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BRATU: ON THE NUMERICAL SOLUTION OF NONLINEAR WAVE

EQUATIONS∗
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Abstract. The main goal of this article is to extend to Euler-Poisson-Darboux nonlinear wave
equations the computational methods we employed in a previous work to solve a nonlinear equation
coupling the classical wave operator with the nonlinear forcing term of the Painlevé I ordinary differ-
ential equation. In order to handle the extra (dissipative) term with singular coefficient encountered
in the Euler-Poisson-Darboux equations, we advocate a five stage symmetrized operator-splitting
scheme for the time-discretization. This scheme, combined with a finite element space discretization
and adaptive time-stepping to monitor possible blow-up of the solution, provides a robust and accu-
rate solution methodology, as shown by the results of the numerical experiments reported here. The
nonlinearities we have considered are those encountered in the Painlevé I and II equations (and close
variants of them), and the exponential one encountered in the celebrated Bratu problem.
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1. Introduction. In a recent article (ref. [1]) we discussed the numerical solu-
tion of the following nonlinear wave equation:

(1)
∂2u

∂t2
− c2∇2u = 6u2 + t in Ω× (0, Tmax),

completed by boundary and initial conditions. The solution method discussed in [1]
relies on a three-stage symmetrized operator-splitting time discretization scheme of
the Strang’s type [2], which allows the uncoupled treatment of the differential operator
−c2∇2 and of the nonlinear forcing term (originating from the Painlevé I ordinary
differential equation) in (1). Combined with an appropriate finite element space
discretization, and an adaptive time-stepping method to control possible finite time
blow-up of the solution, the above splitting scheme provides a robust and accurate
solution method, as shown by the numerical results reported in [1].

Our goal here is to extend the methodology discussed in [1] to achieve the numer-
ical solution of nonlinear wave equations of the Euler-Poisson-Darboux type, namely:

(2)
∂2u

∂t2
+
k

t

∂u

∂t
− c2∇2u = f(u, t) in Ω ∈ (0, Tmax),

where
• Ω is a bounded domain of Rd (d ≥ 1).
• k > 0.
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• f is a two-variable function, possibly complex-valued.

Equation (2) has to be completed by boundary and initial conditions. Concerning
the initial conditions, we assume using standard notation that:

(3) u(0) = u0,
∂u

∂t
(0) = u1.

On the boundary, we will impose a homogeneous Dirichlet condition for simplicity

(4) u = 0 on ∂Ω× (0, Tmax).

The extension to mixed Dirichlet-Sommerfeld conditions:

(5) u = 0 on Γ0 × (0, Tmax),
1

c

∂u

∂t
+
∂u

∂n
= 0 on Γ1 × (0, Tmax),

with Γ0 ∩ Γ1 = ∅ and Γ0 ∪ Γ1 = ∂Ω, is straightforward (see [1]).

The existence of solutions to nonlinear wave equations very close to (2) has been
investigated by J.B. Keller in [3], assuming that u1 = 0 in (3). In this work, we would
like to include also the case with u1 6= 0. Thus, instead of (2), we will consider

(6)
∂2u

∂t2
+

k

ε+ t

∂u

∂t
− c2∇2u = f(u, t) in Ω ∈ (0, Tmax),

with ε ≥ 0.

In order to solve (6), we advocate a five-stage operator splitting scheme of the
Strang symmetric type, close (in some sense) to the scheme discussed in [4] for the
solution of a nonlinear integro-differential equation. The scheme we are going to use
is also close to the three-stage scheme used in [1] for the solution of a non-damped
version of problem (6), that is problem (1). Actually, in the present article, in addition
to the nonlinear forcing occurring in (1), that is f(u, t) = 6u2 + t, we are going to
consider the case f(u, t) = 2u3 + tu + γ (with γ ∈ C), which is the nonlinear term
of the Painlevé II equation, and f(u, t) = λeu, which is the nonlinear term of the
celebrated Bratu equation −∇2u = λeu.

Remark 1.1. The analysis of quasilinear parabolic equations with blow-up has
motivated a substantial number of publications (see, e.g., [6] and references therein).
Similarly, much literature has been devoted to the analysis and numerical analysis of
nonlinear Schrödinger equations with blow-up (see, e.g., [7] and references therein).
Concerning the Euler-Poisson-Darboux problem considered in this article, J.B. Keller
has proved blow-up in finite time properties and has provided an estimate of the blow-
up time (see [3] for details). Albeit bearing the name of some of the most famous
mathematicians of all times, the Euler-Poisson-Darboux problem has not attracted
much attention from a numerical standpoint, a notable exception being [5] which fo-
cuses on linear cases. We are not aware of any publication addressing the numerical
solution of the nonlinear Euler-Poisson-Darboux problem.

We will start our discussion with the solution of problem (6),(3),(4).

2. Numerical solution of the nonlinear wave problem (6),(3),(4). First,

we introduce p =
∂u

∂t
to reformulate the above problem as a first order in time system
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on which we will apply the Strang’s symmetrized scheme repeatedly. This first order
system reads as:

(7)



∂u

∂t
− p = 0 on Ω× (0, Tmax),

∂p

∂t
+

k

ε+ t
p− c2∇2u = f(u, t) in Ω× (0, Tmax),

u = 0 on ∂Ω× (0, Tmax),

u(0) = u0, p(0) = u1.

Let ∆t be a time-step (fixed, for simplicity) and let us denote (n+ θ)∆t by tn+θ.
Let us consider next α, β ∈ (0, 1), such that α+β = 1. Inspired by the three-operator
situation discussed in [1], we suggest the following five-stage operator splitting scheme
for the time-discretization of problem (7):

- Step 0: Set

(8) u0 = u0, p
0 = u1.

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:
- Step 1: Set un+1/5 = u(tn+1/2), pn+1/5 = p(tn+1/2), {u, p} being the solution

of

(9)



∂u

∂t
− αp = 0 in Ω× (tn, tn+1/2),

∂p

∂t
= f(u, t) in Ω× (tn, tn+1/2),

u(tn) = un, p(tn) = pn.

- Step 2: Set un+2/5 = u

(
∆t

2

)
, pn+2/5 = p

(
∆t

2

)
, {u, p} being the solution

of

(10)



∂u

∂t
= 0 in Ω×

(
0,

∆t

2

)
,

∂p

∂t
+

k

ε+ tn+1/2
p = 0 in Ω×

(
0,

∆t

2

)
,

u(0) = un+1/5, p(0) = pn+1/5.

- Step 3: Set un+3/5 = u(∆t), pn+3/5 = p(∆t), {u, p} being the solution of

(11)



∂u

∂t
− βp = 0 in Ω× (0,∆t),

∂p

∂t
− c2∇2u = 0 in Ω× (0,∆t),

u = 0 on ∂Ω× (0,∆t),

u(0) = un+2/5, p(0) = pn+2/5.
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- Step 4: Set un+4/5 = u(∆t), pn+4/5 = p(∆t), {u, p} being the solution of

(12)



∂u

∂t
= 0 in Ω×

(
∆t

2
,∆t

)
,

∂p

∂t
+

k

ε+ tn+1/2
p = 0 in Ω×

(
∆t

2
,∆t

)
,

u

(
∆t

2

)
= un+3/5, p

(
∆t

2

)
= pn+3/5.

- Step 5: Set un+1 = u(tn+1), pn+1 = p(tn+1), {u, p} being the solution of

(13)



∂u

∂t
− αp = 0 in Ω× (tn+1/2, tn+1),

∂p

∂t
= f(u, t) in Ω× (tn+1/2, tn+1),

u(tn+1/2) = un+4/5, p(tn+1/2) = pn+4/5.

By partial elimination of p, (8)-(13) reduces to:
- Step 0 as in (8).

For n ≥ 0, {un, pn} being known, compute {un+1, pn+1} as follows:

- Step 1: Set un+1/5 = u(tn+1/2), pn+1/5 =
1

α

∂u

∂t
(tn+1/2), u being the solution

of

(14)


∂2u

∂t2
= αf(u, t) in Ω× (tn, tn+1/2),

u(tn) = un,
∂u

∂t
(tn) = αpn.

- Step 2: Set un+2/5 = un+1/5, pn+2/5 = p

(
∆t

2

)
, p being the solution of

(15)


∂p

∂t
+

k

ε+ tn+1/2
p = 0 in Ω×

(
0,

∆t

2

)
,

p(0) = pn+1/5.

- Step 3: Set un+3/5 = u(∆t), pn+3/5 =
1

β

∂u

∂t
(∆t), u being the solution of

(16)



∂2u

∂t2
− βc2∇2u = 0 in Ω× (0,∆t),

u = 0 on ∂Ω× (0,∆t),

u(0) = un+2/5,
∂u

∂t
(0) = βpn+2/5.
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- Step 4: Set un+4/5 = un+3/5, pn+4/5 = p (∆t), p being the solution of

(17)


∂p

∂t
+

k

ε+ tn+1/2
p = 0 in Ω×

(
∆t

2
,∆t

)
,

p

(
∆t

2

)
= pn+3/5.

- Step 5: Set un+1 = u(tn+1), pn+1 =
1

α

∂u

∂t
(tn+1), u being the solution of

(18)


∂2u

∂t2
= αf(u, t) in Ω× (tn+1/2, tn+1),

u(tn+1/2) = un+4/5,
∂u

∂t
(tn+1/2) = αpn+4/5.

Sub-problem (16), which is an initial boundary value problem for a linear wave
equation, is a very classical problem. For its space discretization, we will use (as in
[1])) finite element spaces consisting of globally continuous functions, piecewise linear
over a triangulation of Ω. In the particular case where Ω is a rectangle, as in Sec.
4, we recommend using uniform triangulations. For the time discretization, we will
adopt a centered second order finite difference scheme; see [1] for details.

The numerical solution of the initial value sub-problems (14) and (18) will be
discussed in the next section, generalizing what we already presented in [1].

The sub-problems (15) and (17) are new in the context of these nonlinear wave
problems. Fortunately, they have closed-form solutions given by:

(19) pn+2/5 = e
− k∆t

2(ε+tn+1/2) pn+1/5, pn+4/5 = e
− k∆t

2(ε+tn+1/2) pn+3/5,

respectively.

3. On the numerical solution of the sub-initial value problems (14) and
(18). From n = 0 until blow-up, we have to solve the initial value sub-problems (14)
and (18) for almost every point of Ω. Each of these sub-problem is of the following
type:

(20)


d2ψ

dt2
= αf(ψ, t) on (t0, tf ),

ψ(t0) = ψ0,
dψ

dt
(t0) = ψ1.

A time-stepping scheme for the discretization of (20), with automatic adjustment of
the time-step, will be discussed in the following section.

3.1. A centered scheme for the time discretization of problem (20). Let
M be a positive integer (> 2 in practice). With M , we associate a time discretization
step σ = (tf − t0)/M . For the time discretization of the initial value problem (20) we
suggest the following scheme: Set

ψ0 = ψ0, ψ
1 − ψ−1 = 2σψ1,
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then for m = 0, ...,M , compute ψm+1 from ψm−1 and ψm via

(21) ψm+1 + ψm−1 − 2ψm = ασ2f(ψm, tm),

with tm = t0 +mσ.
Considering the possible blowing-up properties of the solutions of the nonlinear

wave problems (6),(3),(4), we expect that at one point in time the solution of problem
(20) may start growing very quickly before becoming infinite. In order to track such
a behavior we have to decrease σ in (21), until the solution reaches some threshold
at which we decide to stop computing. A practical method for the adaptation of the
time-step σ is described below.

3.2. On the dynamical adaptation of the time-step σ. The starting point
of our adaptive strategy will be the following observation: if ψ is the solution of (20),
at a time t before blow-up and for σ sufficiently small we have (Taylor’s expansion):

ψ(t+ σ) =ψ(t) + σψ̇(t) +
σ2

2
ψ̈(t) +

σ3

6

...
ψ(t+ θσ)

=ψ(t) + σψ̇(t) +
σ2

2
αf(ψ(t), t)

+
σ3

6
α

(
∂f

∂ψ
(ψ(t+ θσ), t+ θσ)ψ̇(t+ θσ) +

∂f

∂t
(ψ(t+ θσ), t+ θσ)

)
,(22)

with 0 < θ < 1. From expansion (22) we can derive the following estimator for the
relative error at t = tm+1:

(23) Em+1 =
σ3

6
α

∣∣∣∣ ∂f∂ψ (
ψm+1 + ψm

2
, tm)

ψm+1 − ψm

σ

∣∣∣∣+

∣∣∣∣∂f∂t (
ψm+1 + ψm

2
, tm)

∣∣∣∣
max[1, |ψm+1|]

.

In order to adapt σ using Em+1, we may proceed as follows: If ψm+1 obtained
from scheme (21) verifies

(24) Em+1 ≤ tol,

keep integrating with σ as time discretization step. If criterion (24) is not verified, we
have two possible situations

a) m = 0:
- Divide σ by 2 as many times it is necessary to have

(25) E1 ≤ tol

5
.

Each time σ is divided by 2, double M accordingly.
- Still calling σ the first time-step for which (25) holds after successive

divisions by 2, apply scheme (21) to the solution of (20), with the new
σ and the associated M .

b) m ≥ 1:

- Go to t = tm−1/2 = t0 + (m− 1/2)σ.

- tm−1/2 → t0,
ψm−1 + ψm

2
→ ψ0,

ψm − ψm−1

σ
→ ψ1.

- σ → σ/2.
- 2(M −m) + 1→M .
- Apply scheme (21) on the new interval (t0, tf ). If criterion (24) is not

verified, then proceed as in a).
For the numerical results reported in Section 4, we used tol = 10−4.
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4. Numerical results. In this section, we are going to report on the results
of numerical experiments concerning the solution of the nonlinear wave problem
(6),(3),(4).

As mentioned in Section 1, we will take three different forcing terms in (6). In
Section 4.1, we are reporting the results obtained when the nonlinear forcing term in
(6) is the same as that of the Painlevé I equation; in Section 4.2, when it is given by
the nonlinear forcing term of the Painlevé II equation; and in Section 4.3 when it is
the exponential nonlinearity encountered in the Bratu problem.

For all the problems, we take Ω = (0, 1)2.

4.1. Painlevé I. In this section, we consider the particular case of (6) where
the nonlinear forcing term is borrowed from the Painlevé I equation, namely:

(26) f(u, t) = 6u2 + t.

The non-damped version of (6), i.e. with k = 0, with forcing term as in (26) has
been studied in [1], for both Dirichlet boundary conditions (4) and mixed boundary
Dirichlet-Sommerfel conditions (5). Here, we consider only condition (4) and aim at
checking the effect of the damping term on the blow-up time.

For the numerical results presented below, we took:
- u0 = 0 and u1 = 0.
- c ranging from 0 to 1.5.
- α = β = 1/2.
- h = 1/100.
- ∆t = 10−2 for c ∈ [0, 0.6], ∆t = 8 × 10−3 for c = 0.7, 0.8, ∆t = 5 × 10−3 for
c = 0.9, 1, 1.25, ∆t = 10−3 for c = 1.5.

We initialized with M = 3 (see Section 3.1) and then adapted M following the proce-
dure described in Section 3.2. We considered only h = 1/100 because the numerical
experiments reported in [1] showed that the results obtained for h = 1/100 and
h = 1/150 match very accurately.

Fig. 1 reports the variation of the blow-up time of the approximated solution as
a function of c for three values of k: k = 0, 1, 10. It is not surprising to observe that
for small values of c the blow-up time increases significantly with k. However, for c
sufficiently large, the influence of k on the blow-up time becomes negligible.

Fig. 1. Painlevé I: Blow-up time as a function of c for k = 0, 1, 10 (semi-log scale).

In Fig. 2, we show, for c = 0.5 and k = 1, the approximated evolution of the
function

(27) t→ max
{x,1,x2}∈Ω

u(x1, x2, t)
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for different values of ε. The computed maximum value is always achieved at {0.5, 0.5}.
From Fig. 2, we see that a difference in four orders of magnitude for ε has a little
effect on the evolution of the function in (27).

Fig. 2. Painlevé I: Evolution of the computed approximation of the function in (27) for c = 0.5,
k = 1, and different values of ε (semi-log scale).

4.2. Painlevé II. We will now consider the case when the forcing term in (6) is
the one encountered in the Painlevé II equation, namely:

(28) f(u, t) = 2u3 + tu+ γ, γ ∈ C.

Let us write the complex constant γ in terms of its modulus and phase φ, that
is γ = |γ| cosφ + i|γ| sinφ and u in terms of its real part uR and imaginary part uI ,
that is u = uR + iuI . Then, the real and imaginary parts of equation (6) with forcing
term as in (28) are given by:

∂2uR
∂t2

+
k

ε+ t

∂uR
∂t
− c2∇2uR = 2u3

R − 6u2
IuR + tuR + |γ| cosφ in Ω ∈ (0, Tmax),

∂2uI
∂t2

+
k

ε+ t

∂uI
∂t
− c2∇2uI = −2u3

I + 6u2
RuI + tuI + |γ| sinφ in Ω ∈ (0, Tmax).

Notice that the above two equations are strongly (and nonlinearly) coupled.
In order to apply the procedure described in Section 3 for the treatment of the

nonlinearity, we decided to estimate the relative error (23) as follows:

Em+1 =
σ3

6
α

(6|ūm+1|2|u̇m+1|+ |ūm+1|+ tm+1|u̇m+1|)
max[1, |um+1|]

,

with

|ūm+1| =

((
um+1
R + umR

2

)2

+

(
um+1
I + umI

2

)2
)1/2

,

|u̇m+1| =

((
um+1
R − umR

σ

)2

+

(
um+1
I − umI

σ

)2
)1/2

.

We take the same values for u0, u1, α, β, and h as in Section 4.1. First, we set
k = 0, c = 0.1, ∆t = 10−2, |γ| = 1, and check how φ, i.e. the phase of γ, affects

the blow-up time. We consider eight values for φ: 0,
π

6
,
π

4
,
π

3
,

2π

3
,

3π

4
,

5π

6
, π. The
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corresponding blow-up times are reported in Fig. 3. We see that the blow-up time
increases for φ ∈ [0, π/2) and decreases for φ ∈ (π/2, π]. As for φ = π/2, we display
in Fig. 4(a) the approximated evolution of the function

(29) t→ max
{x,1,x2}∈Ω

uI(x1, x2, t).

Fig. 4(a) indicates that for φ = π/2 the solution u, that has uR ≡ 0, does not blow-up
for t ∈ (0, 1000). Fig. 4(b) shows a zoomed view of Fig. 4(a). Fig. 4(a) suggests that
the blow-up does not occur in finite time, but only asymptotically as t→ +∞.

Fig. 3. Painlevé II: Blow-up time as a function of φ for c = 0.1, k = 0, |γ| = 1.

(a) function (29) (b) zoomed view of (a)

Fig. 4. Painlevé II: (a) Computed approximation of the function in (29) for φ =
π

2
, |γ| = 1,

c = 0.1, k = 0 and (b) Zoomed view of (a).

In Fig. 5 and 6, we show the modulus and phase of the computed approximation

of u for k = 0, c = 0.1, |γ| = 1 and φ =
π

6
,
π

4
,
π

3
,

2π

3
,

3π

4
,

5π

6
at a time just before

blow-up. The computed solutions for the pairs

{
π

6
,

5π

6

}
,

{
π

4
,

3π

4

}
,

{
π

3
,

2π

3

}
have

the same modulus and opposite phase before blow-up.
Next, we let c and k vary and check the effect on the blow-up time and the

solution very close to explosion. Fig. 7 reports the blow-up time as a function of
c ∈ [0.1, 0.6] for two values of φ and different values of k. For all the values of c, ∆t
was set to 10−2. From Fig. 7, we see that if γ is a real constant, i.e. φ = 0, the
blow-up time increases with c, as it happens when the forcing term in (6) is given
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(a) φ = π/6 (b) φ = π/4 (c) φ = π/3

(d) φ = 2π/3 (e) φ = 3π/4 (f) φ = 5π/6

Fig. 5. Painlevé II: Modulus of the solution close to explosion for c = 0.1, k = 0, |γ| = 1, and
different phases of γ. Blue corresponds to 0 and red to 300. (Please refer to the online version of
the article for colors.)

(a) φ = π/6 (b) φ = π/4 (c) φ = π/3

(d) φ = 2π/3 (e) φ = 3π/4 (f) φ = 5π/6

Fig. 6. Painlevé II: Phase of the solution close to explosion for c = 0.1, k = 0, |γ| = 1, and
different phases of γ. Blue corresponds to −π/2 and red to π/2. (Please refer to the online version
of the article for colors.)

by the one in (26). Also, as with the nonlinearity in (26), for small values of c the
blow-up time increases significantly with k, and for c sufficiently large the influence of
k is negligible. However, when the imaginary part of γ is different from 0 (as it is for
the case in Fig. 7, which corresponds to setting φ = π/6), things are very different:
the blow-up time is no more an increasing function of c and a larger value of k does
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not cause a larger blow-up time. For φ = π/6, both k = 0 and k = 1, the blow-time
seems to oscillate as c varies. The curve for k = 10, φ = π/6 is missing in Fig. 7
because no blow-up is observed over for t ∈ (0, 1000): regardless of the value of c,
the modulus of the computed solution displays an oscillatory behavior similar to the
graph in Fig. 4(a), that is the norm of the solution increases in time but the blow-up
occurs in an infinite time rather than at a finite time as for k = 0, 1.

Fig. 7. Painlevé II: Blow-up time as a function of c for |γ| = 1, φ = 0, π/6, and different
values of k.

In Fig. 8 and 9, we show the modulus and phase of the computed approximation
of u for k = 0, |γ| = 1, φ = π/6 and c = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 at a time very
close to explosion. Notice how modulus and phase change significantly from c = 0.1
to c = 0.2 but then remain practically unchanged for higher values of c. We repeat
the same numerical experiments but set k = 1. Modulus and phase of the computed
approximation of u are reported in Fig. 10 and 11, respectively. For k = 1, the
modulus and phase of the solution do not vary much till c = 0.3 and then rapidly
change to form different patterns.

A natural variation of the above model with physical relevance is to replace the
cubic term in (28) by the following Ginzburg-Landau type nonlinearity (see [7] for
related physical applications):

(30) f(u, t) = 2|u|2u+ tu+ γ, γ ∈ C.

The real and imaginary parts of equation (6) with forcing term as in (30) are given
by:

∂2uR
∂t2

+
k

ε+ t

∂uR
∂t
− c2∇2uR = 2u3

R + 2u2
IuR + tuR + |γ| cosφ in Ω ∈ (0, Tmax),

∂2uI
∂t2

+
k

ε+ t

∂uI
∂t
− c2∇2uI = 2u3

I + 2u2
RuI + tuI + |γ| sinφ in Ω ∈ (0, Tmax).

We solved the above problem for k = 10 and φ = π/6, that is the values of k and
φ for which we observed no explosion for (6),(28). The approximated solution to
(6),(30) does blow up in this case and in Fig. 12, we show the blow-up time as a
function of c ∈ [0.1, 0.6]. For all c, the modulus of the solution at a time very close
to explosion looks like the solution to (6),(26) or (6),(28) with γ ∈ R, that is a high
peak at {x1, x2} = {0.5, 0.5}, while the phase is equal to π/3 everywhere inside Ω.

4.3. Bratu. Finally, we consider the case where the nonlinearity of the forcing
term in (6) is given by:

(31) f(u) = λeu, λ ∈ R+,
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(a) c = 0.1 (b) c = 0.2 (c) c = 0.3

(d) c = 0.4 (e) c = 0.5 (f) c = 0.6

Fig. 8. Painlevé II: Modulus of the solution close to explosion for k = 0, |γ| = 1, φ = π/6, and
different values of c. Blue corresponds to 0 and red to 300. (Please refer to the online version of
the article for colors.)

(a) c = 0.1 (b) c = 0.2 (c) c = 0.3

(d) c = 0.4 (e) c = 0.5 (f) c = 0.6

Fig. 9. Painlevé II: Phase of the solution close to explosion for k = 0, |γ| = 1, φ = π/6, and
different values of c. Blue corresponds to −π/2 and red to π/2. (Please refer to the online version
of the article for colors.)

that is the celebrated Bratu problem nonlinearity (see, e.g., [8] for applications to solid
combustion). Notice that this forcing term does not depend on t explicitly, unlike (26)
and (28).

In order to apply the procedure described in Section 3 for the treatment of the
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(a) c = 0.1 (b) c = 0.2 (c) c = 0.3

(d) c = 0.4 (e) c = 0.5 (f) c = 0.6

Fig. 10. Painlevé II: Modulus of the solution close to explosion for k = 1, |γ| = 1, φ = π/6,
and different values of c. Blue corresponds to 0 and red to 300. (Please refer to the online version
of the article for colors.)

(a) c = 0.1 (b) c = 0.2 (c) c = 0.3

(d) c = 0.4 (e) c = 0.5 (f) c = 0.6

Fig. 11. Painlevé II: Phase of the solution close to explosion for k = 1, |γ| = 1, φ = π/6, and
different values of c. Blue corresponds to −π/2 and red to π/2. (Please refer to the online version
of the article for colors.)

nonlinearity, we estimate the relative error (23) as follows:

Em+1 =
σ3

6
αλ

e
um+1+um

2

∣∣∣∣um+1 − um

σ

∣∣∣∣
max[1, |um+1|]

,
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Fig. 12. Ginzburg-Landau: Blow-up time as a function of c for |γ| = 1, φ = π/6, k = 10.

We take the same values for u0, u1, α, β, and h as in Section 4.1. Moreover, let
us start by setting k = 0 in (6) and λ = 1 in (31). For c small enough, we observe
the same explosive nature of the solution that we have seen for (26) and (28); see
Table 1 for the blow-up times. For c = 0.32, Fig. 13 reports the evolution of the
computed approximation of the function in (27) for t ∈ [0, 2.94] and the computed

approximation for p =
∂u

∂t
at t = 2.94 (very close to blow-up).

Table 1
Bratu, k = 0: Blow-up times for different values of c.

c = 0.1 c = 0.2 c =0.3 c=0.31 c=0.32 c=0.33

blow-up time 1.99 1.99 2.48 2.66 2.94 3.72

(a) the function in (27) (b) p at t = 2.94

Fig. 13. Bratu, λ = 1, k = 0, c = 0.32: (a) Evolution of the computed approximation of the
function in (27) for t ∈ [0, 2.94] and (b) Computed approximation of p at t = 2.94.

For c above a critical value ccr, the solution to (6),(31) does not blow-up anymore.
For k = 0 and λ = 1, the numerical results suggest that 0.33 < ccr < 0.34. In Fig.
14(a), we show the evolution of the computed approximation of the function in (27)
for c = 0.34. Figure 14(b) suggests that the modulation for c = 0.34 observed in
Fig. 14(a) is quasi-monochromatic signal, with f ' 0.22 Hz. It is possible to get a
good estimate of the critical value ccr by considering the static version of the equation
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under consideration, that is: 
−∇2u =

λ

c2
eu in Ω,

u = 0 on ∂Ω.

It is well known that the above problem possesses a turning point for
λ

c2
' 6.81 (see,

e.g., [9], Chapter 3). This means that ccr can be estimated by ccr '
√
λ/6.81. So,

for λ = 1 we get ccr ' 0.38, which is not too far from the value suggested by the
numerical experiments.

(a) the function in (27) (b) spectral power density for (a)

Fig. 14. Bratu, λ = 1, k = 0, c = 0.34: (a) Evolution of the computed approximation of the
function in (27) and (b) Spectrum of the modulation.

If we solve problem (6),(31) with k = 0, λ = 1, and c = 0.4, the oscillations of
the function in (27) have smaller amplitude and higher frequency than for c = 0.34,
which is closer to ccr. See Fig. 15. Again, the spectral power density (in Fig. 15(b))
suggests that the modulation of function (27) in Fig. 15(a) is a quasi-monochromatic
signal, with f ' 0.32 Hz in this case.

(a) the function in (27) (b) spectral power density for (a)

Fig. 15. Bratu, λ = 1, k = 0: Comparison between c = 0.34 and c = 0.4 in terms of (a)
Evolution of the computed approximation of the function in (27) and (b) Spectrum of the modulation.

Next, let us set k = 1, while keeping λ = 1. As for k = 0, for small values of c the
solution to (6),(31) displays an explosive nature. See Table 3 for the blow-up times,
which are higher than in the non-damped case (compare with the times in Table 1).
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Also, a higher k has the effect of reducing the value of ccr: the numerical results
suggest that for k = 1 we have 0.31 < ccr < 0.32.

Table 2
Bratu, λ = 1, k = 1: Blow-up times for different values of c.

c = 0.1 c = 0.2 c =0.3 0.31

blow-up time 2.52 2.57 3.82 4.63

In Figure 16(a), we show the evolution of the computed approximation of the
function in (27) for c = 0.32 and c = 0.4. Fig. 16(b) reports the spectrum of the
modulations in 16(a): the damped oscillations of the function in (27) have frequency
f ' 0.18 Hz for c = 0.32 and f ' 0.33 Hz for c = 0.4. Notice that the effective
damping coefficient in (6) is k/(ε + t), so as t → ∞ it approaches zero. We let the
simulations whose results are reported in Fig. 16 run till t = 1000. For c = 0.32
(resp., 0.4) the amplitude of the oscillations is 0.12 (resp., 0.035) at t = 200 and 0.055
(resp., 0.016) at t = 1000.

(a) the function in (27) (b) spectral power density for (a)

Fig. 16. Bratu, λ = 1, k = 1: Comparison between c = 0.32 and c = 0.4 in terms of (a)
Evolution of the computed approximation of the function in (27) and (b) Spectrum of the modulation.

Next, we set k = 10, while keeping λ = 1. The value of ccr is further reduced: the
numerical results suggest that we have 0.3 < ccr < 0.31. See Table 3 for the blow-up
times for c = 0.1, 0.2, 0.3. In Figure 17(a), we show the evolution of the computed
approximation of the function in (27) for c = 0.31 and c = 0.4. Unlike the cases
k = 0 and k = 1, the function in (27) does not display an oscillatory behavior. The
computed solution u approaches a steady state (which is clearly the solution of the
associated steady Bratu’s problem) after the initial transitory phase. Figure 17(b)
shows the computed approximation of u at t = 70 (close to the steady state) for
c = 0.4.

Table 3
Bratu, λ = 1, k = 10: Blow-up times for different values of c.

c = 0.1 c = 0.2 c =0.3

blow-up time 4.85 5.22 10.02
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(a) the function in (27) (b) u at t = 70 for c = 0.4

Fig. 17. Bratu, λ = 1, k = 10: (a) Comparison between c = 0.31 and c = 0.4 in terms of
evolution of the computed approximation of the function in (27) and (b) Computed approximation
of u at t = 70 for c = 0.4.

Fig. 16(a) and 17(a) suggest that there is a critical value of k between 1 and 10
at which the oscillatory behavior of the function in (27) disappears. To estimate such
a value, we fixed λ = 1, c = 0.4, and progressively increased the value of k. For k = 2,
the function in (27) is still oscillating at t = 1000 with amplitude 5 · 10−4. For k = 3,
amplitude 5 · 10−4 is already reached at t = 100, while at t = 1000 the amplitude is
2 · 10−5. For k = 8, at t = 50 the amplitude of the oscillations is 10−6, whereas for
k = 9 there are no oscillations. Thus, the critical value of k is between 8 and 9.

Fig. 18 is a zoom of Fig. 15(a), 16(a), and 17(a), that is it shows the evolution of
the computed approximation of the function in (27) for k = 0, 1, 10 over the interval
[0, 2], when the damping coefficient k/(ε+ t) is large.

Fig. 18. Bratu, λ = 1, c = 0.4: evolution of the computed approximation of the function in
(27) for k = 0, 1, 10 over the interval [0, 2]. This figure is a zoom of the corresponding curves in
Fig. 15(a), 16(a), and 17(a).

Finally, we replaced the time dependent damping coefficient k/(ε + t) by k to
check how the solution u varies. So, instead of (6), we now consider

(32)
∂2u

∂t2
+ k

∂u

∂t
− c2∇2u = f(u, t) in Ω ∈ (0, Tmax).

Problem (32) can be easily solved using a three-stage operator-splitting scheme of the
Strang’s type; however, for commonality we still used a five-stage operator-splitting
scheme, namely, the one obtained by replacing k/(ε + tn+1/2) by k in (15) and (17).
Therefore, steps 1, 3, and 5 are still given by (14), (16), and (18), while step 2 becomes:
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Set un+2/5 = un+1/5, pn+2/5 = p

(
∆t

2

)
, p being the solution of

(33)


∂p

∂t
+ kp = 0 in Ω×

(
0,

∆t

2

)
,

p(0) = pn+1/5;

and step 4 becomes: Set un+4/5 = un+3/5, pn+4/5 = p (∆t), p being the solution of

(34)


∂p

∂t
+ kp = 0 in Ω×

(
∆t

2
,∆t

)
,

p

(
∆t

2

)
= pn+3/5.

The solutions to sub-problems (33) and (34) are given by:

(35) pn+2/5 = e−
k∆t

2 pn+1/5, pn+4/5 = e−
k∆t

2 pn+3/5,

respectively.

In Figure 19, we show the evolution of the computed approximation of the function
in (27) for c = 0.4 and k = 1. Since the damping coefficient is constant, the oscillations
are damped out quickly (compare Fig. 19 with the the dashed line in Fig. 16(a)).

Fig. 19. Evolution of the computed approximation of the function in (27) where u is the solution
to (32)-(31) for λ = 1, c = 0.4, and k = 1.

5. Conclusion. In this article, we have investigated the numerical solution of
nonlinear wave equations of the Euler-Poisson-Darboux type. Various nonlinear forc-
ing terms have been considered, including a complex-valued one. Depending on the
respective values of the various parameters in the model and on the nonlinearity, so-
lutions can blow-up in finite time or evolve to a limit cycle. The key ingredient to
capture the solutions has been a five-stage symmetrized splitting scheme for the time
discretization coupled to a well-chosen time-step adaptation technique for treating
the fractional steps associated with the nonlinear forcing term of the equation.
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