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Abstract. Artin’s approximation theorems are powerful tools in analytic and algebraic ge-
ometry for finding solutions of systems of analytic or algebraic equations whenever a given formal
solution exists. In this survey article we describe the recent developments involving the use of Artin’s
approximation theorems in some problems arising from Cauchy-Riemann geometry. The solution to
such problems simultaneously lead to a number of results that can be stated as PDE versions of
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1. Introduction. Artin’s approximation theorems [A68, A69] are powerful tools
in analytic and algebraic geometry for finding solutions of systems of analytic or
algebraic equations whenever a given formal solution exists. Our goal in this survey
article is to describe recent developments in which Artin’s approximation theorems
are used in problems arising from Cauchy-Riemann geometry. The solution to such
problems simultaneously lead to PDE versions of Artin’s approximation theorems.

The questions discussed in this article originate from the local equivalence prob-
lem for real submanifolds in complex manifolds. Suppose that M, M’ c CV are
germs (at distinguished points p and p’) of real submanifolds, N > 2. One fun-
damental question in several complex variables is to understand when such germs
are (bi)holomorphically equivalent, i.e. when there is a germ of a biholomorphic map
f:(CN p) — (CN,p') such that f(M) = M’ (in the sense of germs). If this is the case,
we write (M,p) ~ (M’,p’). When studying this local equivalence problem, several
notions of equivalence naturally appear and it becomes of interest to compare these
various notions each other. The notions of equivalence we will be interested in this ar-
ticle are the notions of formal equivalence, algebraic equivalence and k-equivalence for
all k € Z,, in addition to that of holomorphic equivalence just mentioned above. In
Section 2, we describe the known relations between these notions for real-analytic and
real-algebraic submanifolds. We emphasize on the class of CR submanifolds for which
a number of results are known, but for which a number of open questions still remain.
These results all use, in a crucial way, Artin’s approximation theorems or more elab-
orate versions of them such as Wavrik’s or Popescu’s theorems [W75, P86]. Though
these comparison questions make sense only for pairs of germs of real submanifolds
that are of the same dimension, we show in Section 3 how these questions may be suit-
ably generalized to mappings between real submanifolds in complex space of (a priori)
different dimension. This leads us to introduce the notions of Artin approzimation
property and Nash-Artin approximation property for real-analytic and real-algebraic
submanifolds in complex space. The very few results on these approximation proper-
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ties are discussed for CR manifolds in Section 3 where some open problems are also
mentioned. In the last part of this article (Section 4), we show, mostly to the non-
expert reader, how the results of Section 3 can explicitly be restated as PDE versions
of Artin’s approximation theorems.

The reader should observe that the present article does not aim at offering any
overview on the developments related to Artin’s approximation theorem in algebraic
and analytic geometry. For this, we rather refer to the recent survey by Hauser and
Rond [HR13] and the references therein. The reader should also note that this paper
does not aim at describing all topics in CR, geometry where Artin’s approximation
theorem plays an important role. One example of such a topic that will be left over in
this paper is the convergence problem for formal CR mappings for which the reader is
referred e.g. to the survey [MMZ03b]. Finally, we would like to mention that Artin’s
approximation theorem seems to have been applied for the first time to the mapping
problems in CR geometry in 1984 by Derridj [D84] in his work on the reflection
principle in several complex variables.

2. Comparison of various notions of equivalence for real-analytic sub-
manifolds. Throughout the paper, we shall use the following standard notation: if
K is a field that is either R or C, we denote by K{z1,...,z,} and K][z1,...,z,]] the
ring of convergent power series and formal power series in r variables.

2.1. Formal, k-equivalence and first results. Let M, M’ C CV be germs at
distinguished points p and p’ of real-analytic submanifolds. Recall that the germs
(M, p) and (M’',p’) are said to be holomorphically equivalent, i.e. (M, p) ~ (M’ p’), if
there is a germ of a biholomorphic map f: (CV,p) = (CN',p) sending M into M’ (in
the sense of germs). When N = 1, it is well known that any germ of a real-analytic
curve is holomorphically equivalent to a piece of the real line. Hence, in the rest of
this article we will always assume that N > 2.

For real-analytic submanifolds, we shall define two further notions of equivalence
that will be compared to that of holomorphic equivalence. To put things in order, some
preliminary terminology must be explained. If k£ is a fixed nonnegative integer and
(M, p) and (M',p’) are as above and f: (CV,p) — (CV,p’) is a germ of a holomorphic
map, we say that f sends M into M’ up to order k if for some (and hence every) local
vector-valued real-analytic defining function p’ for M’ near p’; (p’ o f)’ »y Vanishes at
least up to order k at p.

DEFINITION 2.1. Let k € Z;. We say that the germs (M,p) and (M’,p’) are
k-equivalent and write (M,p) ~p (M’,p) if there exists a germ of a biholomorphic
map f: (CV,p) — (CV,p’) sending M into M’ up to order k.

We need also to define the notion of formal holomorphic map. A formal holo-
morphic map h: (C¥,p) — ((CNl,p’) is an N’'-tuple of formal power series in (Z — p)
satisfying h(p) = p’. We say that h maps M into M’ if for every germ of a real-
analytic function p’ at p’ € CN' vanishing on M’, and for some (and hence every)
local real-analytic parametrization ¢: (R%,0) — (M',p’), p' ohot) vanishes identically
as a vector valued formal power series in z. (Note that this definition makes sense
even when M’ is any real-analytic subset of CV'.) If N = N’ the mapping h is called
invertible if det (%)(p) # 0.

DEFINITION 2.2. We say that the germs (M, p) and (M’,p’) are formally equiv-
alent and write (M,p) ~x (M’',p’) if there exists a germ of a formal holomorphic
invertible map h: (CN,p) — (CV,p’) sending M into M.
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It is obvious that (M,p) ~ (M',p') = (M,p) ~r (M',p') = (M,p) ~ (M',p')
for every k € Z,. The converse of this second implication is less obvious and was
proved recently by Zaitsev [Z11].

THEOREM 2.3 (Zaitsev [Z11]). If (M,p) and (M',p") are two germs of real-
analytic submanifolds that are k-equivalent for every integer k, then they are formally
equivalent.

Zaitsev’s result is in fact more general than what is stated here. It holds for germs
of real-analytic sets and even families of real-analytic sets (in an appropriate sense).
The proof of Theorem 2.3 uses some arguments from semi-algebraic and algebraic
geometry and reduces the problem to a stabilization property of decreasing sequences
of algebraic subgroups of some jet groups (see [Z11] for more details).

Considering now the implication (M,p) ~x (M',p") = (M, p) ~ (M',p), we first
note that it obviously holds for pairs M, M’ of complez submanifolds (since they can
be biholomorphically straightened to C? x {0} where ¢ = dim¢ M = dim¢ M’). The
same conclusion also holds for totally real submanifolds (since they can be biholo-
morphically straightened to R? x {0} where d = dimg M = dimg M’, see [BER99)
or Section 2.2 for the definition). However, this implication does not hold in gen-
eral for real submanifolds. Indeed, Moser and Webster [MW83] showed that there
are 2-dimensional real-analytic surfaces in C? that are formally equivalent but not
biholomorphically equivalent. More precisely, the following is proved in [MW83]:

THEOREM 2.4 (Moser-Webster [MW83]). There exists a real-analytic surface in
M c C2% of the form

w = |2)? +vZ% + 7237,
for some v > 2, such that (M, 0) is formally equivalent to the germ at O of some real-
analytic surface M’ C Cx R but such that (M,0) and (M’,0) are not holomorphically

equivalent.

The existence of other examples of 2-dimensional real surfaces in C? that are
formally but not biholomorphically equivalent was later established by Gong [Go04].
These examples are of the same nature as those given by Theorem 2.4 in the sense that
they are 2 dimensional real surfaces presenting a so-called CR singularity at the origin
(see the next paragraph for further explanations). Such surfaces are called Bishop
surfaces and the equivalence problem for such surfaces has been studied by a number
of authors. We refer the reader to the surveys [H04, HY10] for more detailed account
on this topic. We shall now focus on real submanifolds for which CR singularities do
not appear.

2.2. CR submanifolds. Let M C CV be a (real-analytic) submanifold and
J: CN — CV the complex structure map. For every point p € M, define the complex
tangent space TyM = T, M NJ(T,M). We say that M is a Cauchy-Riemann (or CR)
submanifold of CV if dimp Ty M is independent of the point p. Complex submanifolds
are obviously CR. Real submanifolds for which the complex tangent space is zero-
dimensional at each of their points are special CR submanifolds called totally real
submanifolds. The prototype of such submanifolds is given by R* x {0} ¢ CV. The
first important class of examples of CR, submanifolds (that are neither complex nor
totally real) is given by all real hypersurfaces in CV. Examples of real submanifolds
that are not CR must therefore be taken from submanifolds of higher codimension.
Bishop surfaces fall into this category: these are two dimensional real surfaces in C2
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for which TAM = {0} for all points p € M except at one point py € M for which one
has dimg 75 M = 2 (a so-called complex tangent at pg). For more details about CR
manifolds, we refer the reader to the books [B91, BER99, BCHO08].

Coming back to our question of deciding when formal equivalence of two germs
of real-analytic submanifolds implies their biholomorphic equivalence, we have the
following positive result due to Baouendi, Rothschild and Zaitsev.

THEOREM 2.5 (Baouendi, Rothschild, Zaitsev [BRZ01a]). Let M C CV be a real-
analytic CR submanifold. Then there exists a closed proper real-analytic subvariety
V C M such that for every p € M \'V and for every real-analytic CR submanifold
M' c CN and every p’ € M', if (M,p) ~x (M',p') then (M,p) ~ (M',p').

Let us discuss briefly the explicit construction of the subvariety V in Theorem
2.5. For this, we need to introduce some basic geometric objects associated to CR
manifolds. If M C C¥ is a CR submanifold, we denote by T7°M the complex tangent
bundle whose fiber at some point p € M is the complex tangent space Ty M as defined
above. For every such p, denote by Tg’lM the complex subspace of CT,,M consisting
of those vectors of the form v + i.J(v) for v € TSM. Then T%'M := Upen T M
forms a subundle of CT M that is called the CR bundle of M. Sections of T®'M are
called CR vector fields of M.

For every point p € M, we denote by Gas(p) the Lie algebra evaluated at p
generated by the (local) sections of TO'M and TY°M := T91M. By a theorem of
Nagano (see e.g. [BER99, BCHO08]), for every point p € M, there is a well-defined
unique germ at p of a real-analytic submanifold O, satistying CT,0, = G (q) for all
q € Op. This unique submanifold is necessarily CR and is called the CR orbit of M at
p. It is not difficult to see that on any connected component of M, the dimension of
the CR orbits is constant except possibly on a proper real-analytic subvariety of this
component (see e.g. [BRZ01a]). We shall say that M is of constant orbit dimension
if on every connected component of M, all CR orbits of M have the same dimension.
If dim O,, = dim M for some point p € M, we say that M is minimal at p.

The real-analytic subvariety V' in Theorem 2.5 is the union of two closed proper
real-analytic subvarieties V7 and V5 of M. The first subvariety V; is defined as the
set of points p € M such that M > ¢ — dim Oy is not locally constant at p. (This
coincides with the set of points of M where the foliation by CR orbits is not singular).
The complement in M of the second subvariety V5 is defined as the set of points
p € M for which there exist an integer ¢ € {0,...,N — 1} and a germ at 0 of a
”finitely nondegenerate” real-analytic CR submanifold M c CN~* such that (M,p) ~
(M\ x C*,0). Finite nondegeneracy is a nondegeneracy condition (generalizing the well
known Levi-nondegeneracy condition) that we will not recall in this article and we
refer e.g. to [BER99, BRZ01a] for the definition.

Let us now illustrate how Theorem 2.5 applies in some elementary examples.

ExXAMPLE 2.6. If M, M’ are Levi-nondegenerate real-analytic hypersurfaces in
CV, we have V = (). Hence for all points (p,p’) € M x M’, it holds that (M,p) ~x
(M',p") = (M,p) ~ (M',p'). In fact, in the present situation one has the following
stronger conclusion: any formal holomorphic equivalence sending (M, p) into (M, p’)
is necessarily convergent and hence a local biholomorphic map (see [CM74, BMR02]).

EXAMPLE 2.7. Suppose that M = M; x R¥ x C* and M = M| x RF x C* where
My, M] are strongly pseudoconvex real-analytic hypersurfaces in C?. Here k,£ > 0
and ¢ > 2. So, in this case one has V = (). But, in contrast to Example 2.6, if
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(p,p’) € M x M', a formal equivalence between (M,p) and (M’,p’) need not be
convergent. Indeed, if (M,p) ~x (M’,p'), it is not difficult to construct divergent
formal equivalences between (M, p) and (M’ p’). Theorem 2.5 then tells that even if
(M, p) and (M',p’) are formally equivalent (via a divergent formal map), then (M, p)
and (M’ p') are necessarily biholomorphically equivalent.

EXAMPLE 2.8. Suppose that M = {(z,w) € C? : |2]? + |w|?*" = 1} with r > 2.
Then M is a real-analytic strongly pseudoconvex hypersurface outside the submanifold
St x {0}, where S! is the unit circle in the complex plane and V = S x {0}. Hence
if pe M\ (S* x {0}) and if (M’,p’) is any germ of any real-analytic hypersurface in
C? such that (M,p) ~7 (M',p’), Theorem 2.5 yields that (M,p) ~ (M',p"). We will
observe later that the conclusion also holds for all points p € V' (in this example) by
applying another result (Theorem 2.9 below).

One could ask whether it is really necessary to exclude from the conclusion of
Theorem 2.5 all points p belonging to the subvariety V. In fact, up to now, and
in contrast with the situation of surfaces with CR singularities previously discussed
in Section 2.1, there is no known pairs of germs of real-analytic CR submanifolds
for which formal equivalence does not imply biholomorphic equivalence. One may
therefore formulate the conjecture stating that the conclusion given by Theorem 2.5
should hold with V = 0, i.e.

CONJECTURE A. If M,M' c CV are real-analytic CR submanifolds and if
(p,p') € M x M', then (M,p) ~z (M',p") implies that (M, p) ~ (M',p’).

This conjecture is also supported by the following result by Baouendi, Rothschild
and the author [BMRO02].

THEOREM 2.9 (Baouendi, Mir, Rothschild [BMR02]). Let M C C¥ be a real-
analytic CR submanifold that is everywhere minimal. Then for every real-analytic CR
submanifold M' C CN and for everyp € M and p' € M', (M,p) ~x (M',p') implies
that (M,p) ~ (M',p").

A few words putting Theorems 2.5 and 2.9 into proper perspective should be
added here. While Theorem 2.9 does not provide, in contrast to Theorem 2.5, any
conclusion for nowhere minimal CR submanifolds (as e.g. in Example 2.7), it does
provide a solution to the above conjecture for everywhere minimal CR submanifolds
that can not be derived from Theorem 2.5. Indeed, for such submanifolds M, note
that the associated subvariety V; is empty and hence the subvariety V (given by
Theorem 2.5) consists only of the subvariety Va that is in general not empty (see e.g.
below).

ExXAMPLE 2.10. Suppose that M, M’ are arbitrary compact real-analytic hyper-
surfaces in CV. Then it can be shown (see e.g. [BER99]) that they are everywhere
minimal. Hence, Theorem 2.9 applies to this situation. Note that in this case the
subvariety V associated to M is in general not empty (as shown by considering for
instance Example 2.8).

EXAMPLE 2.11. Suppose that M is a germ of a real-analytic hypersurface through
the origin in CN given by

M = {(z,w) € (CV,0) : Tmw = ¢(z, %, Rew)},
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where ¢ is a real-analytic function vanishing at least to order one at the origin. Then
M is minimal at 0 if and only if ¢(z, 2,0) £ 0 (see e.g. [BER99]). Hence if p(z,%,0) £
0, then M is minimal in a sufficiently small neighborhood 2 of 0 in M and for every
point p €  and for any germ of a real-analytic hypersurface (M’,p’) in CV, one has
(M,p) ~r (M',p") = (M,p) ~ (M',p"). On the other hand if ©(z,z,0) = 0 but if
@ # 0, the locus of non minimal points in M is given by the complex hypersurface
{w = 0} (see e.g. BER99]). Hence, in this situation, Theorem 2.9 gives that for every
p = (2p, wp) € M such that w, # 0, (M,p) ~r (M',p’) = (M,p) ~ (M',p").

Example 2.11 shows that Conjecture A is still open for real hypersurfaces. Indeed,
if M is an arbitrary (connected) real-analytic hypersurface in C then one of the
following three situations holds:

(1) M is Levi-flat (i.e. its Levi form vanishes identically);

(2) M is everywhere minimal;

(3) there exists a complex hypersurface S C M such that M is minimal at every

point of M \ S.

Fix a germ (M’,p’) of a real-analytic hypersurface. If M satisfies (1) and p € M,
then M is locally biholomorphically equivalent to a real hyperplane near p. It is not
difficult to see that if (M, p) ~z (M’,p’) then the same property also holds for (M, p’)
(see e.g. [BER99)]). It therefore holds that (M, p) ~ (M’,p’) in this case. If M satisfies
(2), then Theorem 2.9 provides that (M,p) ~x (M',p') = (M,p) ~ (M',p"). If M
satisfies (3), then Theorem 2.9 provides that (M,p) ~z (M',p’) = (M,p) ~ (M',p’)
if p ¢ S. Hence, to establish Conjecture A for real-analytic hypersurfaces, it remains
to deal with all non-minimal points p € S in situation (3).

Let us say a few words about some of the arguments involved in the proofs of
Theorems 2.5 and 2.9. In both cases, one starts with a given formal invertible holo-
morphic map f: (CV,p) — (CV,p') sending M into M’', with M, M',p,p’ satisfying
the appropriate assumptions of the theorems. Under such assumptions, the reader
should note that the map f might very well be divergent to start with. Indeed, such
divergent formal equivalences always exist e.g. whenever M is holomorphically de-
generate in the sense of Stanton [St96], meaning that there is a germ of a nontrivial
holomorphic vector field tangent to M near p (see e.g. [BER97]). From that map f,
one has to find a local biholomorphic map f: (CN,p) — (CN,p’) sending M into M.
In fact, the proof of Theorems 2.5 and 2.9 does not only provide the existence of such
a map f but provides the much stronger conclusion that f is the limit, in the Krull
topology, of germs at p of biholomorphic maps: there exists a sequence of germs of
biholomorphic maps f;: (CV,p) — (CV,p’) sending M into M’, j € Z,, such that
the Taylor series of f; at p coincides with that of f up to order j. Such a conclusion
is obtained by applying at some stages of the proof Artin’s approximation theorem
[A68] or, possibly, a very useful variation of such a result due to Wavrik [W75]. Let
us recall the statement of this fundamental result since it is the main motivation of
this survey.

THEOREM 2.12 (Artin [A68]). Let S(z,y) = (Si(z,y))icr, Si(z,y) € K{z,y}, be
a family of convergent power series, where K =R or C, x € K", y € KP. Suppose that
there exist a formal solution y(x) € (K[[z]])?, vanishing at the origin, of the system
of equations

(2.1) S(z,y(z)) = 0.

Then for any nonnegative integer k, there exists a convergent solution of the system
(2.1), for which the Taylor series agrees with that of y(x) up to order k.
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The above mentioned approximation property obtained in Theorems 2.5 and 2.9
enables one to formulate a more general problem related to Conjecture A. This more
general approximation problem is valid for arbitrary formal mappings between com-
plex spaces of different dimension and will be discussed in detail in Section 3.1.

2.3. Algebraic equivalence of real-algebraic submanifolds. Recall that a
real-analytic submanifold M of CV is called real-algebraic if it is contained in a real-
algebraic set of the same dimension as M. Recall also that if K = R, C, an analytic
function 2 C K™ — K defined on an open set of K" is called K-algebraic (or algebraic
over K) if it satisfies a nontrivial polynomial identity with polynomial coefficients
(over K). When K = R, we call such a function real-algebraic and K = C, we call
it complex-algebraic (or algebraic holomorphic). The same terminology applies in a
straightforward way to mappings valued in R¥ or C*.

Suppose that M, M’ C CV are real-algebraic submanifolds and (p,p’) € M x M.
Another useful notion of equivalence between the germs (M, p) and (M’,p’) is that of
algebraic (or Nash) equivalence that is defined as follows.

DEFINITION 2.13. We say that the germs (M,p) and (M’,p’) are algebraically
equivalent and write (M, p) ~4 (M’',p’) if there exists a germ of an algebraic biholo-
morphic map h: (CV,p) — (CV',p’) sending M into M.

Obviously, one has the implication (M, p) ~4 (M',p") = (M,p) ~ (M’,p"). The
main question is to decide when the converse does hold. The converse does clearly
hold when M, M’ are complex-algebraic or totally real-algebraic submanifolds of CV
(since M and M’ can be complex-algebraically strenghtened in these cases). In fact, it
is still an open problem to decide whether this is also true for arbitrary real-algebraic
submanifolds, i.e.

QUESTION B. If M, M’ C C~ are real-algebraic submanifolds and if (p,p’) €
M x M', does it hold that (M,p) ~ (M',p") = (M,p) ~a (M',p")?

One should note that, in contrast to the situation discussed in Section 2.1, there
is no known pair of real-algebraic submanifolds for which the answer to Question B
is negative. A number of positive results for CR submanifolds though exist regarding
such a question. The first result is somewhat analogous to Theorem 2.5 and provides
a positive answer at all points in Zariski open subset of an arbitrary real-algebraic
CR submanifold. The precise statement is as follows.

THEOREM 2.14 (Baouendi, Rothschild, Zaitsev [BRZ01b]). Let M C C¥ be a
real-algebraic CR submanifold. Then there exists a closed proper real-algebraic subva-
riety V. C M such that for everyp € M\V and for every real-algebraic CR submanifold
M' c CN and every p' € M', if (M,p) ~ (M',p') then (M,p) ~4 (M',p").

For a real-algebraic CR submanifold M c CV, the associated subvariety V in
Theorem 2.14 is the same as the subvariety V obtained by applying Theorem 2.5
to M. Lamel and the author [LM10] improved later Theorem 2.14 by exhibiting
another real-algebraic subvariety V' C VoM , that is in general strictly contained
in the subvariety V, and for which the conclusion of Theorem 2.14 still holds with
V replaced by V’. This subvariety V' is however in general strictly larger than the
subvariety V; consisting of the set of points of p € M where the dimension of the
CR orbits is not constant in any neighborhood of p (as defined in Section 2.2). The
conclusion of Theorem 2.14 with V/ replaced by Vi has been established more recently
by the author in [Mir12]. The result can be stated as follows:
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THEOREM 2.15 ([Mirl2]). Let M,M’ C C¥ be two real-algebraic CR sub-
manifolds of constant orbit dimension. Then for all points p € M and p' € M’,
(M, p) ~ (M',p) implies that (M,p) ~a (M',p’).

Theorem 2.15 is a consequence of a more general result proved in [Mirl2] that
is developed in detail later in this article in Section 3.2. The following elementary
example shows that V7 is in general strictly contained in V.

3
Z, w1, w2

EXAMPLE 2.16. Consider the real-algebraic CR submanifold in C
by

given

Imw;, = |2|*
M =
Im’LUQ =0

Then one may easily check that M is of constant orbit dimension and hence Vi = ()
here. On the other hand, one can show that V is the two dimensional real plane given
by ={(0,s,t) : (s,t) € R?}.

We would like to point out that if M, M’ p,p’ satisfy the assumptions given by
Theorems 2.14, 2.15 or 2.17, a germ of a local holomorphic map h: (CN, p) — (CV,p)
sending M into M’ need not be algebraic. In fact, additional geometric assumptions
on M and M’ are needed in order to force any such mapping h to be algebraic.
Necessary and sufficient conditions on M and M’ so that this rigidity property holds
have been found by Baouendi, Ebenfelt and Rothschild [BER96].

Hence, up to now, the largest Zariski open subset on arbitrary real-algebraic CR
submanifolds for which one knows that local holomorphic equivalence implies algebraic
equivalence is the complement of the set of points where the dimension of CR orbits
jump. On the other hand, in the specific situation where these submanifolds are
generically minimal, one has the following stronger conclusion.

THEOREM 2.17 (Baouendi, Mir, Rothschild [BMR02]). Let M C C¥ be a real-
algebraic CR submanifold that is generically minimal. Then for every real-analytic
CR submanifold M' c CN and for every p € M and p' € M’', (M,p) ~ (M',p")
implies that (M,p) ~4 (M',p").

By generically minimal, we mean that M contains a dense open subset of minimal
points. This result can be seen as an algebraic version of Theorem 2.9 but with a
weaker geometric condition than everywhere minimality. In fact, if M is connected,
it is not difficult to see that if M is minimal at some point, then it is generically
minimal (and in fact, minimal except a proper real-algebraic subvariety of M, see e.g.
[BER99]). The weakening of the minimality assumption in Theorem 2.17 (compared
to Theorem 2.9) allows one to deal with one important situation where CR orbits
need not all have the same dimension. This also allows us to deduce the following
solution to Question B for all one codimensional real-algebraic submanifolds.

COROLLARY 2.18 (Baouendi, Mir, Rothschild [BMRO02]). If M, M’ C C¥ are
real-algebraic hypersurfaces and if (p,p’) € M x M’, then (M,p) ~ (M',p") implies
that (M,p) ~a (M, p").

Corollary 2.18 is a straightforward consequence of Theorem 2.17. Indeed it follows
from the trichotomy mentioned after Example 2.11 describing all possible situations
that a connected real-analytic hypersurface of C might have regarding its set of
minimal points.
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The proofs of Theorems 2.14 and 2.17 provide a more general conclusion than what
is mentioned in the theorems. One indeed gets that any given germ of a biholomorphic
map f: (CV,p) — (CV,p) sending M into M’, with the appropriate assumptions on
M,M',p,p', is the limit in the Krull topology of a sequence (f;)jez, of germs at
p of algebraic biholomorphisms sending M into M’. This kind of approximation
property is established by making use of the approximation theorem for algebraic
systems established by Artin in 1969, which can be considered as the algebraic analog
of Theorem 2.12. Its statement is as follows.

THEOREM 2.19. (Artin [A69]) Let K = R,C, and let P(xz,y) =
(Pi(z,y), ..., Pn(z,y)) be m polynomials in the ring K[z,y] with y = (y1,--.,Yq)-
Suppose that Y (z) = (Y1(x),...,Y,(x)) € (K[[z]])? is a formal solution of the system

(2.2) P(z,Y(z)) = 0.

Then, for every integer {, there exists Y'(x) € (K{x})9, that is algebraic over K,
satisfying the system (2.2) such that Y*(z) agrees with Y () up to order (.

The reader should note that the conclusion of Theorem 2.19 still holds if one
assumes that the polynomial P is merely a polynomial mapping in y with coefficients
that are convergent power series in « and algebraic over K.

The approximation property obtained in the proofs of Theorems 2.14 and 2.17
leads us to generalize Question B to asking when germs of holomorphic maps sending
real-algebraic submanifolds embedded in complex spaces of different dimension into
each other can be approximated in the Krull topology by complex-algebraic maps.
This will be discussed in Section 3.2.

3. The Artin and Nash-Artin approximation property.

3.1. The Artin approximation property for real-analytic submanifolds.
Let M c C¥ be a real-analytic submanifold and ¥’ ¢ CN+¥V " be a real-analytic set,
N,N’'>1.Ifpe M and h: (CV,p) — CY’ is a formal holomorphic map, we say that
the graph of h along M is contained in ¥’ and write Ty N (M x CN') € ¥/ to mean
that the formal holomorphic map h(z) := (z, h(z)) sends M into '. Note that if h is
local holomorphic map, this definition coincides with the standard meaning involving
the graph of h.

DEFINITION 3.1. Let M,Y’ be as above and p € M. We say that the pair
(M,%') has the Artin approzimation property at p if for every formal holomorphic
map h: (CN,p) — CN' satisfying ', N (M x CN') € ¥/, there exists a sequence of
germs of holomorphic maps h;: (CV,p) — CN' satisfying L, N (M x (CN,) c Y,
j € Z4, with the property that h; agrees with h up to order j at p. We also say that

(i) (M,Y’) has the Artin approximation property if it has the Artin approxima-
tion property at every point p € M.

(ii) M has the Artin approximation property at p if (M,¥’) has the Artin ap-
proximation property at p for every real-analytic set ¥’ ¢ CV " and for every
positive integer N'.

(iii) M has the Artin approximation property if (M,Y’) has the Artin approxi-
mation property for every real-analytic set ¥/ ¢ CV " and for every positive
integer N'.

Note that if M has the Artin approximation property at some point p € M,
then given a germ (M’,p’) of a real-analytic submanifold in CV one has (M,p) ~»
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(M',p") = (M,p) ~ (M’,p’). Hence deciding which real-analytic submanifolds have
the Artin approximation property immediately provides a solution to the equivalence
problem discussed in Section 2.1. In what follows, we write AA property for Artin
approximation property.

Let us first observe that any real-analytic submanifold M C C has the AA prop-
erty. Indeed, if M is germ of a real-analytic curve in the complex plane, then it can
biholomorphically mapped to a piece of the real line. Hence one is reduced to consider
the case where M = R. The fact that R has the AA property at each of its points
follows immediately from applying Artin’s approximation theorem given by Theorem
2.12 (in the real setting) and from a complexification argument. From now on, we
shall therefore assume that N > 2.

The first class of real-analytic submanifolds having the AA property consists of
the totally real real-analytic submanifolds. This is a direct consequence of Theorem
2.12. Indeed, if M is a totally real real-analytic submanifold in CV, then for any
given p € M, M can be locally biholomorphically mapped near p to R¥ x {0}. Hence
we may assume without loss of generality that M = R* x {0} ¢ CF x CN=F and
that p = 0. Fix a real-analytic set ¥’ C C x (Ci\f/ and a formal holomorphic map
h: (CN,p) — CN satisfying I, N (M x CN') € ¥'. We may assume that ¥’ is given
near h(0) by the vanishing of a vector-valued real-analytic map p'(z, z, 2’, z’). For all
x € R* (sufficiently close to the origin), we have p/(z, h(z,0), x, h(z,0)) = 0. Hence,
by Theorem 2.12, there exists a sequence (g;): (RF,0) — R2NV" ~ CN' of germs of
real-analytic mappings satisfying the system of equations fulfilled by h(x,0) and such
that g;(z) and h(z,0) agree at 0 up to order j. For all j € Z., we complexify the map
g; to get a germ of a holomorphic map from (C¥,0) to CN" and keep the same notation
for the complexified map. Denote also by 8; = 6,(z, w) the Taylor polynomial of order
j of the mapping h(z,w)—h(z,0). Then one can check that if we set for every j € Z,
hj(z,w) = 0;(z,w) + g;(2), the sequence (h;) satisfies the required conclusion of the
AA property at 0.

Another class of real-analytic submanifolds for which the AA property is known
to hold is that of complex submanifolds. In this case, this property is a rather di-
rect application of the following (Cauchy-Riemann) version of Artin’s approximation
theorem proved by Milman:

THEOREM 3.2 (Milman [Mil78]). Let S(z,y) = (S1(z,y),...,S(x,y)) be ¢ con-

vergent power series in the ring R{x,y} with x = (x1,...,22:), ¥y = (Y1,---,Y2m)-
Suppose that Y (z) € (R[[z]])*™ vanishes at the origin and is a solution of the system
(3.1) S(z,Y(x)) =0, O(Yop_1+iYer) =0, 1 <k <m,

where O is the Cauchy-Riemann operator in R*" ~ C". Then, for every integer £, there
exists a convergent map Y*(z) satisfying the system (3.1) such that Y*(x) agrees with
Y (x) up to order £.

Indeed, if M C C¥ is a complex submanifold, it can be locally biholomorphically
straightened to C* x {0}. Then a direct application of Theorem 3.2 together with an
adaptation of the last argument used for the case of totally real submanifolds shows
that M has the AA property.

Besides the cases of totally real and complex submanifolds, there is, to the au-
thor’s knowledge, no other known classes of real-analytic submanifolds having the
AA property. The question seems for instance open for real-analytic strongly pseu-
doconvex hypersurfaces or even for the real unit sphere. On the other hand, if we are
interested in pairs (M, Y') satisfying the AA property, one has the following result:
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THEOREM 3.3 (Meylan, Mir, Zaitsev [MMZ03a]). Let M C CV be a real-analytic
CR submanifold that is everywhere minimal and ¥’ be a real-algebraic subset of CV x
CN'. Then (M,%) has the Artin approximation property.

Though Theorem 3.3 is stated in [MMZ03a] only for real-algebraic sets ¥’ of the
form M x M’ where M’ is a real-algebraic subset in CN', the proof given in [MMZ03a
applies also to the case where ¥/ is an arbitrary real-algebraic subset of CV+V Tt is
still an open problem to determine whether the conclusion of Theorem 3.3 holds for
arbitrary real-analytic sets &' (instead of real-algebraic ones).

Let us describe the main ideas of the proof of Theorem 3.3 to see how Theorem
2.12 is used. Let us therefore fix M, Y’ with the corresponding assumptions. Fix also
p € M, which we assume to be the origin and h: (CV,0) — CV " a formal holomorphic
map whose graph along M is contained in ¥/ C CY x (Ci\f/. The proof is divided in
three steps:

(1) Consider the Zariski closure of Ty, with respect to the ring C{z}[z/]. It is

defined as the germ 2, ¢ CN x CN" at (0,h(0)) of a complex-analytic set
defined as the zero-set of all elements in C{z}[z] vanishing on T'.

(2) Apply Theorem 2.12 to the system of holomorphic equations defining Zj, and
to the formal solution h satisfying this system. One then gets a sequence of
germs of holomorphic maps (h;): (CV,0) — CV' such that h; — h vanishes
up to order (at least) j at 0 for all j € Z..

(3) Show that for j large enough, one necessarily has I'y,; N (M x cNyc Y.

The Zariski closure Z; is a useful tool that measures the lack of convergence of
the mapping h. Indeed, one may show (see [MMZ03a]) that h is convergent if and
only if Z; is N-dimensional. Under the assumptions of Theorem 3.3, this Zariski
closure need not be N-dimensional, but it is if one adds some additional geometric
conditions on ¥’ (see [MMZ03a] for more on this issue).

As one can see steps, (1) and (2) are easy to implement. The heart of the proof
boils down to proving step (3). It relies on the following proposition [MMZ03a,
Proposition 4.3]:

PROPOSITION 3.4. Let M C CV be a generic real-analytic submanifold through
the origin and assume that M is minimal at 0. Let g: (CN,0) — CE be a formal holo-
morphic map with N,k > 1. Suppose that there exists Q(z,z;w,w) € C{z, z}|w, 0]
such that Q(z, Z;w, )| prxck Z 0 and such that Q(z, z; g(z),9(z)) = 0 for z € M close
to 0. Then there exists a nontrivial holomorphic function P(z,w) € C{z}[w] such that
P(z,9(2)) =0 for z € CN close to 0.

We should mention here that a CR submanifold M C CV is called generic if for
every point p € M, one has T,M + J(T,M) = T,CV.

Proposition 3.4 is the key result for establishing step (3) above and may also
be used to show that the Zariski closure defined in step (1) is not the whole space
CN x CN' whenever ¥/ is any proper real-algebraic subset of CV x CV ". The main
ingredients involved in the proof of Proposition 3.4 are the theory of Segre sets devel-
oped by Baouendi, Ebenfelt and Rothschild [BER96] for generic minimal submanifolds
and a repeated use of, again, Artin’s approximation theorem given by Theorem 2.12.

Theorem 3.3 deals with the AA property for CR submanifolds. For such subman-
ifolds, one may formulate a variant of the AA property for C*>°-smooth CR mappings
as follows. Recall that given a real-analytic CR submanifold M C C¥, a C>°-smooth
H: M — CV' is called CR if each component of H is annihilated by all CR vector
fields of M. We denote in what follows by I'y the graph of H. Fix M, H as above
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and a real-analytic set ¥’ ¢ CV " such that Ty C 3. Following Definition 3.1, we say
that the triple (M, Y, H) has the CR Artin approzimation property (CR-AA property
for short) at some point p € M if for all j € Z, there exists a germ of a holomorphic
map H;: (CV,p) — CY’ such that Lp; ), €X' and such that H — Hj|pys vanishes up
to order j at p.

One can easily show that if (M,%’) has the AA property at some point p €
M, then for any C*°-smooth CR mapping H, the triple (M,%’, H) has the CR-AA
property at p. Not much is known about triples having the CR-AA property. The
only existing result valid for arbitrary real-analytic sets ¥/ was proved by Sunyé [Sul0]
and is given as follows.

THEOREM 3.5 (Sunyé [Sul0]). Let M C CN be a connected real-analytic CR
submanifold that is somewhere minimal, ¥’ a real-analytic subset of CN x CN' and
H: M — CN' a C*-smooth CR mapping such that Ty C X/'. Then there exists
a dense open subset Q of M such that (M,%', H) has the CR Artin approximation
property at each point of ().

The reader might note that Theorem 3.5 is not stated for arbitrary real-analytic
sets in [Sul0] but for real-analytic sets of the form M x M’ where M’ is some real-
analytic set in C'. The proof given in [Sul0] applies nevertheless also in the more
general situation described in Theorem 3.5.

3.2. The Nash-Artin approximation property for real-algebraic sub-
manifolds. We shall now discuss an algebraic version of the Artin approximation
property for real-algebraic submanifolds in complex space.

DEFINITION 3.6. Let M C CY be a real-algebraic submanifold, ¥’ ¢ CV x cN
a real-algebraic set and p € M. We say that the pair (M,Y’) has the Nash-Artin
approzimation property at p if for every germ of a holomorphic map h: (CV,p) —
CN' satisfying ', N (M x CN') C 5, there exists a sequence of germs of algebraic
holomorphic maps h;: (CV,p) — cN satisfying I'p,; N (M x (CN/) c Y, j€Zy, with
the property that h; agrees with h up to order j at p. We also say that:
(i) (M,X’) has the Nash-Artin approximation property if it has the Nash-Artin
approximation property at every point p € M.
(ii) M has the Nash-Artin approximation property at p if (M,Y’) has the Nash-
Artin approximation property at p for every real-algebraic set ¥/ c CV " and
for every positive integer N’.
(iii) M has the Nash-Artin approximation property if (M, X’) has the Nash-Artin
approximation property for every real-algebraic set ¥’ ¢ CV " and for every
positive integer N'.

Note again here that if M has the Nash-Artin approximation property at some
point p € M, then given a germ (M’,p’) of a real-algebraic submanifold in CV,
the holomorphic equivalence of the germs (M, p) and (M’,p’) implies their algebraic
equivalence.

Asin Section 3.1, we can show that every real-algebraic curve in the complex plane
has the Nash-Artin approximation property (NAA property for short). Similarly, one
may also check that complex-algebraic submanifolds and totally real real-algebraic
submanifolds in CV have the NAA property.

On the other hand, and contrarily to the situation discussed in the previous
section, there are other classes of real-algebraic submanifolds for which the NAA
property is known to hold. These classes concern only CR manifolds. The first
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general class of CR submanifolds for which this property is known to hold is that of
generically minimal submanifolds i.e.

THEOREM 3.7 (Meylan, Mir, Zaitsev [MMZ03b]). Let M C CV be a real-algebraic
CR submanifold that is generically minimal. Then M has the Nash-Artin approzima-
tion property.

The strategy of the proof of Theorem 3.7 is quite analogous to that of the proof
of Theorem 3.3. Indeed suppose that M,Y’ are as in Theorem 3.7 and p =0 € M.
Assume also that h: (CV,0) — CV "aisa germ of holomorphic map whose graph along
M is contained in ¥’ ¢ CY x CY'. One first considers the Zariski closure of T, with
respect to the ring Clz, 2], which is defined as the smallest complex-algebraic variety
Vi € CN x CN' containing I'j,. This Zariski closure measures the lack of algebraicity
of the mapping h. Indeed, such a map need not be algebraic to start with, unless
some additional assumptions on ¥’ are added (for this see [CMS99, Z99]). One then
applies Theorem 2.19 (in the complex setting) to the system of complex-algebraic
equations defining V), and to the holomorphic solution & satisfying this system. This
gives a sequence of germs of algebraic holomorphic maps (h;): (CV,0) — CV " such
that h; — h vanishes up to order (at least) j at O for all j € Z. The last step consists
of proving that for j large enough, one necessarily has I'y, N (M x CN') c Y. The
argument given in [MMZ03b] to prove this last step is again based on the Segre sets
theory of minimal generic submanifolds and the use of Theorem 2.19. We should
mention here that the weakening of the minimality assumption on M in Theorem 3.7
compared to its analogue Theorem 3.3 is due to the fact that being algebraic for a
holomorphic function is a non-local property; this allows one to move to points nearby
0, which cannot be done while dealing with formal power series mappings.

Theorem 3.7 provides a complete solution to our problem for an important class
of real-algebraic submanifolds but does not provide any result for nowhere minimal
submanifolds. We shall now describe a recent result of the author providing a sufficient
condition ensuring that a real-algebraic CR submanifold has the NAA property. Such
a condition has the advantage to be satisfied generically on an arbitrary real-algebraic
CR submanifold.

Let M C CV be a real-algebraic CR submanifold. Recall that M is of constant
orbit dimension if on every connected component of M, all CR orbits of M have the
same dimension (see Section 2.2). We have the following:

THEOREM 3.8 ([Mirl2]). Let M C C¥ be a real-algebraic CR submanifold of
constant orbit dimension. Then M has the Nash-Artin approzimation property.

As mentioned above, the constant orbit dimension assumption is a geometric
condition that is generically satisfied. More precisely, as observed in Section 2.2, on
every connected component M of an arbitrary real-algebraic CR submanifold M C
CN, there exists a closed proper real-algebraic subvariety V' such that the orbits of
M have the same dimension on M \ V. Hence, Theorem 3.8 immediately implies the
following;:

THEOREM 3.9 ([Mirl12]). For every real-algebraic CR submanifold M C C¥,
there exists a closed proper real-algebraic subvariety Xp of M such that M \ Xpr has
the Nash-Artin approximation property.

One noteworthy consequence of Theorems 3.8 and 3.7 provides a complete solution
of the Nash-Artin approximation problem for real-algebraic hypersurfaces. Indeed,
any connected component of an real-algebraic hypersurface in CV must be either
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generically minimal, in which case Theorem 3.7 applies, or must be Levi-flat and
therefore of constant orbit dimension in which case Theorem 3.8 applies. Hence, one
has:

THEOREM 3.10 ([Mirl2]). Any real-algebraic hypersurface of CV has the Nash-
Artin approximation property.

The proof of Theorem 3.8 is a version of the proof of Theorem 3.7 with parameters.
Indeed, suppose that M,Y’ are as in Theorem 3.8 and p = 0 € M. Assume also that
h: (CN,0) — CN " is a germ of holomorphic map whose graph along M is contained
in ¥’. Then by e.g. [BER96], one may view the germ of M at 0 as a (small) algebraic
deformation of its CR orbits, in the sense that, there exists an integer ¢ € {0,..., N}
and a real-algebraic submersion 7: (M, 0) — (R¢,0) such that 7=!(7(g)) = O, for all
q € M near 0. The level sets of m are the CR orbits and foliate M near the origin
by minimal real-algebraic CR submanifolds. We may then identify the germ of M at
0 with an algebraic deformation (M;) for t € R close to 0, where M; C CN~¢ is a
germ at 0 of a minimal real-algebraic CR submanifold. Writing CV = CN~¢ x C¢,
then for every t € R¢ sufficiently small, the holomorphic map h;: (CY=¢,0) 3 2z —
h(z,t) € CN' satisfies Graphh, N (M; x CN') € %} where ¥} := {(z,2/) € CN=¢ x
CN' : (z,t,2)) € ¥'}. Since each submanifold M, is minimal, the conclusion of
Theorem 3.8 boils down to providing a deformation version of Theorem 3.7 associated
to the deformation (My)tcgre, the analytic family of holomorphic maps (fi)tcre and
the family of real-algebraic subsets (S})tecre.

There are several new ingredients in order to achieve the proof of Theorem 3.8.
We will mention only two of them. The first one is the use of Artin’s approximation
theorem [A69] on a ground field that is different from the usual fields of real and
complex numbers. Indeed, one needs to apply such a result to some field extension
over C defined by some ratios of formal power series (see [Mir12] for more details). The
other important ingredient is the use of a version of Artin’s approximation theorem
(for so-called nested subrings) proved by Popescu [P86]. We shall state a version of
Popescu’s theorem that is sufficient for the purpose of the proof of Theorem 3.8.

THEOREM 3.11 (Popescu [P86]). Let K = R,C, Pzy) =
(Pi(z,y), ..., Pn(z,y)) be a polynomial mapping with components in the ring K|z, y],
with © = (x1,...,27), ¥y = (Y1,...,Yq). Suppose that Y(z) = (Y1i(x),...,Y,(x)) €
(K[[z]])? is a formal solution of the system

(3.2) P(z,Y(x)) =0.

Suppose furthermore that for every j =1,...,q, there exists s; € {1,...,r} such that
Yj(z) € K[[z1,...,2s,]]. Then, for every integer £, there exists Y*(z) € (K{z})?, that
is algebraic over K, satisfying the system (3.2), such that Y*(z) agrees with Y (x) up
to order £ and each ng(:c) e K{zy,...,z5,}, j=1,...,q.

At this point, we should mention that the use of Theorem 3.11 in the equivalence
and approximation problem in CR geometry appeared for the first time in [LM10].
One should also note that Theorem 3.11 is specific to the algebraic category. Indeed,
the corresponding result for analytic systems of equations does not hold in general
(see [GaTl]).

In view of Theorems 3.7 and 3.8, we are lead to formulate the following conjecture
regarding the NAA property:

CONJECTURE C. Any real-algebraic CR submanifold of CN has the Nash-Artin
approzximation property.
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Summarizing the above described results, we see that the last step that remains
to be proved towards the solution to Conjecture C is to prove that a connected real-
algebraic CR submanifold in CV has the NAA property at each point where the CR
orbit is not of maximal dimension.

3.3. Strong approximation property. In this last paragraph, we indicate
one other possible approximation property that may be of interest for real-analytic
submanifolds in complex space. This is motivated by the following ”strong” approxi-
mation theorem proved by Wavrik [W75].

THEOREM 3.12 (Wavrik [W75]). Let S(z,y) = (Si(z,9))ier, Si(z,y) € K[z, y]],
be a family of formal power series, where K = R or C, x € K", y € KP. Then there
exists a map B: Zy — Zy with the following property: given a positive integer £ and
y(z) € (K[[z]])?, y(0) = 0, such that S(z,y(x)) vanishes at 0 up to order 5({), there
exists y(x) € (K[[z]])P, y(0) = 0, for which S(z,y(x)) = 0 and such that the Taylor
series at 0 of y(x) agrees with that of y(x) up to order .

Let M, be, for simplicity, two real-analytic submanifolds in CV and CV x CV l
respectively. Let p € M, ¢ a positive integer and h: (CY,p) — (Ci\,’, be a formal
holomorphic map with (p, h(p)) € ¥/. We shall say that the graph of h along M
has order of contact at least £ with X' at p if for one (and hence every) real-analytic
vector-valued defining function p’ = p'(z, z, 2/, z’) for ¥’ near (p, h(p)), the restriction
to M of the formal power series mapping p'(z, z, h(z), h(z)) vanishes at least up to
order ¢ at p.

We say that (M,Y’) has the strong Artin approximation property at p, and write
SAA property at p for short, if there exists a map 3: Z, — Z satisfying the following;:
given a positive integer £ and h: (CV,p) — C¥ " a formal holomorphic map whose
graph along M has order of contact at least S(¢) with X/ at p, there exists a formal
holomorphic map he: (CV,p) — CV " whose graph along M is contained in ¥’ and
such that h, and h agree at p up to order /.

Note that in the previous definition, we may assume, without loss of generality,
that the mapping h is already holomorphic (and in fact polynomial) to start with.
Observe also that one may formulate the above definition assuming that M and ¥’
are merely ”formal real” manifolds instead of real-analytic ones (see e.g. [BMR02]).

As in previous sections, it is easy to see that Theorem 3.12 imply that (M,X’)
has the SAA property at every point of a totally real real-analytic submanifold M
of CV and every real-analytic submanifold ¥/ of CN+V ". The same conclusion also
holds when M is any complex submanifold of CV due to a recent result of Hickel and
Rond [HR12] providing a strong approximation version of Theorem 3.2. Besides these
cases, the author does not know whether the other classes of real-analytic submanifolds
discussed in Section 3.1 and having the AA property also have the SAA property.

4. Reformulation as PDE versions of Artin’s approximation theorems.
In this last part of this article, we want to describe, especially to the non-expert
reader, the results of the previous sections as PDE versions of Artin’s approximation
theorems.

4.1. Systems of complex vector fields and analytic systems. The first
PDE version of Theorem 2.12 is Milman’s result given by Theorem 3.2. In addition to
the system of analytic equations that a given formal power series mapping must satisfy,
one adds in Theorem 3.2 the PDE given by the homogeneous (standard) Cauchy-
Riemann operator in some complex euclidean space. Milman’s setting is therefore
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a special case of the following situation: let S(z,y) = (S1(x,y),...,S4(z,y)) be g
convergent power series in the ring R{z,y} with = (z1,...,25), y = (Y1, .-, Y2m)-
Let Ly,...,L, be a family of complex vector fields, defined in a neighbhorhood of
0 € Q2 C R?, with real-analytic coefficients i.e. of the form

s P .
Lﬂzzaju(x)ax ,]:1,...,TL
v=1 v

with aj, being complex-valued real-analytic functions in Q. Suppose that Y (z) €
(R[[z]])®*™ vanishes at the origin and is a solution of the system

(4.1) S(x,Y(2)) =0, Lj(Yop—1 +iYa,) =0, 1<k<m, 1<j<n.

The question is then to decide whether, for every integer ¢, there exists a convergent
map Y*(z) satisfying the system (4.1) such that Y*(x) agrees with Y () up to order
¢ (at 0).

It is clear that Milman’s theorem corresponds to the situation where s is even,
i.e. s =2r and

0] 9]
L; = i , J=1...,r
J 8$2j71 8$2j J
We need the following definition.
DEFINITION 4.1. Let L4,..., L, be a family of n complex vector fields defined

in a neighborhood of 0 in R®. We say that (L1,..., L) has the Artin approzimation
property (AA property for short) if for every positive integer ¢ and every convergent
power series mapping S as above, any formal solution Y of the system (4.1) is the
limit, in the Krull topology, of a sequence of convergent solutions of (4.1).

The AA property for systems of complex vector fields and the AA property for
real-analytic CR submanifolds are directly linked as follows.

Let M c CV be a real-analytic CR submanifold of dimension s of CR dimension n
and p € M. It is a standard fact (see e.g. [BER99]) that we may choose a real-analytic
parametrization o: (RS,0) — R2Y of M near p and a family of complex vector fields
Lq,...,L, defined in a neighborhood of 0 in R*, with real-analytic coefficients, such
that p.(L1), ..., p«(Ly,) forms a basis of the local sections of T%1 M near p. Standard
arguments about CR manifolds (that may be found in [BER99]) provide the following
correspondence:

ProOPOSITION 4.2. With the above notation, M has the AA property at p if and
only if (L1,...,Ly) has the AA property.

In view of Proposotion 4.2, one may formulate Theorem 3.3 in a form that looks
closer to the statement of Artin’s or Milman’s approximation theorem. Let us make
the following additional definitions:

DEFINITION 4.3. Let Lq,...,L, be a system of n complex vector fields, with
real-analytic coefficients, defined in a connected neighborhood € of 0 in R*.

(i) We say that (Ly, ..., Ly) is analytically admissible if there exists a local real-
analytic immersion ¢: R®* D Q D w — CV such that M := p(w) is a real-
analytic CR submanifold of CV with ¢, (L1),...,¢«(L,) being a local basis
of the sections of T M near ¢(0).
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(ii) We say that (L1, ..., Ly) is of finite type at (a point) o € § if the Lie algebra
generated by L1, ..., L, and by L4,...,L, is of maximal dimension at z i.c.
if its dimension is equal to s.

(iii) We say that (Ly,..., L) is of constant orbit dimension at (a point) xo € Q if
the dimension of the Lie algebra generated by Li,..., L, and by Li,..., L,
is the same at all points in some sufficiently small neighborhood of z.

REMARK 4.4. Necessary and sufficient conditions are known for a system of
complex vector fields to be analytically admissible. If (Lq,...,L,) is a system of n
complex vector fields, with real-analytic coefficients, defined in a connected neighbor-
hood Q of 0 in R®, then (Lq,. .., L,) is analytically admissible if and only if L1, ..., L,
are C-linearly independent in a sufficiently small neighborhood V' C € of 0 and the
bundle V over V formed by the span of (L1, ..., L,) satisfies [V, V] C V (integrability
condition) and VNV = {0} (see e.g. [BER99, BCHOS)).

We can now reformulate Theorem 3.3 as follows:

THEOREM 4.5. Let P(z,y) = (Pi(z,y), ..., Py(z,y)) be g polynomials in the ring
Rlz,y] with x = (x1,...,2s), ¥y = (Y1,---,Y2m). Let L1,..., L, be an analytically
admissible system of complex vector fields defined in a neighborhood of 0 in R® and
assume that (L1,...,Ly) is of finite type at 0. Suppose that Y (z) € (R[[z]])? is a
solution of the system

(4.2) P(z,Y(z)) =0, Lj(Yog—1 +iY2,) =0, 1<k <m, 1<j<n.

Then, for every integer ¢, there exists Y'(x) € (R{z})? satisfying the system (4.2)
such that Y*(x) agrees with Y (z) (at 0) up to order (.

0
a—éj,jil,...,?",in(crst,

then such a system automatically fulfills the required conditions of the theorem. In
this case, Theorem 4.5 is a special case of Milman’s theorem (Theorem 3.2) since it
holds for polynomial systems of equations instead of analytic ones. Let us mention, on
the other hand, the following class of examples (different from the standard Cauchy-
Riemann setting) where Theorem 4.5 applies.

If we consider the case where case s = 2r and L; =

EXAMPLE 4.6. Let ¢: R2"™1 5 Q) — R be a real-analytic function defined in
some neighborhood 2 of 0 such that ¢(0) = dp(0) = 0. Identifying R?"*! with
C" x R, we use (z,%,u) as coordinates in R?"*! where z = (21,...,2,) € C", u € R
and z = x + iy with 2,y € R™. We set

L 8 . (pij (Zlugluu) 8
P A =
(4.3) 70z 1+ipu(2, 7, u) Ou’
' 1 8 . 8 902]'(2/72/7/“) 8 .
= — —+Z— — T — _;1§]Sn

2\ 0z;  Oy; 1+ iy (2,2, u) Ou
Then this system of complex vectors fields is analytically admissible and the finite
type assumption at 0 is equivalent to say that the real-analytic function ¢(z,z,0)
does not vanish identically near 0 (see e.g. [BER99]). Under this condition, Theorem
4.5 therefore applies.
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4.2. Algebraic systems. For systems of polynomial equations, notice first that
Popescu’s theorem ( Theorem 3.11) can be seen as a PDE version of Artin’s approx-
imation theorem given by Theorem 2.19. Let us now describe the reformulations of
some of the results of Section 3.2 in terms of Artin type approximation results for
systems of complex vector fields.

So, let P(x,y) = (Pi(z,y),...,P;(x,y)) be g polynomials in the ring Rz, y] with
x = (x1,...,2s), y = (Y1,-..,Y2m). Let L1,..., L, be a family of complex vector
fields, defined in a neighbhorhood of 0 € 2 Ce R?, with real-analytic coefficients in
Q i.e. of the form

s ) .
szzaju(x)'%v Jj=1....n
v=1 v

with a;, being a complex-valued real-analytic functions. Suppose that Y (z) €
(R{z})?™ is a solution of the system

(4.4) P(z,Y(z)) =0, L;j(Yar—1+iYor)=0,1<k<m, 1<j<n.

The question here is to decide whether, for every integer ¢, there exists a germ at 0
of a real-algebraic map Y*(x) satisfying the system (4.4) such that Y*(z) agrees with
Y (z) up to order ¢ at 0.

Analogously to what has been done in the previous section, we need to define the
following.

DEFINITION 4.7. Let Lq,..., L, be a family of n complex vector fields defined in a
neighborhood of 0 in R*. We say that (L1, ..., L,) has the Nash-Artin approzimation
property (NAA property for short) if for every positive integer ¢ and every polynomial
map P as above, any convergent solution Y of the system (4.4) is the limit, in the
Krull topology, of a sequence of germs at 0 of real-algebraic solutions of (4.4) .

Let M C CV be a real-algebraic CR submanifold of dimension s of CR dimension
n and p € M. Then we may choose a real-algebraic parametrization : (RS, 0) — R2Y
of M near pand L, ..., L, afamily of complex vector fields defined a neighborhood of
0 in R® with real-algebraic coefficients such that ¢.(L1),. .., p«(Ly,) forms a local basis
of the sections of T%1M near p. We have the following link between the Nash-Artin
approximation property for real-algebraic CR submanifolds and systems of complex
vector fields. It can be proved by using basic arguments about CR manifolds and
their mappings (see e.g. [BER99]).

PROPOSITION 4.8. With the above notation, M has the NAA property at p if and
only if (L1,...,Ly) has the NAA property.

Proposition 4.8 naturally leads us to make the following definition.

DEFINITION 4.9. Let Ly, ..., L, be a system of n complex vector fields, with real-
analytic coefficients, defined in a connected neighborhood 2 of 0 in R*. We say that
(Ly,...,Ly) is algebraically admissible if there exists a local real-algebraic immersion
©: QD wC R* = CV such that M := p(w) is a real-algebraic CR submanifold of
CN with ¢.(L1), ..., ¢«(Ly) being local basis of the sections of T%1M near ¢(0).

We may then reformulate Theorems 3.7 and 3.8 as follows.

THEOREM 4.10. Let P(z,y) = (Pi(z,y),...,Py(z,y)) be g polynomials in the
ring Rlz,y] with x = (x1,...,2s), ¥ = (Y1,..-,Y2m). Let Li,...,L, be an alge-
braically admissible system of complex vector fields defined in a connected neighbor-
hood Q2 of 0 in R®. Assume that one of the following two conditions hold:
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(i) (L1,...,Ly) is of finite type at some point of Q.
(i) (L1,...,Ly) is of constant orbit dimension at 0.
Then if Y(x) € (R{x})? is a solution of the system

(4.5) P(z,Y(x)) =0, Lj(Yap—1 +1iYax) =0, 1 <k <m, 1<j<n,

for every integer £, there exists Y(x) a germ at 0 of a real-algebraic mapping solution
of the system (4.5) such that Y*(z) agrees with Y (z) (at 0) up to order (.

The first situation where Theorem 4.10 applies is when s is even and the complex
vector fields are the standard Cauchy-Riemann vector fields. Then, in this special case,
Theorem 4.10 can be seen as the algebraic analog of Milman’s theorem (Theorem 3.2).
It may be stated as follows:

COROLLARY 4.11. Let P(z,y) = (Pi(z,y),...,Py(z,y)) be g polynomials in the
ring R[z,y] with x = (x1,...,22:), y = (Y1,-- -, Y2m). Suppose that Y (x) € (R{x})>™
is a solution of the system

(4.6) P(z,Y(z)) =0, 0(Yar—1+1iYa) =0, 1 <k<m.

Then, for every integer {, there exists a germ at 0 of a real-algebraic map Y*(z)
satisfying the system (4.6) and such that Y*(z) agrees with Y (z) (at 0) up to order £.

Let us illustrate Theorem 4.10 with other examples.

EXAMPLE 4.12. Suppose that s = 2r + k so that we may write R® ~ C7 x RF.
Consider the complex vector fields

Li=—,1<j<r.
70z T =T
Then the family (Lq,..., L,) is an algebraically admissible system of complex vector
fields that is (everywhere) of constant orbit dimension and Theorem 4.10 applies. In
this specific case, it can be stated as the following parameter version of Corollary 4.11:

COROLLARY 4.13. Let P(z,y) = (Pi(z,y),...,Py(z,y)) be g polynomials in the
ring Rlz,y] with * = (z1,...,22:), ¥ = (Y1,...,Y2m). Suppose that RF x R?*" >
(t,x) — Yi(x) is a convergent power series mapping near 0 such that for every fized
t € R* sufficiently close to 0, Yi(x) is a solution of (4.6). Then, for every integer ¢,
there exists a real-algebraic map (t,x) w Y (x) such that the family (Y (x)), satisfies
the system (4.6) and such that Y,t(z) agrees with Y;(x) up to order £ (as powers series
of (t,x)) at 0 € RF+2,

ExaMPLE 4.14. Consider Example 4.6 where we now suppose that ¢ is a real-
algebraic function defined in some connected neighborhood 2 of 0 in R?"*1. Consider
the system of complex vector fields Li,..., L, given by (4.3). Such a system is
algebraically admissible. Furthermore, it is of finite type at some point of € if and
only if ¢ £ 0. And when ¢ = 0, it is of constant orbit dimension (in fact it is a special
case of Example 4.12). Hence Theorem 4.10 applies to any system of complex vector
fields of the form (4.3) (for any real-algebraic function ).

Let us conclude with a reformulation of Theorem 3.9.

THEOREM 4.15. Let Ly,..., L, be an algebraically admissible system of complex
vector fields defined in an open connected neighborhood € of 0 in R®. Then there
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exists a Zariski open subset U C € such that the following holds: for every point
zo € U and every polynomial mapping P(z,y) = (Pi(z,y), ..., Py(z,y)) € (R[z,y])?
with © = (x1,...,%s), Yy = (Y1,---»Y2m), of Y(z) € (R{x — 2o })? is a solution of the
system

(4.7) P(z,Y(z)) =0, L;j(Yap_1 +iYa) =0, 1 <k < m,

then, for every integer £, there exists a germ at xo of a real-algebraic mapping Y*(x)
satisfying the system (4.7) and such that Y*(z) agrees with Y (z) up to order ¢ at zg.

By a Zariski open subset of €2, we mean here the complement of a proper real-
algebraic subvariety of 2. Note that Conjecture C states that Theorem 4.15 should
hold with U = Q.
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