METHODS AND APPLICATIONS OF ANALYSIS. (© 2014 International Press
Vol. 21, No. 4, pp. 441-456, December 2014 003

HIGH-ORDER GREEN OPERATORS ON THE DISK AND THE
POLYDISC*

YANG LIUT, ZHIHUA CHEN¥, AND YIFEI PANS

Abstract. In this paper, we give the explicit expressions of high-order Green operators on
the disk and the polydisc, and hence the kernel functions of high-order Green operators are also
presented. As applications, we present the explicit integral expressions of all the solutions for linear
high-order partial differential equations in the disk.
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1. Preliminaries. Singular integral is an important tool in harmonic analysis,
complex analysis and Clifford analysis, et. al. There are many types of singular inte-
grals investigated by numerous mathematicians. In [1], Calderén-Zygmund type sin-
gular integrals have been studied in theory and applications. For the singular integral
operator, in [2], a boundedness criterion for the Cauchy singular integral operator in
weighted grand Lebesgue spaces have been given. Moreover, semi-Fredholm properties
of certain singular integral operators, asymptotic invertibility of Toeplitz operators,
weighted uniform convergence of the quadrature method for Cauchy singular integral
equations, and Toeplitz and singular integral operators on general Carleson Jordan
curves have been discussed in [3]. The book [4] has been devoted to the Fredholm
theory of singular integral operators with shifts on LP(T"), (1 < p < o), where I is a
Lyapunov curve in the complex plane which is homeomorphic to a circle or a segment.

In one complex dimension, the inverse operator (or Green operator) of the Cauchy-
Riemann operator 0 plays an important role in finding a solution of 0 equation,
see [5, 6, 7]. Especially, high-order Green operators are used in [7] to prove the
general existence theorem for nonlinear partial differential systems of any order in
one complex variable. In this paper, we will give the explicit expression of high-order
Green operators on the disk and the polydisc, and the kernel functions of high-order
Green operators will be presented as well.

Let D be the closed disk {z € C||z| < R} and C be its boundary {z € C||z| = R}.
Unless otherwise state, in this paper, functions we consider will be complex valued
and integrable with D. C*(D) denotes the set of all functions f on D, where

{If(Z)—f(Z’)I

H,[f] = sup P |z,2" € D}

is finite. For f € C*(D) we define

Il = [f1+ CR)* Half],
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where | f| denotes sup,cp |f(2)]. C*(D) is the set of all functions f on D whose kth
order partial derivatives exist and are continuous, k& > 0 is an integer. C*+%(D) is
the set of all functions f on D whose kth order partial derivatives exist and belong
to C%(D). For f € Ck¥T%(D), we have the definition in terms of || - ||:

() = 0" fl[}.
1719 = s {110°9 11
It should be pointed out that the function || - [|*) on C***(D) is a semi-norm rather

than a norm since ||f||*) = 0 if and only if f is polynomial of degree of k — 1. The
following operators are defined on D as in [5]:

f dc A dc — f(0)de /\
2m/ 2m/ C__ P
= 35, %dc i T = 5 (Cc) L nac
(1)
S7E) = % c fC(C—)CiC’ 516) = 2m c fC(C—) z
Sof(2) = ! f(C)dC, Spf(z) = _—1 f_(g)din

where T(f) = T(f), S(f) = S(f), and Sy (f) = Sp(f). More generally, if A is a closed
bounded domain, then Ta f and Sa f are defined for continuous f on A by

2 S - [ 108

T
af( 27m

The fundamental properties between operators T, S are given by [5] as follows.
LEMMA 1.1. [5] If f € CY(D), then

TOf = f — Sf on Int(D),

TOof = f —Sf on Int(D).

The smoothness properties of integral operator 7' has been shown in [5].

LEMMA 1.2. [5] If f € C*(D), then Tf € C*T*(D). Moreover,

arf =1, orf=Tf,
and
Ho[’T f] < CoHal[f]
where Cp = ﬁ If f € C*(D)(k > 0), then Tf € Ckt1T%(D).

Meanwhile, if replace 9,9, T,2T with 0,0, T 2T, respectively, then one can get
the similar result as above lemma for 7T

LEMMA 1.3. [7] It holds for | > 0 that

/A(CC_ )dC/\dC— iﬁf(w_éo)ﬂrl’
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where A = {¢ € C||¢ — Zo| < r}.

Proof. 1t is easy to get Lemma 1.1 if we replace D, C with A, A, respectively.
Apply Lemma 1.1 to the function ({ — Z)"*!, we can obtain that

/ (€~ =)' d¢ A d¢ :%Ta@@ —20)"")(w)
A

(—w 1
= l_iﬂf [(¢ = 20)™" = Sa((¢ = 20)™)](w)
_2mi g 1 (E - 50)l+1
=11 (W — Zo) ' — 5 /|¢_ZU|—T T d(]
_ 2w gy D 1
=171 [(w — Zo) o /Ic—zol—r (€ — 20) (¢ —w) (]
= l__?_wll (w— %),

where the last equality comes from the residue theorem. The lemma is proved. O

2. High-order Green operator on D. Denote T? =TT, T — TT, similar
notations for T“,_TV, THT" for any pu,v > 0. In this section, we will get the explicit
expression of T"T" f.

THEOREM 2.1. Given f € C*(D), T*f, ka € C**+(D) with integer k > 0, and

_1\E P p)k-1 -
) 1) =g [ S g,
Y RV -

Proof. When k =1, (2) is obvious.

Now we assume (2) is valid when for k — 1, i.e.,

1 (=1)k! -2 211 -
T f(z):(k—2)!-2m'/D oz dendc
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Hence, we can obtain with Lemma 1.3 that
T"f(2) =TT" " f(2)

Q)
——2d({ Nd
27m/D C—=z cAde

—1) k—1 7] k— 7
-1 (I(C 2)!-274 fD - C) f(l)d?’]/\dndé_ dC
“2mi D

k2d d
G // 1-4) _dn A= fnyan
f d77/\d77 k—2 1 1
~a= 27”/ / O g+ A e

f(n dnAdn -2 -
k- 2' 2m / / m—c dnde

=0k 2
+/;17C_Z d¢ A d(]

Z (k;Q)ﬁl (_E)k727l

f(n dn/\dn =0 *
k 2 271'2 / / n—C dC A dg
Z:O (klz)nz( C)k 2-1 )
-l-/;) = d¢ A d(]
k—2
(1) l;) (kf)ﬁlf(n)dﬁ/\dn (=C)2t
G e |, S
(0
+/D =2 d¢ A dd]
_ (—1)k f(n) = —2 l P k—2—1
~(k—2)!- (2mi)2 Dn—zz —1—ln (=1)
+ kizlwilz"*“l(—l)’“* ~!dij A dn

~1)* —ame - —1— k=11 3=
:(k—(z)!%)(m) /(n—zz f—1 ;(k 1) 7 (=0 = (=2 i Adn

" 4Tl —1 _ _\k—17-
:(k_(g)!l,)(gm)2/D(77_22)(};(_)1)[(77—77)k —(n—2)"""dn ndn

_ (_1)k 27Tif(77) _ k=1 -
*<k—2>!~(2m'>2/D<n —qy (-2 dn A dn

_1)k i z)klf )
:(1~c—(1)!).2m'/[,(77 ) z g

Thus, (2) is proved. For (3), the proof is similar, we omit here. O

REMARK 2.2. From Theorem 2.1, we have ka_(z) =TFkf(z2).

LEMMA 2.3. For any a, b € D and a # b, integer k > 0,

(Sl S o1, B
/, o=y - riGebb - tn g,
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k—1-1
k_l)ak_l_j(—b)j) for k>1 and C1(a,b,1) =0.

k=1,
where C’l(a,b,k):lz::l(%)( Z (j

Jj=0

Proof. For any small ¢ > 0, denote D, = {|¢ —a|] < e}, Dy, = {|¢ —b|] < €}

C,={|C—a|l]=¢}, C,={|C—0b] =¢}. Then for k > 1,

/ (¢ —b)*1dC nd¢
D\{D.,UD,} (- a)(g_“ - 5)

_/d(@—whwmc—va)

( ¢ —b)k— 11n|<—b|2d<)

< b)h- 1hw< dec)

(4)
7/ - 11n|< b|2d<
¢—
_/ (C=b* 1111|C—b|2d<
Ca (—a
_/ (€ =) 'In|¢ = b[*d¢
oy (—a ’

where the last equation comes from Stokes formula.

(5)
/ (€= b)*~dC nd¢
p, ((—a)(C—b)
L% (re? +a — b)* L rdrdo
22/0 /0 ( retd(re—i :— a—b)
/27r /5 (re’ +a — b)ﬁkfldrdﬁ
o Jo r+(a—b)e*
= k—1

=0 (r 4 (@a—b)e — (@—b)e” +a—b) drdd

27 e
=24 —
Z/ / r+ (a—b)e?
2m e . k—1 _ .
_Qi/ / RIS k 1 a—5)e?) (= (@—be? +a—b
o Jo o

2m €
:2i/ / ei(kfl)e(r—t- (d—li))eie)fl(— (a—Db)e' —|—a—b)k71drd0
o Jo

(=)
(=)

=2

27
:2i/ GED( @B 4 a— ) n (r + (a— l_))eie)*l‘oda

21 pe _i(k—1)0 k—1 _ B B
ca [T S () e e
0 /o =1

which converges to 0 when € — 0.

)k 1—-1

445
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(6) )
/ (€ —b)*~td¢ A d¢
(€ =a)(¢—b)

Te“g k=1rdrdo

27
=2
1/0 /0 re=i( rele—l—b—a)

Z/Q’T/ +(b—a)— (b—a))*'drdd
o Jo r+(b—a)e®
z/%/ Gt (b me ™ — (b—a)e )
o Jo 7+ (b—a)e*
=24 /277/ eik—1)0 kzl (k; 1) (r+(b— a)eﬂe)l 1( —(b— a)(fw)]C “arde
o Jo

2m
_21/ / i(k— 1)0 ,,,_|_ b—a) 719) ( (b_a)efie)kfldrdo

—a

0

Cpmore Git=10 k=l g v k—1-1 N
2@/0 /o 7 §< ! )(_(b—a)e ) (r+(b—a)e )lodt?,

which also converges to 0 when € — 0.

/ (€ =b)* " In|¢ - b[*d¢
Ca ¢(—a

(7) B /2” (e’ +a—b)F"LInlee? + a — b|%ce?idd
~Jo cet?

2
:/ (ee” + a — b)* ' 1n|ee + a — b|?idb,
0

which converges to 27i(a — b)*~!1In|a — b|> when £ — 0.

/ (C=b)* " In|¢ —b|*d¢
o) (—a
(8) :/% (ee)e=11n |e|2ce®id
0 ee’ +b—a
2T (ce?)F In |e|?idf
_/0 ge +b—a ’

which converges to 0 when ¢ — 0.



HIGH-ORDER GREEN OPERATOR 447

Thus, it comes from (4)-(8) that
/ (C—b)* ¢ A d¢
p (¢—a)(¢-D)

L[
_/C — 2mi(a — b 1n|a — b|

e Sl

(=0 (¢ + 1n<1 — ) 4In(l- 1)
9) :/c ( )dC—2m'(a—b)k—11n|a_b|2

)k 1llp(1 =2
:/C(ﬁ—bc)k_llmltﬁdC / b)* ' In(1 C)dg

(C—=b)""n1 _g k-1 bI2
+/C T a d¢ — 2mi(a —b)* " In|a — b

=2mi(a —b)F VIn R? + I + I, — 2mi(a — b)* ' 1n|a — b|>.

I, is given as follows,

- m(1 - b

() e )
N A=y
(10)

gl ¢ — b1
—Zb/ b) 1)d§

_27”2 —b! (kil (kj—.l)ak_l_j(_b)j)'

In fact, we have applied Residue theorem to get the last equation. Consider ¢(¢)
k—1 k—1
%(%)l. The integral [ %(%)ldc equals —27i times the residue of ¢ at oo

which is the opposite number of the coefficient of % in the Rolland expansion of ¢(¢)

(S 1 P (=)t N
ma & Ty ©
1

0 k—1
A GE( o)

which implies that there is no % in the expansion unless I < k — 1. Thus for any
1 <1<k-—1, we get the coefficient of % in the Rolland expansion of ¢(¢)

(e

Hence,

[ b5 (4= s

Jj=0
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and (10) can be obtained.

On the other hand, by Cauchy integral, we can obtain I as follows,

((—b)'In(1 - &)
L= /C — dc

(11) i =

ab

— 9 k-1
=2mi(a —b)" " In(1 — ﬁ)

Therefore, from (9), (10), and (11), we prove that

A AP
A
C

(—a
k—1-1

:2771'2(#)( Z (k . 1) akil*j(—b)j) + 2mi(a — b)* "1 In(R? — ab).

=1 j=0 J

For k = 1, one can easily yield from the above proof that Iy = 0. Combining (9), we
get the lemma. 0

LEMMA 2.4. For any a, b€ D anda #b,1>0, v >0,

/ (=D =D e i@ L),
c (—a

where Ca(a,b,l,v) = 3 (l) ("N R2P(=D)! P (b)Y - 4q07,
0<p<l,0<q<v—1,p<q © = °
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Proof. The computation is based on Residue theorem.

AN _ -1
JLSuIsLay:
(e}

(—a

3

(=Yoo [

cC—a

l -1 .
i ( ) (” )R2p(_b>lp(_b>v1qaw,
0<p<1,0<q<rv—1,p<q p q

SPXLUSGS

(]

since if ¢ — p < 0, fc rlacq’pd( = 0 and if ¢ — p > 0, from the Residue theorem,
fc rlagq—ljdc = 2mia?"P. O

LEMMA 2.5. For anya, b€ D anda # b, u, v >0,

/ (C—a) ' (b tdCAdC 2miCs(a, b, p,v),
D

(C—a)(C—b)

_ 2 3 p—1
where Cs(a, b, p,v) = (b—a)*~! (Cl (a,b,v) + (a — b)"'1n R_*b‘llzb) + > ("0 -
=1

la
&)“_1_l(_71(& — b)l(a — by — %Cg(a,b,l,y)) for w > 1 and Cs(a,b,1,v) =
Cl(a,b,u)—l—(a—b)”’llnM.

la—b]?



450 Y. LIU, Z. CHEN, AND Y. PAN

Proof. For n > 1, we have

/ (C—a)~ (¢ —b)"~tdC A d¢
D (C—a)(¢—D)
:/ ((=b+b—a)" (¢ —b)"tdC AdC

D (C—a)(¢—b)

= ("THE =) b —a) I = b) T dC A d¢

:/D (C-a)((-b)
Ay O (S b)Y~ 1d¢ A d¢
~6-ar [ Sy

+Z( ) a1 /D € _b()é(f ;)?:Zz)ma

—(B—C_L)“I/D(C(_ b)y dCAdC

¢—a)(¢—b)
1o [ (=)' H(¢ —b)r A dC
+ Z (" oo (—a
=13 —I—I4.
From Lemma 2.3,
s 7
Is = 2mi(b— @)} (01 (a,b,0) + (@ —b)" ' In H)

For f(¢) = 7(C=0)"(¢ =071 df(¢) = (¢ —b)'"*(¢ —b)*"!. From Lemma 1.2,

L= (ﬂl*)(b_a)wz/[) €~ (cc—_z;w* 4N d¢

=1

— oy <“ ; 1) (- )"~ "' TBF(C))(a)
)

—omi <“;1> G-ay(Fa-pla-v - g [ EEPE )

—2mi 3 <” | 1) (b— a1 (‘Tl(a ) a—b)t - %Cz(a, bLv)),

where the last equation comes from Lemma 2.4. Furthermore, it is easy to see I, =
0 for p = 1. Let Cs(a,b,p,v) = (b — a)“*l(C’l(a,b,V) + (a — b)"™ 11n| b“lf) +

p=1 _
S (*THb —apt l(Tl(a —b)l(a — bt — %Cg(a,b,l,l/)). Then we prove the

lemma. O
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THEOREM 2.6. Given f € C*(D), T*T' f € C*v+(D) with p,v > 0, and

T f(2) = (u—1)!((;1—)H1)!~2m'/DC3(Z’"’“’ v) f(n)di A dn,

where the kernel function C3 is given by Lemma 2.5.

Proof. Given f € C*(D), it is obvious that T*T" f € C*+t"+%(D) by Lemma 1.2.
From Theorem 2.1, we have

_1)H C — =1 _
TMTUf(Z) _ (-1 o /D (¢ ) ZT f(odg/\dg

(n =1t ¢ -
o oy
- _(_S)H%Z/D () L ey ) fDZ(n <> n)dn/\dndc/\dc
T Ly fy e g i
T ()'1():1111 (2mi)? // _ZM 1_<Z)(Z)Unl)d</\d<f(n)dnAdn

_(u—l)((ylzl o /Csznm v)f(n)dn A dn.

REMARK 2.7. From above theorem, we have T' TV f(z) = THT" f(z).

REMARK 2.8. Theorem 2.6 presents the expression of high-order Green operator
and its kernel function on the disk. Here we give some special cases to shown the
kernel in detail.

1. C3(z,n, 1,1 27 .

)=In —=4;
2. Colem1,2) =2 + (= — o ,j:;?,
3. C3(Z 777 ) ) ( ) ‘ ‘2 +277
C3(2,m,2,2)=( — 2)(— 20 + (2 — )ln Fol) — |z — > — [nl? + 72 — R2.

_[7] has presented the relationship between the corresponding norms for f and
T f in the above theorem. We omit the proof here.

PRrROPOSITION 2.9. [7] If f € C¥(D) and pn + v = m, then

(m—1)m m
= (Cym+ Co+ (m —1)C5)"||f]],

20¢+1

C4= P ndC5

where CQ = ﬁ, m

3. High-order Green operator on D". Let D™ be the n-fold cartesian prod-
uct of D, which is a closed ploydisc in C™ with radius R. Suppose that f is a complex-
valued function defined on D". We define A, f as a function on that subset D; of the
(n+1)—fold product D X - - - X D whose points (21, ..., zi—1, (2, 2}), Zi+1, ---, 2n ) satisfy
zi # z}. Then Aif(zl,.. Zie1s (Ziy 2L)y Zidg1s ooy Zn) 1= F(21y ooy Zim1, Ziy Zid1y ooy Zn) —
f(z1, .y 2im1, 2}, Zig1, -y 2n). For any distinct integers i1, ..., i, € {1,...,n}, we define
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Ay i [ = Aq Agy iy, f- For simplicity, denote Zi, ..., = (21, .., (21, 2}, )
o (Zigs 2, )5 vy 2n) satisfy z;; # zl'-j, j =1,..,k. A kth-order a—Holder difference
quotient is any expression d;,...;, f defined by

Alllkf( i1- 'Lk)

|Zi1 - 2£1|a' |sz - Z o

5111kf(Z'Ll'Lk) =

Set
HPIf] = max{|8;,...i, f|i1, ..., ix distinct}.

We define C*(D™) as the set of those functions f defined on D™ for which that aP [f]

are finite for all k = 0, ..., n, where H”[f] = | .
Define || - || on the space C*(D™) by

" 2R"
1£1= > = HEOU]

k=0

It is proved in 7.1b of [5] that || - || defined on C*(D™) is a norm.
Let z = (21, ..., 2n) € D™, the following operators are defined on D™:

/fZl,.. ZJ 1,<,Zj+1,...,zn)d€Ad<
o ’

¢z
/ flz1, 0, 2§21, G 21, oo 20)dC A dC
27TZ C—Ej ’

similar definitions are given for S;, S;. From Lemma 1.1, it is easy to see that for
any f € C1(D"),
T;0;f = f = S;f.
Furthermore, it is given in [5] that
LEMMA 3.1. If f € C*(D™), then T'f € C*(D"), S'f € C*(D") for all i =

1,...,n. And there exist constants Cg, C7 such that

17 £1] < CsRIIf], 1S°f1I < ColIfI.

REMARK 3.2. It should be noticed that the smoothness properties of the various
integral operator T, T ,i=1,...,n defined for functions on D and D™ are different.
T, T" are no longer smoothing order as in dimension one, see Lemma 1.2.

Let vector index p = (f1, .oy fin), ¥ = (V1,..5vn), 1 = (1,...,1) € N |u| =

n n —
> wg, wt = T] pj!. For z € D™, f € C*(D"), denote the operator THT" as follows,
£ =1

Vn

T f(2) = T4" - Ty Ty - T, f(2).

From Theorem 2.6, it is easy to get the explicit expression and the kernel function of
THT" f on D™.
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COROLLARY 3.3. For z € D", given f € C*(D"), then T*T" f € C*(D™) and

T*T" f(2) :CS(UvV)/D"'/DHC3(Zj777janan)f(77)d771 Adny - - dijn, N dip,
j=1

where Cg(u,v) = (u—l)!((:i)l‘l;!‘»(2ﬂi)" , and Cs is given by Lemma 2.5.

Proof. By the definition of THT" f(z),

THTY f(2) =T/ - - TE Ty - T f(2)
=T{"T," - TT," f(2)
(=pm /
= C
G~ Dl — D 2w J, e pev1)
X TY2T" T T, (01, 22, .o 2n)dily A diy
(_1)H1+H2
(1 — D2 — Dy — Dl (g — 1!+ (270)2
X / / Cs(z1,m, p1,v1)C3(22, 12, p2, v2)
D JD

X TEOTS T T F (01, M2y 235 -y 20)di A diy - dijz A digo

(_1)Iu|
(b= (v =21 (2mi)"

></D~-~/DHcs(zj,ﬁjvﬂjﬂ/j)f(ﬁ)dﬁl/\dm"'dﬁn/\dﬁn-
j=1

O
By Lemma 3.1, for any f € C*(D™), one can easily get the following estimate for
the norm of f € C*(D"™).

PROPOSITION 3.4. If f € C*(D"™) and |u| + |v| = m, then

17T f1] < (Co)™[I£1].

4. Applications. As applications of the integral expressions for high-order
Green operators, we can present all the solutions for some high-order Laplace equa-
tions, moreover, express all the solutions for linear high-order partial differential equa-
tion with integrals.

Given D = {z||z| < R} = {(=,y)|z* + y* < R?} as previous section. Let A(z,y) :
D — R be function of class C%(D), u(x,y) : D — R be unknown function. Since

02 0?

and from Lemma 1.2

JTA = A, 0TA = A,
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then we have
A2T2T A = 16A4; AT T?A = 16A.

A2y = 0 is called biharmonic equation whose solutions can be described by u =
|2|2h1 + hg, where hq, hs are two harmonic functions satisfy Laplace’s equation [8].
Then the solutions of 2-Laplace equation u:

APu(z,y) = Az, y)

given by
1 R? — z7)
=R n—2)(— —)n —
" e(32m'/D[(" A=ent G- T—5)
— [z = nf* = [nl? + 7z = B2 A(n, i)diy A i)
+|Z|2h1+h2.

The integral expressions can also be used to give all the solutions for linear partial
differential equations on D of any order. Let H(D) be the set of all holomorphic
functions on D and denote T°f = f. We have the following results.

LEMMA 4.1. Given pu,v > 0, the solutions of
(13) Ot u(z,2) = 0

can be given by

v—1 ) ,ufl_‘ B
u= Tg) +T"(Y_T(f).
7=0 i=0

where f;, gj € HD), i=0,..,u0—1; 5=0,...,v—1.

Proof. It is well known that all the solutions of du = 0 can be given by any
u € H(D) and the solutions of du = 0 can be given by w with any @ € H(D).
Consider the equation (13), we have

" 19" = fo, Vfo € H(D),
which means that
9" 20w = fi +T(fo), Yfo. 1 € H(D).
Similarly, we have
O30 u = fo +T(f)) + T (fo), Yfo, J1, f2 € H(D).
By iteration, one has

p—1

0"u = ZTi(fu—l—i)a Vfl S H(D),Z =0,..,u0—1.
=0
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Furthermore,
p—1
oy = go + TZTZ(fT‘uflfi), Vg0, fi € H(D),’L =0,..,u0—1,
i=0
and then
p—1
" Pu= g1 +T(go) + T? ZTZ(fu—l—i)u Vg0, 91, fi € H(D),i=0,...,p— 1.
i=0

By iteration, we can conclude

v—1 p—1 o
u=> "T(g1-5) +T" Y T (fu-1-4), Vg, fi € H(D),i =0,..op =1, j =0,...,v — L.
j=0 i=0

For simplicity, we replace the index and prove the lemma. Using Theorems 2.1 and
2.6, we can give the solutions of equation (13) by integral. O

From Lemma 4.1, we can express all the solutions for linear high-order partial
differential equation

oM u(z,2) = Az, 2)

as
v—1 p—1

(14) w=Y Tg)+T"> T (fi)+T"T"(A),
=0 i=0

where g;, f; € H(D),i=0,....,0—1, j=0,...,v—1. Using Theorems 2.1 and 2.6, the
integral expressions of solutions can be given.
For simplicity, we denote

G () L
(15) G@6D = s ic =)
_ (=D
G(27C7M7 V) - 27”'(M — 1)'(1/ _ 1)!03(Z,C,/L, V).

From (14), we have

v—1 p=1
(16) w=go+» Tg)+T"fo+T" (D _T'(fi)) + T"T"(A).

=1 i=1

Combining (15) and (16), we have the following theorem.
THEOREM 4.2. Given p,v > 0, the solutions of

oM u(z,2) = Az, 2)
with A(z,2) € C*(D) can be given by

u(z.2) =) + [ (3060 60)05(0) + Gl 6 ol

p—1

+ 37 GG il0) + Gz, G v A, O) ) d A d,

i=1
where f;, g; € HD), i=0,..,0—1; 7=0,...,v—1.
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5. Conclusion. We have established the explicit expressions for high-order
Green operators on the disk in C and the polydisc in C™. As applications, we have
presented all the solutions for biharmonic equations and high-order partial differen-
tial equations in the disk. The same method works identically in R™ through Clifford
analysis and the results will be presented in the forthcoming paper in a near future.

=
=
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