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AUTOMATIC CORRECTION OF IMAGE INTENSITY
NON-UNIFORMITY BY THE SIMPLEST TOTAL VARIATION
MODEL*

ANA BELEN PETRO', CATALINA SBERT', AND JEAN-MICHEL MOREL}

Abstract. Extending if possible the spectacular applications of the total variation model in
image processing, this paper proposes an extension of the TV model to attenuate the effects of
non-uniform illumination in digital images. We compare the simplest possible linear algorithm and
the simplest possible total-variation based algorithm. The comparison demonstrates once again that
the total variation model improves images with minimal halo artifacts. We show that with a single
contrast parameter (which keeps the same value in most experiments), the total variation model
delivers state of the art results. They compare favourably to results obtained with more complex
algorithms. Our algorithm is designed for all kinds of images, but with the special specification of
making minimal image detail alteration thanks to a first order fidelity term, instead of the usual
zero order term. Experiments on non-uniform medical images and on hazy images images illustrate
significant perception gain.

Key words. Total variation, Poisson equation, gradient-based methods, non-uniform illumina-
tion, color perception theory.
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1. Introduction. The gradient-based image processing techniques and the Pois-
son equation have been used in several areas of image processing. The motivation to
use gradients is based on the Retinex theory of Land and McCann [18] which states
that the human visual system is more sensitive to illumination differences than to
absolute luminance. A number of applications based on this technique have been
developed, such as high dynamic range compression [9], Poisson image editing [25],
Retinex [23], [19], contrast enhancement [24], [3], shadow removal [10], cartoon-texture
decomposition [31], etc.

In the gradient domain, the goal is to find the function u whose gradient field
is the nearest to some given vector field V in L, norm. This problem is solved by
minimizing the functional

p/2

) [Ivu=vipde= [ (S (V) - Vi@l ) de,

and for the special case p = 2, the solution satisfies a Poisson equation. Depending
on the choice of the vector field V many applications have been developed, like for
example tuning large gradients for high dynamic range compression, amplifying small
gradients for increasing the contrast, seamless copy-paste or photomontage copying
the gradient of some part of an image into another image.

Illumination is one of the most important factors affecting the appearance of an
image. Adjusting the illumination conditions to obtain a uniform contrast across
the entire image can be difficult or impossible, depending on the imaging system. If
illumination is not uniform in the spatial domain, similar objects at different locations
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in the acquired image take on different intensity values, making it difficult to recognize
the objects based on the intensity values. This kind of artifact may be present in
magnetic resonance (MR) images due to the inhomogeneity of the applied magnetic
field, in microscopy images due to the nonuniform illumination of the light source, or
in underwater photography since the light absorption properties of the water varies
as a function of the distance from the camera.

Medical image analysis methods, such as segmentation, are highly sensitive to
this kind of inhomogeneities. This is why a large number of methods for intensity
inhomogeneity correction have been proposed in the past twenty years. We refer to a
recent review [30] of such methods applied to MRI images.

In this work, we propose and investigate a very simple gradient domain method
that tries to eliminate the effect of nonuniform illumination and at the same time
preserves image detail. The goal of the retinex-like methods is relatable to the cartoon-
texture decomposition method. Nevertheless, the retinex method does not aim at an
additive decomposition. The nonuniform illumination present in the image does not
correspond to a background image, or to a cartoon version of the image. Our proposed
nonuniform illumination elimination result is a unique image where the image details
(cartoon and texture as well) are preserved and enhanced. In the Zhang et al. [32]
cartoon+texture method, the underlying model is an additive decomposition method
by the so called ROF TV + L? model. Similarly, the celebrated Yin et al. [31]
decomposition method develops a TV + L' model. It is easy to see that our model
here is different by comparing the form of the functionals:

« TV 4 L2 minu,v‘f:uﬂ,/nwu +(f — )
« TV 4 L. minu,v‘fzw/||Vu\|+|f—u|;

e our model, p =1,2: minu/HV(u — OlP 4 |u—1al* p=1or 2, where T is

the mean of u.

The main difference of the proposed retinex model with the cartoon + texture models
will be that the solution w is constrained to have its gradient as close as possible to
the data f. Instead, in the TV — LP models the emphasis is on limiting the total
variation of u, the “cartoon”, while much of the textural gradient of f is transferred
to v. So the gradient of the original data f is split between cartoon and texture. In
short in a cartoon+texture model the solution is given by two functions u and v,
while in our model there is only one solution function, u, which is required to be
as similar to f as possible. Considering for example the experiment in figure 1, it is
clearly seen that the nonuniform illumination, eliminated by our proposed method,
does not correspond to a background image or to a cartoon image. Indeed, the main
result of the method stills contains the cartoon and the texture part together. The
difference of original and restored contains the non uniform illumination and only a
minor part of the gradient information.

We now give a detailed justification of the proposed model. Preserving the details
is more or less equivalent to preserving the image gradient. Thus the functional should
have a term of the type (1), with V. = Vf. To make the image illumination more
uniform, the simplest way that comes to mind is to minimize the image variance

1 —\2
(2) @/ﬂ(u—u) dx,

where @ represents the mean value of the image and where the domain of integration



TV CORRECTION OF NON-UNIFORM ILLUMINATION 93

Fic. 1. Left: Original image. Center: Result of our method. Right: Difference between previous
images. This difference keeps as little as possible information from the original image gradient. The
cartoon part and the texture part are still present together in the corrected image.

Q is the image domain. This leads to combine the variational terms (1-2) into a single
functional

(3) J(u):/Q||Vusf||pd:v+%/Q(ufﬁ)2dx,

where )\ is a constant that controls the trade-off between both terms. In this work,
we shall consider and compare the linear case p = 2, and the nonlinear case p = 1.
For p = 2, when minimizing the first term of the above functional alone, the solution
is u = f + k where k is an arbitrary constant, but if we stretch the solution range
to the interval [0,255] the result is equivalent to stretching the original image f to
this interval. Minimizing only the variance term of the functional (3) yields instead a
constant image. By minimizing both terms together, it is expected that image detail
will be maintained, but that the image variance will decrease. As a consequence,
the solution of (3) will generally satisfy maxu — minu < max f — min f. It follows
that in practice one can stretch linearly the dynamics of the image w minimizing
(3), by applying an affine function v = au + b to the result so that minv = 0 and
maxv = 255. In that way, we shall observe in all examples that a > 1, so that a
serious enhancement of the details of f is obtained. We shall therefore call solution
of (3) the image v obtained from v« minimizing (3).

We will show that this model acts as a high pass filter. In the literature one can
find similar Wiener-like filters, [24], [22], [9], [23]. Other models like the so called
multiscale retinex methods [14] are used to remove the low frequency illumination
components while preserving the high frequency reflectance components. They can
also be seen as nonlinear high pass filters, and the same consideration applies to filters
that try to model the human visual system [27], [12].

The paper is organized as follows Section 2 presents the variational model and
solves exactly in the Fourier domain, for p = 2, its associated screened Poisson equa-
tion. Section 3 presents the model for p = 1 and solves it by Chambolle’s projection
algorithm. Section 4 presents experimental comparative results and a final discussion.

2. The model for p = 2. Given an image f, the goal is to find a function u
whose vector gradient is close to the vector gradient of f, but with reduced variance
to compensate for illumination inhomogeneities. The objective function to minimize
is

(4) J(u):/QHVu—Vszdstrg/Q(ufﬂfdx.
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The Euler-Lagrange equation is in appearance nonlinear but we can simplify w.l.o.g.
the model by considering that the mean value of u coincides with the mean value of
f. With this condition, the function v that minimizes the functional J satisfies the
Euler-Lagrange equation

(5) AMu—f)—Au+Af=0, over
with homogeneous Neumann boundary condition

Ou
o 0, over 09,

where n is the normal vector to the boundary. The equation (5) is known as a
screened Poisson equation.

2.1. Independence of the mean value. It remains to prove that imposing a
mean value to the solution is irrelevant. Consider the problem

6
©) Ju =0 in 90

{)\u—Au: “Af+AE inQ

where K is a constant and A > 0. It is well known that the problem (6) has a unique
solution when A > 0. Let u; and uy be two solutions of (6) with constants K; and
K> respectively. Then it is easily checked that

ul—u2:K1—K2.

Working (e.g.) with eight-bit digital images, the range of values of the image is the
interval [0, 255]. When solving the problem (6) in the image context, the final solution
must be stretched on this range as mentioned above, to get the best out of relative
the contrast gain attained by the method. Consider u; and wus, solutions of (6) for
two constants K; and K5 respectively and let w7, 1z be the associated solutions in
the range [0, 255]. Setting M; = maxu; and m; = minu;, ¢ = 1,2 we have

255
%

= m(u -m;), =12,

but M; = Ms + K1 — K5 and m; = mgy + K1 — Ko, which implies w7 = us. We
conclude that the final solution is independent of the constant K, so from now on we
will consider K = 0.

2.2. The screened Poisson equation as a high pass filter. This section
analyzes the solution of the screened Poisson equation

A — Au=—-Af

as the result a high pass filter of the function f, and more precisely as a “center-
surround” filter, namely the subtraction from the image of the same image convolved
with a local radial low pass filter. Solving the equation in the Fourier domain yields

2 2
wI—i—wy ~

7 =2 Y
(™ " >\+wg+w§f
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FiG. 2. The frequency domain filter for A = 0.1 and A = 50.

The frequency filter acts as a high pass filter when X increases as illustrated in Figure
2. Starting from equation (7) the frequency filter can be decomposed as

2 2
(8) _Watwy o A

A+ w2 + w2 A+ w2 + w2
Computing the inverse Fourier transform of this filter indicates that the solution of
the screened Poisson equation is obtained by convolving the image f with a spatial
domain filter. More precisely, the inverse Fourier transform of the first term (8) is a
Dirac delta function 6(x,y). The second term is radially symmetric and interpretable
using the Hankel transform [4]. Denoting by H{f} the Hankel transform of f(r), we
have

1

H—l{a2 — r2} = Ko(ar)

where K is the zeroth order modified Bessel function of second kind. Then the inverse
Fourier transform of the frequency filter (8) is

(9) 5(a,9) — 5= Ko (VAGE T 1))

Convolving the filter (9) with f yields the solution of the screened Poisson equation

(10) u(e,y) = Ja,9) ~ 5= Ko (VAGE T 92) * f(a,).

Thus, the solution is the difference between the data function and a blurred version
of it with the Ky filter. This filter acts as a center-surround filter, as illustrated in
Figure 3. Center-surround filters of this kind model the human perception of colours

[15], [3].

L L
[ Lo 15 0

Fi1G. 3. The zeroth order modified Bessel function of second kind Ko(r)
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2.3. Numerical solution by DFT. We want to solve the problem
oy fru-suear o
= in 09}

where A > 0. We can solve the screened Poisson equation (11) using the discrete
Fourier transform. Like in [24], the Neumann boundary condition is implicitly im-
posed by extending the original image symmetrically across its sides, so that the
extended image, which is four times bigger, becomes symmetric and periodic. The
discrete Fourier transform (DFT) permits to compute directly the Fourier coefficients
of a band-limited and (J, L)-periodic function u from its samples u;; on a J x L grid.
The output of the algorithm is an image which is the result of applying the screened
Poisson equation to each color channel separately, followed by a simplest color balance
[20] with a 0.2% of saturation. The discrete Fourier transform (DFT) permits to com-
pute directly the Fourier coefficients of a band limited and (J, L)-periodic function u
from its samples u;; on a J x L grid. The solution in the Fourier domain is given by

(G eee)y) o
(A )"+ (5)7)

Applying the discrete inverse Fourier transform yields the solution wu.

In eight bit digital images the range is [0,255]. The best results are obtained
when a certain small percentage of pixels are saturated at 255 and 0, as shown in [20].
The proposed model is applied to the result of a simplest color balance with 0.2%
saturation, and the final result is obtained by applying to the solution a simplest
color balance again.

(12) amn =

3. The model for p = 1. For p =1, the objective function to minimize is

(13) J(u):/Q||Vu7Vf||dx+%/Q(uff)2dx,

where A is a constant that controls the trade-off between both terms. Setting v = u— f
permits to rewrite the functional (13) in the classic “T'V-denoising” [28] form as

(14) 3w = [ IVollde+ 5 [ (0= (F = PP

for which numerous numerical approaches have been proposed. Classical techniques
use the associated Euler-Lagrange equation. Rudin, Osher and Fatemi [28] used a time
marching scheme to reach the steady state of the parabolic equation. This method
can be slow. Chan, Golub and Mulet [7] proposed to introduce an additional variable

|§5| ) This method can be viewed as a dual method. In an

extended dual formulation Chambolle [5] proposed a now-classic fast algorithm which
we shall use here for the sake of simplicity. More recently Goldstein and Osher [13]
have shown that the Bregman iteration can be used to solve constrained minimization
problems; they propose a “Split Bregman” method and have applied this technique to
the Rudin-Osher-Fatemi functional for image denoising. The Split-Bregman method
can be tested on any uploaded image with the demo associated with the paper [11],
which gives all implementation details.

to linearize the term div (
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3.1. Solution by Chambolle’s projection algorithm. For our application
we used the dual approach introduced by Chambolle in [5]. In the discrete setting,
denote by X = IRV*N so that the image u belongs to X and the vector field p to
Y = X x X. The discrete total variation is

Fy(u) = Vu)ii| = max <p,Vu>y.
() IS%:SNK Ji PEYIpif|SLY(ig)

We introduce the discrete divergence div as the dual operator of V, i.e., for every
p €Y and u € X we have

< —=divp,u >x=<p,Vu >y .

Then, we have
(15) Fy(u) = 1;33( < divp,u >
where

V={peYlpyl> =1<0,(j)}
Chambolle uses a dual formulation for solving the problem
(16) min Fafu) + 5 |[u — gl &

u€X 2

where g € X. He shows [5] that the solution u of (16) is given by
(17) u=g—11g(g)
where H%K(~) is the orthogonal projection onto the convex set %K, with

K={divp: peY, |pi | <1,Vi,3}.

To compute this projection a semi-implicit fixed point iteration is applied: p® = 0
and

(18) p’-’ﬂ _ Dij t+ vVIdivp" — )\g]m‘.
©J 1+ v|V[divp™ — Agl; ;]

It is shown in [5] that if v < 1/8, then g—divp™ /A converges to the solution of (16). In
practice, convergence is generally observed as long as v < 1/4. In a subsequent paper
Chambolle [6] has proposed a modification of his projection algorithm, and Aujol
[1] shows that this modification can be seen as a particular case of a more general
algorithm proposed 30 years ago by Bermudez and Moreno [2]. To solve (14) this
algorithm was used with g = f — f, v = 0.24, and the stopping criterion

|[p" Tt —p™] < 1073|]p" — p°|.

The obtained solution by the minimization is v = f — f — divp™/A. Finally, we get
back the solution of (13) by u = v + f.

4. Results. In this section we present some applications of the models, and a
comparison of them. These include non uniform illumination correction, contrast
enhancement and edge detection.
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mnet for Lena Sonnet for Lena Sonnet for Lena

O dear Lena,
Tt is hard some
1 thought the
1f only your po
- Alas! First wh
1 found that your cheeks belong to only you.
Your silky hair contains a thousand lines

Hard to match with sums of discrete cosines
And for your lips, sensual and tactual

Thirteen Crays found not the proper fractal.
And while these sethacks are all quite severe

1 might have fixed them with hacks here or there
But when filters took sparkle from your eyes

1 said, ‘Damn all this. Il just digitize."

all this. Ill just digitize

Thomas Colthurst Thomas Colthurst

T i
| e

FiG. 4. Left: Original Image. Middle: Result with p =2, A = 0.0005. Right: Result withp =1,
A =0.001

4.1. Non uniform illumination correction. Illumination is one of the most
important factors affecting the appearance of an image. Figure 4 shows an example
of a text image with nonuniform illumination. The result of the two models p = 2
and p = 1 are similar. In Figure 4 we show the result for p = 2 with A = 0.0005 and
for p =1 with A = 0.001 because both results have the same variance.

In ophthalmology the use of advanced fundus cameras has become a standard
imaging modality to diagnose diseases such as glaucoma, diabetic retinopathy etc. A
good diagnosis depends on the quality of the image, which requires a good contrast
of the relevant objects on the retina such as the blood vessels or the optic disk, and
is favoured by a uniformity of the retina illumination. The classic methods to process
this kind of images mostly try to estimate the illumination or the bias field, using the
commonly used terminology, and subtract it from the original image to obtain the
final result [17], [16]. There are several works whose aim is the detection of retinal
blood vessels, for example the work of Zhang et. al. [32], which results might be
improved using an initial image with non uniform illumination correction.

Figure 5 shows an example of a retina image and the result after applying our
model. We compare the results with the above mentioned classic method [16]. Clearly
the blood vessels are more visible in dark regions and the result can be used as
a preprocessing step in the blood vessel segmentation. The image and the result
of the method in [16] come from the public fundus images database DRIIL (Digital
Retinal Images for ILlumination correction http://projects.ubmi.feec.vutbr.cz/
ophthalmo).

Another example for potential applications is given by magnetic resonance im-
ages (MRI), where the intensity inhomogeneity is due for example to radio frequency
inhomogeneities or to variations in the static magnetic field. Many works have been
dedicated to the correction of this kind of inhomogeneity. Vovk et al. [30] propose
a classification of the correction methods into prospective methods, that attempt to
improve the image acquisition process, and the retrospective methods that work with
the information of the acquired image. The retrospective methods can be classified
into filtering, surface fitting, segmentation and histogram based. The filtering meth-
ods assume that the nonuniform illumination is a low frequency artifact that must
be removed. This is achieved by subtracting from the image its low-pass filtered ver-
sion. To this group belong the homomorphic filtering and the unsharp masking. The
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Fic. 5. Top left: original image. Top right: result for p = 2 with A = 0.0005. Bottom left:
result for p =1 with A = 0.001. Notice that with p = 1 the halo effect near the object’s boundary is
much reduced. Bottom right: result of the model in [16].

method we have proposed for p = 2 belongs to this group, as explained in Section 2.2.
Note that when ) increases, the support of this filter becomes smaller.

Figure 6 shows the result of our models on MRI images with intensity inho-
mogeneities. Clearly the dark regions become more visible and image details are
preserved.

Fic. 6. Left: original image. Middle: Result for p =2 with A = 0.001. Right: Result for p =1
with A = 0.001. Again, notice the absence of halo effect with p = 1.
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4.2. Contrast enhancement results. The recently proposed contrast en-
hancement methods give increasingly good results [20], [24], [21], [14], [27], etc. In
this section we compare the result of the linear model, p = 2, with p = 1, with the
state of the art automatic color enhancement (ACE) [27] and with the equally classic
multiscale retinex with color restoration (MSRCR) [14]. ACE results were obtained
from the online fast implementation of this algorithm [12] and we have implemented
our own (MSRCR).

Figure 7 presents a low contrast image and the corresponding results of ACE,
MSRCR and our model with the parameter A = 0.0001. Observe that the high
frequencies (for example in the letters on the fire-fighter helmet) are better preserved
with our model. Another example of contrast enhancement is shown in Figure 8.

Fic. 7. Top left: Original Image. Top right: Result of ACE. Bottom left: Result with MSRCR
(multiscale retinex). Bottom right: our model with A = 0.0001.

Observe that the best result in this case is with the ACE method as the MSR method
leaves a very saturated image.

4.3. Comparison of the models and conclusions. In unsharp masking [26]
the original image is enhanced by subtracting a smooth version of the original image,
which always also gives a center-surround filter interpretation. As we have shown in
a previous section our linear model acts as an unsharp mask when A increases. The
unsharp models can produce artifacts, such as halos around the edges. These artifacts
are nevertheless reduced with our total variation model (p = 1), since it keeps the
sharp edges. Indeed the TV regularization term penalizes all intensity variations in
a uniform way, in contrast to the linear model which penalizes larger changes more
heavily. A model that does not preserve edges well enough will inevitably cause halo
artifacts. Figure 9 shows an example of this halo artifact for the linear model. It also
shows that this effect does not occur with the TV model.

Figure 10 shows an extract of the image in Figure 7, and we can observe again
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Fia. 8. Top left: Original Image. Top right: Result of ACE. Bottom left: Result with MSRCR.
Bottom right: our model with A = 0.0001. The retinex result is the most readable, but looses perhaps
too much contrast in the sky, removing also completely the twilight effect.

Fic. 9. Left: original image. Middle : result for the linear model with A = 0.001. Right : result
for the TV model with A = 0.001. The effects of the linear and total variation model are good and
very similar, but with again a reduced halo effect for p = 1.

the halo effect on the fire-fighter’s helmet for the linear model. Thus, the experiments
confirm once again the observations made in [22] as to the superiority of the L' model
to deal with image contrast without introducing artifacts, and add one new item to
the long list of remarkable applications [8] of the total variation to image processing.
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