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HOLOMORPHIC MAPPINGS BETWEEN PSEUDOELLIPSOIDS IN

DIFFERENT DIMENSIONS∗

PETER EBENFELT† AND DUONG NGOC SON‡

Abstract. We give a necessary and sufficient condition for the existence of nondegenerate holo-
morphic mappings between pseudoellipsoidal real hypersurfaces, and provide an explicit parametriza-
tion for the collection of all such mappings (in the situations where they exist).
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1. Introduction. In recent years, much effort has been devoted to the ambi-
tious program of classifying local holomorphic mappings H (or more generally CR
mappings) sending a given real hypersurface M ⊂ Cn+1 into a model hypersurface
M ′ ⊂ CN+1. In the strictly pseudoconvex case, the natural model is the sphere
M ′ = S2N+1 ⊂ CN+1 (and, more generally, in the Levi nondegenerate case the model
is the hyperquadric of signature l). Of particular interest is the case where the source
manifold M is the model itself. There is a large body of work studying local holo-
morphic mappings H sending a piece of the sphere S

2n+1 into S
2N+1. The reader is

referred to e.g. [29], [18], [19], [11], [10], [21], [22], [23], [12], [24] and the references
therein; see also [15], [16] for the case of general strictly pseudoconvex source mani-
folds M . The classification of such holomorphic mappings in low codimensions N −n
is completely understood due to the works [18], [22], [23], [24]. In particular, it was
shown in [18] that any local holomorphic mapping H sending a piece of S2n+1 into
S2N+1 with N−n < n is necessarily of the form H = T ◦L, where L denotes the stan-
dard linear embedding of S2n+1 into an (n+1)-dimensional complex subspace section
of S2N+1 and T is an automorphism of S2N+1. (This is often referred to as rigidity.)
In this note, we shall consider local (non-constant) holomorphic mappings sending a
pseudoellipsoid in Cn+1 into another pseudoellipsoid in CN+1 in low codimension. A
pseudoellipsoid in C

N+1 is a compact, algebraic real hypersurface of the form

(1) EN
q = {(z, w) ∈ C

n × C : 〈zq, z̄q〉+ |w|2 = 1}

where q = (q1, q2, . . . qN ) is an N -tuple of integers with qj ≥ 1, zq = (zq11 , . . . , z
qN
N )

and 〈·, ·〉 denotes the standard bilinear form in CN ,

〈u, v〉 :=
N
∑

j=1

ujvj , u, v ∈ C
N .

We note that EN
q is weakly pseudoconvex along those coordinate planes zj = 0 for

which qj ≥ 2, and in particular at the point p0 := (0, . . . , 0, 1) ∈ EN
q (unless all qj = 1

∗Received October 26, 2012; accepted for publication April 3, 2013.
†Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112,

USA (pebenfel@math.ucsd.edu). The first author was partly supporting by the NSF grant DMS-
1001322.

‡Department of Mathematics, University of California at Irvine, Irvine, CA 92697-3875, USA
(snduong@math.uci.edu). The second author acknowledges a scholarship from the Vietnam Educa-
tion Foundation.

365



366 P. EBENFELT AND S. N. DUONG

and EN
q is the sphere). The pseudoellipsoids are natural models (albeit not homoge-

neous in general, of course) for certain classes of weakly pseudoconvex hypersurfaces.
The domains that they bound are the only ones, up to biholomorphic equivalence,
with noncompact automorphism groups in a fairly general class of smoothly bounded
pseudoconvex domains [8] (as with the case of the ball in the strictly pseudoconvex
category [30]); see also [25]. Biholomorphic equivalence of pseudoellipsoids, their auto-
morphism groups, as well as the existence and geometric properties of (non-constant)
local holomorphic mappings between pseudoellipsoids in the equidimensional case (i.e.
the source and target are both hypersurfaces in Cn+1) have been investigated in e.g.
[26], [14], [13], [27], [28]. In particular, the following result follows from these works:

Theorem 0. Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be n-tuples of positive in-
tegers. Then there exists a non-constant local holomorphic mapping H : (Cn+1, p0) →
(Cn+1, p0), with p0 := (0, . . . , 0, 1) ∈ Cn+1, sending En

p into En
q if and only if there ex-

ists a permutation σ : {1, . . . , n} → {1, . . . , n} such that qk | pσ(k) for all k = 1, . . . , n.
Moreover, if such mappings H exist, then the collection of all such H can be

described as follows:

(2) H(z, w) = T ◦ (zpσ(1)/q1
σ(1) , . . . , z

pσ(n)/qn
σ(n) , w),

where σ ranges over all permutations {1, . . . , n} → {1, . . . , n} such that qk | pσ(k), for
k = 1, . . . , n, and T over the automorphisms of En

q .

A complete and explicit description of the automorphism group of En
q also follows from

the works mentioned above (see e.g. [26]). For the reader’s convenience, we provide in
Section 3 a description (or, more precisely, a decomposition into elementary mappings)
of the stability group of En

q at p0, i.e. the group of automorphisms of En
q preserving

p0.
The main purpose of this note is to extend Theorem 0 to the positive (but low)

codimensional situation. We note, for reference, that the defining equation for EN
q is

plurisubharmonic and, hence, by a standard application of the Hopf boundary point
lemma it follows that any nonconstant holomorphic mapping sending En

p into EN
q is

necessarily transversal to EN
q . In what follows, we shall only consider holomorphic

mappings that are transversal to their target manifolds.
It is convenient to note that EN

q minus a point is biholomorphically equivalent
(via an algebraic transformation) to the real algebraic hypersurface given by

(3) PN
q = {(z, w) ∈ C

N × C : Imw = 〈zq, z̄q〉},

with the point p0 := (0, . . . , 0, 1) on EN
q corresponding to the origin on PN

q . A
transformation is given by a branch of

(z, w) 7→
(

z1
(1 + w)1/q1

,
z2

(1 + w)1/q2
, . . . ,

i(1− w)

1 + w

)

,

which is biholomorphic in a neighborhood of EN
q \ {(0, 0, . . . ,−1)} and sends EN

q \
{(0, 0, . . . ,−1)} onto PN

q .
Our main result is a necessary and sufficient condition for the existence of local

holomorphic mappings H : (Cn+1, 0) → (CN+1, 0) sending Pn
p transversally into PN

q ,
as well as a description of the collection of all such mapping (when they exist). The
latter description is also given in an explicit formula in Theorem 2.1 below.
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Theorem 1.1. Consider Pn
p ⊂ Cn+1 and PN

q ⊂ CN+1, where p = (p1, . . . , pn)
and q = (q1, . . . , qN) are an n-tuple and N -tuple, respectively, of positive integers, the
latter arranged such that q1 = . . . = qs = 1 and qk ≥ 2, k = s + 1, . . . , N , for some
s ≥ 0. Assume that

(4) N − n < n.

The following are equivalent:
(i) There exist a subset K ⊂ {s + 1, . . . , N} (possibly empty) and a map σ : K →

{1, . . . , n} such that #σ(K) ≥ n− s and qk | pσ(k) for all k ∈ K.
(ii) There exists a local holomorphic mapping H : (Cn+1, 0) → (CN+1, 0) sending Pn

p

into PN
q , transversal to PN

q at 0.
Moreover, if (ii) holds then the collection of all such mappings H can be described as
follows. Let σ and K be as in (i), and W = (uij) an n×N matrix such that
(a) WW ∗ = In×n, and
(b) for every j ∈ {s + 1, . . . , N}, it holds that uij 6= 0 if and only if j ∈ K and

σ(j) = i.
Then, the mapping Hσ,W (z, w) = (F (z), w), where

(5) Fj(z) =











∑n
i=1 uijz

pi

i , j = 1, . . . , s,
qj

√

|uσ(j)j | z
pσ(j)/qj
σ(j) , j ∈ K,

0, j ∈ {s+ 1, . . . , N} \K.

sends Pn
p transversally into PN

q , and any mapping H as in (ii) is of the form H =

T ◦ Hσ,W for some σ (and K), W , and T , where T is an automorphism of PN
q

preserving the origin.

The proof of Theorem 1.1 will be given in Section 3 below.

Remark 1.2. In the equidimensional case N = n, we note that any subset K
and mapping σ as in (i) in Theorem 1.1 must be such that K = {s + 1, . . . , n} and
such that σ can be extended to a permutation σ̃ on {1, . . . , n} with qk | pσ̃(k) for all
k = 1, . . . , n, and vice versa, any such permutation σ̃ induces a mapping σ by taking
K := {s + 1, . . . , n} and σ := σ̃|K . If we reorder the coordinates on the source side
so that the permutation σ̃ becomes the identity, then any n× n matrix W satisfying
(a) and (b) has the block form

(6) W =

(

U 0
0 D

)

,

where U is a unitary s× s matrix and D is a diagonal (n− s)× (n− s) matrix whose
diagonal elements have modulus one. The corresponding mapping Hσ,W (where now
σ is the identity on {s+ 1, . . . , n}) is then of the form Hσ,W := TW ◦H0, where

(7) H0(z, w) := (z
p1/q1
1 , . . . , zpn/qn

n , w)

and TW is the automorphism of Pn
q given by

(8) TW (z, w) = (z′U, z′′D,w)

with z′ = (z1, . . . , zs) and z′′ = (zs+1, . . . , zn). Returning to the original ordering
of the source coordinates, we recover the equidimensional result stated in Theorem
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0 above. We notice a redundancy in the statement of the theorem in this case; the
additional mappings afforded by the choice of W can be incorporated into the action
of the stability group. In the general case, there may also be some redundancy in that
Hσ,W could equal T ◦Hσ,W ′ forW 6=W ′ and a suitable choice of automorphism T , but
for N > n there will be (in general) different choices ofW such that the corresponding
mappings are not related by an automorphism of PN

q . This is explained more closely
in the context of an example in Section 5.

A consequence of Theorem 1.1 (or, more precisely, a consequence of Theorem 2.1
below) is the following “localization principle” (c.f. [13], [27]).

Theorem 1.3. Consider Pn
p ⊂ Cn+1 and PN

q ⊂ CN+1, where p = (p1, . . . , pn)
and q = (q1, . . . , qN) are an n-tuple and N -tuple, respectively, of positive integers, and
assume that N − n < n. If a local holomorphic mapping H : (Cn+1, 0) → (CN+1, 0)
sends Pn

p transversally into PN
q , then H extends as an algebraic mapping which is

holomorphic in a neighborhood of Pn
p .

The (short) proof of Theorem 1.3 is given in Section 2.

Remark 1.4. The extendability of H as an algebraic map, possibly singular and
multi-valued, follows from previous results due to Huang [20] (see also [31]). In the
setting of Theorem 1.3, it follows (see the proof) that, in fact, the Hqk

k are rational,
and are (possibly) ramified along a complex hypersurface that does not meet Pn

p .

We shall conclude this introduction with a brief discussion of an analogous non-
pseudoconvex situation. Consider the “positive signature” counterparts of PN

q , i.e.
the “pseudohyperboloids” given by

(9) PN
q,ℓ = {(z, w) ∈ C

N × C : Imw = 〈zq, z̄q〉ℓ},

where 〈·, ·〉ℓ is the standard bilinear form of signature ℓ > 0, i.e.,

(10) 〈u, v〉ℓ := −
ℓ
∑

j=1

ujvj +
N
∑

j=ℓ+1

ujvj , u, v ∈ C
N .

In the Levi nondegenerate case, i.e. q = (1, . . . , 1), the pseudohyperboloid PN
q,ℓ co-

incides with the standard hyperquadric QN
ℓ of signature ℓ. For a local holomorphic

mapping H : (Cn+1, 0) → (CN+1, 0) sending Qn
ℓ into QN

ℓ , with ℓ > 0, it is known
by [5] that H = T ◦ L, where L is a linear embedding of Qn

ℓ into QN
ℓ and T an

automorphism of QN
ℓ , regardless of the codimension N − n (i.e. super-rigidity holds,

in stark contrast to the pseudoconvex case, as in [18], where N − n < n is necessary
for rigidity to hold). By following the same arguments as in the pseudoconvex case
(modulo replacing the use of the rigidity result in [18] by the super-rigidity result in
[5]), one obtains analogous classification results to those in Theorems 1.1 and 2.1 for
local mappings Pn

p,ℓ → PN
q,ℓ with ℓ > 0, the major difference being that the condi-

tions (4) and (11) in Theorems 1.1 and 2.1, respectively, are no longer needed. In
the positive signature case (ℓ > 0), one needs, however, to distinguish between the
coordinates that appear with a plus sign and those that appear with a minus sign in
the hermitian form 〈·, ·〉ℓ, which has as a consequence that there are different cases
to consider and the results become more cumbersome to state. The diligent reader is
invited to work out the details.
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2. An explicit formula for mappings from Pn
p into PN

q . In this section, we
shall prove the following result, which is the main ingredient in the proof of Theorem
1.1.

Theorem 2.1. Consider Pn
p ⊂ Cn+1 and PN

q ⊂ CN+1, where p = (p1, . . . , pn)
and q = (q1, . . . , qN) are an n-tuple and N -tuple, respectively, of positive integers, the
latter arranged such that q1 = . . . = qs = 1 and qk ≥ 2, k = s + 1, . . . , N , for some
s ≥ 0. Assume that

(11) N − n < n.

If H : (Cn+1, 0) → (CN+1, 0) is a local holomorphic mapping sending Pn
p into PN

q ,

transversal to PN
q at 0, then there exists

(A) a subset K ⊂ {s+1, . . . , N} (possibly empty) and a map σ : K → {1, . . . , n} such
that #σ(K) ≥ n− s and qk | pσ(k) for all k ∈ K,

(B) a unitary N ×N matrix U = (uij) with the property that, for j ∈ {s+1, . . . , N},
it holds that uij 6= 0 if and only if j ∈ K and σ(j) = i, and

(C) r ∈ R, λ > 0, and b = (b′, b′′) ∈ Cn × CN−n with the property that c := bU
satisfies ck = 0 for k = s+ 1, . . . , N ,

such that H takes the following form:

(12) Hj(z, w) =























λ (
∑n

i=1 uijz
pi

i + cjw) /δ(z, w), j = 1, 2, . . . s;
(

λuσ(j)jz
pσ(j)

σ(j)

)1/qj
/δ(z, w)1/qj , j ∈ K;

0, j ∈ {s+ 1, . . .N} \K;

λ2w/δ(z, w), j = N + 1,

where δ(z, w) := 1− 2i〈zp, b̄′〉 − (r + i|b|2)w, and zp := (zp1

1 , . . . z
pn
n ).

Furthermore, if s = 0 then b = 0, and if N = n then σ can be extended to a
permutation σ̃ on {1, . . . , n} with qk | pσ̃(k) for all k = 1, . . . , n.

Proof. We introduce the map φ̃q(z̃, w̃) = (z̃q11 , . . . z̃
qN
N , w̃), which is a holomorphic

mapping sending PN
q into the (Heisenberg) sphere HN := PN

(1,...,1). Thus, φ̃q ◦H is a

non-constant mapping from a neighborhood of 0 in Pn
p into HN . We also introduce

φp(z, w) = (zp1

1 , . . . z
pn
n , w), which is a holomorphic mapping sending Pn

p into Hn. Let
a ∈ Pn

p be some point near 0 whose coordinate components do not vanish, and U a
neighborhood of a such that U ∩{zj = 0} = ∅ for all j = 1, . . . , n. We can also choose
U small so that φp is biholomorphic on U .

Now, let τ ∈ Aut(Hn) be such that τ(φp(a)) = 0 and T ∈ Aut(HN) such that

T (0) = φq(H(a)). Consider the following mapping defined on Û = τ(φp(U))

(13) Ĥ = T−1 ◦ φ̃q ◦H ◦ φ−1
p ◦ τ−1.

Clearly, Ĥ(Û ∩ Hn) ⊂ HN and Ĥ(0) = 0. Since N − n < n, we can apply the
rigidity theorem in [18], mentioned in the introduction, to conclude that there is an
automorphism T̂ ∈ Aut(HN , 0) such that Ĥ = T̂ ◦ L with L(z, w) = (z, 0, w). This
implies that the following holds on U and, by analytic continuation, in any connected
open set containing a where H is defined (in particular, in an open neighborhood of
0):

(14) φ̃q ◦H = T ◦ T̂ ◦ L ◦ τ ◦ φp.
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Since the non-constant mapping T ◦ T̂ ◦L◦τ sends Hn into HN and 0 into 0, it follows
that T ◦ T̂ ◦ L ◦ τ = T ′ ◦ L for some T ′ ∈ Aut(HN , 0), and hence:

(15) φ̃q ◦H = T ′ ◦ L ◦ φp.

It follows from the explicit description of Aut(HN , 0) (see, e.g., [9] or [2]) that there are
λ > 0, r ∈ R, b ∈ CN and a unitary N ×N -matrix U = (uij) (i.e. UU

∗ = U∗U = I)
such that

HN+1(z, w) = λ2w/δ(z, w)(16)

H
qj
j (z, w) = λ

(

n
∑

i=1

uijz
pi

i + cjw

)

/δ(z, w), for j = 1, 2, . . .N,(17)

where

cj =

N
∑

i=1

uijbi for j = 1, 2, . . .N(18)

δ(z, w) = 1− 2i〈zp, b̄′〉 − (r + i|b|2)w, b = (b′, b′′) ∈ C
n × C

N−n.(19)

Recall that q1 = . . . qs = 1 and 2 ≤ qs+1 ≤ · · · ≤ qN . By setting z = 0 in (17), we
have

(20)
(

1− (r + i|b|2)w
)

H
qj
j (0, w) = λcjw.

If cj 6= 0, then H
qj
j (0, w) divides w in C{w}. This is impossible if qj > 1. Thus,

cj = 0 for j = s+ 1, . . .N . Let us define

(21) K = {k ≥ s+ 1 | utk 6= 0 for some 1 ≤ t ≤ n}.

For k ∈ K, we claim that there is a unique t∗ ∈ {1, 2, . . . n} such that ut∗k 6= 0 and
utk = 0 for all 1 ≤ t ≤ n, t 6= t∗. To prove the claim, suppose that there are two
indices t, say t = 1, 2, such that utk 6= 0. Setting z3 = · · · = zn = w = 0 in equation
(17) we would obtain

(22) (1− 2ib1z
p1

1 − 2ib2z
p2

2 )Hqk
k (z1, z2, 0) = λ(u1kz

p1

1 + u2kz
p2

2 ),

which is impossible. Indeed, by differentiating both sides of (22) with respect to z1 we
note that Hqk−1

k (z1, z2, 0) | zp1−1
1 . The same argument with z1 replaced by z2 shows

that Hqk−1
k (z1, z2, 0) | zp2−1

2 , which would lead to a contradiction since qk−1 ≥ 1 and
Hk is not an unit. The claim follows. We now define a map σ : K → {1, 2, . . . n} by
σ(k) = t∗. Thus, we note that Hk ≡ 0 for k ∈ {s+ 1, . . . , N} \K and

(23) Hqk
k (z, w) = λuσ(k)kz

pσ(k)

σ(k) /δ(z, w), for k ∈ K.

From this it readily follows that qk | pσ(k). We conclude that

(24) Hk(z, w) = λvσ(k)z
pσ(k)/qk
σ(k) /δ(z, w)1/qk , for k ∈ K.

where vqkσ(k) = uσ(k)k.

To show that #σ(K) ≥ n− s, we shall need the following lemma, whose proof is
deferred to Section 4.
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Lemma 2.2. Let H : (Cn+1, 0) → (CN+1, 0) be a holomorphic mapping sending
Pn
p to PN

q , transversal to PN
q at 0. Then H is finite at 0, i.e. the ideal I(H) generated

by the components of H has finite codimension in C{z, w}.
We observe from (16) that H is transversal to PN

q at 0, which is well known to
be equivalent to w ∈ I(H) (see e.g. [17] for a general discussion). Thus, by Lemma
2.2, I(H) has finite codimension in C{z, w}. Since w ∈ I(H), we also have

(25) dimC{z, w}/(H) = dimC{z}/I(h),

where h(z) := H(z, 0). Since hk ≡ 0 for j ∈ {s+ 1, . . .N} \K, hN+1 ≡ 0, and hk(z),

for k ∈ K, differs from z
pσ(k)/qk
σ(k) only by a unit in C{z}, we conclude that I(h) is

contained in the ideal generated by h1, . . . , hs and zσ(k) for k ∈ K. Since the latter
ideal must have finite codimension, it follows that s + #σ(K) ≥ n, or equivalently,
#σ(K) ≥ n− s. This proves the existence of the subset K ⊂ {s+ 1, . . . , N} and the
mapping σ : K → {1, . . . , n} possessing the properties claimed in (A) of Theorem 2.1.
The existence of r ∈ R, λ > 0, b ∈ CN and a unitary matrix U = (uij) was established
above. The property in (B) of U and that in (C) of b were also established.

If s = 0, then we have bU = 0, and since U is invertible, we deduce that b = 0. If
N = n, then (A) immediately implies that K = {s+ 1, . . . , n} and #σ(K) = n− s,
which in turn implies that σ is injective. It is clear that σ can be extended to a
permutation.

Proof of Theorem 1.3. It follows immediately from Theorem 2.1 that H is al-
gebraic; in fact, Hqk for k = 1, . . . , N and HN+1 are all rational with poles along
the complex hypersurface δ(z, w) = 0 (unless b = 0 and r = 0, in which case H is a
polynomial mapping). To complete the proof of Theorem 1.3 it remains to verify that
δ(z, w) does not vanish along Pn

p (i.e. for w = u + i〈zp, z̄p〉). This is straightforward
and left to the reader.

3. Stability group of PN
q at the origin. A special case of Theorem 2.1 is when

Pn
p = PN

q . In this case, Theorem 2.1 describes the stability group of PN
q at 0 (i.e.

the group of automorphisms of PN
q preserving the origin), denoted by Aut(PN

q , 0).
This description is previously known due to work mentioned in the introduction.
In this section, however, we shall (for the reader’s convenience) use the formulae in
Theorem 2.1 to provide a decomposition of the automorphisms of PN

q fixing the origin

into simpler ones. First, we note that when Pn
p = PN

q the subset K in (A) must equal
{s+ 1, . . . , N} and σ is a permutation of K such that qσ(k) = qk for all k ∈ K. Also,
the unitary matrix U in (B) must have the block form

(26) W =

(

Ũ 0
0 E

)

,

where Ũ is a unitary s× s matrix and E is a unitary (N − s)× (N − s) matrix (such
that after reordering the coordinates (zs+1, . . . , zN ) on the source side according to
the permutation σ, the matrix E becomes diagonal with diagonal elements of modulus
one). It then also follows that b ∈ CN in (C) is of the form b = (β, 0) ∈ Cs × CN−s.
(Recall that if s = 0, then b = 0.) For each permutation σ of K = {s+ 1, . . .N} such
that qσ(k) = qk for all k ∈ K, we define

(27) Σσ(z, w) = (z1, . . . , zs, zσ(s+1), . . . zσ(N), w).
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Also, for each λ > 0, we define the (non-isotropic) dilation ∆λ,

(28) ∆λ(z, w) = (λz1, . . . , λzs, λ
1/qs+1zs+1 . . . , λ

1/qN zN , λ
2w),

and, for each b = (β, 0) ∈ Cs × CN−s (with b = 0 if s = 0) and r > 0, we define
(29)

Ψb,r(z, w) =

(

z1 + β1w

δ(z, w)
, . . . ,

zs + βsw

δ(z, w)
,

zs+1

δ(z, w)1/qs+1
, . . . ,

zN
δ(z, w)1/qN

,
w

δ(z, w)

)

,

where as above δ(z, w) = 1 − 2i〈zq, b̄〉 − (r + i|b|2)w. Finally, for each unitary s × s
matrix Ũ and θs+1, . . . , θN ∈ R, we define

(30) ΛŨ,θ(z, w) = ((z1, . . . zs)Ũ , e
iθs+1zs+1, . . . , e

iθN zN , w).

It is readily seen from Theorem 2.1 that Σσ,∆λ, ψb,r,ΛŨ,θ ∈ Aut(PN
q , 0), and it

is straightforward (and left to the reader) to check, using Theorem 2.1, that these
elementary mappings generate Aut(PN

q , 0) via compositions; we mention here that

Aut(PN
q , 0) is a finite dimensional Lie group (see [6]).

Theorem 3.1. The stability group of PN
q at 0 consists of mapping of the form

(31) T = ∆λ ◦ ΛŨ,θ ◦Ψb,r ◦ Σσ,

for Ũ , θ, b, r, λ, σ as described above. Furthermore, the identity component
AutId(P

N
q , 0) consists of mapping of form (31) in which σ = Id. In fact, each choice

of σ gives rise to a connected component of Aut(PN
q , 0).

Remark 3.2. A similar decomposition for CR mappings between connected
pieces of generalized pseudoellipsoids was also given is the recent paper [28] using a
very different method.

We shall now give a proof of Theorem 1.1.

Proof of Theorem 1.1. The implication (ii) =⇒ (i) follows from Theorem 2.1 (A).
Moreover, any mapping H as in (ii) is of the form described in Theorem 2.1. It is
straightforward (and left to the reader) to check that there are σ andW as in Theorem
1.1, automorphisms ∆λ,ΛIs×s,θ and Ψc,r as in Theorem 3.1, with the parameters λ, c
and r as in Theorem 2.1, such that

(32) H = ∆λ ◦ ΛIs×s,θ ◦Ψc,r ◦HW,σ.

Next, assume that (i) holds. We shall construct a transversal map H : Pn
p → PN

q as
follows. If K = ∅, then necessarily s ≥ n. In this case, we can simply take

(33) H(z, w) = (zp1

1 , . . . z
pn

n , 0, . . . 0, w).

Suppose now that K is nonempty. Since #σ(K) ≥ n− s, we can write

{1, 2, . . . , n} \ σ(K) = {t1, t2, . . . tr}
for some r ≤ s (with r = 0 if σ(K) = {1, . . . , n}). We define a transversal (to PN

q at
0) map H(z, w) = (F (z), w) with

(34) Fk(z) =











z
ptk

tk , k = 1, 2, . . . r,

vkz
pσ(k)/qk
σ(k) , k ∈ K

0 otherwise,
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where the coefficients vk are chosen such that, for every l ∈ σ(K),

(35)
∑

k∈σ−1(l)

|vk|2ql = 1.

It is easy to check that H sends Pn
p into PN

q . The proof is complete.

4. Proof of Lemma 2.2. Recall (see [3]) that given a real-analytic hypersurface
M ⊂ Cn+1 and p ∈ M , there are so-called normal coordinates (z, w) ∈ Cn × C,
vanshing at p, such that M is given by

Imw = φ(z, z̄,Rew),

where φ(z, 0, s) = φ(0, χ, s) ≡ 0, or in complex form

(36) w = Q(z, z̄, w̄),

where Q satisfies Q(0, χ, τ) ≡ Q(z, 0, τ) ≡ τ and the reality condition

(37) Q(z, z̄, Q̄(z̄, z, w)) ≡ w.

We note that Pn
p and PN

q are already presented in normal coordinates. It is convenient
to use the complex defining equation (36) to define the notions of essential finiteness
and essential type as follows. We replace z̄, w̄ by independent variables χ, τ and write

Q(z, χ, 0) =
∑

I∈Nn

qI(z)χ
I .

Let IM be the ideal in C[[z]] generated by {qI(z)}I∈Nn . Following Baouendi, Ja-
cobowitz and Treves (see [3]), we shall say that M is essentially finite at p if IM
is of finite codimension in C[[z]]. The dimension dimC C[[z]]/IM is a biholomorphic
invariant of M and is called the essential type of M at p, denoted by ess typepM . We
note that e.g. IPn

p
is generated by zp1

1 , . . . , z
pn
n and therefore Pn

p is essentially finite

at 0. Recall also that a germ of a holomorphic mapping H : (Cn+1, p) → (CN+1, p′)
is said to be finite at p if the ideal I(H) generated by the components of H in the
ring Op of germs of holomorphic functions at p is of finite codimension. In this case,
we shall refer to this codimension as the multiplicity of H at p,

multpH := dimC Op/I(H).

It is well known (see e.g. [1]) that if H is finite at p, then for every q close p the number
of preimages m := H−1(H(q)) is finite and m ≤ multpH . (In the equidimensional
case N = n, the generic number of preimages equals multpH , but in general we
only have the inequality). Now we can state and prove the following result, which in
view of the above comments regarding Pn

p proves Lemma 2.2. We remark that the
equidimensional case in the proposition below follows from [7, Theorem 3].

Proposition 4.1. Let M and M ′ be real-analytic hypersurfaces in C
n+1 and

CN+1 respectively and let p ∈ M , p′ ∈ M ′. Suppose that H : (Cn+1, p) → (CN+1, p′)
is a germ of holomorphic mapping sending (M,p) into M ′. If M is essentially finite
at p and H is transversal to M ′ at p′ = H(p), then H is finite and

(38) multpH ≤ ess typepM.



374 P. EBENFELT AND S. N. DUONG

Proof. Suppose that M and M ′ are given in normal coordinates Z = (z, w) and
Z ′ = (z′, w′), vanishing at p and p′ respectively, by complex defining functions ρ and
ρ′ of the forms:

ρ(z, w, z̄, w̄) = w −Q(z, z̄, w̄), ρ′(z′, w′, z̄′, w̄′) = w′ −Q′(z′, z̄′, w̄′).

Since H sends M into M ′, the following holds for some real-analytic function a(Z, ξ).

(39) G(Z)−Q′(F (Z), H̄(ξ)) = a(Z, ξ) (w −Q(z, ξ)).

Here, H = (F,G) with F = (F1, . . . , FN ). By setting ξ = 0, taking into account that
H̄(0) = 0, Q(z, 0, 0) ≡ 0 and Q′(z′, 0, 0) ≡ 0 we deduce that

(40) G(Z) = a(Z, 0)w.

Setting w = τ = 0 and observing from (40) that G(z, 0) ≡ 0 and Ḡ(χ, 0) ≡ 0, we get

(41) Q′(F (z, 0), F̄ (χ, 0), 0) = a(z, 0, χ, 0) ·Q(z, χ, 0).

Since H is transversal, we have a(0) 6= 0 (see e.g. [4]). Therefore, a(z, 0, χ, 0) is
non-vanishing for (z, χ) close to zero and hence

(42) a(z, 0, χ, 0)−1 ·Q′(F (z, 0), F̄ (χ, 0), 0) = Q(z, χ, 0).

We expand

(43) Q(z, χ, 0) =
∑

I

qI(z)χ
I .

Let IM and I(F ) be the ideals in C[[z]] generated by {qI(z) : I ∈ Nn} and
{Fj(z, 0): j = 1, . . .N}, respectively. We claim that

(44) IM ⊂ I(F ).

Indeed, for each multi-index I ∈ Nn, one has from (42) that

(45) qI(z) =
1

I!

∂I

∂χI

(

a(z, 0, χ, 0)−1 ·Q′(F (z, 0), F̄ (χ, 0), 0)

)∣

∣

∣

∣

χ=0

.

If we expand

(46) Q′(z′, χ′, 0) =
∑

J

q′J (z) (χ
′)J ,

then it is clear from (45) that qI(z) belongs to the ideal generated by the q′J(F (z, 0)),
J ∈ NN , which in turn belongs to the ideal I(F ) (since the ideal IM ′ , generated by
the q′J(z

′), of course is contained in the maximal ideal). Therefore, we obtain (44).
Furthermore, since M is essentially finite, IM is of finite codimension in C[[z]] and so
is I(F ), by (44), and hence F (z, 0) is finite. Moreover,

(47) mult0(F (·, 0)) = dimC C[[z]]/I(F ) ≤ dimC C[[z]]/IM = ess type0(M).

On the other hand, it follows from (40) and the invertibility of a(Z, 0) that w ∈ I(H)
and, hence, H is also finite and

(48) mult0(H) = mult0(F (·, 0)).

From (47) and (48), we obtain (38).
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5. An example. As mentioned in Remark 1.2, there is some redundancy in
general in Theorem 1.1; it may happen that Hσ,W = T ◦Hσ′,W ′ for W 6=W ′, σ 6= σ′,
and a suitable automorphism T . In the equidimensional case, the collection of all
possible mapsHσ,W , for a given σ, is formed by the single orbit of one such mapHσ,W0

under the action of the identity component AutId(P
N
q , 0) of the stability group, i.e.

any Hσ,W is of the form T ◦Hσ,W0 for some T ∈ AutId(P
N
q , 0). (The orbit under the

action of the full stability group has, potentially, several components corresponding
to different permutations ρ of {s+ 1, . . . , N} such that qρ(k) = qk; see Section 3.)

In this section, we shall give an example illustrating (hopefully) the general prin-
ciple behind why both parameters σ and W in Theorem 1.1 are needed in general.
In particular, for a given σ, the orbit of single Hσ,W0 under the action of the sta-
bility group Aut(PN

q , 0) is in general “smaller” (in fact, lower dimensional) than the
collection of all maps Hσ,W .

Example 5.1. Let M ⊂ C
4 and M ′ ∈ C

6 be the hypersurface given by
(49)
M = {Imw = |z1|4+|z2|8+|z3|12}, M ′ = {Imw′ = |z′1|2+|z′2|2+|z′3|2+|z′4|4+|z′5|4}.
Thus, in this example n = 3, N = 5, and s = 3. In particular, N − n = 2 < 3 = n
and hence Theorem 1.1 applies.
(a) Consider K = {4, 5} and σ(4) = σ(5) = 3, and so #σ(K) = 1 > 0 = n − s. For

a, b, c > 0 such that a2 + b2 + c2 = 1, consider the following n×N matrix

(50) Wa,b,c :=





1 0 0 0 0
0 1 0 0 0
0 0 c a b



 ,

which satisfies the requirements (a) and (b) in Theorem 1.1. The corresponding
mapping is of the form

Hσ,Wa,b,c
(z, w) = (z21 , z

4
2 , cz

6
3 ,
√
az33 ,

√
bz33 , w).

It is easy to check, using Theorem 3.1, that the orbits of Hσ,Wa,b,c
are disjoint

for distinct values of (a, b, c). Indeed, if H ′ = T ◦ Hσ,Wa,b,c
(z, w) for some T ∈

Aut(M ′, 0) then

∣

∣

∣

∣

H ′
4(z, w)

H ′
5(z, w)

∣

∣

∣

∣

=

√

a

b
or

√

b

a
.

Thus, for any two choices of values (a, b, c) such that the (un-ordered) pairs of

values
{

√

a/b,
√

b/a
}

are different, the orbits must be disjoint.

(b) Consider the two mappings Hσ,W and Hσ′,W ′ , where K = {4, 5},
σ(4) = 1, σ(5) = 2, σ′(4) = 2, σ′(5) = 3,

and

(51) W :=





0 0 0 1 0
0 0 0 0 1
1 0 0 0 0



 , W ′ :=





1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



 .

The corresponding mappings are of the form

(52)
Hσ,W (z, w) = (z63 , 0, 0, z1, z

2
2 , w)

Hσ′,W ′(z, w) = (z21 , 0, 0, z
2
2, z

3
3 , w)
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Observe that any mapping H in the orbit of Hσ,W has the property that H4H5

vanishes identically on the hyperplane {z1 = 0}, while none in the orbit of Hσ′,W ′

has this property.
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[19] F. Forstnerič, Embedding strictly pseudoconvex domains into balls, Trans. Amer. Math. Soc.,

295:1 (1986), pp. 347–368.
[20] X. Huang, On the mapping problem for algebraic real hypersurfaces in the complex spaces of

different dimensions, Ann. Inst. Fourier (Grenoble), 44:2 (1994), pp. 433–463.
[21] X. Huang, On a linearity problem for proper holomorphic maps between balls in complex

spaces of different dimensions, J. Differential Geom., 51 (1999), pp. 13–33.
[22] X. Huang and S. Ji, Mapping Bn into B2n−1, Inventiones Mathematicae, 145 (2001), pp. 219–

250.
[23] X. Huang, S. Ji, and D. Xu, A new gap phenomenon for proper holomorphic mappings from

B
n into B

N , Math. Res. Lett., 13:4 (2006), pp. 515–529.
[24] X. Huang, S. Ji, and W. Yin, On the third gap for proper holomorphic maps between balls,

preprint; http://front.math.ucdavis.edu/1201.6440, 2012.



HOLOMORPHIC MAPPINGS BETWEEN PSEUDOELLIPSOIDS 377

[25] A. V. Isaev and S. G. Krantz, Domains with non-compact automorphism group: a survey,
Adv. Math., 146:1 (1999), pp. 1–38.

[26] M. Landucci, On the proper holomorphic equivalence for a class of pseudoconvex domains,
Trans. Amer. Math. Soc., 282:2 (1984), pp. 807–811.

[27] M. Landucci and A. Spiro, On the localization principle for the automorphisms of pseudoel-

lipsoids, Proc. Amer. Math. Soc., 137 (2009), pp. 1339–1345.
[28] R. Monti and M. Morbidelli, Pseudohermitian invariants and classification of CR mappings

in generalized ellipsoids, J. Math. Soc. Japan, 64:1 (2012), pp. 153–179.
[29] S. M. Webster, The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J., 28:3

(1979), pp. 405–416.
[30] B. Wong, Characterization of the unit ball in Cn by its automorphism group, Invent. Math.,

41:3 (1977), pp. 253–257.
[31] D. Zaitsev, Algebraicity of local holomorphisms between real-algebraic submanifolds of complex

spaces, Acta Math., 189:3 (1999), pp. 273–305.



378 P. EBENFELT AND S. N. DUONG


