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Abstract. An important property for finite difference schemes designed on curvilinear meshes
is the exact preservation of free-stream solutions. This property is difficult to fulfill for high order
conservative essentially non-oscillatory (WENO) finite difference schemes. In this paper we explore
an alternative flux formulation for such finite difference schemes [5] which can preserve free-stream
solutions, based on the numerical technique for the metric terms [13], which can be applied to this
alternative flux formulation but is difficult to be applied to the standard finite difference formulation.
Free-stream and vortex preservation properties are investigated, and comparison with standard finite
difference WENO schemes is made. Theoretical derivation and numerical results show that the finite
difference WENO schemes based on the alternative flux formulation can preserve free-stream and
vortex solutions on both stationary and dynamically generalized coordinate systems, hence giving
much better performance than the standard finite difference WENO schemes for such problems.

Key words. High order finite difference scheme, weighted essentially non-oscillatory scheme,
curvilinear meshes.
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1. Introduction. In this paper, we are interested in high order accurate con-
servative finite difference weighted essentially non-oscillatory (WENO) schemes on
curvilinear meshes. Conservative finite difference schemes share many advantages
of finite volume schemes, such as conservation and high order accuracy, yet they are
much less expensive than finite volume schemes in multi-dimensions. The first WENO
scheme was a third order finite volume scheme designed in [6]. Standard finite differ-
ence WENO schemes [4, 1, 9] use the idea of reconstruction, which is the main relevant
WENO procedure for designing both conservative finite volume and conservative fi-
nite difference schemes to solve hyperbolic conservation laws. In these standard finite
difference WENO schemes, the derivative f(u)x is approximated by a numerical flux
difference, and the numerical flux is based on the reconstruction of the physical flux
f(u) rather than on the solution u as in finite volume methods.

When finite difference schemes are applied to curvilinear meshes (also referred to
as generalized coordinate systems), free-stream preservation is an important property
because errors from nonpreserved free-stream hide small physical oscillations, such as
turbulent flow structures or aero-acoustic waves. Research [13, 7] shows that if the
free-stream preservation condition is not satisfied, it will cause large errors and even
lead to numerical instabilities for high-order schemes.

For the numerical fluxes in standard finite difference WENO schemes, since the
reconstruction is performed directly on the flux values {f(ui)} (or {f+(ui)} and
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{f−(ui)} with a flux splitting f(u) = f+(u) + f−(u)), not on the point values of
the solution {ui}, it is difficult to maintain free-stream solutions exactly in curvi-
linear meshes for multi-dimensional flow computation. This is because the fluxes in
curvilinear coordinates involve metric derivatives, resulting in non-exact cancellations
when nonlinear reconstructions are performed for different fluxes.

Visbal and Gaitonde [13] carefully studied the metric evaluation errors for high-
order central type compact schemes and found that for the three-dimensional gener-
alized coordinate systems, the schemes can preserve the free-stream condition if they
use the same formulas for the evaluation of both the metric and convection terms by
adopting a conservative form of those metric terms, originally proposed by Thomas
and Lombard [11]. However, it is difficult to apply the technique in [11, 13] to the
standard conservative finite difference WENO schemes which are highly nonlinear. In
[7], the free-stream and vortex preservation properties of the standard finite differ-
ence WENO schemes on stationary curvilinear grids have been investigated. It was
found that standard finite difference WENO schemes could preserve the free-stream
condition in the Cartesian coordinate system, but not in the generalized coordinate
system. In addition, the schemes in generalized grids have a rather large error arising
from the metric terms on randomized grids and three-dimensional wavy grids. In [2],
Cai and Ladeinder also mentioned the difficulty of maintaining free-stream conditions
in generalized curvilinear coordinate systems for high order finite difference WENO
schemes.

Recently, an alternative flux formulation for the conservative finite difference
WENO scheme, originally proposed in [10], was systematically studied in [5]. In
this method, the high order WENO interpolation procedure is applied to the solution
{ui} itself rather than to the flux functions {f(ui)}. In [5], several advantages of
this alternative flux formulation, including the increased flexibility to use arbitrary
monotone fluxes in the scalar case and arbitrary approximate Riemann solvers in the
system case, as well as a narrower effective stencil when applying the Lax-Wendroff
time discretization, were found. Another major advantage of this alternative flux
formulation is that it allows us to apply the technique in [11, 13] to obtain the free-
stream preserving property for high order conservative finite difference schemes. This
advantage will be fully investigated in this paper.

The organization of the remaining sections is as follows. In Section 2, we review
the alternative flux formulation for finite difference WENO schemes introduced in
[5], using the one-dimensional Euler system as an example. The numerical methods
for the three-dimensional Euler equations on generalized meshes and the analysis of
the free-stream preserving condition will be discussed in Section 3. In Section 4,
extensive numerical examples are provided to demonstrate the free-stream and vortex
preservation performance of the new method in comparison with the standard finite
difference WENO schemes. Concluding remarks are given in Section 5.

2. Alternative flux formulation in one-dimension. The following one-
dimensional Euler equations with uniform grids are used for the discussion of the
scheme.

(1)
∂Q

∂t
+

∂F

∂x
= 0,

where

Q = (ρ, ρu, e)T ,

F = (ρu, ρu2 + p, u(e+ p))T .(2)
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On a uniform mesh xi = i∆x, we would like to find a consistent numerical flux
function

F̂i+ 1

2

= F̂ (Qi−r, . . . , Qi+s),(3)

such that the flux difference approximates the derivative F (Q(x))x to k-th order
accuracy

1

∆x
(F̂i+ 1

2

− F̂i− 1

2

) = F (Q(x))x|xi
+O(∆xk).(4)

The alternative flux formulation, first developed in [10] and extensively explored
in [5] in the context of WENO interpolation, is given as follows

F̂i+ 1

2

= Fi+ 1

2

+

[(r−1)/2]
∑

ℓ=1

a2ℓ∆x2ℓ

(

∂2ℓ

∂x2ℓ
F

)

i+ 1

2

+O(∆xr+1),(5)

which guarantees k = r-th order accuracy in (4). The coefficients a2ℓ in (5) can
be obtained through Taylor expansion and the accuracy constraint (4). To get an
approximation with fifth order accuracy (k = 5 in (4), thus r = 5 in (5)), we have

F̂i+ 1

2

= Fi+ 1

2

−
1

24
∆x2 ∂

2F

∂x2
|i+ 1

2

+
7

5760
∆x4 ∂

4F

∂x4
|i+ 1

2

.(6)

The first term of the numerical flux in (6) is approximated by

Fi+ 1

2

= h(Q−

i+ 1

2

, Q+
i+ 1

2

)(7)

with the values Q±

i+ 1

2

obtained by a WENO interpolation based on neighboring point

valuesQj using the local characteristic variables [8, 3, 9]. The two-argument numerical
function h is based on an exact or approximate Riemann solver. For example, we can
use the Godunov flux, the Lax-Friedrichs flux, the HLLC flux, etc. The exact Riemann
solver is given by the exact solution of the conservation laws (1) with the following
step function as the initial condition

Q(x, 0) =

{

Q−
i+1/2 x ≤ 0;

Q+
i+1/2 x ≥ 0,

evaluated at the center x = 0 for t > 0 (this value is independent of t). The Godunov
flux is then given as h(Q−

i+ 1

2

, Q+
i+ 1

2

) = F (Q(0, t)). The detailed formulation of the

other numerical fluxes can be found in, e.g. [12].
The remaining terms of the numerical flux in (6) or (5) have at least ∆x2 in their

coefficients, hence they only need lower order approximations and they are expected
to contribute much less to spurious oscillations. It is the conclusion of [5] that these
remaining terms can be approximated by simple central approximation or one-point
upwind-biased approximation with suitable orders of accuracy, without using the more
expensive WENO procedure. Also, since we use Runge-Kutta time stepping in this
paper, rather than the Lax-Wendroff time discretization technique as in [5], we do not
expand ∂ℓF/∂xℓ as functions of Q and its spatial derivatives. We simply use fixed-
stencil interpolation on F directly. The details will be shown in the next section.
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3. Finite difference WENO scheme on curvilinear meshes.

3.1. Three-dimensional Euler equations. In Cartesian coordinates (x, y, z),
the three-dimensional Euler equations are

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0,(8)

where

Q = (ρ, ρu, ρv, ρw, e)T ,

E = (ρu, ρu2 + p, ρuv, ρuw, u(e+ p))T ,

F = (ρv, ρuv, ρv2 + p, ρvw, v(e + p))T ,

G = (ρw, ρuw, ρvw, ρw2 + p, w(e + p))T .

The governing equation (8) can be transformed in curvilinear coordinates
(ξ, η, ζ, τ)

∂Q̃

∂τ
+

∂Ẽ

∂ξ
+

∂F̃

∂η
+

∂G̃

∂ζ
= 0,(9)

where

Q̃ = Q/J,

Ẽ = ξ̃tQ+ ξ̃xE + ξ̃yF + ξ̃zG,

F̃ = η̃tQ+ η̃xE + η̃yF + η̃zG,

G̃ = ζ̃tQ+ ζ̃xE + ζ̃yF + ζ̃zG.

Here, we choose τ = t. The inverse Jacobian J−1 and the standard metrics are

J−1 =
∣

∣

∣

∂(x,y,z,t)
∂(ξ,η,ζ,τ)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∣

xξ xη xζ xτ

yξ yη yζ yτ
zξ zη zζ zτ
0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

,(10)







ξ̃x = ξx/J = yηzζ − yζzη, ξ̃y = ξy/J = zηxζ − zζxη, ξ̃z = ξz/J = xηyζ − xζyη,
η̃x = ηx/J = yζzξ − yξzζ , η̃y = ηy/J = zζxξ − zξxζ , η̃z = ηz/J = xζyξ − xξyζ ,

ζ̃x = ζx/J = yξzη − yηzξ, ζ̃y = ζy/J = zξxη − zηxξ, ζ̃z = ζz/J = xξyη − xηyξ,

(11)







ξ̃t = ξt/J = −[xτ ξ̃x + yτ ξ̃y + zτ ξ̃z],
η̃t = ηt/J = −[xτ η̃x + yτ η̃y + zτ η̃z],

ζ̃t = ζt/J = −[xτ ζ̃x + yτ ζ̃y + zτ ζ̃z].

(12)

The time-derivative term in equation (9) is split as follows:

(Q/J)τ = (1/J)Qτ +Q(1/J)τ .

Thus, the governing equation (9) can be written as

∂Q

∂τ
= −J

[

∂Ẽ

∂ξ
+

∂F̃

∂η
+

∂G̃

∂ζ
+Q(1/J)τ

]

.(13)
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In the uniform flow (free-stream flow) regions, i.e. when Q, E, F and G are constants,
equation (13) is simplified as

∂Q

∂τ
= −J [ItQ+ IxE + IyF + IzG],(14)

where















Ix = (ξ̃x)ξ + (η̃x)η + (ζ̃x)ζ ,

Iy = (ξ̃y)ξ + (η̃y)η + (ζ̃y)ζ ,

Iz = (ξ̃z)ξ + (η̃z)η + (ζ̃z)ζ ,

It = (ξ̃t)ξ + (η̃t)η + (ζ̃t)ζ + (1/J)τ .

(15)

As discussed in [14], Ix = Iy = Iz = 0 constitutes a differential statement of surface
conservation, often termed the surface conservation law (SCL). It = 0 is the volume
conservation law (VCL). By substituting (10)-(12) into (15), we can see

(16)






















Ix = (yηzζ − yζzη)ξ + (yζzξ − yξzζ)η + (yξzη − yηzξ)ζ = 0,
Iy = (zηxζ − zζxη)ξ + (zζxξ − zξxζ)η + (zξxη − zηxξ)ζ = 0,
Iz = (xηyζ − xζyη)ξ + (xζyξ − xξyζ)η + (xξyη − xηyξ)ζ = 0,

It = −(xτ ξ̃x + yτ ξ̃y + zτ ξ̃z)ξ − (xτ η̃x + yτ η̃y + zτ η̃z)η − (xτ ζ̃x + yτ ζ̃y + zτ ζ̃z)ζ
+[xξ(yηzζ − yζzη)− xη(yξzζ − yζzξ) + xζ(yξzη − yηzξ)]τ = 0.

Then

∂Q

∂τ
= 0,(17)

that is, the uniform flow conditions are held. In a finite difference discretization, all
four of the identities Ix to It in equation (16) must hold numerically to achieve the
free-stream preserving condition. For stationary meshes, only the first three identities
for Ix, Iy and Iz are required.

3.2. The numerical scheme. We will construct numerical fluxes Êi+1/2,j,k,

F̂i,j+1/2,k and Ĝi,j,k+1/2 such that

Êi+1/2,j,k − Êi−1/2,j,k

∆ξ
= (Ẽ)ξ|(ξi,ηj ,ζk) +O(∆ξk),

F̂i,j+1/2,k − F̂i,j−1/2,k

∆η
= (F̃ )η|(ξi,ηj ,ζk) +O(∆ηk),

Ĝi,j,k+1/2 − Ĝi,j,k−1/2

∆ζ
= (G̃)ζ |(ξi,ηj ,ζk) +O(∆ζk).

The numerical flux Êi+1/2,j,k is obtained by the one dimensional WENO approxi-
mation procedure described in Section 2, with Q(ξ) = Q(ξ, ηj , ζk) and with j, k fixed.
We summarize the procedure in the following:

1. Get Q±
i+1/2,j,k through WENO interpolation on Q in curvilinear coordinates

(ξ, η, ζ, τ) in the ξ-direction for fixed j and k. Here the superscripts ± refer
to one-point left/right biased stencils.
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2. Construct the first term h(Q−
i+1/2,j,k, Q

+
i+1/2,j,k). For the metrics ξ̃x, ξ̃y, ξ̃z

and ξ̃t at the half point (ξi+1/2, ηj , ζk), we obtain them using fixed-stencil
interpolation approximation

ξ̃γ |i+1/2,j,k =

q1
∑

l=−p1

alξ̃γ |(i+l,j,k) +O(∆ξp1+q1+1),(18)

where p1+q1 = k, γ stands for x, y, z, or t and al are constants not dependent
on ∆ξ. For instance, when k = 5, we use central approximation and have

ξ̃γ |i+1/2,j,k ≈
1

256
(3ξ̃γ |i−2,j,k − 25ξ̃γ |i−1,j,k + 150ξ̃γ |i,j,k + 150ξ̃γ |i+1,j,k

− 25ξ̃γ |i+2,j,k + 3ξ̃γ |i+3,j,k).

3. For the term ∂2Ẽ/∂ξ2, since there is an extra ∆ξ2 as a coefficient, interpolate
only with (k − 2)-th order accuracy

∆ξ2
∂2Ẽ

∂ξ2
|i+1/2,j,k =

q1
∑

l=−p1

blẼ|(i+l,j,k) +O(∆ξp1+q1+1),(19)

where p1 + q1 = k and bl are constants independent of ∆ξ. When k = 5, the
following central approximation can be used

∆ξ2
∂2Ẽ

∂ξ2
|i+1/2,j,k ≈

1

48
(−5Ẽ|i−2,j,k + 39Ẽ|i−1,j,k − 34Ẽ|i,j,k − 34Ẽ|i+1,j,k

+ 39Ẽ|i+2,j,k − 5Ẽ|i+3,j,k).

4. Approximate the remaining terms similarly as in step 3. For example,

∆ξ4
∂4Ẽ

∂ξ4
|i+1/2,j,k =

q1
∑

l=−p1

clẼ|(i+l,j,k) +O(∆ξp1+q1+1),(20)

where p1 + q1 = k and cl are constants independent of ∆ξ. When k = 5, the
following central approximation can be used

∆ξ4
∂4Ẽ

∂ξ4
|i+1/2,j,k ≈

1

2
(Ẽ|i−2,j,k − 3Ẽ|i−1,j,k + 2Ẽ|i,j,k + 2Ẽ|i+1,j,k

− 3Ẽ|i+2,j,k + Ẽ|i+3,j,k).

5. Form the numerical flux as the sum of all the terms above

Êi+1/2,j,k =h(Q−
i+1/2,j,k, Q

+
i+1/2,j,k)−

1

24
∆ξ2

∂2Ẽ

∂ξ2
|i+1/2,j,k

+
7

5760
∆ξ4

∂4Ẽ

∂ξ4
|i+1/2,j,k + . . .(21)

Likewise, the numerical fluxes F̂i,j+1/2,k and Ĝi,j,k+1/2 are obtained by the one
dimensional WENO approximation procedure, with Q(η) = Q(ξi, η, ζk) and with i, k
fixed, or with Q(ζ) = Q(ξi, ηj , ζ) and with i, j fixed.
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Notice that Q±
i+1/2,j,k = Qℓ,j,k = Q if Q has the same value at all grid points.

Thus we have

h(Q−
i+1/2,j,k, Q

+
i+1/2,j,k) = h(Q,Q) = Ẽ(Q)|i+1/2,j,k

= (ξ̃tQ+ ξ̃xE(Q) + ξ̃yF (Q) + ξ̃zG(Q))|i+1/2,j,k.

Since E = E(Q), F = F (Q) and G = G(Q) are also constants, we have

h(Q−
i+1/2,j,k, Q

+
i+1/2,j,k) =

q1
∑

l=−p1

al(ξ̃tQ+ ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k,

∆ξ2
∂2Ẽ

∂ξ2
|i+1/2,j,k =

q1
∑

l=−p1

blẼ|(i+l,j,k)

=

q1
∑

l=−p1

bl(ξ̃tQ+ ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k,

∆ξ4
∂4Ẽ

∂ξ4
|i+1/2,j,k =

q1
∑

l=−p1

clẼ|(i+l,j,k)

=

q1
∑

l=−p1

cl(ξ̃tQ+ ξ̃xE + ξ̃yF + ξ̃zG)|i+l,j,k.

Thus, Êi+1/2,j,k has the form

Êi+1/2,j,k = Q

q1
∑

l=−p1

dlξ̃t|i+l,j,k + E

q1
∑

l=−p1

dlξ̃x|i+l,j,k

+ F

q1
∑

l=−p1

dlξ̃y|i+l,j,k +G

q1
∑

l=−p1

dlξ̃z |i+l,j,k,(22)

where dl are constants independent of ∆ξ. We therefore have the flux difference

Êi+1/2,j,k − Êi−1/2,j,k

∆ξ
= Q

1

∆ξ

q1
∑

l=−p1−1

elξ̃t|i+l,j,k + E
1

∆ξ

q1
∑

l=−p1−1

elξ̃x|i+l,j,k

+ F
1

∆ξ

q1
∑

l=−p1−1

elξ̃y|i+l,j,k +G
1

∆ξ

q1
∑

l=−p1−1

elξ̃z|i+l,j,k,(23)

where the el are constants not dependent on ∆ξ. We can see that, when Q are
constants, our scheme degenerates to a linear scheme. Since (Ẽ)ξ = Q(ξ̃t)ξ+E(ξ̃x)ξ+

F (ξ̃y)ξ +G(ξ̃z)ξ, we can get the approximation

(ξ̃γ)ξ =
1

∆ξ

q1
∑

l=−p1−1

elξ̃γ |i+l,j,k,

where γ stands for x, y, z or t.
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Similarity, in the η- and ζ-directions, we also have

F̂i,j+1/2,k − F̂i,j−1/2,k

∆η
= Q

1

∆η

q2
∑

m=−p2−1

fmη̃t|i,j+m,k + E
1

∆η

q2
∑

m=−p2−1

fmη̃x|i,j+m,k

+ F
1

∆η

q2
∑

m=−p2−1

fmη̃y|i,j+m,k +G
1

∆η

q2
∑

m=−p2−1

fmη̃z |i,j+m,k(24)

Ĝi,j,k+1/2 − Ĝi,j,k−1/2

∆ζ
= Q

1

∆ζ

q3
∑

n=−p3−1

gnζ̃t|i,j,k+n + E
1

∆ζ

q3
∑

n=−p3−1

gnζ̃x|i,j,k+n

+ F
1

∆ζ

q3
∑

n=−p3−1

gnζ̃y|i,j,k+n +G
1

∆ζ

q3
∑

n=−p3−1

gnζ̃z |i,j,k+n(25)

where fm and gn are all constants.

In the first step, Q̃, instead of Q, could also be used as the interpolation quantity
for achieving the formal order of accuracy. However, since Q̃ includes the Jacobian,
the weights evaluated in the weighted averaging procedure will be adversely affected,
even under the free-stream condition. For this reason, Q̃ values are not used for the
WENO interpolation procedure in our algorithm formulation. The validity of using
Q in our procedure is shown later.

3.3. SCL and VCL. For finite difference numerical methods, Thomas and Lom-
bard [11] gave the following “conservation” metric expressions instead of equation (11)







ξ̃x = (yηz)ζ − (yζz)η, ξ̃y = (zηx)ζ − (zζx)η, ξ̃z = (xηy)ζ − (xζy)η,
η̃x = (yζz)ξ − (yξz)ζ , η̃y = (zζx)ξ − (zξx)ζ , η̃z = (xζy)ξ − (xξy)ζ ,

ζ̃x = (yξz)η − (yηz)ξ, ζ̃y = (zξx)η − (zηx)ξ, ζ̃z = (xξy)η − (xηy)ξ.

(26)

Equations (11) and (26) are equivalent mathematically but not necessarily numeri-
cally. Visbal and Gaitonde [13] reported that a compact difference scheme, which is
applied to the generalized coordinate system, can preserve the free-stream condition
if the conservation form (26) of the metric terms is evaluated using the same formulas
as those used in the evaluation of the conservation terms, at least for free-stream
solutions. Here we use the same idea in our method. For example,

ξ̃x|i,j,k =
1

∆ζ

q3
∑

n=−p3−1

gn(yηz)|i,j,k+n −
1

∆η

q2
∑

m=−p2−1

fm(yζz)|i,j+m,k

=
1

∆ζ∆η

q3
∑

n=−p3−1

gnz|i,j,k+n

q2
∑

m=−p2−1

fmy|i,j+m,k+n

−
1

∆η∆ζ

q2
∑

m=−p2−1

fmz|i,j+m,k

q3
∑

n=−p3−1

gny|i,j+m,k+n.(27)
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Thus

Ix = (ξ̃x)ξ + (η̃x)η + (ζ̃x)ζ

=
1

∆ξ

q1
∑

l=−p1−1

elξ̃x|i+l,j,k +
1

∆η

q2
∑

m=−p2−1

fmη̃x|i,j+m,k +
1

∆ζ

q3
∑

n=−p3−1

gnζ̃x|i,j,k+n

=
1

∆ξ∆ζ∆η

q1
∑

l=−p1−1

el

q3
∑

n=−p3−1

gnz|i+l,j,k+n

q2
∑

m=−p2−1

fmy|i+l,j+m,k+n

−
1

∆ξ∆η∆ζ

q1
∑

l=−p1−1

el

q2
∑

m=−p2−1

fmz|i+l,j+m,k

q3
∑

n=−p3−1

gny|i+l,j+m,k+n

+
1

∆η∆ξ∆ζ

q2
∑

m=−p2−1

fm

q1
∑

l=−p1−1

elz|i+l,j+m,k

q3
∑

n=−p3−1

gny|i+l,j+m,k+n

−
1

∆η∆ζ∆ξ

q2
∑

m=−p2−1

fm

q3
∑

n=−p3−1

gnz|i,j+m,k+n

q1
∑

l=−p1−1

ely|i+l,j+m,k+n

+
1

∆ζ∆η∆ξ

q3
∑

n=−p3−1

gn

q2
∑

m=−p2−1

fmz|i,j+m,k+n

q1
∑

l=−p1−1

ely|i+l,j+m,k+n

−
1

∆ζ∆ξ∆η

q3
∑

n=−p3−1

gn

q1
∑

l=−p1−1

elz|i+l,j,k+n

q2
∑

m=−p2−1

fmy|i+l,j+m,k+n

= 0.

(28)

Similarly, we also have

Iy = 0, Iz = 0.

Thus, we can get the SCL.

For moving meshes, the VCL identity It = 0 must also be satisfied. We simply
invoke the VCL identity to evaluate (1/J)τ , i.e.

(1/J)τ = −[(ξ̃t)ξ + (η̃t)η + (ζ̃t)ζ ](29)

For the standard conservative finite difference WENO methods [4] in the gener-
alized coordinates, the idea of Visbal and Gaitonde [13] cannot be applied, since it
requires the same scheme for the evaluation of the metric and the convection terms.
The Jacobian and metrics cannot be evaluated by the upwinding procedure of WENO
because they cannot be split to the nonlinear upwind components. Thus, compact
difference formulas are used to evaluate the metric terms in [7].

4. Numerical results. In this section, we will discuss the results of both sta-
tionary and dynamical meshes. We denote S-LF and S-R as the standard finite dif-
ference WENO scheme of Jiang and Shu [4] with the Lax-Friedrichs flux splitting and
the Roe splitting respectively. A-LF and A-HLLC are used to denote the methods
under consideration with the alternative flux formulation and with the Lax-Friedrichs
flux and the HLLC flux respectively. The third-order TVD Runge-Kutta scheme is
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used for time integration

u(1) = un +∆tL(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tL(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tL(u(2)).

The specific heat ratio of the fluid in the test cases is set as γ = 1.4. Compact
difference formulas, as described in [7], are used to evaluate the metric terms for the
standard finite difference WENO scheme.

4.1. Free-stream preserving properties. The fluid in the test cases is nondi-
mensionalized by the density and the speed of sound for the free-stream condition.
In this test, an x-direction free-stream of Mach number 0.5 is imposed. Thus the
y-direction velocity v and the z-direction velocity w are expected to remain machine
zero.

Example 1. Firstly , we will test the free-stream preservation property on a
stationary wavy grid, which is expressed as following:

xi,j,k = xmin +∆x0

[

(i − 1) +Ax sin
nxyπ(j − 1)∆y0

Ly
sin

nxzπ(k − 1)∆z0
Lz

]

,

yi,j,k = ymin +∆y0

[

(j − 1) +Ay sin
nyzπ(k − 1)∆z0

Lz
sin

nyxπ(i − 1)∆x0

Lx

]

,

zi,j,k = zmin +∆z0

[

(k − 1) +Az sin
nzxπ(i − 1)∆x0

Lx
sin

nzyπ(j − 1)∆y0
Ly

]

,(30)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax, k = 1, 2, · · · ,Kmax,

∆x0 = Lx

Imax−1 , ∆y0 =
Ly

Jmax−1 , ∆z0 = Lz

Kmax−1 ,

xmin = −Lx

2 , ymin = −
Ly

2 , zmin = −Lz

2 .

The wavy grid parameters used in this test are Imax = Jmax = Kmax = 21, Lx = Ly =
Lz = 4, Ax = Ay = Az = 1, and nxy = nxz = . . . = 4, and the grid is shown in Fig. 1.
Time step is taken as ∆t = 0.05, and flow fields at t = 10 are examined. We list the
L2 errors of v and w in Table 1. We can see that A-LF and A-HLLC have errors less
than 10−14, which are close to the machine zero. However, the S-LF and S-R schemes
have large errors on the level of 10−3. These demonstrate that our schemes with the
alternative flux formulation are appropriate for free-stream preservation, while neither
S-LF nor S-R could preserve free-stream solutions.

Table 1

L2 errors of v and w components in the free-stream preservation test on a wavy grid.

v-component w-component

S-LF 9.33E-03 9.32E-03
S-R 9.34E-03 9.18E-03
A-LF 2.03E-15 1.54E-15

A-HLLC 4.05E-15 2.67E-15
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Fig. 1. A stationary wavy grid for the free-stream preserving test.

Example 2. Next, we will test the free-stream preservation on a randomized
grid. Uniform grids constructed for the mesh ∆x = ∆y = ∆z = 0.2 with 21× 21× 21
grid points are randomized with 20% magnitude grid spacing in a random direction,
and the mesh is shown in Fig. 2. The same time step ∆t = 0.05 is used. We also test
our results at t = 10. Results for L2 errors of v and w are shown in Table 2. Similar
to our observations in Example 1, the S-LF and S-R schemes both have large errors,
while A-LF and A-HLLC have errors close to machine zero. So, on a randomized grid,
A-LF and A-HLLC can also preserve free-stream solutions.

Fig. 2. A stationary randomized grid for the free-stream preserving test.

Example 3. In this example, we consider the free-stream condition on the spher-
ical grid shown in Fig. 3. The computational domain is chosen as [2, 4]× [0, 2]× [−2, 0]
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Table 2

L2 errors of v and w components in the free-stream preservation test on a randomized grid.

v-component w-component

S-LF 7.70E-02 7.53E-02
S-R 1.21E-01 1.18E-01
A-LF 1.76E-15 1.61E-15

A-HLLC 3.16E-15 2.92E-15

on the r-θ-φ coordinate systems:

x = r cos(πθ/6) cos(πφ/6),

y = r sin(πθ/6) cos(πφ/6),

z = r sin(πφ/6).(31)

A uniform mesh with 21× 21× 21 grid points is used on the computational domain.
The time step was taken to be ∆t = 0.02, and the results were again tested at the
final time of t = 10. L2 errors of v and w are shown in Table 3. We can see that the
numerical results for our schemes with the alternative formulation can reach machine
zero, and the free-stream condition is preserved. On the other hand, both S-LF and
S-R schemes have large errors, and fail to preserve the free-stream condition.

Fig. 3. A stationary spherical grid for the free-stream preserving test.

Table 3

L2 errors of v and w components in the free-stream preservation test on a spherical grid.

v-component w-component

S-LF 2.80E-07 2.67E-07
S-R 1.34E-06 6.79E-07
A-LF 5.92E-16 5.42E-16

A-HLLC 1.11E-15 1.09E-15
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Example 4. Finally, we will test the free-stream preservation on a moving wavy
mesh:

xi,j,k(τ ) = xmin +∆x0

[

(i− 1) + Ax sin(2πωτ ) sin
nxyπ(j − 1)∆y0

Ly

sin
nxzπ(k − 1)∆z0

Lz

]

,

yi,j,k(τ ) = ymin +∆y0

[

(j − 1) +Ay sin(2πωτ ) sin
nyzπ(k − 1)∆z0

Lz

sin
nyxπ(i− 1)∆x0

Lx

]

,

zi,j,k(τ ) = zmin +∆z0

[

(k − 1) + Az sin(2πωτ ) sin
nzxπ(i− 1)∆x0

Lx

sin
nzyπ(j − 1)∆y0

Ly

]

,

(32)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax, k = 1, 2, · · · ,Kmax,

∆x0 = Lx

Imax−1 , ∆y0 =
Ly

Jmax−1 , ∆z0 = Lz

Kmax−1 ,

xmin = −Lx

2 , ymin = −
Ly

2 , zmin = −Lz

2 ,

with the specified parameters Imax = Jmax = Kmax = 31, Lx = Ly = Lz = 12,
Ax = Ay = Az = 1.5, and nxy = nxz = . . . = 4, and the frequency of oscillation
ω = 1.0. We choose the time step ∆t = 0.001, and the flow fields at t = 0.25 are
examined. Fig. 4 shows the mesh at the final time, and numerical results are listed
in Table 4. Similar to the stationary meshes, A-LF and A-HLLC can preserve the
free-stream condition, while S-LF and S-R cannot.

Fig. 4. A moving wavy grid for the free-stream preserving test at t = 0.25.

4.2. Vortex preservation properties. Here, two-dimensional moving vortex
problems are used to examine vortex preservation properties. The fluid is nondimen-
sionalized by the density and the speed of the sound for the free-stream condition, as
in the free-stream preservation test. An isentropic vortex whose center is located at
(xc, yc) = (0, 0) is set on the free-stream of Mach number 0.5 as the initial condition,
where the velocity, temperature, and entropy fluctuations of an isentropic vortex are
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Table 4

L2 errors of v and w components in the free-stream preservation test on a moving wavy grid.

v-component w-component

S-LF 4.45E-02 4.45E-02
S-R 4.46E-02 4.46E-02
A-LF 6.91E-16 6.98E-16

A-HLLC 3.71E-16 3.72E-16

expressed as follows:

(δu, δv) = ελeα(1−λ2)(sin θ,− cos θ),

δT = −
(γ − 1)ε2

4αγ
e2α(1−λ2),

δS = 0,(33)

where λ = r/rc and r = [(x− xc)
2 + (y − yc)

2]1/2. Here, rc = 1.0 denotes the vortex
core length, α = 0.204 denotes the parameter of the length scale of the vortex decay,
and ε = 0.3 denotes the vortex strength. T = p/ρ is the temperature, and S = p/ργ

is the entropy. The boundary conditions for ξ- and η-directions are set to be periodic.
Numerical results are tested at t = 32, at which time the vortex moves back to the
same position as the initial condition in the grid system defined in each of the following
examples.

Example 5. First, vortex preserving properties on uniform grids are examined.
Three different computational grids are constructed for the region −8 ≤ x ≤ 8 and
−8 ≤ y ≤ 8, with 41× 41, 81× 81 and 161× 161 grid points. Time steps ∆t are set to
0.05, 0.0125, and 0.003125 for the 41× 41, 81× 81 and 161× 161 grids, respectively.
These small time steps are used to minimize the temporal error from the third-order
time integration. The L2 errors and orders of accuracy for the swirl velocity are
presented in Table 5, showing that all these schemes can achieve close to the designed
fifth order accuracy on uniform meshes. Fig. 5 shows the most coarse computational
grid and the vorticity magnitude distributions for the initial conditions and the four
schemes at t = 32. Fig. 6 shows the swirl velocity on the η-constant line passing
through the vortex center. These figures demonstrate that the vortex of all these
four implementations can preserve the vortex strength and swirl velocity qualitatively
compared with the exact solutions.

Table 5

L2 errors in the swirl velocity of the two-dimensional moving vortex problem on the uniform grid.

S-LF S-R A-LF A-HLLC
Nx × Ny L2 errors order L2 error order L2 errors order L2 error order
41 × 41 3.54E-03 – 2.92E-03 – 4.64E-03 – 1.81E-03 –
81 × 81 1.88E-04 4.23 1.42E-04 4.36 2.50E-04 4.21 9.21E-05 4.30

161 × 161 7.51E-06 4.65 6.14E-06 4.53 1.05E-05 4.58 3.93E-06 4.55
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Example 6. Next, we will test the vortex preserving property on wavy grids. A
two-dimensional wavy grid is formulated as follows:

xi,j = xmin +∆x0

[

(i − 1) +Ax sin
nxyπ(j − 1)∆y0

Ly

]

,

yi,j = ymin +∆y0

[

(j − 1) +Ay sin
nyxπ(i− 1)∆x0

Lx

]

,(34)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax,

∆x0 = Lx

Imax−1 , ∆y0 =
Ly

Jmax−1 ,

xmin = −Lx

2 , ymin = −
Ly

2 .

The parameters for the wavy grid are Lx = Ly = 16, Ax∆x0 = 0.4, Ay∆y0 = 0.8, and
nxy = nyx = 6. Similar to the uniform grids, three different grids, with 41×41, 81×81
and 161 × 161 grid points, are used. ∆t is set to be 1/30, 1/120 and 1/480 for the
41×41, 81×81 and 161×161 grids respectively. The L2 errors and orders of accuracy
in the swirl velocity are presented in Table 6. These numerical results show that all
the four schemes can again achieve close to the designed fifth order accuracy. Fig. 7
shows the computational grid and the vorticity magnitude distributions for the initial
conditions and the four schemes at t = 32 on the most coarse gird. In Fig. 8, the swirl
velocity on the η-constant line passing through the vortex center are plotted. These
figures demonstrate that S-R, A-LF and A-HLLC can preserve the vortex strength
and swirl velocity qualitatively compared with the exact solutions, while S-LF has
significantly worse performance. This may be caused by the high diffusive nature of
the Lax-Friedrichs flux splitting in which the wavy grid participates.

Table 6

L2 errors in the swirl velocity of the two-dimensional moving vortex problem on the wavy grid.

S-LF S-R A-LF A-HLLC
Nx × Ny L2 errors order L2 error order L2 errors order L2 error order
41 × 41 6.12E-02 – 2.83E-02 – 3.58E-02 – 2.11E-02 –
81 × 81 5.72E-03 3.42 2.28E-03 3.63 2.79E-03 3.69 1.36E-03 3.96

161 × 161 2.29E-04 4.64 1.26E-04 4.17 1.23E-04 4.50 6.47E-05 4.39

Example 7. Now, the vortex preserving property on the randomized grids is
examined. Uniform grids constructed for the region −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8 with
41 × 41 grid points are randomized with 20% magnitude grid spacing in a random
direction. Time step ∆t = 0.01 and numerical solutions are shown at the final time
t = 32, at which point the vortex moves back to the same position as the initial
condition. Fig. 9 shows the computational grid and vorticity magnitude distribution
for the initial condition and the solutions at t = 32. Fig. 10 shows the swirl velocity
on the η-constant line approximately passing through the vortex center. Results
for S-LF and S-R show large numerical errors owing to the grid distortions. This
indicates that metric canceling has a strong effect on the randomized grid. The result
for the S-R scheme is different from that of the strongly wavy grid. This should be
due to the discontinuity in the derivatives of the randomized grid points, whereas
the strongly wavy grid does not have such a discontinuity, at least analytically. We
emphasize that conservative finite difference schemes are not designed for grids with
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discontinuous derivatives [4]. However, in practice low quality grids may appear and
we would still like to reduce numerical artifacts when finite difference schemes are
used on such grids.

Example 8. Next, we conduct vortex preserving test on a grid with an abrupt
change in grid spacing. The computational grid is −8 ≤ x ≤ 8 and −8 ≤ y ≤ 8.
Abrupt changes are imposed in the streamwise spatial distribution at x = −4(S1) and
x = 4(S2). At the location S1, the mesh spacing is suddenly halved from ∆x2 = 0.4 to
∆x1 = 0.2. Conversely, at S2, the mesh is abruptly coarsened back to ∆x2. Periodic
boundary conditions are applied in both coordinate directions. The grid is uniform in
the y-direction with ∆y = ∆x1. ∆t = 0.01, and the computation is then carried out
until t = 32. From Fig. 11 and Fig. 12, we can see that S-R, A-LF and A-HLLC can
preserve the vortex, while S-LF has a large error, which may again be caused by the
high diffusive nature of the Lax-Friedrichs flux splitting in which the abrupt-changing
grid participates.

Example 9. In this example, we test our problems on the mesh which exhibits
a localized abrupt change in the slope of 45◦ at x = 0. ∆x = 0.4 and ∆y = 0.4.
Numerical solutions are shown at t = 32 in Fig. 13 and Fig. 14, and ∆t = 0.01. We
can see that all the four schemes can preserve the vortex for the mesh with localized
abrupt change.

Example 10. Finally, we test the two-dimensional moving vortex problems on a
dynamical wavy grid formulated as follows:

xi,j(τ) = xmin +∆x0

[

(i − 1) +Ax sin(2πωτ) sin
nxyπ(j − 1)∆y0

Ly

]

,

yi,j(τ) = ymin +∆y0

[

(j − 1) +Ay sin(2πωτ) sin
nyxπ(i − 1)∆x0

Lx

]

,(35)

where

i = 1, 2, · · · , Imax, j = 1, 2, · · · , Jmax,

∆x0 = Lx

Imax−1 , ∆y0 =
Ly

Jmax−1 ,

xmin = −Lx

2 , ymin = −
Ly

2 .

The parameters for the wavy grid are Lx = Ly = 16, Ax∆x0 = Ay∆y0 = 0.6, and
nxy = nyx = 6. Similar to the uniform grids, three different grids with 41×41, 81×81
and 161×161 grid points are used. ∆t is set to 1/50, 1/200 and 1/800 for the 41×41,
81 × 81 and 161 × 161 grids respectively. L2 errors in the swirl velocity are listed
in Table 7, and vorticity magnitude distributions and swirl velocity distributions on
the line approximately passing through the vortex center at the final time t = 32
are shown in Fig. 15 and Fig. 16. Compared with S-LF and S-R, A-LF and A-
HLLC have better performance, which shows that metric canceling has a strong effect
on the dynamically changing grids. Similar to the stationary wavy grids, the large
error and distortion of the vortex for the S-LF scheme may be caused by the high
diffusive nature of the Lax-Friedrichs flux splitting in which the changing wavy grid
participates.

4.3. Flow past a cylinder.

Example 11. In this test, we use the schemes to simulate the supersonic flow
past a cylinder. In the physical space, a cylinder of unit radius is positioned at the
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Table 7

L2 errors in the swirl velocity of the two-dimensional moving vortex problem on the dynamically
changing wavy grid.

S-LF S-R A-LF A-HLLC
Nx × Ny L2 errors order L2 error order L2 errors order L2 error order
41 × 41 6.16E-02 – 4.04E-02 – 3.08E-02 – 1.66E-02 –
81 × 81 5.77E-03 3.42 3.70E-03 3.45 1.91E-03 4.01 9.45E-04 4.13

161 × 161 3.15E-04 4.19 2.40E-04 3.95 7.93E-05 4.59 4.12E-05 4.52

origin on the x-y plane. The computational domain is chosen to be [0, 1]× [0, 1] on the
ξ-η plane. The mapping between the computational domain and the physical domain
is

x = (Rx − (Rx − 1)ξ) cos(θ(2η − 1)),

y = (Ry − (Ry − 1)ξ) sin(θ(2η − 1)).

Here we take Rx = 3, Ry = 6, and θ = 5π/12. A uniform mesh of 60 × 80 in the
computational domain is used. An illustration of the mesh in the physical space is
shown in Fig. 17(a), which draws every other grid line. The problem is initialized by
a Mach 3 shock moving toward the cylinder from the left. The reflective boundary
condition is imposed at the surface of the cylinder, i.e., ξ = 1, the inflow boundary
condition is applied at ξ = 0, and the outflow boundary condition is applied η = 0, 1.
From Fig. 17, we can see that all the four schemes can simulate the supersonic flow
past a cylinder well.

5. Concluding remarks. In this paper, we have discussed the performance of
conservative finite difference WENO schemes based on an alternative flux formulation
[10, 5] on generalized meshes, and compared their performance preserving free-stream
and vortex solution with those of the standard finite difference WENO schemes. In our
scheme with the alternative flux formulation, the WENO interpolation of the solution
and its derivatives are used to directly construct the numerical flux, instead of the
usual practice of reconstructing the flux functions. Thus, the numerical technique
of Visbal and Gaitonde [13] for free-stream preservation is applicable to the scheme
with the alternative flux formulation but not to the standard finite difference WENO
schemes based on the reconstruction of the flux functions.

The free-stream and vortex preservation properties for the new schemes have been
investigated both theoretically and numerically. Regarding the free-stream preserving
tests, it has been found that the scheme with the alternative flux formulation can pre-
serve the free-stream condition on both stationary and dynamically changing meshes,
while the standard WENO schemes cannot. Through the vortex preservation tests,
we have found that the standard finite difference WENO schemes have a rather large
error arising from the metric terms on randomized and moving grids, while the finite
difference WENO schemes with the alternative flux formulation based both on the
Lax-Friedrichs flux and on the HLLC flux can simulate the vortex well for all grids.
For the problem of flow passing a cylinder, both the scheme with the alternative flux
formulation and the standard WENO schemes can simulate the solution well.



18 Y. JIANG, C.-W. SHU, AND M. ZHANG

REFERENCES

[1] D. Balsara and C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory
schemes with increasingly high order of accuracy, Journal of Computational Physics, 160
(2000), pp. 405–452.

[2] X. Cai and F. Ladeinde, Performance of WENO scheme in generalized curvilinear coordinate
systems, AIAA Paper 2008-36, 2008.

[3] E. Carlini, R. Ferretti, and G. Russo, A weighted essentially nonoscillatory, large time-
step scheme for Hamilton-Jacobi equations, SIAM Journal on Scientific Computing, 27
(2005), pp. 1071–1091.

[4] G. S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of
Computational Physics, 181 (1996), pp. 202–228.

[5] Y. Jiang, C.-W. Shu and M. Zhang, An alternative formulation of finite difference WENO
schemes with Lax-Wendroff time discretization for conservation laws, SIAM Journal on
Scientific Computing, 35 (2013), pp. A1137-A1160.

[6] X. D. Liu, S. Osher, and T. Chan, Weighted essentially non-oscillatory schemes, Journal of
Computational Physics, 115 (1994), pp. 200–212.

[7] T. Nonomura, N. Iizuka, and K. Fujii, Freestream and vortex preservation properties of
high-order WENO and WCNS on curvilinear grids, Computers and Fluids, 39 (2010),
pp. 197–214.

[8] K. Sebastian and C.-W. Shu,Multi domain WENO finite difference method with interpolation
at sub-domain interfaces, Journal of Scientific Computing, 19 (2003), pp. 405–438.

[9] C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated
problems, SIAM Review, 51 (2009), pp. 82–126.

[10] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-
capturing schemes, Journal of Computational Physics, 77 (1988), pp. 439–471.

[11] P. D. Thomas and C. K. Lombard, Geometric conservation law and its application to flow
computations on moving grids, AIAA Journal, 17 (1979), pp. 1030–1037.

[12] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, a Practical Intro-
duction, Springer, Berlin, 1997.

[13] R. M. Visbal and D. V. Gaitonde, On the use of higher-order finite-difference schemes on
curvilinear and deforming meshes, Journal of Computational Physics, 181 (2002), pp. 155–
185.
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Fig. 5. Vorticity magnitude distribution of the results of two-dimensional moving vortex prob-
lem on the coarsest uniform grid. Here, 21 contours from 0.0 to 6.0 are shown.
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Fig. 6. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on the coarsest uniform grid.
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Fig. 7. Vorticity magnitude distribution of the results of two-dimensional moving vortex prob-
lem on the coarsest wavy grid. Here, 21 contours from 0.0 to 6.0 are shown.



22 Y. JIANG, C.-W. SHU, AND M. ZHANG

X X X X X X X X X X X
X

X
X

X X X X X

X

X

X
X X X X

X
X

X
X

X X X X X X X X X X X

x

S
w

irl
ve

lo
ci

ty

-8 -4 0 4 8
-0.5

-0.25

0

0.25

0.5
EXACT

S-LF

S-R

A-LF

A-HLLCX

Fig. 8. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on the coarsest wavy grid.
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Fig. 9. Vorticity magnitude distribution of the results of two-dimensional moving vortex prob-
lem on the random grid. Here, 21 contours from 0.0 to 6.0 are shown.
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Fig. 10. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on the random grid.
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Fig. 11. Vorticity magnitude distribution of the results of two-dimensional moving vortex
problem on a mesh with sudden jumps in grid spacing. Here, 21 contours from 0.0 to 6.0 are shown.
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Fig. 12. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on a mesh with sudden jumps in grid spacing.
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Fig. 13. Vorticity magnitude distribution of the results of two-dimensional moving vortex
problem on a mesh with localized abrupt change. Here, 21 contours from 0.0 to 6.0 are shown.
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Fig. 14. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on a mesh with localized abrupt change.
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Fig. 15. Vorticity magnitude distribution of the results of the two-dimensional moving vortex
problem on the coarsest dynamically changing grid. Here, 21 contours from 0.0 to 6.0 are shown.
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Fig. 16. Swirl velocity distributions on the line approximately passing through the vortex center
of the two-dimensional moving vortex problem on the coarsest dynamically changing grid.
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(a) physical grid 30× 40
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Fig. 17. Flow past a cylinder. (a) an illustration of the physical grid (drawing every other grid
line); (b)-(e) pressure on the mesh 60× 80.


