‖

|Qj(fλ)(z)|
≤

(n+ 1)SZ(m, c(z))

mHZ(m)
+

(n+ 1)(2n+ 1)△

m

(

max
0≤i≤q

log
‖fλ(z)‖

d‖Qi‖

|Qi(fλ)(z)|

)

.

But by our selection of the linear forms Lj,z, Lj,z(φ0, . . . φnm
) = xaj and

SZ(m, c(z)) =

HZ (m)
∑

i=1

ai · c(z).

Notice that from Li,z(φ0, . . . φnm
) = xai , we get Li,z(Fλ(z)) =

(Q1(fλ)(z))
ai1 · · ·Qq(fλ)(z))

aiq where ai = (ai1, . . . , aiq). So

− log |Li,z(Fλ(z))| = −(ai1 log |Q1(fλ)(z)|+ · · ·+ ai1 log |Qq(fλ)(z)|)
= ai1c1(z) + · · ·+ aiqcq(z)−m log ‖fλ(z)‖d
= ai · c(z)−m log ‖fλ(z)‖d.

Thus

−
HZ(m)
∑

i=1

log |Li,z(Fλ(z))| = SZ(m, c(z))−mHZ(m) log ‖fλ(z)‖d.

Hence

q
∑

j=1

log
‖fλ(z)‖d‖Qj‖
|Qj(fλ)(z)|

≤ (n+ 1)

mHZ(m)

HZ(m)
∑

i=1

log
‖Fλ(z)‖

|Li,z(Fλ)(z)|
+

n+ 1

m
log

‖fλ(z)‖dm
‖Fλ(z)‖

+
(n+ 1)(2n+ 1)△

m

(

max
0≤i≤q

log
‖fλ(z)‖d‖Qi‖
|Qi(fλ)(z)|

)

.

By the definition of F, we easily see that C1‖fλ‖dm ≤ ‖Fλ‖ ≤ C2‖fλ‖dm for some
positive C1 and C2 independent of λ. This proves our key inequality.



524 M. RU

We now continue our proof. By integrating the key inequality and applying
Theorem 3.8.1 to F , we get

q
∑

j=1

mf (r,Dj) ≤
n+ 1

mHY (m)

{

(nm + 1)TF (r) +
nm(nm + 1)

2
Ricτ (r)(1.16)

+ ς
nm(nm + 1)

2
[log+ TF (r) + log+ Ricτ (r) +

1

2
log+ Y (r) + 5 log+ logTF (r)

+ 5 log+ log+ Ricτ(r) + 5 log+ log+ Y (r) + 3 log+ log+ r]
}

‖E

+
(2n+ 1)(n+ 1)△

m

∫ 2π

0

(

max
1≤j≤q

log
‖fdλ(reiθ)‖‖Qj‖
|Qj(fλ(reiθ)|

)

dθ

2π
+O(1).

For each j ∈ {1, . . . , q}, by the First Main Theorem,

∫ 2π

0

log
‖f(reiθ)‖‖Qj‖

|Qj(reiθ)|
dθ

2π
≤ dTf (r) +O(1).(1.17)

It remains to compare Tf(r) and TF (r). Let {Uλ, λ ∈ Λ} be an open covering of
M , and let fλ : Uλ → CN+1 be a reduced representation of f on Uλ, then there is a
holomorphic function gλµ : Uλ ∩ Uµ → C∗ such that

fλ = gλµfµ on Uλ ∩ Uµ.

It is easy to check that {gλµ} is a basic cocycle (cf. [23]). Therefore there exists a
holomorphic line bundle Lf on M with a holomorphic frame atlas {Uλ, sλ}λ∈Λ such
that

sλ = gµλvµ on Uλ ∩ Uµ.

The line bundle Lf is called the hyperplane section bundle of f . Also define f̃λ ∈
Γ(Uλ,M ×CN+1) by f̃λ(z) = (z, fλ(z)) for z ∈ Uλ. Notice that f̃λ⊗sλ = gλµ f̃µ⊗sλ =

f̃µ ⊗ gλµsλ = f̃µ ⊗ sµ on Uλ ∩ Uµ. Therefore there exists a holomorphic section Γf

of (M × CN+1) ⊗ Lf such that Γf |Uλ
= f̃λ ⊗ sλ. Γf is called the standard reduced

representation section of f . Let ℓ be the standard hermitian metric along the fibers
of the trivial bundle M × CN+1 and κ be a hermitian metric along the fibers of Lf .
Then

ddc log ‖Γf‖2ℓ⊗κ = ddc log ‖fλ‖2 + ddc log ‖sλ‖2κ = f∗ΩFS − c1(Lf , κ),

where ΩFS is the Fubini-Study form on PN (C). Hence, by Green’s formula(cf. [23]),
we have

Tf(r) =

∫ r

r0

dt

t2m−1

∫

M [t]

f∗ΩFS ∧ υm−1 =

∫ r

r0

dt

t2m−1

∫

M [t]

f∗c1(Lf , κ) ∧ υm−1

+

∫

M〈r〉

log ‖Γf‖ℓ⊗κ −
∫

M<r0>

log ‖Γf‖ℓ⊗κσ.

Similarly,

TF (r) =

∫ r

r0

dt

t2m−1

∫

M [t]

f∗c1(LF , κ) ∧ υm−1

+

∫

M〈r〉

log ‖ΓF ‖ℓ⊗κ −
∫

M<r0>

log ‖ΓF ‖ℓ⊗κσ.
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By comparing the transition functions of Lf and LF , it is clear that LF = L⊗dm
f and

also

‖ΓF‖ℓ⊗κ

‖ΓL‖dmℓ⊗κ

=
‖Fλ‖
‖fλ‖dm

≤ C.

We thus conclude that

TF (r) ≤ dmTf(r) +O(1).(1.18)

By combing (1.16), (1.17) and (1.18), we get, noticing that HZ(m) = nm + 1,

q
∑

j=1

mf (r,Dj) ≤ (n+ 1)dTf (r) +
(n+ 1)nm

2m
Ricτ(r)

+
ςnm

2m
[log+ Tf (r) + log+ Ricτ(r) +

1

2
log+ Y (r) + 5 log+ log+ Tf(r)

+ 5 log+ log+ Ricτ (r) + 5 log+ log+ Y (r) + 3 log+ log+ r]

+
(2n+ 1)(n+ 1)d△

m
Tf(r) ‖E .

For any given ǫ > 0, take m0 such that (2n+1)(n+1)△
m0

< ǫ, then

q
∑

j=1

mf (r,Dj) ≤ (n+ 1 + ǫ)dTf (r) +
(n+ 1)nm0

2m0
Ricτ (r)

+
ςnm0

2m0
[log+ Tf (r) + log+ Ricτ (r) +

1

2
log+ Y (r) + 5 log+ log+ Tf (r)

+ 5 log+ log+ Ricτ (r) + 5 log+ log+ Y (r) + 3 log+ log+ r] ‖E.

This proves Theorem 2 with

c1,ǫ =
(n+ 1)nm0

2m0
, c2,ǫ =

ςnm0

2m0
.
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