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AFFINE STRUCTURES ON TEICHMÜLLER SPACES AND

APPLICATIONS∗

XIAOJING CHEN† , FENG GUAN‡ , AND KEFENG LIU§

Abstract. We review our recent results on holomorphic affine structures on the Teichmüller
spaces of Calabi–Yau manifolds and their Hodge metric completions, as well as their applications to
global Torelli theorems for Calabi–Yau manifolds. As corollaries we show that the extended period
map from the completion space is injective into the period domain, and that the completion space
is a domain of holomorphy and admits a complete Kähler-Einstein metric.
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1. Introduction. A compact projective manifold M of complex dimension n
with n ≥ 3 is called Calabi–Yau in this paper, if it has a trivial canonical bundle and
satisfies Hi(M,OM ) = 0 for 0 < i < n. A polarized and marked Calabi–Yau manifold
is a triple consisting of a Calabi–Yau manifold M , an ample line bundle L over M
and a basis of the integral middle homology group modulo torsion, Hn(M,Z)/Tor.

We will denote by T the Teichmüller space for the deformations of the complex
structure on the polarized and marked Calabi–Yau manifold M . Actually the Te-
ichmüller space is precisely the universal cover of the smooth moduli space Zm with
level m structure with m ≥ 3, which is constructed by Popp, Viehweg, and Szendröi,
for example in Section 2 of [20]. The versal family U → T of the polarized and marked
Calabi–Yau manifolds is the pull-back of the versal family XZm

→ Zm, which is also
introduced in [20]. Therefore T is a connected and simply connected smooth complex
manifold with dimC T = hn−1,1(M) = N, where hn−1,1(M) = dimCH

n−1,1(M).
Let D be the period domain of polarized Hodge structures of the n-th primitive

cohomology ofM . The period map Φ : T → D is defined by assigning to each point in
T the Hodge structure of the corresponding fiber. Let us denote the period map on the
smooth moduli space by ΦZm

: Zm → D/Γ, where Γ denotes the global monodromy
group which acts properly and discontinuously on D. Denote by πm : T → Zm the
universal covering map. Then Φ : T → D is the lifting of ΦZm

◦ πm. There is Hodge
metric h on D, which is a complete homogeneous metric and is studied in [5]. By
local Torelli theorem of Calabi–Yau manifolds, both ΦZm

and Φ are locally injective.
Thus the pull-backs of h on Zm and T are both well-defined Kähler metrics, and they
are still called Hodge metrics.

In this paper, one of our essential constructions is the global holomorphic affine
structure on the Teichmüller space, which can be outlined as follows: fix a base point
p ∈ T with its Hodge structure {Hk,n−k

p }nk=0 as the reference Hodge structure. With
this fixed base point Φ(p) ∈ D, we identify the unipotent subgroupN+ with its orbit in
Ď (see Section 3.1 and Remark 3.1) and define Ť = Φ−1(N+) ⊆ T . We first show that
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Φ : Ť → N+ ∩D is a bounded map with respect to the Euclidean metric on N+, and
that T \Ť is an analytic subvariety. Then by applying Riemann extension theorem,
we conclude that Φ(T ) ⊆ N+ ∩ D. Using this property, we then show Φ induces a
global holomorphic map τ : T → CN , which actually gives a local coordinate map
around each point in T by using local Torelli theorem for Calabi–Yau manifolds. Thus
τ : T → CN induces a global holomorphic affine structure on T . It is not hard to
see that τ = P ◦ Φ : T → CN is a composition map with P : N+ → CN ≃ Hn−1,1

p

a natural projection map into a subspace, where N+ ≃ Cd with the fixed base point
p ∈ T .

Let ZH
m

be the Hodge metric completion of the smooth moduli space Zm and let
T H

m
be the universal cover of ZH

m
with the universal covering map πH

m
: T H

m
→ ZH

m
.

It is easy to see that ZH
m

is a connected and complete smooth complex manifold, and
thus T H

m
is a connected and simply connected complete smooth complex manifold.

We also obtain the following commutative diagram:

T im //

πm

��

T H
m

πH

m

��

ΦH

m // D

πD

��

Zm
i // ZH

m

ΦH

Zm // D/Γ,

(1)

where ΦH
Zm

is the natural extension map of the period map ΦZm
: Zm → D/Γ, i is

the inclusion map, im is a lifting of i ◦ πm, and ΦH
m

is a lifting of ΦH
Zm

◦ πH
m
. It is not

hard to see that ΦH
m

is actually a bounded holomorphic map from T H
m

to N+ ∩D.
We first prove that the complete complex manifold T H

m
is a complex affine man-

ifold and the extended period map ΦH
m

: T H
m

→ D is injective. This is carried out
by crucially using the holomorphic affine structure on T . Then we show that T H

m

is independent of the choice of m. More precisely we have that, for any m,m′ ≥ 3,
the complex manifolds T H

m
and T H

m′
are biholomorphic to each other. This allows us

to define the complete complex manifold T H by T H = T H
m

, the holomorphic map
iT : T → T H by iT = im, and the holomorphic map ΦH : T H → D by ΦH = ΦH

m

for any m ≥ 3. With these new notations, we have the commutative diagram

T iT //

πm

��

T H

πH
m

��

ΦH

// D

πD

��

Zm
i // ZH

m

ΦH

Zm // D/Γ.

The main result of this paper is the following.

Theorem 1.1. The complete complex affine manifold T H is the completion space

of T with respect to the Hodge metric, and it is a bounded domain in CN . Moreover,

the extended period map ΦH : T H → N+ ∩D is a holomorphic injection.

One technical difficulty of our arguments is to show directly that T H is indeed
the Hodge metric completion space of T , and for this it is sufficient to show that
iT : T → T H is an embedding. To overcome this difficulty we have to go through
the space T H

m . In fact, defining Tm to be im(T ) and denoting it by T0, since Tm is
independent of choice of m, we have T0 = iT (T ) ⊆ T H . It is not hard to show that
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iT : T → T0 is a covering map. Moreover, we prove that iT : T → T0 is actually
one-to-one by showing that the fundamental group of T0 is trivial. Therefore, we can
conclude that iT : T → T H is an embedding. Here the markings of the Calabi-Yau
manifolds and the simply connectedness of T come into play substantially.

As a direct corollary of this theorem, we easily deduce that the period map Φ =
ΦH ◦ iT : T → D is also injective since it is a composition of two injective maps. This
is the global Torelli theorem for the period map from the Teichmüller space to the
period domain. In case that the period domain D is Hermitian symmetric and that
it has the same dimension as T , the above theorem implies that the extended period
map ΦH is biholomorphic, in particular it is surjective. As another important result
of this paper, we prove the following theorem.

Theorem 1.2. The completion space T H is a domain of holomorphy in CN ; thus

there exists a complete Kähler-Einstein metric on T H .

To prove this theorem, we construct a plurisubharmonic exhaustion function on
T H by using Proposition 5.8, the completeness of T H , and the injectivity of ΦH . This
shows that T H is a domain of holomorphy in CN . The existence of the Kähler-Einstein
metric follows directly from a theorem of Mok-Yau in [11].

This paper is organized as follows. In Section 2, we review the definition of
the period domain of polarized Hodge structures, the construction of the Teichmüller
space of polarized and marked Calabi–Yau manifolds, the definition of the period map
and the Hodge metrics on the moduli space and the Teichmüller space respectively. In
Section 3, we show that the image of the period map is in N+ ∩D and we construct
a holomorphic affine structure on the Teichmüller space. In Section 4, we prove
that there exists a global holomorphic affine structure on T H

m
and that the map

ΦH
m

: T H
m

→ D is an injective map. In Section 5, we first show that T H
m

does not
depend on m for all m ≥ 3. Then we define the completion space T H and the
extended period map ΦH . As our main results, we show that T H is a complex affine
manifold, and it is the Hodge metric completion space of T . Moreover, we show
that ΦH is a holomorphic injection. Therefore, the global Torelli theorem for Calabi–
Yau manifolds from the Teichmüller space follows directly. Finally we prove T H is a
domain of holomorphy in CN , and thus it admits a complete Kähler-Einstein metric.

In this paper we only outline the main ideas of our proofs. For details of the argu-
ments we refer the reader to [1]. We remark that the same results hold for projective
manifolds of Calabi–Yau type, which is another interesting class of projective Fano
manifolds. These results are carried out in [2].

2. Teichmüller space and the period map of Calabi–Yau manifolds. In
Section 2.1, we recall the definition and some basic properties of the period domain.
In Section 2.2, we discuss the construction of the Teichmülller space of Calabi–Yau
manifolds based on the works of Popp [15], Viehweg [23] and Szendröi [20] on the
moduli spaces of Calabi–Yau manifolds. In Section 2.3, we define the period map
from the Teichmüller space to the period domain. We also describe the Hodge metrics
on the moduli space and the Teichmüller space, respectively. We remark that most
of the results in this section are standard and can be found from the literature in the
subjects. We collect them here for the reader’s convenience.

2.1. Period domain of polarized Hodge structures. In this section, we the
construction of the period domain of polarized Hodge structures. We refer the reader
to Section 3 of [16] for more details.
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A pair (M,L) consisting of a Calabi–Yau manifold M of complex dimension
n and an ample line bundle L over M is called a polarized Calabi–Yau manifold.
By abuse of notation, the Chern class of L will also be denoted by L and thus
L ∈ H2(M,Z). Let {γ1, · · · , γhn} be a basis of the integral homology group mod-
ulo torsion, Hn(M,Z)/Tor, with dimHn(M,Z)/Tor.

Definition 2.1. Let the pair (M,L) be a polarized Calabi–Yau manifold, we call

the triple (M,L, {γ1, · · · , γhn}) a polarized and marked Calabi–Yau manifold.

For a polarized and marked Calabi–Yau manifold M with background smooth
manifold X , we identify the basis of Hn(M,Z)/Tor to a lattice Λ as in [20]. This
gives us a canonical identification of the middle dimensional de Rahm cohomology of
M to that of the background manifold X , that is,

Hn(M) ∼= Hn(X)

where the coefficient ring can be Q, R or C. Since the polarization L is an integer
class, it defines a map

L : Hn(X,Q) → Hn+2(X,Q)

given by A 7→ L ∧ A for any A ∈ Hn(X,Q). We denote by Hn
pr(X) = ker(L) the

primitive cohomology groups where, again, the coefficient ring can be Q, R or C. We
let Hk,n−k

pr (M) = Hk,n−k(M) ∩ Hn
pr(M,C) and denote its dimension by hk,n−k. We

have the Hodge decomposition

Hn
pr(M,C) = Hn,0

pr (M)⊕ · · · ⊕H0,n
pr (M).(2)

It is easy to see that for a polarized Calabi–Yau manifold, since H2(M,OM ) = 0, we
have

Hn,0
pr (M) = Hn,0(M), Hn−1,1

pr (M) = Hn−1,1(M).

The Poincaré bilinear form Q on Hn
pr(X,Q) is defined by

Q(u, v) = (−1)
n(n−1)

2

∫

X

u ∧ v

for any d-closed n-forms u, v on X . The bilinear form Q is symmetric if n is even and
is skew-symmetric if n is odd. Furthermore, Q is nondegenerate and can be extended
to Hn

pr(X,C) bilinearly, and satisfies the Hodge-Riemann relations

Q
(

Hk,n−k
pr (M), H l,n−l

pr (M)
)

= 0 unless k + l = n, and(3)
(√

−1
)2k−n

Q (v, v) > 0 for v ∈ Hk,n−k
pr (M) \ {0}.(4)

The Hodge decomposition ofHn
pr(M,C) in (2) can also be described via the Hodge

filtration. Let fk =
∑n

i=k h
i,n−i, f0 = m, and

F k = F k(M) = Hn,0
pr (M)⊕ · · · ⊕Hk,n−k

pr (M)

from which we have the decreasing filtration Hn
pr(M,C) = F 0 ⊃ · · · ⊃ Fn. We know

that

dimC F
k = fk,(5)

Hn
pr(X,C) = F k ⊕ Fn−k+1, and Hk,n−k

pr (M) = F k ∩ Fn−k.(6)
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In terms of the Hodge filtration Fn ⊂ · · · ⊂ F 0 = Hn
pr(M,C), the Hodge-Riemann

relations (3) and (4) can be written as

Q
(

F k, Fn−k+1
)

= 0, and(7)

Q (Cv, v) > 0 if v 6= 0,(8)

where C is the Weil operator given by Cv =
(√

−1
)2k−n

v for v ∈ Hk,n−k
pr (M). The

period domain D for polarized Hodge structures with data (5) is the space of all such
Hodge filtrations

D =
{

Fn ⊂ · · · ⊂ F 0 = Hn
pr(X,C) | (5), (7) and (8) hold

}

.

The compact dual Ď of D is

Ď =
{

Fn ⊂ · · · ⊂ F 0 = Hn
pr(X,C) | (5) and (7) hold

}

.

The period domain D ⊆ Ď is an open set. We note that the conditions (7) and
(8) imply the identities in (6). From the definition of period domain we naturally get
the Hodge bundles on Ď by associating to each point in Ď the vector spaces {F k}nk=0

in the Hodge filtration of that point. Without confusion we will also denote by F k

the bundle with F k as the fiber for each 0 ≤ k ≤ n.

Remark 2.2. We remark the notation change for the primitive cohomology. As
mentioned above that for a polarized Calabi–Yau manifold,

Hn,0
pr (M) = Hn,0(M), Hn−1,1

pr (M) = Hn−1,1(M).

For the reason that we mainly consider these two types of primitive cohomology group
of a Calabi–Yau manifold, by abuse of notation, we will simply use Hn(M,C) and
Hk,n−k(M) to denote the primitive cohomology groups Hn

pr(M,C) and Hk,n−k
pr (M)

respectively. Moreover, we will use cohomology to mean primitive cohomology in the
rest of the paper.

2.2. Construction of the Teichmüller space. We first recall the concept
of Kuranishi family of compact complex manifolds. We refer to page 8-10 in [17],
page 94 in [15] or page 19 in [23] for equivalent definitions and more details. If a
complex analytic family π : V → B of compact complex manifolds is complete at each
point of B and versal at the point 0 ∈ B, then the family π : V → B is called the
Kuranishi family of the complex manifold V = π−1(0). The base space B is called
the Kuranishi space. If the family is complete at each point of a neighbourhood of
0 ∈ B and versal at 0, then the family is called a local Kuranishi family at 0 ∈ B.
In particular, by definition if a family is versal at each point of B, then it is local
Kuranishi at every point of B.

Let (M,L) be a polarized Calabi–Yau manifold. We call a basis of the quo-
tient space (Hn(M,Z)/Tor)/m(Hn(M,Z)/Tor) a level m structure on the polarized
Calabi–Yau manifold with m ≥ 3. For deformation of polarized Calabi–Yau mani-
fold with level m structure, we have the following theorem, which is a reformulation
of Theorem 2.2 in [20], we just take the statement we need in this paper. One can
also look at [15] and [23] for more details about the construction of moduli spaces of
Calabi–Yau manifolds.
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Theorem 2.3. Let m ≥ 3 and M be a polarized Calabi–Yau manifold with level

m structure. Then there exists a quasi-projective complex manifold Zm with a versal

family of Calabi–Yau manifolds,

XZm
→ Zm,(9)

containing M as a fiber, and polarized by an ample line bundle LZm
on XZm

.

Let (M,L) be a polarized Calabi–Yau manifold. We define the Teichmüller space

TL(M) to be the universal cover of Zm with the covering map πm : TL(M) → Zm. We
denote by the family ϕ : U → TL(M) the pull-back of the family (9) by the projection
πm. For simplicity, we will denote TL(M) by T .

Proposition 2.4. The Teichmüller space T is a connected and simply connected

smooth complex manifold and the family

ϕ : U → T ,(10)

which contains M as a fiber, is local Kuranishi at each point of T .

Proof. For the first part, because Zm is a connected and smooth complex manifold,
the universal cover of Zm is a simply connected smooth complex manifold. For the
second part, as we know that the family (9) is a versal family at each point of Zm and
that πm is locally biholomorphic, the pull-back family via πm is also versal at each
point of T . By the definition of local Kuranishi family, we get that U → T is local
Kuranishi at each point of T .

We remark that the family ϕ : U → T being local Kuranishi at each point is
essentially due to the local Torelli theorem for Calabi–Yau manifolds. In fact, we
know that for the family U → T , the Kodaira-Spencer map

κ : T 1,0
p T → H0,1(Mp, T

1,0Mp),

is an isomorphism for each p ∈ T . Then by theorems in page 9 of [17], we conclude
that U → T is versal at each p ∈ T . We refer the reader to Chapter 4 in [13] for
more details about deformation of complex structures and the Kodaira-Spencer map.
In particular, using the unobastruction of deformation of Calabi-Yau manifolds, it is
easy to see that dimC T = dimCH

n−1,1(Mp) = N .
We also remark that the Teichmüller space T does not depend on the choice of

m. In fact, let m1 and m2 be two different integers, and U1 → T1 and U2 → T2 be
two versal families constructed via level m1 and level m2 structures respectively as
above, and both of which contain M as a fiber. By using the fact that T1 and T2 are
simply connected and the definition of versal family, we have a biholomorphic map
f : T1 → T2, such that the versal family U1 → T1 is the pull back of the versal family
U2 → T2 by f . Thus these two families are biholomorphic to each other.

2.3. The period map and the Hodge metric on the Teichmüller space.

For any point p ∈ T , let Mp be the fiber of family ϕ : U → T , which is a polarized
and marked Calabi–Yau manifold. Since the Teichmüller space is simply connected
and we have fixed the basis of the middle homology group modulo torsions. We
identify the basis of Hn(M,Z)/Tor to a lattice Λ as in [20]. This gives us a canonical
identification of the middle dimensional de Rahm cohomology of M to that of the
background manifold X , that is, Hn(M) ≃ Hn(X). Therefore, we can use this
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to identify Hn(Mp, C) for all fibers on T . Thus we get a canonical trivial bundle
Hn(Mp,C)× T . We have similar identifications for Hn(Mp,Q) and Hn(Mp,Z).

The period map from T to D is defined by assigning each point p ∈ T the Hodge
structure on Mp, that is

Φ : T → D, p 7→ Φ(p) = {Fn(Mp) ⊂ · · · ⊂ F 0(Mp)}

We denote F k(Mp) by F
k
p for simplicity.

The period map has several good properties, and we refer the reader to Chapter 10
in [24] for details. Among them, one of the most important is the following Griffiths
transversality: the period map Φ is a holomorphic map and its tangent map satisfies
that

Φ∗(v) ∈
n

⊕

k=1

Hom
(

F k
p /F

k+1
p , F k−1

p /F k
p

)

, for any p ∈ T and v ∈ T 1,0
p T

with Fn+1 = 0, or equivalently, Φ∗(v) ∈
⊕n

k=0 Hom(F k
p , F

k−1
p ).

In [5], Griffiths and Schmid studied the so-called Hodge metric on the pe-
riod domain D. We denote it by h. In particular, this Hodge metric is a com-
plete homogeneous metric. Let us denote the period map on the moduli space by
ΦZm

: Zm → D/Γ, where Γ denotes the global monodromy group which acts prop-
erly and discontinuously on the period domainD. Since πm : T → Zm is the universal
covering map, the period map Φ : T → D is the lifting of ΦZm

◦ πm. By local Torelli
theorem for Calabi–Yau manifolds, we know that ΦZm

is locally injective and Φ is
also locally injective. Thus it follows from [5] that the pull-backs of h by ΦZm

and Φ
on Zm and T respectively are both well-defined Kähler metrics. By abuse of notation,
we still call these pull-back metrics the Hodge metrics, and they are both denoted by
h.

3. Holomorphic affine structure on the Teichmüller space. In Section
3.1, we review some properties of the period domain from Lie group and Lie algebra
point of view. In Section 3.2, we fix a base point p ∈ T and introduce the unipotent
space N+ ⊆ Ď, which is biholomorphic to Cd. Then we show that the image Φ(T ) is
bounded in N+∩D with respect to the Euclidean metric on N+. In Section 3.3, using
the property that Φ(T ) ⊆ N+, we define a holomorphic map τ : T → CN . Then we
use local Torelli theorem to show that τ defines a local coordinate chart around each
point in T , and this shows that τ : T → CN defines a holomorphic affine structure
on T .

3.1. Preliminary. Let us briefly recall some properties of the period domain
from Lie group and Lie algebra point of view. All of the results in this section is well-
known to the experts in the subject. The purpose to give details is to fix notations.
One may either skip this section or refer to [5] and [16] for most of the details.

The orthogonal group of the bilinear form Q in the definition of Hodge structure
is a linear algebraic group, defined over Q. Let us simply denote HC = Hn(M,C) and
HR = Hn(M,R). The group of the C-rational points is

GC = {g ∈ GL(HC)| Q(gu, gv) = Q(u, v) for all u, v ∈ HC},

which acts on Ď transitively. The group of real points in GC is

GR = {g ∈ GL(HR)| Q(gu, gv) = Q(u, v) for all u, v ∈ HR},
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which acts transitively on D as well.
Consider the period map Φ : T → D. Fix a point p ∈ T with the image

o := Φ(p) = {Fn
p ⊂ · · · ⊂ F 0

p } ∈ D. The points p ∈ T and o ∈ D may be referred as
the base points or the reference points. A linear transformation g ∈ GC preserves the
base point if and only if gF k

p = F k
p for each k. Thus it gives the identification

Ď ≃ GC/B with B = {g ∈ GC| gF k
p = F k

p , for any k}.

Similarly, one obtains an analogous identification

D ≃ GR/V →֒ Ď with V = GR ∩B,

where the embedding corresponds to the inclusion GR/V = GR/GR∩B ⊆ GC/B. The
Lie algebra g of the complex Lie group GC can be described as

g = {X ∈ End(HC)| Q(Xu, v) +Q(u,Xv) = 0, for all u, v ∈ HC}.

It is a simple complex Lie algebra, which contains g0 = {X ∈ g| XHR ⊆ HR} as a real
form, i.e. g = g0 ⊕ ig0. With the inclusion GR ⊆ GC, g0 becomes Lie algebra of GR.
One observes that the reference Hodge structure {Hk,n−k

p }nk=0 of Hn(M,C) induces
a Hodge structure of weight zero on End(Hn(M,C)), namely,

g =
⊕

k∈Z

gk,−k with gk,−k = {X ∈ g|XHr,n−r
p ⊆ Hr+k,n−r−k

p }.

Since the Lie algebra b of B consists of those X ∈ g that preserves the reference
Hodge filtration {Fn

p ⊂ · · · ⊂ F 0
p }, one thus has

b =
⊕

k≥0

gk,−k.

The Lie algebra v0 of V is v0 = g0 ∩ b = g0 ∩ b ∩ b = g0 ∩ g0,0. With the above
isomorphisms, the holomorphic tangent space of Ď at the base point is naturally
isomorphic to g/b.

Let us consider the nilpotent Lie subalgebra n+ := ⊕k≥1g
−k,k. Then one gets the

holomorphic isomorphism g/b ∼= n+. We take the unipotent group N+ = exp(n+).
As Ad(g)(gk,−k) is in

⊕

i≥k g
i,−i for each g ∈ B, the sub-Lie algebra b⊕g−1,1/b ⊆

g/b defines an Ad(B)-invariant subspace. By left translation via GC, b⊕g−1,1/b gives
rise to a GC-invariant holomorphic subbundle of the holomorphic tangent bundle at
the base point. It will be denoted by T 1,0

o,hĎ, and will be referred to as the holomorphic
horizontal tangent bundle at the base point. One can check that this construction
does not depend on the choice of the base point. The horizontal tangent subbundle at
the base point o, restricted to D, determines a subbundle T 1,0

o,hD of the holomorphic

tangent bundle T 1,0
o D of D at the base point. The GC-invariace of T 1,0

o,hĎ implies

the GR-invariance of T
1,0
o,hD. As another interpretation of this holomorphic horizontal

bundle at the base point, one has

T 1,0
o,hĎ ≃ T 1,0

o Ď ∩
n

⊕

k=1

Hom(F k
p /F

k+1
p , F k−1

p /F k
p ).(11)

In [16], Schmid call a holomorphic mapping Ψ : M → Ď of a complex manifold M
into Ď horizontal if at each point of M , the induced map between the holomorphic
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tangent spaces takes values in the appropriate fibre T 1,0Ď. It is easy to see that the
period map Φ : T → D is horizontal since Φ∗(T

1,0
p T ) ⊆ T 1,0

o,hD for any p ∈ T . Since

D is an open set in Ď, we have the following relation:

T 1,0
o,hD = T 1,0

o,hĎ
∼= b⊕ g−1,1/b →֒ g/b ∼= n+.(12)

Remark 3.1. With a fixed base point, we can identify N+ with its unipotent
orbit in Ď by identifying an element c ∈ N+ with [c] = cB in Ď; that is, N+ =
N+( base point ) ∼= N+B/B ⊆ Ď. In particular, when the base point o is in D, we
have N+ ∩D ⊆ D.

Let us introduce the notion of an adapted basis for the given Hodge decomposition
or the Hodge filtration. For any p ∈ T and fk = dimF k

p for any 0 ≤ k ≤ n, we call a
basis

ξ =
{

ξ0, ξ1, · · · , ξN , · · · , ξfk+1 , · · · , ξfk−1, · · · , ξf2 , · · · , ξf1−1, ξf0−1

}

of Hn(Mp,C) an adapted basis for the given Hodge decomposition

Hn(Mp,C) = Hn,0
p ⊕Hn−1,1

p ⊕ · · · ⊕H1,n−1
p ⊕H0,n

p ,

if it satisfies Hk,n−k
p = SpanC

{

ξfk+1 , · · · , ξfk−1

}

with dimHk,n−k
p = fk − fk+1. We

call a basis

ζ = {ζ0, ζ1, · · · , ζN , · · · , ζfk+1 , · · · , ζfk−1, · · · , ζf2 , · · · , ζf1−0, ζf0−1}

of Hn(Mp,C) an adapted basis for the given filtration

Fn ⊆ Fn−1 ⊆ · · · ⊆ F 0

if it satisfies F k = SpanC{ζ0, · · · , ζfk−1} with dimCF
k = fk. Moreover, unless other-

wise pointed out, the matrices in this paper are m×m matrices, where m = f0. The
blocks of the m ×m matrix T is set as follows: for each 0 ≤ α, β ≤ n, the (α, β)-th
block Tα,β is

Tα,β = [Tij(τ)]f−α+n+1≤i≤f−α+n−1, f−β+n+1≤j≤f−β+n−1 ,(13)

where Tij is the entries of the matrix T , and fn+1 is defined to be zero. In particular,
T = [Tα,β] is called a block lower triangular matrix if Tα,β = 0 whenever α < β.

Remark 3.2. We remark that by fixing a base point, we can identify the above
quotient Lie groups or Lie algebras with their orbits in the corresponding quotient
Lie algebras or Lie groups. For example, n+ ∼= g/b, g−1,1 ∼= b ⊕ g−1,1/b, and N+

∼=
N+B/B ⊆ Ď. We can also identify a point Φ(p) = {Fn

p ⊆ Fn−1
p ⊆ · · · ⊆ F 0

p } ∈
D with its Hodge decomposition

⊕n
k=0H

k,n−k
p , and thus with any fixed adapted

basis of the corresponding Hodge decomposition for the base point, we have matrix
representations of elements in the above Lie groups and Lie algebras. For example,
elements in N+ can be realized as nonsingular block lower triangular matrices with
identity blocks in the diagonal; elements in B can be realized as nonsingular block
upper triangular matrices.
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We shall review and collect some facts about the structure of simple Lie algebra
g in our case. Again one may refer to [5] and [16] for more details. Let θ : g → g be
the Weil operator, which is defined by

θ(X) = (−1)pX for X ∈ gp,−p.

Then θ is an involutive automorphism of g, and is defined over R. The (+1) and (−1)
eigenspaces of θ will be denoted by k and p respectively. Moreover, set

k0 = k ∩ g0, p0 = p ∩ g0.

The fact that θ is an involutive automorphism implies

g = k⊕ p, g0 = k0 ⊕ p0, [k, k] ⊆ k, [p, p] ⊆ p, [k, p] ⊆ p.

Let us consider gc = k0 ⊕
√
−1p0. Then gc is a real form for g. Recall that the killing

form B(·, ·) on g is defined by

B(X,Y ) = Trace(ad(X) ◦ ad(Y )) for X,Y ∈ g.

A semisimple Lie algebra is compact if and only if the Killing form is negative definite.
Thus it is not hard to check that gc is actually a compact real form of g, while g0 is
a non-compact real form. Recall that GR ⊆ GC is the subgroup which correpsonds
to the subalgebra g0 ⊆ g. Let us denote the connected subgroup Gc ⊆ GC which
corresponds to the subalgebra gc ⊆ g. Let us denote the complex conjugation of g
with respect to the compact real form by τc, and the complex conjugation of g with
respect to the compact real form by τ0.

The intersection K = Gc ∩ GR is then a compact subgroup of GR, whose Lie
algebra is k0 = gR ∩ gc. With the above notations, Schmid showed in [16] that K is
a maximal compact subgroup of GR, and it meets every connected component of GR.
Moreover, V = GR ∩ B ⊆ K. As remarked in §1 in [5] of Griffiths and Schmid, one
gets that v must have the same rank of g as v is the intersection of the two parabolic
subalgebras b and τc(b). Moreover, g0 and v0 are also of equal rank, since they are
real forms of g and v respectively. Therefore, we have the following proposition.

Proposition 3.3. There exists a Cartan subalgebra h0 of g0 such that h0 ⊆ v0 ⊆
k0 and h0 is also a Cartan subalgebra of k0.

Proposition 3.3 implies that the simple Lie algebra g0 in our case is a simple Lie
algebra of first category as defined in §4 in [18]. In the upcoming part, we will briefly
derive the result of a simple Lie algebra of first category in Lemma 3 in [19]. One
may also refer to [25] Lemma 2.2.12 at pp. 141-142 for the same result.

Let us still use the above notations of the Lie algebras we consider. By Proposition
4, we can take h0 to be a Cartan subalgebra of g such that h0 ⊆ v0 ⊆ k0 and h0 is also
a Cartan subalgebra of k0. Let us denote h to be the complexification of h0. Then h

is a Cartan subalgebra of g such that h ⊆ v ⊆ k.
Write h∗0 = Hom(h0,R) and h∗

R
=

√
−1h∗0. Then h∗

R
can be identified with h

R
:=√

−1h0 by duality using the restriction of the Killing form B of g to h
R
. Let ρ ∈ h∗

R
≃

h
R
, one can define the following subspace of g

gρ = {x ∈ g|[h, x] = ρ(h)x for all h ∈ h}.

An element ϕ ∈ h∗
R
≃ h

R
is called a root of g with respect to h if gϕ 6= {0}.
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Let ∆ ⊆ h∗
R
≃ h

R
denote the space of nonzero h-roots. Then each root space

gϕ = {x ∈ g|[h, x] = ϕ(h)x for all h ∈ h}

belongs to some ϕ ∈ ∆ is one-dimensional over C, generated by a root vector e
ϕ
.

Since the involution θ is a Lie-algebra automorphism fixing k, we have [h, θ(e
ϕ
)] =

ϕ(h)θ(e
ϕ
) for any h ∈ h and ϕ ∈ ∆. Thus θ(e

ϕ
) is also a root vector belonging to the

root ϕ, so e
ϕ
must be an eigenvector of θ. It follows that there is a decomposition

of the roots ∆ into ∆k ∪ ∆p of compact roots and non-compact roots with root
spaces Ce

ϕ
⊆ k and p respectively. The adjoint representation of h on g determins a

decomposition

g = h⊕
∑

ϕ∈∆

gϕ.

There also exists a Weyl base {hi, 1 ≤ i ≤ l; e
ϕ
, for any ϕ ∈ ∆} with l = rank(g)

such that SpanC{h1, · · · , hl} = h, SpanC{eϕ} = gϕ for each ϕ ∈ ∆, and

τc(hi) = τ0(hi) = −hi, for any 1 ≤ i ≤ l;

τc(eϕ) =τ0(eϕ) = −e
−ϕ

for any ϕ ∈ ∆k; τ0(eϕ) = −τc(eϕ) = e
ϕ

for any ϕ ∈ ∆p.

With respect to this Weyl base, we have

k0 = h0 +
∑

ϕ∈∆k

R(e
ϕ
− e

−ϕ
) +

∑

ϕ∈∆k

R
√
−1(e

ϕ
+ e

−ϕ
);

p0 =
∑

ϕ∈∆p

R(e
ϕ
+ e

−ϕ
) +

∑

ϕ∈∆p

R
√
−1(e

ϕ
− e

−ϕ
).

Let us now introduce a lexicographic order (cf. pp.41 in [25] or pp.416 in [18])
in the real vector space h

R
as follows: we fix an ordered basis e1, · · · , el for hR

. Then

for any h =
∑l

i=1 λiei ∈ h
R
, we call h > 0 if the first nonzero coefficient is positive,

that is, if λ1 = · · · = λk = 0, λk+1 > 0 for some 1 ≤ k < l. For any h, h′ ∈ h
R
, we

say h > h′ if h − h′ > 0, h < h′ if h − h′ < 0 and h = h′ if h − h′ = 0. Now let
us first choose a maximal linearly independent subset S = {s1, · · · , sk} of ∆k, and
then choose a linearly independent subset E = {e1, · · · , el−k} of ∆p such that E ∪ S
is a basis for h∗

R
, where l is the real dimension of h∗

R
. Now we order this basis E ∪ S

as {e1, · · · , el−k, s1, · · · , sk}, namely, we put the noncompact roots in front of the
compact ones. Then we define the above lexicographic order in h∗

R
≃ hR. Then we

define ∆±, ∆±
p , and ∆±

k .

Definition 3.4. Two different roots ϕ, ψ ∈ ∆ are said to be strongly orthogonal

if and only if ϕ± ψ /∈ ∆ ∪ {0}, which is denoted by ϕ ⊥⊥ ψ.

For the real simple Lie algebra g0 = k0 ⊕ p0 which has a Cartan subalgebra h0 in
k0, the maximal abelian subspace of p0 can be described as in the following lemma,
which is a slight extension of a lemma of Harish-Chandra in [6]. One may refer to
Lemma 3 in [19] or Lemma 2.2.12 at pp.141–142 in [25] for more details. For reader’s
convenience we give the detailed proof.

Lemma 3.5. There exists a set of strongly orthogonal noncompact positive roots

Λ = {ϕ1, · · · , ϕr} ⊆ ∆+
p such that

a0 =

r
∑

i=1

R
(

e
ϕi

+ e
−ϕi

)
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is a maximal abelian subspace in p0.

This lemma is a slight extension of a lemma of Harish-Chandra in [6]. One may
refer to Lemma 3 in [19] or Lemma 2.2.12 at pp.141–142 in [25] for more details. One
may also find the detailed proof in [1].

3.2. Boundedness of the period map. Now let us fix the base point p ∈ T
with Φ(p) ∈ D. Then according to the above remark, N+ can be viewed as a subset
in Ď by identifying it with its orbit in Ď with base point Φ(p). Let us also fix an
adapted basis (η0, · · · , ηm−1) for the Hodge decomposition of the base point Φ(p) ∈ D.
Then we can identify elements in N+ with nonsingular block lower triangular matrices
whose diagonal blocks are all identity submatrix. We define

Ť = Φ−1(N+).

At the base point Φ(p) = o ∈ N+∩D, the tangent space T 1,0
o N+ = T 1,0

o D ≃ n+ ≃ N+,
then the Hodge metric on T 1,0

o D induces an Euclidean metric on N+. In the proof of
the following lemma, we require all the root vectors to be unit vectors with respect
to this Euclidean metric.

Because the period map is a horizontal map, and the geometry of horizontal slices
of the period domain D is similar to Hermitian symmetric space as discussed in detail
in [5], the proof the following theorem is basically an analogue of the proof of the
Harish-Chandra embedding theorem for Hermitian symmetric spaces, see for example
[10].

Theorem 3.6. The restriction of the period map Φ : Ť → N+ is bounded in N+

with respect to the Euclidean metric on N+.

The decomposition of p in Lemma 3.5 along with the property that the period
map is horizontal allows us to show that Φ(Ť ) sits in a polydisc, a product of discs of
radius 1 up to normalization, in N+. This argument is a slight extension of Harish-
Chandra’s proof of his famous embedding theorem of the Hermitian symmetric do-
mains as bounded domains in complex Euclidean spaces. One may refer to Lemma
7 and Lemma 8 at pp. 582–583 in [6], Proposition 7.4 at pp. 385 and Ch VIII §7 at
pp. 382–396 in [7], Proposition 1 at pp. 91 and Proof of Theorem 1 at pp. 95–97 in
[10], and Lemma 2.2.12 at pp. 141-142 and §5.4 in [25] for more details.

According to the definition of Ť , it is not hard to conclude the following lemma,
one may refer to [1] for the complete proof.

Lemma 3.7. The subset Ť is an open dense submanifold in T , and T \Ť is an

analytic subvariety of T with codimC(T \Ť ) ≥ 1.

Corollary 3.8. The image of Φ : T → D lies in N+ ∩D and is bounded with

respect to the Euclidean metric on N+.

Proof. According to Lemma 3.7, T \Ť is an analytic subvariety of T and the
complex codimension of T \Ť is at least one; by Theorem3.6, the holomorphic map
Φ : Ť → N+∩D is bounded in N+ with respect to the Euclidean metric. Thus by the
Riemann extension theorem, there exists a holomorphic map Φ′ : T → N+ ∩D such
that Φ′|

Ť
= Φ|

Ť
. Since as holomorphic maps, Φ′ and Φ agree on the open subset Ť ,

they must be the same on the entire T . Therefore, the image of Φ is in N+ ∩D, and
the image is bounded with respect to the Euclidean metric on N+. As a consequence,
we also get T = Ť = Φ−1(N+).
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3.3. Holomorphic affine structure on the Teichmüller space. We first
review the definition of complex affine manifolds. One may refer to page 215 of [14]
for more details.

Definition 3.9. Let M be a complex manifold of complex dimension n. If there

is a coordinate cover {(Ui, ϕi); i ∈ I} of M such that ϕik = ϕi ◦ϕ−1
k is a holomorphic

affine transformation on Cn whenever Ui ∩ Uk is not empty, then {(Ui, ϕi); i ∈ I}
is called a complex affine coordinate cover on M and it defines a holomorphic affine

structure on M .

Let us still fix an adapted basis (η0, · · · , ηm−1) for the Hodge decomposition of
the base point Φ(p) ∈ D. Recall that we can identify elements in N+ with nonsingular
block lower triangular matrices whose diagonal blocks are all identity submatrix, and
element in B with nonsingular block upper triangular matrices. Therefore N+ ∩
B = Id. By Corollary 3.8, we know that T = Φ−1(N+). Thus we get that each
Φ(q) can be uniquely determined by a matrix, which we will still denote by Φ(q) =
[Φij(q)]0≤i,j≤m−1 of the form of nonsingular block lower triangular matrices whose
diagonal blocks are all identity submatrix. Thus we can define a holomorphic map

τ : T → CN ∼= Hn−1,1
p , q 7→ (1, 0)-block of the matrix Φ(q) ∈ N+,

that is τ(q) = (τ1(q), τ2(q), · · · , τN (q)) = (Φ10(q),Φ20(q), · · · ,ΦN0(q))

Remark 3.10. If we define the following projection map with respect to the base
point and the its pre-fixed adapted basis to the Hodge decomposition,

P : N+ ∩D → Hn−1,1
p

∼= CN , F 7→ (η1, · · · , ηN )F (1,0) = F10η1 + · · ·+ FN0ηN ,

(14)

where F (1,0) is the (1, 0)-block of the unipotent matrix F , according to our convention
in (13), then τ = P ◦ Φ : T → CN .

Proposition 3.11. The holomorphic map τ = (τ1, · · · , τN ) : T → CN defines a

coordinate chart around each point q ∈ T .

To prove that τ defines a coordinate map around each point q ∈ T , it
suffices to show that the tangent map τ∗ : T 1,0

q T → Tτ(q)C
N is an isomor-

phism. This essentially follows from the local Torelli theorem for Calabi–Yau man-
ifolds. Indeed, we have the generator Ω(p) = η0 ∈ H0(Mp,Ω

n(Mp)), the gener-
ators {η1, · · · , ηN} ⊆ H1(Mp,Ω

n−1(Mp)), and the generators {ηN+1, · · · , ηm−1} ⊆
⊕

k≥2H
k(Mp,Ω

n−k(Mp).
On one hand, the 0-th column of the matrix Φ(q) ∈ N+ for each q ∈ T gives us

the following data:

Ω : T → Fn;

Ω(q) = (η0, · · · , ηm−1)(Φ00(q),Φ10(q),Φ20(q), · · · , · · · )T

= η0 + τ1(q)η1 + τ2(q)η2 + · · · τN (q)ηN + g0(q) ∈ Fn
q ≃ H0(Mq,Ω

n(Mq)),

where g0(q) ∈
⊕

k≥2H
k(Mp,Ω

n−k(Mp)).
The 1-st to N -th columns of Φ(q) ∈ N+ give us the following data:

θ1(q) = η1 + g1(q), · · · · · · , θN (q) = ηN + gN(q) ∈ Fn−1
q ,
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where gk(q) ∈
⊕

k≥2H
k(Mp,Ω

n−k(Mp)), such that {Ω(q), θ1(q), · · · , θN (q)} forms a

basis for Fn−1
q for each q ∈ T .

On the other hand, by local Torelli theorem, we know that for any holomorphic

coordinate {σ1, · · · , σN} around q, {Ω(q), ∂Ω(q)
∂σ1

, · · · , ∂Ω(q)
∂σN

} forms a basis of Fn−1
q .

Now by using the fact that {Ω(q), θ1(q), · · · , θN(q)} and {Ω(q), ∂Ω(q)
∂σ1

, · · · , ∂Ω(q)
∂σN

}
are both bases for Fn−1

q , and that θk doesn’t involve components in H0(Mp,Ω
n(Mp)),

we may assume that

∂Ω(q)

∂σk
= θk = ηk + gk(q) for any 1 ≤ k ≤ N.

Since we also have

∂Ω(q)

∂σk
=

∂

∂σk
(η0 + τ1(q)η1 + τ2(q)η2 + · · · τN (q)ηN + g0(q)),

we get
[

∂τi(q)
∂σj

]

1≤i,j≤N
= IN . This shows that τ∗ is an isomorphism, as { ∂

∂σ1
, · · · , ∂

∂σN
}

is a basis for T 1,0
q (T ).

By Proposition 3.11, the holomorphic map τ : T → CN defines local coordinate
map around each point q ∈ T . In particular, the map τ itself gives a global holomor-
phic coordinate for T . Thus the transition maps are all identity maps. Therefore,

Theorem 3.12. The global holomorphic coordinate map τ : T → CN defines a

holomorphic affine structure on T .

Remark 3.13. This affine structure on T depends on the choice of the base point
p. Affine structures on T defined in this ways by fixing different base point may not
be compatible with each other.

4. Hodge metric completion of the Teichmüller space with level struc-

ture. In Section 4.1, given m ≥ 3, we introduce the Hodge metric completion T H
m

of the Teichmüller space with level m structure, which is the universal cover of ZH
m
,

where ZH
m

is the completion space of the smooth moduli space Zm with respect to
the Hodge metric. We denote the lifting maps im : T → T H

m
, ΦH

m
: T H

m
→ D and

Tm := im(T ). We prove that ΦH
m

is a bounded holomorphic map from T H
m

to N+∩D.
In Section 4.2, we first define the map τH

m
from T H

m
to CN and its restriction τm on

the submanifold Tm. We then show that τm is also a local embedding and conclude
that τm defined a global holomorphic affine structure on Tm. Then the affineness of
τm shows that the extension map τH

m
is also defines a holomorphic affine structure

on T H
m

. In Section 4.3, we prove that τH
m

is an injection by using the Hodge metric
completeness and the global holomorphic affine structure on T H

m
. As a corollary, we

show that the holomorphic map ΦH
m

is an injection.

4.1. Definitions and basic properties. Recall in Section 2.2, Zm from [20] is
the smooth moduli space of polarized Calabi–Yau manifolds with level m structure.
We defined the Teichmüller space T to be the universal cover of Zm. In particular, we
have proved that the definition of T does not depend on the choice of level structures.

By Viehweg’s work in [23], we know that Zm is quasi-projective and that we can
find a smooth projective compactification Zm such that Zm is open in Zm and the
complement Zm\Zm is a divisor of normal crossing. Therefore, Zm is dense and open
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in Zm where the complex codimension of the complement Zm\Zm is at least one.
Moreover, as Zm a compact space, it is a complete space.

Recall at the end of Section 2.3, we pointed out that there are induced Hodge
metrics on Zm. Let us now take ZH

m
to be the Hodge metric completion of Zm. Then

ZH
m is the smallest complete space with respect to the Hodge metric that contains

Zm. Although the compact space Zm may not be unique, the Hodge metric comple-
tion space ZH

m
is unique up to isometry. In particular, ZH

m
⊆ Zm and the complex

codimension of the complement ZH
m
\Zm is at least one. Given a fixed reference point

p, then any point in ZH
m

that is of Hodge finite distance from p has a neighborhood

U ⊆ Zm, which is also at finite Hodge distance from the reference point p. As Zm\Zm

is at least of complex codimension one in Zm and that any two points in U have finite
Hodge distance, we have U ⊆ ZH

m
. This implies that ZH

m
is an open submanifold of

Zm. In particular, any two points in ZH
m

are of Hodge finite distance. We summarize
the above observations in the following lemma.

Lemma 4.1. The Hodge metric completion ZH
m

is a dense and open smooth

submanifold in Zm and the complex codimenison of ZH
m
\Zm is at least one.

Let T H
m

be the universal cover of ZH
m
. Thus T H

m
is a connected and simply

connected complete smooth complex manifold with respect to the Hodge metric. We
will call T H

m
the Hodge metric completion space with level m structure of T , or simply

the Hodge metric completion space. We denote the universal covering map by πH
m

:
T H

m
→ ZH

m . Since ZH
m is the Hodge metric completion of Zm, there exists the natural

continuous extension map ΦH
Zm

: ZH
m → D/Γ. Moreover, recall that the Teichmüller

space T is the universal cover of the moduli space Zm with the universal covering
map denoted by πm : T → Zm. Thus we have the following commutative diagram

T im //

πm

��

T H
m

πH

m

��

ΦH

m // D

πD

��

Zm
i // ZH

m

ΦH

Zm // D/Γ,

(15)

where i is the inclusion map, i
m

is a lifting map of i ◦ πm, πD is the covering map
and ΦH

m
is a lifting map of ΦH

Zm
◦ πH

m
. In particular, ΦH

m
is a continuous map from

T H
m

to D. One may notice that the lifting maps i
T
and ΦH

m
are not unique, but it is

not hard to show implies that there exists a suitable choice of im and ΦH
m

such that
Φ = ΦH

m
◦ im. We refer the reader to the appendix of [1] for the proof of this simple

fact. We will fix the choice of im and ΦH
m

such that Φ = ΦH
m

◦ im in the rest of the
paper.

Remark 4.2. Unless otherwise pointed out, when we mention a complete space
in this paper, the completeness is always with respect to the Hodge metric.

Let us consider Tm := im(T ), which is connected as T is. Then we have the
following result, the proof of which is provided in [1].

Proposition 4.3. The image Tm := im(T ) equals to the preimage (πH
m
)−1(Zm).

One notices that the restriction map Φm is holomorphic. Indeed, we know that
im : T → Tm is the lifting of i ◦ πm and πH

m
|Tm

: Tm → Zm is a holomorphic covering
map, thus im is also holomorphic. Since Φ = Φm ◦ im with both Φ, im holomorphic
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and im locally invertible, we can conclude that Φm : Tm → D is a holomorphic map.
Moreover, we have Φm(Tm) = Φm(im(T )) = Φ(T ) as Φ = im ◦ Φm. In particular,
as Φ : T → N+ ∩ D is bounded, we get that Φm : T → N+ ∩ D is bounded in N+

with the Euclidean metric. Thus ΦH
m

is also bounded. Therefore applying Riemann
extension theorem, we get

Proposition 4.4. The map ΦH
m

is a bounded holomorphic map from T H
m

to

N+ ∩D.

Proof. According to the above discussion, we know that the complement T H
m

\Tm
is the pre-image of ZH

m \ Zm of the covering map πH
m . So T H

m
\Tm is a analytic

subvariety of T H
m

, with complex codimension at least one and Φm : Tm → N+ ∩ D
is a bounded holomorphic map. Therefore, simply applying the Riemman extension
theorem to the holomorphic map Φm : Tm → N+ ∩D, we conclude that there exists
a holomorphic map Φ′

m : T H
m

→ N+∩D such that Φ′
m|Tm

= Φm. We know that both
ΦH

m
and Φ′

m are continuous maps defined on T H
m

that agree on the dense subset Tm.
Therefore, they must agree on the whole T H

m
, that is, ΦH

m
= Φ′

m on T H
m

. Therefore,
ΦH

m
: T H

m
→ N+ ∩D is a bounded holomorphic map.

4.2. Holomorphic affine structure on the Hodge metric completion

space . In this section, we still fix the base point Φ(p) ∈ D with p ∈ T and an
adapted basis (η0, · · · , ηm−1) for the Hodge decomposition of Φ(p). We defined the
global coordinate map τ : T → CN , which is a holomorphic affine local embedding.
Let us now define

τm := P ◦ Φm : Tm → CN ,

where P : N+∩D → CN is the projection map defined in (14). Then as Φ = Φm ◦ im,
we get τ = P ◦ Φ = P ◦ Φm ◦ im = τm ◦ im.

In the following lemma, we will crucially use the fact that the holomorphic map
τ : T → CN is a local embedding.

Lemma 4.5. The holomorphic map τm : T → CN is a local embedding. In

particular, τm : Tm → CN defines a global holomorphic affine structure on Tm.

Proof. Since i ◦ πm = πH
m

◦ im with i : Zm → ZH
m

the natural inclusion map and
πm, πH

m
both universal covering maps, im is a lifting of the inclusion map. Thus im

is locally biholomorphic. On the other hand, we showed that τ is a local embedding.
We may choose an open cover {Uα}α∈Λ of Tm such that for each Uα ⊆ Tm, im
is biholomorphic on Uα and thus the inverse (im)−1 is also an embedding on Uα.
Obviously we may also assume that τ is an embedding on (im)−1(Uα). In particular,
the relation τ = τm ◦ im implies that τm|Uα

= τ ◦ (im)−1|Uα
is also an embedding

on Uα. In this way, we showed τm is a local embedding on Tm. Therefore, since
dimC Tm = N , τm : Tm → CN defines a local coordinate map around each point in
Tm. In particular, the map τm itself gives a global holomorphic coordinate for Tm.
Thus the transition maps are all identity maps. Therefore, τm : Tm → CN defines a
global holomorphic affine structure on Tm.

Let us define τHm := P ◦ ΦH
m

: T H
m

→ CN , where P : N+ ∩ D → CN is still the
projection map defined in (14). Then we easily see that τHm |Tm

= τm. We also have
the following,

Lemma 4.6. The holomorphic map τH
m

: T H
m

→ CN ∼= Hn−1,1
p is a local embed-

ding.
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Proof. The proof uses mainly the affineness of τm : Tm → CN ∼= Hn−1,1
p . By

Proposition 4.3, we know that Tm is dense and open in T H
m

. Thus for any point q ∈
T H

m
, there exists {qk}∞k=1 ⊆ Tm such that limk→∞ qk = q. Because τH

m
(q) ∈ Hn−1,1

p ,

we can take a neighborhood W ⊆ Hn−1,1
p of τH

m
(q) with W ⊆ τH

m
(T H

m
).

Consider the projection map P : N+ → CN with P (F ) = F (1,0) the (1, 0) block
of the matrix F , and the decomposition of the holomorphic tangent bundle

T 1,0N+ =
⊕

0≤l≤k≤n

Hom(F k/F k+1, F l/F l+1).

In particular, the subtangent bundle Hom(Fn, Fn−1/Fn) over N+ is isomorphic to
the pull-back bundle P ∗(T 1,0CN ) of the holomorphic tangent bundle of CN through
the projection P . On the other hand, the holomorphic tangent bundle of Tm is
also isomorphic to the holomorphic bundle Hom(Fn, Fn−1/Fn), where Fn and Fn−1

are pull-back bundles on Tm via Φm from N+ ∩ D. Since the holomorphic map
τm = P ◦ Φm is a composition of P and Φm, the pull-back bundle of T 1,0W through
τm is also isomorphic to the tangent bundle of Tm.

Now with the fixed adapted basis {η1, · · · , ηN}, one has a standard coordinate
(z1, · · · , zN) on CN ∼= Hn−1,1

p such that each point in CN ∼= Hn−1,1
p is of the form

z1η1 + · · ·+ zNηN . Let us choose one special trivialization of

T 1,0W ∼= Hom(Fn
p , F

n−1
p /Fn

p )×W

by the standard global holomorphic frame (Λ1, · · · ,ΛN ) = (∂/∂z1, · · · , ∂/∂zN) on
T 1,0W . Under this trivialization, we can identify T 1,0

o W with Hom(Fn
p , F

n−1
p /Fn

p )
for any o ∈ W . Then (Λ1, · · · ,ΛN ) are parallel sections with respect to the trivial
affine connection on T 1,0W . Let Uq ⊆ (τH

m
)−1(W ) be a neighborhood of q and let

U = Uq ∩ Tm. Then the pull back sections (τH
m
)∗(Λ1, · · · ,ΛN) : Uq → T 1,0Uq are

tangent vectors of Uq, we denote them by (µH
1 , · · · , µH

N ) for convenience.
According to the proof of Lemma 4.5, we know that the restriction map τm is a

local embedding. Therefore the tangent map (τm)∗ : T 1,0
q′ U → T 1,0

o W is an isomor-

phism, for any q′ ∈ U and o = τm(q′). Moreover, since τm is a holomorphic affine
map, the holomorphic sections (µ1, · · · , µN ) := (µH

1 , · · · , µH
N )|

U
form a holomorphic

parallel frame for T 1,0U . Under the parallel frames (µ1, · · · , µN) and (Λ1, · · · ,ΛN ),
there exists a nonsingular matrix function A(q′) = (aij(q

′))1≤i≤N,1≤j≤N , such that
the tangent map (τm)∗ is given by

(τm)∗(µ1, · · · , µN )(q′) = (Λ1(o), · · · ,ΛN (o))A(q′), with q
′
∈ U and o = τm(q′) ∈ D.

Moreover, since (Λ1, · · · ,ΛN ) and (µ1, · · · , µN) are parallel frames for T 1,0W
and T 1,0U respectively and τm is a holomorphic affine map, the matrix A(q′) = A is
actually a constant nonsingular matrix for all q′ ∈ U . In particular, for each qk ∈ U ,
we have ((τm)∗µ1, · · · , (τm)∗µN )(qk) = (Λ1(ok), · · · ,ΛN (ok))A, where ok = τm(qk).
Because the tangent map (τH

m
)∗ : T 1,0Uq → T 1,0W is a continuous map, we have that

(τH

m
)∗(µ

H

1 (q), · · · , µH

N (q)) = lim
k→∞

(τm)∗(µ1(qk), · · · , µN (qk)) = lim
k→∞

(Λ1(ok), · · · ,ΛN (ok))A

= (Λ1(o), · · · ,ΛN (o))A, where ok = τm(qk) and o = τ
H

m
(q).

As (Λ1(o), · · · ,ΛN (o)) forms a basis for T 1,0
o W = Hom(Fn

p , F
n−1
p /Fn

p ) and A is non-

singular, we can conclude that (τH
m
)∗ is an isomorphism from T 1,0

q Uq to T 1,0
o W . This

shows that τH
m

: T H
m

→ CN ∼= Hn−1,1
p is a local embedding.
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Theorem 4.7. The holomorphic map τH
m

: T H
m

→ CN defines a global holomor-

phic affine structure on T H
m

.

Proof. Since τH
m

: T H
m

→ CN is a local embedding and dim T H
m

= N , thus the
same arguments as the proof of Lemma 4.5 can be applied to conclude τH

m
defines a

global holomorphic affine structure on T H
m

.

It is important to note that the flat connections which correspond to the global
holomorphic affine structures on T , on Tm or on T H

m
are in general not compatible to

the corresponding Hodge metrics on them.

4.3. Injectivity of the period map on the Hodge metric completion

space.

Theorem 4.8. For any m ≥ 3, the holomorphic map τH
m

: T H
m

→ CN is an

injection.

To prove this theorem, we will first prove the following elementary lemma, where we
mainly use the completeness with the Hodge metric, the holomorphic affine structure
on T H

m
, the affineness of τH

m
, and the properties of Hodge metric. We remark that

as T H
m

is a complex affine manifold, we have the notion of straight lines in it with
respect to the affine structure.

Lemma 4.9. For any two points in T H
m
, there is a straight line in T H

m
connecting

them.

Proof. Let p be an arbitrary point in T H
m

, and let S ⊆ T H
m

be the collection of
points that can be connected to p by straight lines in T H

m
. We need to show that

S = T H
m

.
We first show that S is a closed set. Let {qi}∞i=1 ⊆ S be a Cauchy sequence with

respect to the Hodge metric. Then for each i we have the straight line li connecting
p and qi such that li(0) = p, li(Ti) = qi for some Ti ≥ 0 and vi := ∂

∂t
li(0) a unit

vector with respect to the Euclidean metric on n+. We can view these straight lines
li : [0, Ti] → T H

m
as the solutions of the affine geodesic equations l′′i (t) = 0 with initial

conditions vi := ∂
∂t
li(0) and li(0) = p in particular Ti = dE(p, qi) is the Euclidean

distance between p and qi. It is well-known that solutions of these geodesic equations
analytically depend on their initial data.

Proposition 4.4 showed that ΦH
m

: T H
m

→ N+ ∩ D is a bounded map, which
implies that the image of ΦH

m
is bounded with respect to the Euclidean metric on

N+. Because a linear projection will map a bounded set to a bounded set, we have
that the image of τH

m
= P ◦ΦH

m
is also bounded in CN with respect to the Euclidean

metric on CN . Passing to a subsequence, we may therefore assume that {Ti} and
{vi} converge, with limi→∞ Ti = T∞ and limi→∞ vi = v∞, respectively. Let l∞(t) be
the local solution of the affine geodesic equation with initial conditions ∂

∂t
l∞(0) = v∞

and l∞(0) = p. We claim that the solution l∞(t) exists for t ∈ [0, T∞]. Consider the
set

E∞ := {a : l∞(t) exists for t ∈ [0, a)}.

If E∞ is unbounded above, then the claim clearly holds. Otherwise, we let a∞ =
supE∞, and our goal is to show a∞ > T∞. Suppose towards a contradiction that
a∞ ≤ T∞. We then define the sequence {ak}∞k=1 so that ak/Tk = a∞/T∞. We have
ak ≤ Tk and limk→∞ ak = a∞. Using the continuous dependence of solutions of
the geodesic equation on initial data, we conclude that the sequence {lk(ak)}∞k=1 is
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a Cauchy sequence. As T H
m

is a complete space, the sequence {lk(ak)}∞k=1 converges
to some q′ ∈ T H

m
. Let us define l∞(a∞) := q′. Then the solution l∞(t) exists for

t ∈ [0, a∞]. On the other hand, as T H
m

is a smooth manifold, we have that q′ is an
inner point of T H

m
. Thus the affine geodesic equation has a local solution at q′ which

extends the geodesic l∞. That is, there exists ǫ > 0 such that the solution l∞(t) exists
for t ∈ [0, a∞ + ǫ). This contradicts the fact that a∞ is an upper bound of E∞. We
have therefore proven that l∞(t) exists for t ∈ [0, T∞].

Using the continuous dependence of solutions of the affine geodesic equations on
the initial data again, we get

l∞(T∞) = lim
k→∞

lk(Tk) = lim
k→∞

qk = q∞.

This means the limit point q∞ ∈ S, and hence S is a closed set.
Let us now show that S is an open set. Let q ∈ S. Then there exists a straight

line l connecting p and q. For each point x ∈ l there exists an open neighborhood
Ux ⊆ T H

m
with diameter 2rx. The collection of {Ux}x∈l forms an open cover of l. But

l is a compact set, so there is a finite subcover {Uxi
}Ki=1 of l. Then the straight line

l is covered by a cylinder Cr in T H
m

of radius r = min{rxi
: 1 ≤ i ≤ K}. As Cr is a

convex set, each point in Cr can be connected to p by a straight line. Therefore we
have found an open neighborhood Cr of q ∈ S such that Cr ⊆ S, which implies that
S is an open set.

As S is a non-empty, open and closed subset in the connected space T H
m

, we
conclude that S = T H

m
, as we desired.

Proof of Theorem 4.8. Let p, q ∈ T H
m

be two different points. Then Lemma 4.9
implies that there is a straight line l ⊆ T H

m
connecting p and q. Since τH

m
: T H

m
→ CN

is affine, the restriction τH
m
|l is a linear map. Suppose towards a contradiction that

τH
m
(p) = τH

m
(q) ∈ CN . Then the restriction of τH

m
to the straight line l is a constant

map as τH
m
|l is linear. By Lemma 4.6, we know that τH

m
: T H

m
→ CN is locally

injective. Therefore, we may take Up to be a neighborhood of p in T H
m

such that
τH
m

: Up → CN is injective. However, the intersection of Up and l contains infinitely
many points, but the restriction of τH

m
to Up∩l is a constant map. This contradicts the

fact that when we restrict τH
m

to Up ∩ l, τHm is an injective map. Thus τH
m
(p) 6= τH

m
(q)

if p 6= q ∈ T H
m

.

Since τHm = P ◦ΦH
m
, where P a the projection map and τHm is injective and ΦH

m
a

bounded map, we get

Corollary 4.10. The completion space T H
m

is a bounded domain in CN .

Corollary 4.11. The holomorphic map ΦH
m

: T H
m

→ N+∩D is also an injection.

5. Hodge metric completion of the Teichmüller space and domain of

holomorphy. In this section, We will review the proof of one of our main results in
this section, which is Theorem 5.3. In this section, we define the completion space
T H by T H = T H

m
, and the extended period map ΦH by ΦH = ΦH

m
for any m ≥ 3

after proving that T H
m

doesn’t depend on the choice of the level m. Therefore T H

is a complex affine manifold and that ΦH is a holomorphic injection. We then prove
the main result Theorem 5.3, which asserts that T H is the completion space of T
with respect to the Hodge metric and it is a bounded domain of holomorphy in CN .
As a direct corollary, we get the global Torelli theorem of the period map from the
Teichmüller space to the period domain.
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For any two integers m,m′ ≥ 3, let Zm and Zm′ be the smooth quasi-projective
manifolds as in Theorem 2.3 and ZH

m
and ZH

m′ their Hodge metric completions. Let
T H

m
and T H

m′ be the universal cover spaces of ZH
m

and ZH
m′ respectively, then we have

the following.

Proposition 5.1. The complete complex manifolds T H
m and T H

m′ are biholomor-

phic to each other.

Proposition 5.1 shows that T H
m

doesn’t depend on the choice of the level m struc-
ture, and it allows us to give the following definition.

Definition 5.2. We define the complete complex manifold T H = T H
m

, the holo-

morphic map iT : T → T H by iT = im, and the extended period map ΦH : T H → D
by ΦH = ΦH

m
for any m ≥ 3. In particular, with these new notations, we have the

commutative diagram

T iT //

πm

��

T H

πH
m

��

ΦH

// D

πD

��

Zm
i // ZH

m

ΦH

Zm // D/Γ.

Theorem 5.3. The complex manifold T H , which is a complex affine manifold

and can be embedded into CN , is the completion space of T with respect to the Hodge

metric. Moreover, the extended period map ΦH : T H → N+ ∩ D is a holomorphic

injection.

Proof. By the definition of T H , Theorem 4.7, and Corollary 4.10, it is easy to see
that T H

m
is a complex affine manifold, which can be embedded into CN . It is also not

hard to see that the injectivity of ΦH follows from Corollary 4.11 by the definition
of ΦH . Now to prove this theorem, it is sufficient to show that iT : T → T H is an
embedding, which is given in the following lemma.

Lemma 5.4. The map iT : T → T H is an embedding.

Proof. On one hand, define T0 to be T0 = Tm for anym ≥ 3, as Tm doesn’t depend
on the choice of m according to the proof of Proposition 5.1. Since T0 = (πH

m
)−1(Zm),

πH
m : T0 → Zm is a covering map. Thus the universal property of the universal

covering map πm : T → Zm and that πm = πH
m
|T0 ◦ iT imply that iT : T → T0

is also a covering map and that the fundamental group of T0 is a subgroup of the
fundamental group of Zm, that is,π1(T0) ⊆ π1(Zm), for any m ≥ 3.

On the other hand, let {mk}∞k=1 be a sequence of positive integers such
that mk < mk+1 and mk|mk+1 for each k ≥ 1. Then there is a natu-
ral covering map from Zmk+1

to Zmk
for each k. In fact, because each point

in Zmk+1
is a polarized Calabi–Yau manifold with a basis γ

mk+1
for the space

(Hn(M,Z)/Tor)/mk+1(Hn(M,Z)/Tor) and mk|mk+1, then the basis γ
mk+1

induces

a basis for the space (Hn(M,Z)/Tor)/mk(Hn(M,Z)/Tor). Therefore we get a well-
defined map Zmk+1

→ Zmk
by assigning to a polarized Calabi–Yau manifold with

the basis γmk+1
which is a point in Zmk+1

the same polarized Calabi–Yau manifold
with the basis (γmk+1

(mod mk)) ∈ (Hn(M,Z)/Tor)/mk(Hn(M,Z)/Tor). Moreover,
using the versal properties of both the families Xmk+1

→ Zmk+1
and Xmk

→ Zmk
,

we can conclude that the map Zmk+1
→ Zmk

is locally biholomorphic. Therefore,
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Zmk+1
→ Zmk

is actually a covering map. Thus the fundamental group π1(Zmk+1
) is

a subgroup of π1(Zmk
) for each k. Hence, the inverse system of fundamental groups

π1(Zm1) π1(Zm2)oo · · · · · ·oo π1(Zmk
)oo · · ·oo

has an inverse limit, which is the fundamental group of T . Because π1(T0) ⊆ π1(Zmk
)

for any k, we have the inclusion π1(T0) ⊆ π1(T ). But π1(T ) is a trivial group since
T is simply connected, thus π1(T0) is also a trivial group. Therefore the covering
map iT : T → T0 is a one-to-one covering. This shows that iT : T → T H is an
embedding.

Since Φ = ΦH ◦ iT with both ΦH and iT embeddings, we get the global Torelli
theorem for the period map from the Teichmüller space to the period domain as
follows.

Corollary 5.5 (Global Torelli theorem). The period map Φ : T → D is

injective.

As another important consequence, we prove the following property of T H .

Theorem 5.6. The completion space T H is a bounded domain of holomorphy in

CN ; thus there exists a complete Kähler–Einstein metric on T H .

We recall that a C2 function ρ : Ω → R on a domain Ω ⊆ Cn is plurisubharmornic

if and only if its Levi form is positive definite at each point in Ω. Given a domain
Ω ⊆ Cn, a function f : Ω → R is called an exhaustion function if for any c ∈ R, the
set {z ∈ Ω | f(z) < c} is relatively compact in Ω. The following well-known theorem
provides a definition for domains of holomorphy. For example, one may refer to [8]
for details.

Proposition 5.7. An open set Ω ∈ Cn is a domain of holomorphy if and only

if there exists a continuous plurisubharmonic function f : Ω → R such that f is also

an exhaustion function.

The following theorem in Section 3.1 of [5] gives us the basic ingredients to con-
struct a plurisubharmoic exhaustion function on T H .

Proposition 5.8. On every manifold D, which is dual to a Kähler C-space, there

exists an exhaustion function f : D → R, whose Levi form, restricted to T 1,0
h (D), is

positive definite at every point of D.

We remark that in this proposition, in order to show f is an exhaustion function
on D, Griffiths and Schmid showed that the set f−1(−∞, c] is compact in D for any
c ∈ R.

Lemma 5.9. The extended period map ΦH : T H → D still satisfies the Griffiths

transversality.

Proof. Let us consider the tangent bundles T 1,0T H and T 1,0D as two differential
manifolds, and the tangent map (ΦH)∗ : T 1,0T H → T 1,0D as a continuous map. We
only need to show that the image of (ΦH)∗ is contained in the horizontal tangent
bundle T 1,0

h D.

The horizontal subbundle T 1,0
h D is a close set in T 1,0D, so the preimage of T 1,0

h D
under (ΦH)∗ is a close set in T 1,0T H . On the other hand, because the period map
Φ satisfies the Griffiths transversality, the image of Φ∗ is in the horizontal subbundle
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T 1,0
h D. This means that the preimage of T 1,0

h D under (ΦH)∗ contains both T 1,0T and
the closure of T 1,0T , which is T 1,0T H . This finishes the proof.

Proof of Theorem 5.6. By Theorem 5.3, we can see that T H is a bounded domain
in CN . Therefore, once we show T H is domain of holomorphy, the existence of Kähler-
Einstein metric on it follows directly from the well-known theorem by Mok–Yau in
[11].

In order to show that T H is a domain of holomorphy in CN , it is enough to
construct a plurisubharmonic exhaustion function on T H .

Let f be the exhaustion function on D constructed in Proposition 5.8, whose Levi
form, when restricted to the horizontal tangent bundle T 1,0

h D of D, is positive definite
at each point of D. We claim that the composition function f ◦ΦH is the demanded
plurisubharmonic exhaustion function on T H .

By the Griffiths transversality of ΦH , the composition function f ◦ΦH : T H → R

is a plurisubharmonic function on T H . Thus it suffices to show that the function f◦ΦH

is an exhaustion function on T H , which is enough to show that for any constant c ∈ R,
(f ◦ ΦH)−1(−∞, c] = (ΦH)−1

(

f−1(−∞, c]
)

is a compact set in T H . Indeed, it has
already been shown in [5] that the set f−1(−∞, c] is a compact set in D. Now for any
sequence {pk}∞k=1 ⊆ (f ◦ ΦH)−1(−∞, c], we have {ΦH(pk)}∞k=1 ⊆ f−1(−∞, c]. Since
f−1(−∞, c] is compact inD, the sequence {ΦH(pk)}∞k=1 has a convergent subsequence.
We denote this convergent subsequence by {ΦH(pkn

)}∞n=1 ⊆ {ΦH(pk)}∞k=1 with kn <
kn+1, and denote limk→∞ ΦH(pk) = o∞ ∈ D. On the other hand, since the map ΦH

is injective and the Hodge metric on T H is induced from the Hodge metric on D,
the extended period map ΦH is actually a global isometry onto its image. Therefore
the sequence {pkn

}∞n=1 is also a Cauchy sequence that converges to (ΦH)−1(o∞) with
respect to the Hodge metric in (f ◦ΦH)−1(−∞, c] ⊆ T H . In this way, we have proved
that any sequence in (f ◦ ΦH)−1(−∞, c] has a convergent subsequence. Therefore
(f ◦ ΦH)−1(−∞, c] is compact in T H , as was needed to show.
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