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ON A CLASSIFICATION OF THE QUASI YAMABE GRADIENT

SOLITONS∗

GUANGYUE HUANG† AND HAIZHONG LI‡

Abstract. In this paper, we introduce the concept of quasi Yamabe gradient solitons, which
generalizes the concept of Yamabe gradient solitons. By using some ideas in [7, 8], we prove that n-
dimensional (n ≥ 3) complete quasi Yamabe gradient solitons with vanishing Weyl curvature tensor
and positive sectional curvature must be rotationally symmetric. We also prove that any compact
quasi Yamabe gradient solitons are of constant scalar curvature.
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1. Introduction. Let (Mn, g) be an n-dimensional Riemannian manifold with
n ≥ 3. If there exists a smooth function f on Mn and a constant ρ such that

(1.1) (R− ρ)gij = fij ,

then we call (Mn, g, f) a Yamabe gradient soliton. Here R denotes the scalar curva-
ture of the metric g. If ρ = 0, ρ > 0 or ρ < 0, then (Mn, g, f) is called a Yamabe
steady, Yamabe shrinker or Yamabe expander respectively. Yamabe solitons are spe-
cial solutions to the Yamabe flow

(1.2)
∂

∂t
gij = −Rgij .

For the study of the Yamabe flow in the compact case, see [12, 2, 1, 20, 14, 19] and the
references therein. It is very important for understanding the singularity formation
in the complete Yamabe flow to study the classification of Yamabe solitons.

In [13], Daskalopoulos and Sesum studied the classification of locally conformally
flat Yamabe gradient solitons. They proved

Theorem A. ([13]) If (M, g, f) is a complete locally conformally flat Yamabe
gradient soliton satisfying (1.1) with positive sectional curvature, then (M, g, f) is
rotationally symmetric.

Theorem B. ([13]) If (M, g, f) is a compact Yamabe gradient soliton, then g is
the metric of constant scalar curvature.

In this paper, we consider a generalized Yamabe gradient soliton which we call
the quasi Yamabe gradient soliton.

Definition 1.1. If there exists a smooth function f on Mn and two constants
m, ρ (where m is not zero) such that

(1.3) (R− ρ)gij = fij −
1

m
fifj,
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then we call (Mn, g, f) a quasi Yamabe gradient soliton.

We remark that if m → ∞, (1.3) reduces to (1.1), so quasi Yamabe gradient
solitons can be considered as generalized Yamabe gradient solitons in this sense.

We study classifications for complete quasi Yamabe gradient solitons satisfying
(1.3). As in [7, 8], the key idea in proving our results is to link the Weyl curvature
tensor with the covariant 3-tensor Dijk, introduced by Cao-Chen [7, 6], with Dijk =
Wijklf

l, see Proposition 2.2 in Section 2, where Dijk is defined by

(1.4)

Dijk =
1

n− 2
(Rkjfi −Rkifj) +

1

(n− 1)(n− 2)
(Rilgjkf

l −Rjlgikf
l)

−
R

(n− 1)(n− 2)
(gkjfi − gkifj).

Our main results are as follows:

Theorem 1.1. Let (M, g, f) be a complete quasi Yamabe gradient soliton satis-
fying (1.3) with positive sectional curvature.

(1) If n = 3, then (M, g, f) is rotationally symmetric;
(2) If n = 4 and Dijk = 0, then (M, g, f) is rotationally symmetric;
(3) If n ≥ 5 and Wijkl = 0, then (M, g, f) is rotationally symmetric.

Theorem 1.2. If (M, g, f) is a compact quasi Yamabe gradient soliton satisfying
(1.3), then g is the metric of constant scalar curvature.

Letting m → ∞, we have the following result from Theorem 1.1 immediately:

Corollary 1.1. Let (M, g, f) be a complete Yamabe gradient soliton satisfying
(1.1) with positive sectional curvature.

(1) If n = 3, then (M, g, f) is rotationally symmetric;
(2) If n = 4 and Dijk = 0, then (M, g, f) is rotationally symmetric;
(3) If n ≥ 5 and Wijkl = 0, then (M, g, f) is rotationally symmetric.

Remark 1.1. Daskalopoulos and Sesum in [13] proved Theorem A (see Theorem
1.3 in [13]) under the assumption that the metric g is locally conformally flat. Theorem
A follows from Corollary 1.1. Theorem B follows from Theorem 1.2 when m → ∞.

Remark 1.2. Since the 3-tensor Dijk is related to the Weyl curvature tensor by
Dijk = Wijklf

l (see Proposition 2.2 in Section 2), we have from Proposition 2.5 in
Section 2 that Dijk = 0 is equivalent to Wijklf

l = 0 when n = 4. However, for n ≥ 5,
we can not conclude that Dijk = 0 implies Wijklf

l = 0.

Remark 1.3. For the research of warped product structures of complete gradient
Yamabe solitons, see [9]. Some related results for the gradient Ricci solitons can be
found in [18, 17, 16, 11, 5, 4] and the references therein. We note that this paper was
posted on Arxiv:1108.6177, on August 31 of 2011.

2. Proof of Theorem 1.1. Throughout this paper, we will agree on the follow-
ing index convention:

1 ≤ i, j, k, · · · ≤ n; 2 ≤ a, b, c, · · · ≤ n.

For convenience, we define

(2.1) Rρ = R − ρ.
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Then (1.3) becomes

(2.2) Rρ gij = fij −
1

m
fifj .

For quasi Yamabe gradient solitons, we have the following lemma which will be used
later:

Lemma 2.1. Let (Mn, g, f) be a quasi Yamabe gradient soliton satisfying (1.3).
Then we have

(2.3) nRρ = ∆f −
1

m
|∇f |2,

(2.4) (|∇f |2)i = 2Rρfi +
2

m
|∇f |2fi,

(2.5) (Rρ)i =
1

m
Rρfi −

1

n− 1
Rijf

j ,

where Rij denotes the Ricci curvature of the metric g and f j = gjkfk.

Proof. The relationship (2.3) can be obtained directly by contracting the equation
(2.2). On the other hand, by choosing the local orthogonal frame {e1, · · · , en}, we
have by use of (2.2),

(|∇f |2)i = 2fijfj = 2(Rρ gij +
1

m
fifj)fj = 2Rρfi +

2

m
|∇f |2fi.

Hence, we obtain (2.4).
Using the equation (2.2) again, we obtain

(2.6) (Rρ)i = fijj −
1

m
fijfj −

1

m
fifjj .

With the help of the Ricci identity, (2.3) and (2.4), we deduce from (2.6)

(Rρ)i =fijj −
1

m
fijfj −

1

m
fifjj

=(∆f)i +Rijfj −
1

2m
(|∇f |2)i −

1

m
fi(∆f)

=(nRρ +
1

m
|∇f |2)i +Rijfj −

1

2m
(|∇f |2)i −

1

m
fi(nRρ +

1

m
|∇f |2)

=n(Rρ)i +Rijfj +
1

2m
(|∇f |2)i −

n

m
Rρfi −

1

m2
|∇f |2fi

=n(Rρ)i +Rijfj +
1

2m
(2Rρfi +

2

m
|∇f |2fi)−

n

m
Rρfi −

1

m2
|∇f |2fi

=n(Rρ)i +Rijfj −
n− 1

m
Rρfi,

which concludes the proof of (2.5). It completes the proof of Lemma 2.1.
For n ≥ 3, the Weyl curvature tensor is defined by

(2.7)

Wijkl =Rijkl −
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk).
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From the definition of the Weyl curvature tensor above, it is easy to see that the Weyl
curvature tensor satisfies all the symmetries of the curvature tensor and its traces
with the metric are zero. It is well known that Wijkl = 0 for n = 3. For n ≥ 4,
(Mn, g) is locally conformally flat if and only if Wijkl = 0.

As in [7, 6], see also [6, 10, 8, 3], we define the following 3-tensor D by

(2.8)

Dijk =
1

n− 2
(Rkjfi −Rkifj) +

1

(n− 1)(n− 2)
(Rilgjkf

l −Rjlgikf
l)

−
R

(n− 1)(n− 2)
(gkjfi − gkifj).

Then for quasi Yamabe gradient solitons, we have the following consequence:

Proposition 2.2. Let (Mn, g, f) be a quasi Yamabe gradient soliton satisfying
(1.3). Then the 3-tensor D is related to the Weyl curvature tensor by

(2.9) Dijk = Wijklf
l.

Proof. By use of (2.2) and (2.5), we have

(2.10)

fkji − fkij =(Rρ gkj +
1

m
fkfj)i − (Rρ gki +

1

m
fkfi)j

=(Rρ)igkj − (Rρ)jgki +
1

m
(fkifj − fkjfi)

=(Rρ)igkj − (Rρ)jgki −
Rρ

m
(gkjfi − gkifj)

=−
1

n− 1
(Rilgjkf

l −Rjlgikf
l),

where the last equality used (2.5). Using the Ricci identity and (2.7), we have

(2.11)

fkji − fkij =f lRlkji

=Wijklf
l −

R

(n− 1)(n− 2)
(gikgjl − gilgjk)f

l

+
1

n− 2
(Rikgjl −Rilgjk +Rjlgik −Rjkgil)f

l

=Wijklf
l +

R

(n− 1)(n− 2)
(gkjfi − gkifj)

−
1

n− 2
(Rkjfi −Rkifj)−

1

n− 2
(Rilgjkf

l −Rjlgikf
l).

Combining (2.10) and (2.11), we obtain by definition (2.8)

Wijklf
l =

1

n− 2
(Rkjfi −Rkifj) +

1

(n− 1)(n− 2)
(Rilgjkf

l −Rjlgikf
l)

−
R

(n− 1)(n− 2)
(gkjfi − gkifj)

=Dijk.

Therefore, we complete the proof of Proposition 2.2.
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In particular, by properties of the Weyl curvature tensor and (2.8), we get that
Dijk is skew-symmetric in their first two indices and trace-free in any two indices:

(2.12) Dijk = −Djik, gijDijk = gikDijk = 0.

Next, we give a proposition which links the norm of Dijk to the geometry of the
level surfaces of the potential function f .

Proposition 2.3. Let (Mn, g, f) be a quasi Yamabe gradient soliton satisfying
(1.3), and let Σc = {x|f(x) = c} be the level surface with respect to regular value c
of f . Then for any local orthonormal frame {e1, e2, · · · , en} with e1 = ∇f/|∇f | and
{e2, · · · , en} tangent to Σc, we have

(2.13) |Dijk|
2 =

2|∇f |2

(n− 1)(n− 2)2

{

(n− 2)R2
1a + (n− 1)

∣

∣

∣
Rab −

R−R11

n− 1
gab

∣

∣

∣

2}

,

where gab is the induced metric on Σc.

Proof. From (2.8), we have

(2.14)

|Dijk|
2 =

1

(n− 2)2
|Rkjfi −Rkifj|

2 +
1

(n− 1)2(n− 2)2
|Rilgjkfl −Rjlgikfl|

2

+
R2

(n− 1)2(n− 2)2
|gkjfi − gkifj|

2

+
2

(n− 1)(n− 2)2
(Rkjfi −Rkifj)(Rilgjkfl −Rjlgikfl)

−
2R

(n− 1)(n− 2)2
(Rkjfi −Rkifj)(gkjfi − gkifj)

−
2R

(n− 1)2(n− 2)2
(Rilgjkfl −Rjlgikfl)(gkjfi − gkifj).

Let {e1, e2, · · · , en} be any local orthonormal frame with e1 = ∇f/|∇f | and
{e2, · · · , en} tangent to Σc. That is, under this orthonormal frame, we have f1 = |∇f |
and f2 = f3 = · · · = fn = 0. Thus,

(2.15) |Rkjfi −Rkifj|
2 = 2|∇f |2(|Ric|2 −R2

1i),

(2.16) |Rilgjkfl −Rjlgikfl|
2 = 2(n− 1)|∇f |2R2

1i,

(2.17) |gkjfi − gkifj |
2 = 2(n− 1)|∇f |2,

(2.18) (Rkjfi −Rkifj)(Rilgjkfl −Rjlgikfl) = 2|∇f |2(RR11 −R2
1i),

(2.19) (Rkjfi −Rkifj)(gkjfi − gkifj) = 2|∇f |2(R −R11),

(2.20) (Rilgjkfl −Rjlgikfl)(gkjfi − gkifj) = 2(n− 1)|∇f |2R11.
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Inserting the relationships (2.15)-(2.20) into (2.14) yields
(2.21)

|Dijk|
2 =

2

(n− 2)2
|∇f |2(|Ric|2 −R2

1i) +
2

(n− 1)(n− 2)2
|∇f |2R2

1i

+
2R2

(n− 1)(n− 2)2
|∇f |2 +

4

(n− 1)(n− 2)2
|∇f |2(RR11 −R2

1i)

−
4R

(n− 1)(n− 2)2
|∇f |2(R−R11)−

4R

(n− 1)(n− 2)2
|∇f |2R11

=
2|∇f |2

(n− 1)(n− 2)2

{

(n− 1)(|Ric|2 −R2
1i) +R2

1i +R2 + 2(RR11 −R2
1i)

− 2R(R−R11)− 2RR11

}

=
2|∇f |2

(n− 1)(n− 2)2

{

(n− 1)|Ric|2 − nR2
1i + 2RR11 −R2

}

=
2|∇f |2

(n− 1)(n− 2)2

{

(n− 1)(R2
11 + 2R2

1a +R2
ab)− n(R2

11 +R2
1a)

+ 2(R11 +Raa)R11 − (R2
11 + 2R11Raa +RaaRbb)

}

=
2|∇f |2

(n− 1)(n− 2)2

{

(n− 2)R2
1a + (n− 1)

∣

∣

∣
Rab −

Rcc

n− 1
gab

∣

∣

∣

2}

=
2|∇f |2

(n− 1)(n− 2)2

{

(n− 2)R2
1a + (n− 1)

∣

∣

∣
Rab −

R−R11

n− 1
gab

∣

∣

∣

2}

.

It completes the proof of Proposition 2.3.
With the help of Proposition 2.3, we can obtain the following results:

Proposition 2.4. Let (Mn, g, f) be a quasi Yamabe gradient soliton satisfying
(1.3) with Dijk = 0, and let Σc = {x|f(x) = c} be the level surface with respect
to regular value c of f . Then for any local orthonormal frame {e1, e2, · · · , en} with
e1 = ∇f/|∇f | and {e2, · · · , en} tangent to Σc, we have

(1) |∇f |2 and the scalar curvature R of (Mn, gij , f) are constant on Σc;
(2) R1a = 0 and e1 = ∇f/|∇f | is an eigenvector of Rc;
(3) the second fundamental form hab of Σc is of the form hab =

H
n−1gab;

(4) the mean curvature H =
(n−1)Rρ

|∇f | is constant on Σc;

(5) on Σc, the Ricci tensor of (Mn, gij , f) either has a unique eigenvalue λ, or
has two distinct eigenvalues λ and µ of multiplicity 1 and n− 1 respectively. In either
case, e1 = ∇f/|∇f | is an eigenvector of λ. Moreover, both λ and µ are constant on
Σc.

Proof. Under this chosen orthonormal frame, we have f1 = |∇f | and f2 = f3 =
· · · = fn = 0. When Dijk = 0, we have from Proposition 2.3 that

(2.22) R1a = 0

and

(2.23) Rab =
R−R11

n− 1
gab.

Therefore, we obtain (1) from applying (2.22) to (2.4) and (2.5), respectively. In
particular, (2) can be obtained from (2.22) directly.
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By the definition of hab, we have

(2.24) hab = 〈∇ea

( ∇f

|∇f |

)

, eb〉 =
1

|∇f |
fab =

Rρ

|∇f |
gab,

where the last equality comes from (2.2). Hence, H = habg
ab =

(n−1)Rρ

|∇f | is constant

from both R and |∇f | constant on Σc. Thus, (3) and (4) are proved.
Using (2.5), we have

(2.25) R1 =
1

m
Rρf1 −

1

n− 1
R11f1 = |∇f |

( 1

m
Rρ −

1

n− 1
R11

)

.

From the definition of covariant derivative, we have

(2.26)

R,1a =e1ea(R)−∇eae1(R)

=e1ea(R)− 〈∇eae1, e1〉R1 − 〈∇eae1, eb〉Rb

=e1ea(R)

=0

since R is constant on Σc. Hence, we obtain from (2.25)

(2.27) 0 = R,1a = −
|∇f |

n− 1
R11,a.

Applying

R11,a = ea(R11)− 2R(∇eae1, e1) = ea(R11)− 2habR1b = ea(R11)

to (2.27) yields

(2.28) ea(R11) = 0,

which shows that λ = R11 is constant on Σc. By means of (2.23) we know that for
distinct a, the eigenvalues of Raa are the same. Hence, we have the eigenvalue µ is
also constant. This completes the proof of Proposition 2.4.

Proposition 2.5. Let (Mn, g, f) be a quasi Yamabe gradient soliton satisfying
(1.3), and let Σc = {x|f(x) = c} be the level surface with respect to regular value c of
f .

(1) If n = 3, then the sectional curvature of Σc with the induced metric is constant;
(2) If n = 4 and Dijk = 0, then Wijkl = 0 on Σc. Moreover, the sectional

curvature of Σc with the induced metric is constant.
(3) If n ≥ 5 and Wijkl = 0, then the sectional curvature of Σc with the induced

metric is constant.

Proof. It is well known that, for n = 3, the Weyl curvature tensor Wijkl vanishes
identically. Hence, we obtain Dijk = 0 from Proposition 2.2. Under the chosen local
orthonormal frame as in Proposition 2.4, we have from the Gauss equation and (2.7)
and (2.24), for a 6= b:

(2.29)

RΣ
abab =Rabab + haahbb − h2

ab

=Rabab +
(Rρ)

2

|∇f |2

=Raa +Rbb −
R

2
+

(Rρ)
2

|∇f |2

=
R

2
−R11 +

(Rρ)
2

|∇f |2
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is constant. It completes the proof of (1).
Next, we prove (2). Since Dijk = 0, we have from Proposition 2.2

Wijklfl = 0.

Hence, on the level surface Σc, we have

(2.30) Wijk1 = 0, for 1 ≤ i, j, k ≤ 4.

It remains to show that

(2.31) Wabcd = 0, for 2 ≤ a, b, c, d ≤ 4.

This essentially reduces to showing the Weyl curvature tensor is equal to zero in 3
dimensions (see [15], p.276-277 or [7], p.13). Therefore, we have Wijkl = 0. When
n ≥ 4, the proof for constant sectional curvature is similar. We omit it here. It
concludes the proof of Proposition 2.5.

Proof of Theorem 1.1. Following the proof of Daskalopoulos and Sesum in [13],
on the level surface Σc = {x|f(x) = c}, we can express the metric ds2 as

ds2 =
1

|∇f |2
(f, θ)df2 + gab(f, θ)dθ

adθb,

where θ = (θ2, · · · , θn) denotes intrinsic coordinates for Σc. From (2.29), we know
that Σc also has positive sectional curvature with respect to the induced metric.
Moreover, Proposition 2.4 and Proposition 2.5 show that 1

|∇f |2 (f, θ) =
1

|∇f |2 (f) and

gab(f, θ) = gab(f). Let S be the set of critical points of f . Then the measure of S is
zero. Hence, on Mn \ S, we have

ds2 =
1

|∇f |2
(f)df2 + gab(f)dθ

adθb,

which shows that (Mn, g, f) is rotationally symmetric by using the arguments as in
[13]. We complete the proof of Theorem 1.1.

3. Proof of Theorem 1.2. For any smooth function u on (Mn, g), we introduce
the following linear differential operator

(3.1) L(u) = divm,f (∇u) := e
f
m div(e−

f
m∇u).

Then we have the following:

Lemma 3.1. Let (Mn, g) be a compact Riemannian manifold. Then we have

(3.2)

∫

Mn

vL(u) dµ =

∫

Mn

uL(v) dµ, ∀u, v ∈ C∞(Mn)

where dµ denotes the measure e−
f
m dVg. That is, the linear differential operator L is

self-adjoint with respect to L2 inner product under the measure dµ. In particular, for
any smooth function u, we have

(3.3)

∫

Mn

L(u) dµ = 0.
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Proof. A direct calculation gives

(3.4)

∫

Mn

vL(u) dµ = −

∫

Mn

viui dµ =

∫

Mn

uL(v) dµ.

This shows that L is self-adjoint with respect to L2 inner product under the measure
dµ. (3.3) is a special case when v = 1 in (3.2). We complete the proof of Lemma 3.1.

Now we come back to prove Theorem 1.2. From (3.1) and (2.3), L(f) = ∆f −
1
m
|∇f |2 = nRρ, thus we have

n

∫

Mn

Rρ dµ =

∫

Mn

L(f) dµ = 0,

which shows that

(3.5)

∫

Mn

Rρ dµ = 0.

By Lemma 2.1, we have by using the second Bianchi identity and by choosing the
local orthogonal frame {e1, · · · , en},

∆(Rρ) =
1

m
(Rρ)ifi +

1

m
Rρfii −

1

n− 1
Rij,ifj −

1

n− 1
Rijfij

=
1

m
(Rρ)ifi +

1

m
Rρ(nRρ +

1

m
|∇f |2)−

1

2(n− 1)
Rjfj −

1

n− 1
Rijfij ,

which gives

(3.6)

L(Rρ) =∆(Rρ)−
1

m
(Rρ)ifi

=
n

m
(Rρ)

2 +
1

m2
|∇f |2Rρ −

1

2(n− 1)
(Rρ)ifi −

1

n− 1
Rijfij .

Applying Lemma 2.1 again, we have

(3.7)

−
1

n− 1
Rijfij =−

1

n− 1
Rij(Rρ gij +

1

m
fifj)

=−
1

n− 1
Rρ R+

1

m
fi[(Rρ)i −

1

m
Rρ fi]

=−
1

n− 1
Rρ R+

1

m
(Rρ)ifi −

1

m2
|∇f |2Rρ.

Inserting (3.7) into (3.6), we obtain

(3.8) L(Rρ) =[
1

m
−

1

2(n− 1)
](Rρ)ifi +

n

m
(Rρ)

2 −
1

n− 1
RρR.
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Integrating (3.8) on Mn, we obtain by use of (2.1), (3.4) and (3.5)

(3.9)

0 =

∫

Mn

L(Rρ) dµ

=

∫

Mn

{

[
1

m
−

1

2(n− 1)
](Rρ)ifi +

n

m
(Rρ)

2 −
1

n− 1
Rρ R

}

dµ

=[
1

m
−

1

2(n− 1)
]

∫

Mn

(Rρ)ifi dµ+ [
n

m
−

1

n− 1
]

∫

Mn

(Rρ)
2 dµ

=− [
1

m
−

1

2(n− 1)
]

∫

Mn

RρL(f) dµ+ [
n

m
−

1

n− 1
]

∫

Mn

(Rρ)
2 dµ

=
n− 2

2(n− 1)

∫

Mn

(Rρ)
2 dµ,

where we used L(f) = nRρ in the last equality. Clearly, (3.9) shows that Rρ = 0.
Hence, we obtain from (2.3)

(3.10) ∆f −
1

m
|∇f |2 = 0.

Thus we get that f must be constant since Mn is compact. We complete the proof
of Theorem 1.2.
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