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SIMULTANEOUS DATA RECOVERY IN IMAGE AND TRANSFORM
DOMAINS*

SAY SONG GOH', ZUOWEI SHENT, AND JUNQI ZHOUT

Abstract. This paper addresses the problem of image recovery from partially given data in both
the image and tight frame transform domains. Motivated by an uncertainty principle, a sufficient
condition that ensures the exact recovery of an image is derived. Then an analysis-based model is
proposed to handle situations in which exact recovery is impossible, such as when insufficient or only
inaccurate data is available. An efficient iterative algorithm is obtained for the model by applying
the split Bregman method. Several numerical examples are presented to demonstrate the potential
of the algorithm.
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1. Introduction. Image restoration is one of the most important areas in im-
age processing and its wide-ranging applications include image inpainting, deblurring
and denoising, and super-resolution image reconstruction. The tight frame transform
gives rise to a recent and fast emerging approach for image restoration. Interested
readers can refer to the survey article [24] and the more detailed lecture notes [12] for
the development of tight frame based image restoration. Furthermore, this approach
for image restoration, based on wavelet frames, is closely related to the methods
based on partial differential equation. We refer readers to [5] for its connection to the
well-established total variational approaches, and the references therein for various
applications and aspects of image restoration. For such transform-based approach,
the transform matrix maps an image from the image domain into the transform do-
main. We are interested in the problem of recovering the original image from partially
available information in both the image and transform domains. A solution of this
problem would have important ramifications in many practical applications.

For simplicity of notations, by concatenating the columns of an image, let f € RV
be the original image, R" the image domain and R the transform domain, where
the transform W is given by an M x N matrix. The transform considered in this
paper is a tight frame transform, i.e.

(1.1) WIw =1

Recall that a vector system W in RY is a tight frame if for every f € RV, there holds

f= Z (f, w)w.

wew

Then the identity WTW = T is equivalent to (the transpose of) the rows of W
forming a tight frame for RV,

In the image domain, suppose that the data available is f € RY restricted to an
index set A C M :={1,..., N}. This can be written as P5f, where Pp is the N x N
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projection matrix defined by

. 1, ifi=j€A,
Patij) {0, otherwise.
Furthermore, in the transform domain RM | suppose that the information available is
W restricted to an index set I' € M :={1,..., M}, i.e. PrW{, where the M x M
projection matrix Pr is defined similarly.

We are interested to know when the original f can be recovered from the partially
given data PAf and PrWf, where A and I" are proper subsets of N' and M respec-
tively. We will show that if the transform W is a tight frame transform, and the
index sets A and I" satisfy > Z,op 30500 W (i, j)? < 1, where W (i, j) is the (i, j)-entry
of W, then the original data f can be reconstructed exactly by applying the iterative
algorithm

(1.2) fii1 = PAf+ (I - PA)WL(PrWF + (I — Pr)WH).

This algorithm essentially performs interpolation in both the image and transform
domains. Indeed, in (1.2), we first enforce the available data on I' in the transform
domain to the output of the previous iteration, then transform the result back to
the image domain via W7, followed by enforcing the known information on A in the
image domain to it.

A related, but different, problem was considered in [2]. The formulation of the
problem is as follows. Let x be given data in RY and y given data in R™. The
objective is to find f € RY such that

PAf =
(1.3) A=
PFWf =Y.

This is a very ill-posed problem. First of all, it may not have a solution, which
occurs, for example, when the data set y lies outside the range of PrW. The range
of W is the orthogonal complement of the kernel of W7 which is nonempty when
the rows of W form a redundant system. Even when y does lie within the range of
PrW, the given data x could be incompatible with y, in the sense that among all
the f’s satisfying PrWf =y, there may not be any that gives P,f = x. This would
again result in (1.3) having no solution. The problem can also have infinitely many
solutions. For instance, when A C A and T = (), the values of f on the set A'\A can
be arbitrarily chosen. Furthermore, in practical applications, since the data is always
contaminated by noise, it may not be desirable to interpolate the data exactly even
if it is possible to do so.

In view of all these difficulties with the problem (1.3), the following variational
model was proposed in [2]. Let t* € RM be a minimizer of the minimization problem

1 1 .
(14) {SIPAWTt X3 + 51T = WWT)t 3 + [diag(u)t]: .

min
{tERNI : Prt:Tuy}

where Ty, u € RM | is the soft thresholding operator

Tu(y) == (tay (1) stuy (@), tuan (y(M))) T,y € RM
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defined in [11] with

: 0, if |y (i)
futy 7 (2)) {ym — sen(y()u), it y(i)
Then the solution is given by f = W7t*. This model solves the problem in the trans-
form domain. For arbitrarily given x € RY and y € RM™, under the assumption that
the underlying solution has a good sparse approximation in the transform domain,
the model balances the approximation to the data’s fidelity and the data’s sparsity in
the transform domain. An iterative algorithm on its realization was also proposed in
[2], which is

(1.5) foir =x+ (I -PAWI T, (y + (I - Pr)WHf).

It is interesting to note that if P5f and PrWTf are known and we define x and y
to be them, then (1.5) becomes

fir1 = PAf + (I — PA)WTT,(PrWF + (I — Pr)WHy,).

This is very similar to the exact recovery algorithm (1.2). The only difference is the
soft thresholding operator T, applied to the second term. This suggests that we
may use (1.5) to handle our original problem of recovering missing data when exact
recovery is impossible or when the data is contaminated by noise.

While the model (1.4) is efficient to implement for arbitrarily given data x and
y, it may not have fully exploited the possible close resemblance of y to Wf. When
x and y are closely related to f and W{, it would be appropriate to have a model
whose approximation term in the transform domain is reflected by Wf. In the frame
literature, the entries of WT are called canonical coefficients of the frame transform of
f. In many cases, the sparsity assumption is also imposed on the canonical coefficients,
which should be reflected by the regularity term in the model. Taking into account
all these considerations, we propose the following analysis-based model when exact
recovery is impossible or unnecessary and when approximation and regularity of Wf
is desirable. The solution we seek is a minimizer of the minimization problem

. 1 2 14 2 .
(16) min {2 [PAF x| + ZIPrWE -y} + ding(u) W] }.

where u € RM has positive entries which together with v > 0 form weighted pa-
rameters. The first two terms in (1.6) penalize the distance of the given data to the
solution in both the image and transform domains. The third term guarantees the
regularity and sparsity of the underlying solution. In this paper, we will derive an
efficient iterative algorithm for the model (1.6) by using the split Bregman method
(see [6]).

In general, there are two different assumptions on the sparse approximation of
the underlying image, which lead to three different approaches for image restoration,
namely the analysis-based approach, the synthesis-based approach and the balanced
approach. In the analysis-based approach, we assume that the coefficient vector Wf
can be sparsely approximated. The image restoration problem is usually reduced to
a minimization problem involving the term Wf. On the other hand, in the synthesis-
based approach, we assume that the underlying image f can be synthesized by a
sparse coefficient vector t € RM. The image restoration is usually formulated as a so-
lution of a minimization problem on R which is of higher dimension than R" when



428 S. S. GOH, Z. SHEN AND J. ZHOU

W is a redundant tight frame transform. The balanced approach balances between
the analysis-based and synthesis-based approaches. The model (1.4) is a balanced
approach and the method proposed in this paper is an analysis-based approach. In-
terested readers should refer to [8, 16] for more details on these approaches. The three
approaches for image restoration were developed independently in the literature. In
[14], the authors gave a comprehensive analysis on the analysis-based and synthesis-
based approaches, and pointed out a gap between them. The balanced approach
bridges the gap between the analysis-based and synthesis-based approaches (see, e.g.,
[3, 4, 12, 21, 24]).

The rest of the paper is organized as follows. In Section 2, we give a sufficient
condition, motivated by an uncertainty principle, which enables f to be exactly recov-
ered. The iterative reconstruction algorithm is also derived. In Section 3, we focus
on applying the analysis-based model (1.6) to handle the problem (1.3) and derive
an iterative algorithm by use of the split Bregman method. Some applications of this
algorithm are presented in Section 4 as illustration.

2. Exact recovery. In this section, we give a sufficient condition to exactly
recover the underlying data f when incomplete data in the image and transform
domains are PAf and PrWT{ respectively. We also propose an algorithm to recover
the data and compare it with the algorithm in [2].

To simplify notations, we denote A°:= N\A and I' := M\T.

THEOREM 2.1. Let W € RM*N be g tight frame transform. For £ € RN, suppose

that the data available in the image domain is {f(j)};ean and that in the transform
domain is {W£(i)};er. If the inequality

(2.1) SN Wi )<t
iele jeAe

holds, then £ can be exactly recovered by

(2.2) f=(1-WIPr-WPy.) {(WIPrWF 4+ WIPL.-WP,f)
or
(2.3) f=1-PrWIPLW) {(PAf + Py W PLrWTF).

The key issue in proving the theorem is the invertibility of the operators I —
WTPr.-WP,. in (2.2) and I — PAcW?Pr:W in (2.3), which we shall establish in
due course.

As an example to illustrate how the sufficient condition (2.1) can be satisfied,
consider the M x M matrix C of the type-II discrete cosine transform. Let W be
an M x N matrix formed by any N distinct columns of C. Since C is an orthogonal
matrix, its columns are orthonormal and so W is a matrix with orthonormal columns,
i.e. (1.1) holds. The entries of W are given by

(20; + 1)(i — 1)
oM

W(i,j)zailcos( ), i=1,....,.M, j=1,...,N,

where {¢1,...,4ny} C{0,...,.M — 1}, and

1 =
Uzi{\/g, 1f€—07
W, 1f€:17M—1
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ThenW(i,j)QS%foralli:17...,M,j:17...,N. Thus

R0 S S WGP < il =2(1- ) o - D,

icle jeAe

where | A| denotes the cardinality of the set A. If ' = M or A = N, then (2.1)
holds trivially. On the other hand, for any I' C M such that & < |I| < M, since
7F > 1, there exists A C N which satisfies
N ! < |A] < N.
T
21— 1)

By (2.4), this gives (2.1).

Returning to the recovery result of Theorem 2.1, in order to fully recover the
original data, we should have enough information from the available data. The suffi-
cient condition (2.1) guarantees that a significant proportion of data in the image or
transform domain is known. This fact is suggested by the proposition below which
is a form of uncertainty principle in the same spirit as Theorem 2 in [13]. Various
uncertainty principles of this type were derived in [18, 19]. While the general result
Theorem 2.1 in [19] is applicable to the concrete setting on hand, our direct derivation
here, utilizing the specifics of the case, gives a stronger result.

PROPOSITION 2.1. Let W € RM*N pe g tight frame transform, and A C N and
' C M be given sets. If there exist a nonzero f € RN and constants ¢,n > 0 with
e+n <1 such that

(2.5) [Pfll2 < ellf]l2
and

(2.6) [PrWflls < nl|WE|2,
then

ZZWZ] (1—¢e—n)2

i€l jEA®

Proof. We first observe that

N 2
[PreWP |3 = > (WPAF(i)> = > (Z (i, 7)Pacf( ))
iele iele Mj=1
2
=¥ (X wearo)
ieTe NjeAe

By the Cauchy-Schwarz inequality, for every ¢ € I'¢; we have

(S wian) =< (X wair) (X rr) < ( wear )ik

jEAE jEAe JEAS JEAS
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Hence,

1/2
(2.7) [Pre WP ]|, < (Z > W(m)2> £]]2-

i€l jeAe
On the other hand, by the triangle inequality, we have

[Wf|2 — [|[Pre WP pcf|]; < [[WE — Pre WP f]|5
< |[WE — PreWE|y + [Pre WE — PreWP o f]|
< nl[WHll2 + [[Pre [[W][If — Pacflls
< nllfllz + ellfl2,
where the operator norms ||Pr¢| and ||W]|| are both equal to 1, and (2.6), (1.1) and

(2.5) are employed in the last two inequalities. Combining this with (2.7) and again
using (1.1), we obtain

1/2
(5 S Wair) Il > Prweyl,
ieTe jeAe
! > [Willz = nllfllz — e[|f]]
=1 =n—2g)lf[l-
Then the result follows from dividing both sides by ||f]|2. O

Proposition 2.1 shows that if (2.5) and (2.6) hold with small values of € and 7, i.e.
there is little information given in both the image and transform domains, then the
chance for (2.1) to hold is much lower, which means that exact recovery via Theorem
2.1 becomes more difficult.

Proof of Theorem 2.1. By (1.1), (2.7) and (2.1),

1/2
< [WT||PrWP . | < (Z 3 wu,j)?) <1,

i€l jEA®

(2.8)  |WTPpr-WP,.

which ensures the invertibility of I-W7TPpr. WP y.. Furthermore, a simple calculation
shows that

(I - WTPr- WPy )f = WI(I — Pre)WF + WT (Pre WE — Pre WPy f)
= WIPrWf+ WP W(I - Pyo)f
= WIPrWf + WIPL.-WP,f.
We note that the data on the right-hand side is known since both P f and PrWf are
available. Then by the invertibility of I — WP P WP 5c, we can restore the original

f exactly from the known information Pxf and PrWTf via (2.2).
As for the second recovery formula (2.3), (2.8) implies that

[PAcWTIPLW| = ||(PA-WTPrW)T || = [WTPR-WP,.| <1,
which ensures the invertibility of I — Py« WTPpr.W. Then we observe that
(I —-PprWIPLW)f = (I — Ppe)f + Ppe(f — WP WI)
= PAf + P, WT (I — Pre.)WF
= P,f 4+ Py WP WH.
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The right-hand side of this inequality contains the known data Pxf and PrW{f. Thus
the invertibility of I — Pye WX Pr.W enables the exact recovery of f via (2.3). O

The exact recovery provided by Theorem 2.1 necessarily implies that the recovery
is unique. Indeed, under the assumption (2.1), suppose that two different f; and f5
in RY satisfy Ppf;, = Pafy and PrWf; = PrWHf,. Then h = f; — f, # 0 satisfies
Pprh = PrWh = 0, which contradicts Proposition 2.1 with € = n = 0. We record the
implication of this observation in the corollary below.

COROLLARY 2.1. For an image f € RY, suppose that partial data Pyf and PrWE
are given, where W € RMXN s g tight frame transform, and A C N and T’ C M are
index sets in the image and transform domains respectively. Then the condition (2.1)
guarantees that any reconstructed image by interpolation is the original f.

Theorem 2.1 ensures the exact recovery of £ under the condition (2.1), and (2.2)
and (2.3) provide the recovery formulas. Since it is complicated to compute the
inverse of a matrix, we now describe iterative algorithms for the realization of these
two formulas.

The algorithms are based on the following well-known approach (see, e.g., [13,
18, 19]). Let L be an N x N matrix that satisfies ||L|| < 1. Then the matrix I — L is
invertible. Starting from any given vector vy € RV, for k > 0, we set

Vi1 = Vo + Lvy.

The contraction mapping principle ensures that this iterative procedure converges in
a geometric rate to the unique fixed point v* given by

v =vg+Lv*.

In other words, v* = (I — L) vq.
Thus, for (2.2), by substituting L = W PprcWPye and vo = WTPrWF +
WTPr. WP, f, we arrive at the iterative algorithm

(2.9) foi1 = WHPrWF + (I - Pr)W(PAf + (I —Py)fp)).

In (2.9), the data is updated according to the following procedure. In the image
domain, we update the coefficients on A by the known data P f, and then transform
the resulting image to the transform domain and use the known data PrWf in the
transform domain to replace the coefficients on I'. The output is transformed back to
the image domain for the next iteration.

Similarly, we formulate the iterative algorithm for (2.3) by letting L =
Py WTPr.W and vy = PAof + PAc WT P WH:

(2.10) fiy1 = PAf + (I - PA) WP (PrWF + (I - Pr)WH).

In (2.10), from f} to f;41, we first transform the image fi, to get the transform coef-
ficients Wf,. Then we replace the coefficients on I" by the known data PrWTf. After
that, we transform the output back to the image domain and update the data on A
by the known data Pf in the image domain.

While we have provided two algorithms for the exact recovery case, the compu-
tations below show that they are essentially the same. To this end, set the known
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data in the image and transform domains as x = Paf and y = PrWf. Then the
algorithm (2.9) can be written as the iteration

tr, =x+ (I — PA)fk,
(2.11) rp, =y + (I - Pr)Wty,
fk+1 = WTI'k.

The algorithm (2.10) is equivalent to the iteration

rp, =y + (I-Pp)Wf,
(2.12) t, = Wlry,
fir1 =x+ (I —Py)ty.

Comparing the two algorithms, they are both essentially alternating interpolation in
the image and transform domains, since it is difficult to interpolate data in two do-
mains simultaneously. When the iteration converges, the limit eventually interpolates
the data in both domains. The only difference is that we choose WZ'r* as the result
in (2.9) and Pyf 4+ (I—Px)t* in (2.10), where r* and t* are the limits of rj, in (2.11)
and tg in (2.12) respectively. Therefore, we may only consider (2.10) as our exact
recovery algorithm. Note that the exact recovery algorithm (2.10) is slightly differ-
ent from the balanced approach (1.5) with x = PAf and y = PrWTf by a plunging
denoising, i.e. soft thresholding, operator T,. This is reasonable since the data f in
practice is mostly contaminated by noise.

3. Analysis-based approach. As noted in Section 1, for given data x € RY
and y € RM, the problem of finding f € RV such that

PAf =X,

Prwf=y,
is generally very ill posed. It may have no solution in many cases; and since the data
is normally contaminated by noise, it is unnecessary and impossible to have exact
recovery in such situations.

We consider the following analysis-based model under the assumption that the

data given, x and y, are somewhat close to Pxf and PrWT{ respectively, where f is
the underlying solution which has a sparse approximation in terms of the canonical

coefficients W{. The solution is a minimizer of the minimization problem formulated
in (1.6), i.e.

1 v
min {ZPAf — |3 + Z[PrWE -y + [diag(w)WE], |.
Let us examine each of the terms in (1.6). The first term penalizes the distance
between f and the given data x on A in the image domain. The second term penalizes
the distance from Wf to the known data y on I' in the transform domain. Thus the
first two terms guarantee the fidelity of the solution. The third term employs the
assumption that the underlying solution has a good sparse approximation provided
by its canonical coefficients.

Since the minimization problem (1.6) is not separable, it cannot be solved directly
by thresholding in contrast to the balanced and synthesis-based approaches (see, e.g.,
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[2, 3]). We shall derive an iterative algorithm for (1.6) by using the split Bregman
method.

The derivation of the split Bregman algorithm in [6, 20] is based on the Bregman
distance. Furthermore, the split Bregman method can be understood as the aug-
mented Lagrangian method (see [17]) applied to (1.6) (see, e.g., [15, 25]). It is clear
that (1.6) is equivalent to the minimization problem

1 v . A
(3.1) {5IPaf—x|3+ [Prd—y|3+|diag(wdlls+7 [ d-WE|3 |

min
{feRN,deRM: Wf=d}

for any A > 0. The Lagrangian for the problem (3.1) is given by

1 9 UV 9 . A 9
£(8,d,p) = S[Paf x|+ ¥ [Prd —y[3+ ding(u)d]s + 5 [d~ W3+ (p,d W)
The saddle points of L£(f,d, p) are obtained by the iteration

(for1,di1) = argmin {3[|Paf — x| + §||Prd — y|3 + [|diag(u)d|s
feRN deRM

+5/ld — WE[[3 + (p,d — WT) },
Pi+1 = Pk + A(dgyr1 — Wii41).

By letting by, = —pg/A, this iteration becomes

(frt1,dis1) = argmin  {3[|Paf — |3 + %||Prd — y|3 + |diag(u)d||,
£ERN  deRM

+ 3IWE — d + b3},
byt1 = by + (Wi — dpyr).

For the first subproblem, we usually use an alternative minimization method to solve.
Thus we obtain the following iteration for (1.6):

i1 = argn}lvin {%HPAf - x5+ %HWf —dg + bk||%},
feR
(32) {diy = argmin {§[Prd — y[3 + 3 [ Wiy — d + by 3 + [ding(u)d], }.
deR

b1 =br + (Wi —dgyr).

The first subproblem in (3.2) is easy to solve and implement. Its solution is given
by

fii1 = (Pa 4+ AI) " (x + AW (d), — by)).

Since P + Al is a diagonal matrix, it can be readily inverted and computed.

For the second subproblem in (3.2), as it is separable with respect to d, we can
handle it by considering the cases d(i), i € T, and d (i), ¢ € T', separately, where d(¢)
is the ith element of the vector d. It turns out that for both cases, the solution is
provided by a simple threshold. Indeed, for ¢ € I'°, the subproblem reduces to

Qi () = argmin { Z (W1 (0) — d(3) + be(0)” + [u(i)d ()]}
d(i)eR
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which has the well-known soft-thresholding solution dj41 (%) = tuu (Wfk1(4)+bg(i))

A

(see, e.g., [9]). On the other hand, for i € I, the subproblem is

i () = argmin { 2((0) — y(0)) + 5 (Wi (3) — d(3) + be(0)” + [u(i)d (i)}
d(z)eR

which again is solved by a threshold. This follows from the observation that

argmin { 2 (d(5) — y(1))* + 5 (Whi1(i) — (i) +bi(0))” + fu(i)d(i) )
d(7)eR

= arg min {|u(z)d(z)| +7 +A [d(z) vy (@) £ AWy (4) + bk(l))r}

d(i)eR v+ A
o (V}’(i) + MW 1(4) + bk(i)))
TR v+ A ’

Combining these two cases, we obtain the solution for the second subproblem of (3.2)
as

vy + )\(Wfk_H + bk)>

dk+1 = (I*PF)T%(Wka’_l +bk) +PFTW“/\< DA

Hence, the algorithm (3.2) can be written in a more explicit form, and its steps
are as follows:

fir1 = (Pa+ A0 (x + AWT(dy — by)),

(3.3) dis1 = (I—Pp)Te (Wi +by) + PrT_s (AN ertbu))
biy1 = b + (Wi —dryr),

where T, is the soft thresholding operator as defined before. The steps in (3.3) are
easy to implement and can also be efficiently executed.

The convergence analysis of the split Bregman method is similar to the discussions
in [6, 12], so we only state the results without proof here. Assume that there is at
least one solution f* for (1.6). Then the sequence {f;}72, generated by (3.2) satisfies

. 1 v .
lim (S[Paf — x[3+ 2 [PrWe, — I3 + |[diag(u) Wi )
1 v . «

= SIPAE" =} + S [PrWE* — y[3 + |[diag(w) WE .

Furthermore, when (1.6) has a unique solution, we have limy_, ||fr — £*||2 = 0.

4. Numerical implementations. We apply our proposed analysis-based algo-
rithm (3.3) of the model (1.6) to the following three image restoration problems:

(1) Image inpainting;
(2) Super-resolution image reconstruction with multiple sensors;

(3) Super-resolution image reconstruction with different zooms.
These three applications correspond to three different types of missing data recovery.
The quality of the reconstructed images is evaluated by the peak signal-to-noise ratio
(PSNR) defined as

255V N
PSNR = 20 loglo m7
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where f and f°° are the original image and the reconstructed image respectively, and
N is the number of pixels of f. We also present the results obtained by the balanced
approach (1.5) from [2] to compare with those by our analysis-based algorithm (3.3).
In all our implementations, we set the initial data fy to be the zero vector and the
iteration result is recorded when the reconstructed image achieves the highest PSNR,
value. In practice, as the original image is not known, other criteria for stopping the
iterations need to be employed. One possibility is to terminate the iterations when
the corresponding values of the cost function in (1.6) stabilize.

The tight frame transform we use in the three applications is based on the piece-
wise linear tight wavelet frame constructed by the unitary extension principle in [23].
The construction begins with the linear B-spline as the refinable function and pro-
duces two piecewise linear mother wavelets. The corresponding filters of these three
functions are

ho = (1/4,2/4,1/4), hy = (—1/4,2/4,—1/4), hy = (v/2/4,0,—/2/4).

Readers can refer to [3] on how the transform matrix W is obtained from the given
filters. In our implementations, we apply the fast decomposition and reconstruction
algorithms derived in [10] (see also [12]).

EXAMPLE 4.1. (Image Inpainting) The first application of our algorithm is
image inpainting, where only part of the information in the image domain is given
and no information in the transform domain is available. In the context of the paper,
the setting means that A # @ and I' = (). This is an interesting and important
inverse problem. Examples of practical situations in which the problem arises include
removing scratches in photographs, restoring ancient drawings, and filling in missing
pixels of digital images transmitted through a noisy channel. See, e.g., [3, 12] for more
details on image inpainting.

SZoomidg/a T
- oy
proce Sl

F1G. 1. Inpainting in the image domain for the “cameraman” image. Columns (from left to
right) are the observed corrupted image, the recovered image by the analysis-based approach (3.3),
and the recovered image by the balanced approach (1.5). The PSNR wvalues of the recovered images
are 35.7742 and 34.3899 respectively, with corresponding number of iterations being 9 and 100.

Figure 1 presents the inpainting results of our algorithm (3.3) on the analysis-
based approach and the algorithm (1.5) on the balanced approach. The missing data
in the test image are the white words. In this experiment, (3.3) returns a slightly
better result than (1.5) and in much fewer iterations. This is due to the common fact
that the Bregman iteration recovers edges quickly.

EXAMPLE 4.2. (Super-Resolution with Multiple Sensors) This application in-
volves reconstructing an image f, as a super-resolution image, from its low-resolution
images using K multiple sensors of the same resolution but with different subpixel
displacements. This translates into knowing part of the information in the transform
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domain but not the image domain. Therefore the application is for the case A = ()
and I" # ) in our model, and we take K = 2 in our implementation. Readers can refer
to [2] on how the index set I' is obtained from the low-resolution images and [1, 7] for
more details about super-resolution image reconstruction with multiple sensors.

F1a. 2. Super-resolution image reconstruction using 2x2 sensors for the “boat” image. Columns
(from left to right) are the available low-resolution images, the observed high-resolution images,
the reconstructed high-resolution images by the analysis-based approach (3.3), and the reconstructed
high-resolution images by the balanced approach (1.5). The PSNR values of the reconstructed images
in the third column (analysis-based approach) are 31.7281, 28.0557 and 22.4243 respectively, and
those in the fourth column (balanced approach) are 29.2638, 29.1752 and 24.5309 respectively.

The first column of the images in Figure 2 contains the given data. The second col-
umn comprises the observed high-resolution images obtained by directly applying the
inverse transform W7 without any further processing. The third and fourth columns
show the reconstructed high-resolution images by our analysis-based approach (3.3)
and the balanced approach (1.5) respectively. The three rows in Figure 2 depict the
results of three sets of experiments. All the low-resolution images are given in the first
experiment and only some of the low-resolution images are available for the second
and third experiments.

EXAMPLE 4.3. (Super-Resolution with Different Zooms) A super-resolution
image may be constructed from images of different zooms, which could be part of the
original image and low-resolution images of different resolutions. Figure 3 compares
the results obtained by the analysis-based approach (3.3) and the balanced approach
(1.5).

The setup of our experiment is as follows. We are given part of the data in
the image domain, which is the first image in Figure 3. This amounts to A # 0
in accordance to our formulation. In the transform domain, we use sensors of two
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different resolutions to acquire two different data sets. By using 2 X 2 sensors, we first
obtain a low-resolution image and then choose an appropriate index set to extract
part of this low-resolution image. The output is the second image in Figure 3. By
using 4 x 4 sensors (which corresponds to the second level of the tight frame transform
associated with 2 x 2 sensors), we generate the low-resolution image displayed as the
third image in Figure 3. The second and third images are the given data in the
transform domain, which implies that T' # (). See [2] for details on how the index
set I' is obtained from the given data in the transform domain and [2, 22] for more
information on super-resolution image reconstruction with different zooms.

Fic. 3.  Super-resolution image reconstruction with different zooms for the “boat” image.
Columns (from left to right) are part of the original image, part of a low-resolution image from
2 X 2 sensors, a low-resolution image from 4 X 4 sensors, the reconstructed high-resolution image
by the analysis-based approach (3.3), and the reconstructed high-resolution image by the balanced
approach (1.5). The PSNR wvalues for the analysis-based approach and the balanced approach are
25.7972 and 24.9855 respectively.
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