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Abstract. Networks have recently emerged as a general tool for data representation in various
fields. In the analysis of conformation transition networks in biomolecular dynamics (protein, RNA
etc.), it is important to discover major transition bottlenecks which provides clues for drug design.
Similarly in the analysis of social networks, it is helpful to identify nodes which act as bridges
connecting different communities. Although there have been extensive studies on the community
structure of networks, much less has been done about the connection between the communities.
Inspired by the classical Morse theory, we introduce a new notion, critical nodes of functions on
networks, based on the gradient flow of these functions. Critical nodes of different indices, together
with their attraction basins, lead to a hierarchical decomposition of networks. This enables us to
define a concise topological landscape of functions on networks. The usefulness of this new concept is
illustrated by three examples: two social networks and one protein-ligand binding network. For the
social networks, the index-0 critical nodes together with their attraction basins represent the different
communities on the network; the index-1 and higher critical nodes play the role of bridges or hubs
connecting the different communities. For the protein binding network, the index-0 critical nodes
together with their basins explain the major metastable bound and misbound macrostates, while
the index-1 and higher critical nodes represent the bottleneck between the misbound to the bound
states. Computation of such critical nodes can be performed by a polynomial time algorithm based
on recent developments in computational topology. In the non-degenerate case an almost linear time
algorithm exists which is scalable for large scale network analysis.

Key words. Network, landscape, critical node, gradient flow, attraction basin, saddle, persistent
homology, discrete Morse theory.
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In recent years, networks have emerged as a general tool for representing data.
A natural question arises then is how we can explore the structure of these networks
in order to uncover the information hidden in these data. For example in a network
representing the different metastable states of a ligand-protein complex, we would
like to know the subsets of states that represent the same macro state as well as the
states that represent the bottlenecks for the transition between the different macro
states. This information is crucial for various applications such as drug design. For
networks representing social circles, it is of interest to know the different sub-groups
as well as the agents that act as bridges between the different groups. As we show in
this paper, this kind of questions can be addressed by extending the notion of critical
points from a manifold setting to the setting of networks.

There has been a large amount of recent work on detecting community structure in
networks, e.g. [18, 17, 1, 21]. However relatively fewer results exist about exploring the
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connections between different communities, and this latter component may contain
important information about the network. In this paper, we propose an approach
for such a goal based on gradient flow type of dynamics associated with a function
defined on the nodes of a network. Our approach is motivated by the Morse theory
of manifolds [15] — by examining the critical points of a function on the manifold, one
can extract information about the topology of the manifold.

This also allows us to define the “landscape” of the function on the network. The
concept of landscape has been crucial in physics and chemistry in describing complex
systems. For example in molecular dynamics, conformational changes are driven by
the free energy of states, e.g. [25, 28], whence energy landscape decides metastable
states, transition states and reactive pathways. In the world of complex networks,
one often see flows of information or other quantities which are driven by the local
gradients of a scalar function [23, 24]. For example traffic flow is driven by congestion
function; heat flow is driven by temperature; internet browser’s attention may be
driven by the influence or relevance of webpages, possibly measured by quantities like
PageRank etc; in social networks, gradient flow of some potential function may help
identify communities as attraction basins of local minima [26]. Therefore it is helpful
to embed community structure into the hierarchy of the complexes defined by the
critical points of some functions and the associated basins. This will equip us with
a concise description of the global structure of the network and help explain certain
dynamical issues such as information diffusion and transition pathways.

Consider an undirected graph G = (V, E) with a function defined on the node set
h:V — R. The question we will attempt to address is: given a function on its nodes,
how can we endow the network with a landscape, so that one can distinguish critical
nodes such as the local minima, local mazxima, and saddles?

There are several studies in the literature which may lead to critical nodes for
graphs by extending Morse theory to discrete settings. In computational geometry one
may embed the graph into a 2D-surface and then apply Morse theory for 2-manifolds
[7]. However, such a surface embedding is not natural for general graphs in biological
and social networks. Another candidate is discrete Morse theory [9], which studies
functions defined on all faces of cell complexes and is therefore hard to use in the
graph setting above. A related subject is the extension of the Poincare-Hopf theorem
to the graph setting, e.g. in [12]. None of these gives a satisfactory answer to the
question raised above.

In this paper we present a purely combinatorial approach which starts from a
discrete gradient flow induced by the function on graph nodes. Such an approach
does not need a surface embedding, and turns out to be closely related to persistent
homology in computational topology [8, 6] and discrete Morse theory [9] without
studying functions on high dimensional cells. In particular, given a function (often
referred to as an energy function) on a network, we will define a discrete gradient flow
associated with that function, as well as minimum energy paths between two disjoint
sets of nodes. This allows us to define critical nodes or saddles. Roughly speaking,
critical nodes are associated with minimum energy paths between node pairs: index-0
critical nodes are simply local minima; index-k critical nodes are the highest energy
transition nodes of minimal energy paths connecting index-(k—1) critical nodes. Note
that for geometric random graphs whose nodes are random points in Euclidean spaces
with a density function at the points, index-0 and index-1 critical nodes defined above
capture density cluster trees which has been studied in statistics, e.g. [11, 28].

Such a critical node analysis, as we show by examples in social networks and
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biological networks, leads to a concise representation of networks while preserving
some important structural properties. This approach provides us a hierarchical de-
composition of networks into hypergraphs with hypernodes as attraction basins of
critical nodes, a concise global visualization of networks adaptive to the landscape of
a given function. In short, the local minima or maxima together with their attrac-
tion basins can be interpreted as communities or groups in networks; saddle points
act as transition states between different critical points of lower indices. In partic-
ular, in social networks index-1 saddles act as hubs in connecting communities; in
biomolecular dynamics, index-1 saddles play roles as intermediate or transition states
connecting misfolded and native states. It is important to note that such an analysis
in biomolecular dynamics does not rely on the Markovian assumption which requires
simulation running long enough for convergence, whence can be applied to data anal-
ysis of conformational transition networks in more general settings with short or long
simulations.

In algorithmic aspect, critical nodes in this paper can be computed at a poly-
nomial time cost with an algorithm based on computational topology by monitoring
topological changes over energy level sets. In particular in nondegenerate case we pro-
pose an almost linear algorithm. Therefore our approach is scalable for the analysis
of large scale networks.

1. Landscape and critical nodes.

1.1. Discrete gradient flow. Let h : V' — R be a real valued function on
vertex set V. Throughout this paper we assume that A is injective (one-to-one). Such
functions are generic in the space of real functions on V. One may associate a gradient
flow of h on the graph G, as a map Dp, g : 2V — 2V which maps a subset of vertices
to its immediate neighbors with lower i values. More precisely, given x € V, define
the neighbor set of z with lower energy N~ (z) = {y € N(2) : h(y) < h(x)} and

N7 (z), N (x) #0;

{z}, otherwise.

(1) Dno({z}) = {
For any X C V, we define

(2) Dno(X) = | Dno({z}).

reX

Let D}QL0 = Dy00 Dy, etc. We say that y is reachable from z, denoted by x > y or
y<ux ify e be,o({fﬂ}) for some k € N, i.e., we can find an energy decreasing path
from x to y.

Note that our construction of the gradient flow is related to, but different from
the gradient network by [23, 24], in which each node is only connected to its neighbor
with the lowest energy (i.e. the neighbor in the steepest descent direction). We also
remark that the gradient flow can be viewed as a “zero temperature” limit of the
stochastic gradient flow introduced in [26] in the study of network communities.

1.2. Local minima. The local minima of h are those vertices whose h value is
no larger than the values of its neighbors.

(3) Co={z|h(z) < hly), Yy e N(z)}.

In other words, the set of local minima are precisely the maximal vertex set of fized
points of the gradient flow Dy, .
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Given a local minimum = € V| its attraction basin is defined to be:

(4) Ao(z) = {y | Di5o({y}) = {=}}-

These are the points that reach the local minimum = but not any other local minima.
Boundary or separatriz consists of those nodes which can reach more than one
local minimum following the gradient flow

() By = {x [ |Dy({})] > 1}.

It is clear by definition that we have the non-overlapping decomposition

(©) v=8 U o).

zeCo

1.3. Index-1 critical nodes. Our next task is to classify the nodes in By. We
do so according to their role in the pathways connecting the different local minima.
In particular, index-1 critical nodes (saddles) are defined as the maxima on local
minimum energy paths connecting different local minima.

Clearly such a definition relies on the notion of local minimal energy paths, which
depends on the topology of the path space. Given two local minima, we examine all
the paths connecting them. If a path +; can be deformed by the gradient flow to
another path o, we say that v is deformable to 5. The local minimum energy paths
are paths which cannot be deformed by the gradient flow.

To be more precise, given two points a,b € V, we define a path from a to b as
v = (wo - - wy) such that wy = a, w, = b, and w; 1 € N(w;) for i =0,--- ,n— 1.
We denote the collection of paths from a to b as P .

We note the following elementary lemma, whose proof is obvious.

LEMMA 1. Let x > y, we can then find a path v = (wq - - - wy,) from x to y such
that h(w;) > h(w;y1) fori=0,1,--- ,n—1.

Given two paths 71,72 € Pup, we say 71 is deformable to vz, if there is a map
F v — 272 such that
e (reaching) every node in v; reaches some nodes in s, i.e. for any = € ~,
F(z) is not empty and for each y € F(x) C v, y < z;
e (onto) every node in s is reachable from 7, i.e. for any y € o, there exists
x € 71, so that y € F(z), or equivalently,

Yo = U F(x).

xreEY1

Let a,b be two local minima. We call a path v € 2, local minimum energy
path, if it is not deformable to any other path in &, .

We define the energy of a path the maximal energy traversed by the path, i.e.
h(y) = maxyec, h(y). From the definition, if v, is deformable to i, we have h(y2) >
h(y1), so in terms of energy barrier, 1 is a more preferable path than s.

Given a local minimum energy path, we call the node of maximal energy on the
path an index-1 critical node. The set of all index-1 critical nodes is denoted by C;.
We will also call local minima indez-0 critical nodes, and hence the notation Cy.

The following fact gives a characterization of index-1 critical nodes. The proof
can be found in Appendix A.
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PROPOSITION 2 (Classification of index-1 critical nodes). All local minima in By
are index-1 critical nodes. The other index-1 critical nodes will reach one of the local
minima in By by the gradient flow.

We call the index-1 critical nodes that are also local minima in By the nonde-
generate index-1 critical nodes, the set of which will be denoted as C;. The other
index-1 critical nodes are called degenerate. Not every index-1 critical node is a local
minimum in By, for example in some cluster trees (see Figure 1). In density cluster
trees studied in statistics [11, 28], networks are geometric random graphs in Euclidean
spaces where the node set consists of sample points and edges are given if two points
are within certain neighborhood, density function on sample points is studied and the
index-0 and index-1 critical nodes thus lead to a clustering tree.

©

Fia. 1. Left: an example of degenerate index-1 critical node, where node 5 on top of the tree
is a degenerate index-1 saddle while nodes 3 is a nongenerate index-1 saddle. Right: an example of
both degenerate and non-degenerate critical node, where node 7 on top of the tree is a degenerate
indez-1 saddle as it lies on the minimum energy path connecting local minima 1 (or 2) and 3 (or
4), and as well a non-degenerate indezx-2 saddle as it is on the minimum energy path linking index-1
saddles 5 and 6.

1.4. Higher index critical nodes. The procedure presented above can be ex-
tended to define higher index critical nodes.

To define index-2 critical nodes, we consider the subgraph with nodes in By and
edges restricted on this subset, denoted by G1 = (Vi = By, F1). The gradient flow
Dy e 280 280 on By is defined similarly as for Dy 0. We define the attraction
basins for x € C; as

(7) Ai(x) = {y € Bo | D1 ({y}) = {=}}

Note that for any nondegenerate index-1 critical node, the attraction basin is
nonempty. While for a degenerate index-1 critical node, the attraction basin is an
empty set. This explains the notion “degenerate” for the critical nodes that are not
local minima in By.

We define the boundary set as

(®) Bi={zeBo | [Dii({z})] > 1}

As shown in Proposition 2, all local minima on By are in C;. Therefore, we have the
decomposition

9) B():BlU U A (x) :Blu U A (z).

zeCy z€Cy
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Analogously, we define index-2 critical nodes as the maxima on local minimum
energy paths connecting different nondegenerate index-1 critical nodes. It is clear
that index-2 critical nodes, if exist, must be in Bj.

We remark that under our definition, a degenerate index-1 critical node can also
be an index-2 critical node, as shown in Figure 1. This ambiguity is actually quite
natural from the network point of view, as these points play multiple roles in the
structure of the network. The degenerate index-1 critical node can lie either in the
basin of a nondegenerate critical node or link together two different nondegenerate
critical nodes.

Higher index critical nodes can be defined recursively through further decompo-
sition of B;. Classification for high index critical points can be done following similar
arguments as above. Combining these, we obtain:

THEOREM 1 (Node Decomposition). V' admits the following decomposition

V= BOU U A0($)

x€eCo

where

Bk—l = BkU U Ak(x)

erk

Here Ay is the attraction basin of local minima restricted on the k — 1-th boundary
set Bi—1 and Cy, is the set of nondegenerate index-k critical nodes.

The theorem gives us a hierarchical representation of the network associated to the
energy landscape. It actually leads to a hypergraph representation whose hypernodes
are made up of critical nodes with their attraction basins.

2. Finding critical nodes using persistent homology.

2.1. Persistent homology algorithm.

The landscape introduced above can be naturally formulated in terms of a flooding
procedure, from low to high values of the height function h : V' — R. Flooding starts
from local minima, followed by the attraction basins. Once the relevant index-1 saddle
is passed, basins of local minima are merged together. This procedure then continues
on to critical points of higher indices.

More precisely, this procedure can be described in terms of persistent homology.
Persistent homology, firstly proposed by [8] and developed afterwards largely in [10,
6, 2], is an algebraic tool for computing the Betti numbers and homology groups of
a simplicial complex when its faces are added sequentially. To work with persistent
homology, we extend the graph G into a simplicial complex up to dimension 2, and
also define a filtration which consists of such simplicial complexes, in a spirit close to
[7] for PL-manifolds.

An abstract simplicial complex Yy is a collection of subsets of V', which is closed
under deletion or inclusion, i.e. if o € 3y, then 7 € Xy for any 7 C 0.

We define the flooding complex of network G associated with the function h,
Yan C 2V as follows:

e (-simplex: the vertex set V;
e l-simplex: the vertex pairs {x,y : h(z) < h(y)} that z < y, i.e., x € DZ’O({y})
for some k;
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e 2-simplex: collections of triangles {z,y,z : h(z) < h(y) < h(z)}, such that
r<yandy < z.

One can similarly extend the definition above to general k-simplex. However for our
purpose it suffices to define up to dimension 2 simplices.

A filtration of flooding complex ¥¢ j, is a nested family F; C ¢ p, with Fy— 1 C F¢
which respects the order of deletion or inclusion in g p, ie. if 0 € Frand 7 C o
then 7 € F;.

Assume that h : V — R is injective or one-to-one, which is generically the case. By
taking the maximum over vertices, one can extend h from the vertex set to simplicies,
and thus to the simplicial complex X¢ . For a simplex o € X p, let h(o) = max{h(i) :
i € o}. This implies that a face’s h-value is always no more than that of its associated
simplex, i.e. 0 C 7= h(o) < h(7).

A filtration (F; : t € N) respecting the order of h can be defined in the following
way:

1. Fo ::0;

2. #{o € Fi41\F: : dim(o) = 0} = 1, i.e. there is precisely one node being
added into the filtration for each step;

3. h(F:) < h(Fiy1), where h(F;) = max{h(c) : 0 € Fi}, i.e. when a node is
added into the filtration, all the simplices of the same energy are added into
the filtration simultaneously.

Note that under this construction, J; consists of the global minimum of h.

In this construction, we consider the filtration corresponding to the flooding pro-
cedure from low to high h values. The change of Betti numbers identifies the index-0
and index-1 critical nodes. Once the filtration is defined, persistent homology com-
putes the Betti numbers of the simplicial complex in F; for each t € Z, and draws the
barcodes of Betti number versus the ¢ or h values, e.g. using JPLEX toolbox!. The
proof of the following theorem is in Appendix A.

THEOREM 2. Consider the filtration (F;). For allt € N, Fi41\F; contains an
index-0 critical node if and only if By increases from Fy to Fiy1; Fip1\Fr contains
an index-1 critical node if and only if either By decreases or 1 increases from JF; to
]%+1.

Figure 3 illustrates how such a persistent homology algorithm works for the
Zachary’s Karate Club network. Detailed information about this network can be
found in Section 3.1.

To find higher index saddles, we restrict on the subgraph Gy = (Vi, Ex) where
Vie = Br—1 = V\ Up<i<i—1 Ugec, Ai(z) and Ej consists of edges restricted on V.
We can analogously construct the filtration corresponds to the flooding procedure
(Fk,t,t € N) on the subgraph Gy. Similar identification holds for higher index saddles.

THEOREM 3. Consider the filtration (Fj ) on subgraph Gy, for k > 2. For all
t € N such that Fi141\Fr,t contains an index-k critical node if either By decreases or
B1 increases from Fi 1 to Fpy1.

Clearly our characterization of high order critical nodes above only exploits simpli-
cial complex up to dimension 2, whose persistent homology computation is recently
improved to be of complexity O(m?2-37%) [16] with m = O(n®) the total number of

Ihttp://comptop.stanford.edu/programs/
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simplices and n the number of nodes. Such a complexity does not suffer the curse of
dimensionality as the computation of high order Betti numbers in general.

2.2. Efficient search of nondegenerate Saddles.

Algorithm 1 Fast search of nondegenerate critical nodes

Sort the nodes according to h in increasing order;
Set Go = G;
for k=0,...,n do
for x € Vi in an increasing order of h do
Find neighbors of & with lower energy, N, (z) = {y € N(2) N Vi | h(y) < h(z)};
if N7 (z) =0 then
Add z to Cj and set the color of  as its node index;
else
if N (z) contains a single color then
Set the color of x as the single color;
else
Leave the color of z as blank;
end if
end if
end for
return :
(1) local minima Cj, as nondegenerate critical nodes;
(2) attraction basins Ak (o) (zo € Ek) as color components;
(3) boundary By, as the blank nodes;
Set Gr+1 = (Bk, Ex+1) where E11 are edges restricted on Bg;
end for

As we know from Proposition 2 that nondegenerate critical nodes are actually
local minimum in sub-graphs Gy, this leads to an efficient algorithm for finding non-
degenerate critical nodes. In fact, all the examples shown in this paper have only
nondegenerate critical nodes and thus can be found efficiently using this algorithm.

Given an injective function h on the vertices, we obtain the local mimina and
nondegenerate index-k saddles using Algorithm 1.

The bottleneck in this algorithm is in finding the attraction basins of local min-
ima, whose complexity can be O(nd) where n is the number of vertices and d is
the maximum degree a node has. The total complexity is O(Knd) where K is the
maximum index of critical points. The algorithm is much faster than the previous
algorithm for finding all critical nodes.

3. Examples.

3.1. Zachary’s karate club network. Zachary’s karate club network [27] con-
sists of 34 nodes, representing 34 members in a karate club with node 1 being the
instructor and node 34 being the president (Figure 2). An edge between two nodes
means that the two members join some common activities beyond the normal club
classes and meetings. Conflicts broke out between the instructor and the president
when the instructor sought to raise the fee and the president opposed the proposal.
The club eventually split into two, one formed by the president (blue nodes in Fig-
ure 2(a)) and another one led by the instructor (red nodes in Figure 2(a)). A lot of
information about this fission can be disclosed by looking at the graph structure of
this social network.
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Fi1G. 2. Landscape of Karate Club. (a) The fission of Karate Club into two new clubs marked
by red and blue colors [27]: the coach is node 1 and the president is node 34, where the box node
joined the red club (coach) instead of the blue due to his necessity to finish the course. (b) A
gradient flow on edges, node colors from blue to red indicate the energy from low to high, four nodes
in diamond shape to-be-disclosed soon as critical nodes. (c) Node decomposition with each color
component representing a critical node with its basin: two local minima are in oval shape in which
node 1 has basin in red and node 34 in blue; two index-1 saddles are in diamond shape in which
node 3 has basin in yellow and node 32 in green; two index-2 saddles, node 25 in light blue and
node 29 in cyan. (d) A transition path analysis with source node 1 and target node 34. Committor
function with thresholding probability 0.5 is used to divide all the nodes into two communities, one
with node 1 in red and the other with node 34 in blue. Node size is in proportion to transition
current connecting two communities through the node. Effective reactive currents from node 1 to
node 34 are drawn with arrows on edges, whose width is determined from effective reactive current
with a threshold greater than 0.001. It can be seen that indez-1 saddles (3, 32) host a majority of
transition currents.

Let d; be the degree of node i, and define h; = —logd;. To avoid the same degree
between two nodes in neighbor, a small enough random perturbation is added such
that h; = h; +¢; is injective. Figure 2(b) shows the gradient flow of h. The arrows on
the edges point from low degree nodes to high degree ones. Note that nodes 24 and
25 both have degree 3, hence a small random perturbation is added resulting in the
arrow from 25 to 26. The same is done for nodes 5 and 11.
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Fic. 3. An illustration of finding index-0 (node 1 and 34) and index-1 (node 3 and 32) critical
nodes in Karate Club network using the persistent homology algorithm. Top: a flooding complex is
created with a filtration adapted to the order of energy function H : V' — R defined in Section 3.1.
At each step from 0 to 18, a cell (node, edge, and triangle) is created such that, (1) node emergence
follows the increasing order of H, (2) an edge appears after its associated nodes are created, and (3)
an triangle appears after its associated edges are created. Bottom: persistent Betti numbers (Bo and
B1) is plotted as barcodes with step numbers and energy values. Node 34 with the lowest energy is
added at step t = 0 which creates a connected component (Bo) which never disappears. Node 1 with
the second smallest energy is added at step t = 1 which creates a new connected component (Bo)
disappeared after index-1 saddle 8 and its associated cells (edges and triangles) are all added during
step t € [4,8]. As the second index-1 saddle, node 32 and its associated cells are added during step
t € [9,13] which creates a loop (B1).

Figure 2(c) shows the node decomposition for Karate club network with each color
component for a critical node and its attraction basin. Two local minima, nodes 1 and
34, are in oval shape together with their attraction basins marked in red and blue,
respectively. Two index-1 saddles, nodes 3 and 32, are yellow and green diamond
nodes, whose basins are in yellow (nodes 3) and green (node 32) correspondingly.
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Node 3 is the lowest energy node connecting the local minima nodes 1 and 34 via
a minimum energy path v; = (1,3,33,34). Node 32 links the two local minima by
another local minimum energy path, v2 = (1,32,34). Two index-2 saddles, nodes
25 (in light blue diamond) and 29 (in cyan diamond), which connect two index-1
saddles via two non-deformable minimal energy paths (3,29,32) and (3,28, 25,32).
Figure 2(d) further depicts a transition path analysis (see [4, 5]) of a Markov chain
induced by a random walk on the undirected graph. On each node, a random walker
jumps to its neighbors with equal probability. Transition path analysis (see Appendix
B) of such a random walk from local minimum node 1 to node 34 shows two index-1
saddles capture most of transition currents.

Figure 3 shows the barcodes by persistent homology algorithm for the computa-
tion of index-0 and index-1 critical nodes of this network. Similar computation can
be carried over to index-2 critical nodes.

Although Zachary’s original paper [27] does not disclose detailed information
about the nodes beyond the coach and the president, from the analysis above, one
can see that index-1 and index-2 critical nodes play important roles on characterizing
information diffusion pathways. For example, index-1 saddle 3 is the most popular
node connecting the basins of the coach (node 1) and the president (node 34), and
information released from one of the basins mostly probably pass node 3 to reach the
other. Therefore if node 3 is off or blocked for such kind of information transition,
another index-1 saddle 32 will play the same role. Similarly index-2 saddles 25 and 29
are most popular nodes connecting basins of index-1 saddles. In this way, one reaches
an hierarchical decomposition of the network.

© Bossuet

12 : Combeferre :

‘.‘v.(;ourle/ra.q‘ =

Fic. 4. Landscape of a subnet of The Les Misérables Network. FEdges are left with weights
larger than 7. Two local minima, Valjean and Enjoras as well as an index-1 saddle, Courfeyrac,
are identified.

3.2. The social network of Les Misérables. The social network of Les
Misérables, collected by Knuth [13], consists of 77 main characters in the novel by
Victor Hugo. The edge weight w;; record the number of co-occurrence of two charac-
ters ¢ and j in the same scene. Thus it is a weighted graph where h; = —log " i Wij
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as the negative logarithmic weighted degree. The original network exhibits a single
local (global) minimum, Valjean, who is the central character as the whole novel was
written around his experience.

However, dropping those edges whose weights are no more than a threshold value
(7 here), there appears a subnetwork which is closely associated with the Paris upris-
ing on the 5th and 6th of June 1832, see Figure 4. The subnetwork consists of two
local minima, Enjoras and Valjean, the former being the leader of the revolutionary
students called Friends of the ABC, the Abaissé. Led by Enjolras, its other principal
members are Courfeyrac, Combeferre, and Laigle (nicknamed Bossuet) et al., who
fought and died in the insurrection. Among them is an index-1 saddle, Courfeyrac,
a law student and often seen as the heart of the revolutionary student group, who
introduced various people to the Friends of ABC including Marius. Marius, a descend
of the Gillenormands, though badly injured in the battle, was saved by the main char-
acter Valjean when the barricade fell and married to Cosette, the adopted daughter
of Valjean. The landscape of this subnetwork highlights these events in the novel,
where the index-1 saddle captures a hub connecting different events in the novel.

3.3. LAO protein binding transition network. This application examines
the binding of Lysine-, Arginine-, Ornithine-binding (LAO) protein to its ligand,
recently studied in [22]. The critical node analysis provides us a concise summary of
global structure of networks while preserving important pathways, which enables us
to reach a more thorough description than previous approximate analysis.

P\
Wi
4

19 (0.32%)

‘e

2(0.25%)
A N
g 9 |°
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‘}‘
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Fi1a. 5. The landscape of the LAO-protein binding network. (a) The node decomposition is
represented by color components. Local minima are represented as ovals, index-1 and indez-2 saddles
are shown in diamonds, circular nodes are reqular nodes, and rectangular nodes are solvated states
{43,44,...,53}. (b) A concise landscape is drawn with five critical nodes and eleven solvated states
with their associated critical nodes. The structure of each state is represented by a free energy plot
on the plane of the twist angle and opening angle, together with its percentage of population. In both
figures, arrows between nodes indicate the gradient descent direction of the free energy.

One major challenge in molecular dynamics simulations is the temporal gap
between simulation time step and biologically experimental time scales. Recently
Markov State Models are built to overcome this hurdle [20]. In this approach a con-
formational transition network is constructed from molecular dynamics simulation
data, with a Markov chain which can be used to reproduce long term behavior in sim-
ulations. Free-energy landscape with some appropriately chosen continuous reaction
coordinates has been very successful in providing human visualization and quantita-
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tive predictions, which is however not clear how to be analyzed in a network setting
[3]. The following example shows that our landscape analysis provides a useful tool
for the free-energy landscape on conformational transition networks.

In [22] a Markov state model is constructed which captures some long term (>>
6 ns) dynamical behavior of the LAO-protein binding. Now we examine the transition
network constructed in [22] as a weighted directed graph G = (V, E, W), where V
consists of 54 nodes, each representing a metastable state whose detailed information
can be found in Appendix C, an edge (i,j) € E if transitions from node i to j are
observed in simulations with 6 ns delays (the implied time scale for approximate
Markovian behavior), and the number of transitions is recorded as the weight w;;.
Among all the states, eleven of them ({43,44, ...,54}) are solvated or unbound states,
and the binding state is node 10.

Let p;j = w;j;/ Zj w;; be the transition probability from state i to state j. This
defines a Markov chain with a unique stationary distribution 7. The detailed balance
condition of this physical system implies that m;p;; ~ 7;p;; up to some sampling error.
We threshold this graph to an undirected graph by keeping those edges {i,j} such
that L4 T Wi

doing this is that small numbers of transitions may be heavily influenced by the noise
caused by the way of counting the transition. Note that the mean transition count is
about 120, and the qualitative behavior reported below shows certain stability under
the variation of the threshold value.

> 30, i.e. average count number is larger than 30. One reason for

The free-energy function is h(i) = — log w(i) where 7 is the stationary distribution
of metastable states. Application of the method above gives rise to a landscape shown
in Figure 5. Isolated states are dropped in this picture. Colors in this picture illus-
trate the node decomposition according to Theorem 1, where each color component
represents the attraction basin of a critical node. Below we shall discuss structural
properties of these nodes. A complete picture of structural information for all 54
states can be found in Appendix C.

The landscape exhibits two local minima, the bound state 10 and the misbound
state 18. Bound state 10 is also the global minimum with the largest population
of 74.9%, in contrast to the misbound state 18 with only 0.9% population. In the
bound basin colored in light blue, there are two encounter states 11 (population
13.5%) and 5 (population 1.15%) where the ligand is in or close to the binding site
and conformations in this state have a small (positive or negative) twisting but large
opening angles. In the misbound state 18, the ligand interacts with the protein outside
the binding site and close to the hinge region of two domains of the protein. State
18, together with state 4, 8, 9, and 20, forms a misbound basin marked in red. In
these states, the ligand interacts with the protein from a distance to the binding site.
State 8 and 9 exhibit similar structural properties with a negative twisting angle and
a fixed distance to the binding site (about 10A), while state 4, 18, and 20 exhibit
similar but a different type of structures.

There are two index-1 saddles (node 14 of population 0.35% and 19 of population
0.32%) as metastable intermediate states connecting the bound and the misbound
basins. At these saddles ligand interacts with the protein in different ways. In state
19, the ligand interacts with the protein from one twist direction (positive) and the
protein is almost closed. In contrast, in state 14 the ligand approaches the protein
from the opposite twist direction (negative) and the protein is still quite open. The
index-2 saddle 2 (0.25%) is a high energy misbound state, where the ligand interacts
with the protein from positive twist angles and the protein is closed. These saddles
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play different roles in binding pathways as shown in Figure 5 (b).

All the solvated states in the basins of the saddle 14 and bound state 10, i.e.
node {45,46,47} (total population 0.37% with second largest solvated state 45) and
52 (largest solvated state of 0.52%), are featured with negative twist angles, with the
difference that those in the basin of saddle 14 has larger opening angles than those in
the basin of state 52. This suggests that when the ligand approaches the protein from
a negative twist angle, the system will easily form an encounter complex and reach
the bound state, via saddle 14 or directly. In this case, the misbound state might only
trap the conformations with large opening angle.

On the other hand, the protein-ligand misbinding typically happens when the
ligand approaches the protein from a positive twist angle. In fact, all the solvated
states where the protein has positive twisting angles, i.e. {43,48,49,50,51} and 53
(the third largest solvated state of 0.30%), lie in the basins of the misbound saddle
2 and saddle 19, respectively. The majority of misbound events occur when the
ligand interacts with the protein from positive twist angles, i.e. states {18,20,4}
(total population 1.68%). The only exception is a small solvated state 44 (population
< 0.01%) in the basin of the misbound saddle 2, which has a negative twist angle but
from small to large opening angles. Figure 5 (a) further shows that state 44 connects
to both misbound state 20 and encounter state 11. This fact confirms the observation
above that negative twisting may lead to binding, but when the protein is largely
open, a negative twist angle may lead to misbinding. As a further evidence for the
latter, in a minority of misbound basin states (states {8,9} of total population 0.28%)
the protein has a negative twist angle and is largely open.

The analysis above can be further improved by quantitative studies using the
transition path theory. For a quantitative analysis on the roles of index-1 saddles, we
conduct two kinds of transition path analysis using transition path theory (see [4, 5]
or Appendix B). First, we study reactive currents from the misbound state 18 to the
bound state 10. This analysis shows that a majority of flux passes through the saddle
19. Therefore once the ligand and protein fall in the misbound state 18, the major
pathway to escape and enter the bound state is via saddle 19.

The other analysis, as was also did in [22], studies transition paths from the
eleven solvated states marked from 43 to 53 to the bound state 10. In particular, we
investigate reactive currents from each of the solvated states to the bounded state,
respectively. The results are summarized as follows. A large part of these details has
been ignored in [22], since they only examined 10 transition pathways, ignoring the
others.

1. Solvated state 52 lies in the basin of bound state 10, whence misbound state
18 has little influence on its pathway.

2. Solvated state 53 only passes through index-1 critical node 19 to enter the
bound state 10, which is heavily influenced by the misbound state 18.

3. Solvated states {45,46,47} lie in the basin of index-1 critical node 14 and
enter the bound state 10 directly or via 14. They are not much influenced by
the misbound state 18.

4. Other solvated states are in the basin of index-2 critical node 2. Transition
path analysis further shows that misbound state 18 has a stronger influence on
them than those in the basin of 14. In particular state 50 is mostly influenced
with near 50% of transition currents trapped by the misbound state 18.

In summary, the misbound state 18 only affects some of the pathways from sol-
vated states to the bound state. If the ligand interacts with the protein from a negative
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twist angle and the protein is moderately open, binding will typically happen. The
misbound state mostly traps those conformations when the ligand interacts with the
protein from a positive twist angle, or from a negative twist but the protein has a
large opening angle. In particular, if we can design some mutation to disrupt the
stability of index-1 saddles 14 (negatively twisting and largely open) and/or 19 (pos-
itively twisting and closed), we may be able to make the binding much more difficult.
Finally we note that the critical node analysis can be further applied to the confor-
mational transition networks beyond the Markovian time scale, which is important
in applications as Markovian behavior only holds approximately in certain range of
time scale.

4. Discussion and conclusion. We have introduced a notion of critical points
for network which can be used to reduce a complex network to a coarse-grained rep-
resentation while preserving structural properties associated with functional gradient
flows. Examples have shown that the information obtained this way is of great value in
capturing global structure and dynamics of the network, such as diffusive or reactive
pathways. Moreover, the critical point analysis leads to a hierarchical decomposi-
tion which may enable us to perform multiscale analysis of complex networks. These
perspectives will be systematically pursued in the future.

An interesting question is the stability of these objects against noise. To answer
this question, one has to clarify the source of noise. There are two types of noise one
should consider in landscape analysis of networks — one associated with the energy
function h and the other associated with the network structure. The former can be
dealt with traditional persistent homology denoising, where critical nodes with shallow
basins can be merged with their saddles. The latter is however more challenging as
there are no systematic studies yet on perturbation or bootstrap of networks. In the
examples above, we used edge thresholding on the Les Misérables and the protein
binding networks, which is equivalent to modeling such networks as a superposition
of a signal graph and some noise as Erdos-Rényi type random graphs. In such cases
one would like to develop statistics based on critical nodes, such as Fréchet means. In
a summary, it will be one of our future direction to study critical points of random
functions on random graphs.

Appendix A. Proofs.

Proof of Proposition 1. We show first that every local minimum in By must be
an index-1 critical node. Let x be a local minimum in By. Then z reaches at least
two local minima, say y1,y2 € Cp. Consider the subgraph with node set

S = ({z} UA(y1) UA(y2)) N{y | h(y) < h(x)}.

Clearly, S is connected and x is the unique maximum node in S. By the definition of
the attraction basin, the set S\{z} is not connected.

Since S is connected, it contains at least a path from y; to y2. Let v be the local
minimal energy path from y; to yo in the subgraph S. As S\{z} is not connected,
must pass z, so that h(y) = h(x).

We now show by contradiction that v is also a local minimal energy path in the
original graph V. Suppose we can find another path from y; to ys, called 7, so that
7 is deformable to 7. For any z € 7, we have h(z) < h(z). Consider the set ¥ N By,
which is non-empty. We distinguish two cases:

a) YN By = {z}. Then, Y\{z} C A(y1) U A(y2), so that ¥ C S. By construction
of v, we have 7 = ~;
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b) If there exists z € YN By and z # x, we have some point ' € v that z < 2.
It is easy to see that z’ must be x, since other points on 7 are in attraction
basins of y; and yo. Using Lemma 1, there exists a path vq = (wg - - wy,)
from z to x ordered in energy increase. In particular, consider the point
wp_1, we have z < wy,_1 so that w,_1 € By. Moreover, w,_; € N(z) and
h(wp—1) < h(z). This contradicts with the fact that z is a local minimizer
in BQ.
Therefore, v is a local minimal energy path, and x is an index-1 critical node.
Let z € C; which is not a local minimum in By. Then, z must reach a local
minimum « in By by the gradient flow. By the first part of the proposition, = € C;.
The proposition is proved. O

Proof of Theorem 2. (Necessity). We first show that index-0 and index-1 critical
nodes, when added into the filtration, will change Betti numbers in the way above.

For index-0 critical nodes, they are local minima of graph G. When a local minima
is added into the filtration, it must create a new connected component which increases
the 0-th Betti number, f.

Index-1 saddles will play a more complicated role. We have two situations

e if an index-1 saddle lies on top of a global minimal energy path, it will decrease
5o upon being added;

e if an index-1 saddle lies on top of a local minimal energy path other than the
global one, it will increase (31 upon being added.

Given a pair of index-0 critical nodes yi, y2 € Cp, among all local minimal energy
paths connecting them (if exist), there must be a global minimal energy path o,
so that h(yo) is less than any other local minimal energy paths between y; and ys.
We denote the maximal node of the global minimal energy path as z. Such z is an
index-1 critical node. When « is added into the filtration, the 0-th Betti number Sy
will decrease as x connects two components contains y; and ys respectively.

For the other local minimal energy paths connecting y; and yo, the associated
index-1 critical nodes will increase the first Betti number (3; when added into the
filtration. Indeed, let z be such an index-1 critical node. Thus z is a maximum of
a local minimum energy path «; such that h(vy1) = h(z) > h(x) = h(7). 71 is not
deformable to the global minimal energy path ~y between y; and ys. Then two paths
7o and 7 forms a loop, and hence the first Betti number 81 increases when z is added
into the filtration.

(Sufficiency). We show next that no other nodes when added into the filtration
will change the first two Betti numbers in the same way.

For any node x which lies in the attraction basin of a local minima Ay (x¢) for some
xo # x, T reaches xy by gradient flow. For any edge {z,2'} € E with 2’ € Ay(zp),
2’ reaches zp and thus the triangle {z,2’, 20} is included in the simplicial complex.
This implies that A (o) is contractible (star-shape), whence no node in Ag(zg) other
than local minimum z¢ will change Betti numbers.

It remains to show that any node in boundary By\C; will not change Betti numbers
in the same way. Any such node z € By must reach at least two local minima, say
a and b. Then by Lemma 1 there is a path v = (a = wp,...,2 = wg,...,b = w;)
for some [ € N such that h(ws) < h(wsy1) for s < k —1 and h(ws) > h(wst1) for
s > k. Moreover z ¢ C; implies that « is deformable to a local minimal energy path
m = (a = vo,...,b = vy,) between the same end nodes, for some m € N. z can not
decreases number of connected components as the path 7, which appears first in the
filtration, already connects a and b.
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Now we show that the path v will not create a loop either. Let m; = ¢ € C; be
the maximal node on w. We must have ¢ < z. To see this, as v is deformable to 7,
there is a node ¢’ = wys € v which reaches ¢ € 7. We may assume ¢’ # z (k' # k)
since otherwise we are done. Then, by the construction of the path 7, we have ¢/ < z,
and hence ¢ < z.

Note that both z and ¢ reach both local minima a and b, node w; with i < k
(¢ > k) reaches a (b, respectively), and node v; with ¢ < t (i > t) reaches a (b,
respectively). These will create a set of triangles such that 7 is homotopy equivalent
to 7, i.e. loop-free. O

Proof of Theorem 3. The proof is analogous to that of Theorem 2. O

Appendix B. Transition path theory. The energy landscape gives us a global
picture for the different attraction basins on the network. To understand the dynamics
between the different basins, the transition path theory (TPT) provides a natural tool.

The transition path theory was originally introduced in the context of continuous-
time Markov process on continuous state space [4] and discrete state space [14], see
[5] for a review. Another description of discrete transition path theory for molec-
ular dynamics can be also found in [19]. Here we adapt the theory to the setting
of discrete time Markov chain with transition probability matrix P. We assume re-
versibility in the following presentation, the extension to non-reversible Markov chain
is straightforward.

Given two sets A and B in the state space V', the transition path theory tells how
these transitions between the two sets happen (mechanism, rates, etc.). If we view A
as a reactant state and B as a product state, then one transition from A to B is a
reaction event. The reactve trajectories are those part of the equilibrium trajectory
that the system is going from A to B. To make the notion more precise, define the
ordered family of times {n#",n?} such that

X,a€A, ,X,s€B,
J J
X, € V\(AU B), Vn,n}4 <n< nJB.

B

Hence, a reaction happens from time nj‘ to time n;.

DEFINITION B-3. Given any equilibrium trajectory {X,}, we call each portion

of the trajectory of between nj‘ and nJB a AB-reactive trajectory. We call the time

during which the reaction occurs the reactive times

(10) R=Jn} nf).

JEZ

The central object in transition path theory is the committor function. Its value
at = gives the probability that a trajectory starting from x will hit the set B first
than A, i.e., the success rate of the transition at z. Given two sets A and B in the
state space, ¢ satisfies the equation

>yev Paya(y) —q(z) =0, ¢ AUB;
(11) q(x) =0, x € A,
Q(Z) = ]-a HAS Ba
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The committor function provides natural decomposition of the graph. If g(x) is
less than 0.5, x is more likely to reach A first than B; so that {x | ¢(x) < 0.5} gives
the set of points that are more attached to set A.

Once the committor function is given, the statistical properties of the reaction
trajectories between A and B can be quantified. We state several propositions charac-
terizing transition mechanism from A to B. The proof of them is an easy adaptation
of [4, 14] and will be omitted.

PROPOSITION B-4 (Probability distribution of reactive trajectories). The proba-
bility distribution of reactive trajectories

(12) mr(x) =P(X, =x,n € R)
is given by
(13) mr(x) = m(x)q(x)(1 — q(z)).

The distribution 7 gives the equilibrium probability that a reactive trajectory
visits x. It provides information about the proportion of time the reactive trajectories
spend in state x along the way from A to B.

PROPOSITION B-5 (Reactive current from A to B). The reactive current from A
to B, defined by
(14) J(xy) =P(X, =2, Xp41 =y, {n,n+ 1} C R),

is given by

(15) J(xy) = {W(Z)(l —q(x))paya(y), = #y;

0, otherwise.

The reactive current J(zy) gives the average rate the reactive trajectories jump
from state = to y. From the reactive current, we may define the effective reactive
current on an edge and transition current through a node which characterizes the
importance of an edge and a node in the transition from A to B, respectively.

DEFINITION B-6. The effective current of an edge xy is defined as
(16) I (zy) = max(J(zy) — J(yz),0).
The transition current through a node x € V is defined as
Zer JT(xy), r€ A

(17) T(x)=19q X.ev J*(22), r€B
ZyEV Jt(zy) = ZzGV JT(zx), z¢ AUB

In applications one often examines partial transition current through a node con-
necting two communities V= = {x : ¢(z) < 0.5} and VT = {z : ¢(z) > 0.5}, e.g.
Zyev+ JT(zy) for x € V—, which shows relative importance of the node in bridging
communities.
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The reaction rate v, defined as the number of transitions from A to B happened
in a unit time interval, can be obtained from adding up the probability current flowing
out of the reactant state. This is stated by the next proposition.

PROPOSITION B-7 (Reaction rate). The reaction rate is given by

(18) v= Z J(xy) = Z J(xy).

reA,yeVvV zeV,yeB

Finally, the committor functions also give information about the time proportion
that an equilibrium trajectory comes from A (the trajectory hits A last rather than
B).

ProposiTION B-8. The proportion of time that the trajectory comes from A
(resp. from B) is given by

(19) pt = wla)g(x), pP = w(@)(1 - qx)).

zeV zeV

—

\
—

Appendix C. Supplementary figures.
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the novel is written around his experience.

The first figure is the whole co-appearance network of 77 main characters in the
novel, Les Miserables, by Victor Hugo [13]. It is an undirected weighted graph with
edge weights as the number of co-appearances for a pair of characters. Without
thresholding this network contains one local minimum, Valjean. However a thresh-
olding with edge weight greater than 7 gives rise to the subnetwork in the main text.

The second figure contains a list of structural information on 54 metastable states.
It contains a typical crystal structure in each state, and some free energy plots on



402 W. E, J. LU, AND Y. YAO

:

+
e

+

19

a8ce
&
o

K
7
. 8ol |»
LB sle D 2B @
S RIEEL BL IR (R
IR N e
L8 wle 482 | ° 28 4l
O ISR L B
2 SRR e
€S T s e 2@ s]e
28 o |28 -] selv ]| B
289 0| =8|
zsw +_°j @js% . 8] nﬂ"‘i v | =
28l | —|28 .| olu® 8] o
580 o o8] Lee 8] &
280 a8 w]s 2@ e =
A RN ENELUEE
2B . < 0P %] S 2eE. | S
24 g% P q,‘:‘:,aﬁ: % | ‘@3“‘: +’. @

<0.01 "I
L

Fic. 7. (Courtesy by Xuhui Huang) Three types of pictures for each of the 54 metastable states:
on the left is the crystal structure of a representative conformation in each state, on the right are
free energy plots of the protein opening angle versus twisting angle (O, T) (red), as well as the
distance between the ligand and the binding site versus the opening angle (L,0) (blue). The green
and blue crosses correspond to X-ray structures of the bound (PDB ID: 1LAF) and apo (PDB ID:
2LAOQO) conformations respectively.

certain reaction coordinates. From these pictures one can read various structural
properties of critical nodes in LAO-protein binding transition network discussed in
the main text. More information about this system can be found in [22].

The third figure shows the ranking of transition currents out of misbound state 18
over eleven transition pathways. The experiment selects each of the eleven solvated
states {43,...,53} as the source set and the misbound state 10 as the common target
set. In each of the eleven experiments, relative transition current out of state 18
divided by total transition current from the source, is recorded and plotted in a
descending order.
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Percentage of transition currents out of state 18
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Fia. 8. Transition Currents out of misbound state 18, with source set from each of solvated
states {43, ...,53} and target set as bound state 10.
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