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EXISTENCE OF GLOBAL STRONG SOLUTION FOR THE
COMPRESSIBLE NAVIER-STOKES SYSTEM AND THE

KORTEWEG SYSTEM IN TWO-DIMENSION∗

BORIS HASPOT†

Abstract. This paper is dedicated to the study of viscous compressible barotropic fluids in
dimension N = 2. We address the question of the global existence of strong solutions with large
initial data for compressible Navier-Stokes system and Korteweg system with friction. In the first
case we are interested by slightly extending a famous result due to V. A. Vaigant and A. V. Kazhikhov
in [34] concerning the existence of global strong solution in dimension two for a suitable choice of
viscosity coefficient (µ(ρ) = µ > 0 and λ(ρ) = λρβ with β > 3) in the torus. We are going to weaken
the condition on β by assuming only β > 2 essentially by taking profit of commutator estimates
introduced by Coifman et al in [7] and using a notion of effective velocity as in [34]. In the second
case we study the existence of global strong solution with large initial data in the sense of the scaling
of the equations for Korteweg system with degenerate viscosity coefficient and with friction term.
It allows us in particular to prove the existence of global strong solution with large initial data in
energy space when N = 2. Let us point out that these results depend in an essential way on the
structure of the viscosity coefficients.
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1. Introduction. The motion of a general barotropic compressible fluid with
capillary tensor is described by the following system, which can be derived from a
Cahn-Hilliard free energy (see the pioneering work by J.- E. Dunn and J. Serrin in [9]
and also in [2, 6, 12]):

{
∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u)− div(2µ(ρ)Du)−∇
(
λ(ρ)divu

)
+∇P (ρ) + aρu = divK,

(1.1)
where divK is the capillary tensor which reads as follows:

divK = ∇
(
ρκ(ρ)∆ρ+

1

2
(κ(ρ) + ρκ

′

(ρ))|∇ρ|2
)
− div

(
κ(ρ)∇ρ⊗∇ρ

)
. (1.2)

The term divK allows to describe the variation of density at the interfaces between
two phases, generally a mixture liquid-vapor. P is a general increasing pressure term
that we assume in the sequel under the form P (ρ) = bργ with b > 0 and γ ≥ 1,
aρu is a friction term with a > 0 (see [27]). D(u) = 1

2 [∇u +t ∇u] being the stress
tensor, µ and λ are the two Lamé viscosity coefficients depending on the density ρ
and satisfying:

µ > 0 and 2µ+Nλ ≥ 0.

In the present paper, we are interested in dealing with two different situations:
• The case of the compressible Navier-Stokes system where we assume no cap-
illarity et no friction, κ(ρ) = 0, a = 0 and where µ(ρ) = 1 is a constant and
λ(ρ) = λρβ with β ≥ 2.
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• The case of Korteweg system with friction a > 0 where the viscosity coeffi-
cients and the capillarity coefficient verify:

µ(ρ) = µρ λ(ρ) = 0 and κ(ρ) =
κ

ρ
with κ > 0, µ > 0.

In this paper we are interested in showing the importance of the viscosity coefficients
when we want to deal with the existence of global strong solution for the system
(1.6).
In the first case we would like to extend the famous result of global strong solution
in two dimension in the torus discovered by V. A. Vaigant and A. V. Kazhikhov in
[34]. Indeed in [34], the authors assume that λ(ρ) = λρβ with β > 3, λ > 0 and
µ(ρ) = 1. Let us emphasize that a such choice on the viscosity coefficients allows
to exhibits two different phenomena; the first one concerns the notion of effective
velocity introduced by Lions in [26] which is crucial in this context for getting a priori
estimates on the divergence and the rotational of the velocity; the second reason to
choose such coefficient concerns the possibility to provideL∞

T (Lp(T2)) estimates for
any p > 1 and any T > 0 on the density. Indeed the viscosity coefficient λ(ρ) take
the role of a weight which contributes to furnish such estimates on the density (see
the p1115 ”Second a priori estimate for the density” in [34]). In the first part of this
paper we wish to improve this result by assuming only λ(ρ) = λρβ with β > 2 and
λ > 0. The key point will consist in using commutator estimates for dealing with
term of the form [Rij , uj ](ρui) (we refer to [7] for such estimates, let us also mention
that such commutator plays a crucial role in [26] for proving the global existence of
weak solution for compressible Navier-Stokes equations).

In the second case we are interested in proving global existence of strong solu-
tion for the Korteweg system with friction term when the physical coefficients
verify:

κ(ρ) =
κ

ρ
, κ = µ2, γ = 1 and b = aµ, (1.3)

with µ > 0. This system without friction has been widely studied this last year in
particular concerning the existence of global weak solution and global strong solution
with small initial data. We refer in particular to the following works [5, 8, 16, 17,
18, 19, 20, 22]. Let us introduce a other notion of effective velocity used in particular
in [16, 22] which allows us to simplify the system (1.6). Indeed by computation (see
[16]), we obtain the simplified system:

{
∂tρ+ div(ρv)− µ∆ρ = 0,

ρ∂tv + ρu · ∇v − div(µρ∇v) + a ρ v = 0,
(1.4)

with v = u + µ∇ ln ρ the effective velocity. For more details on the computation, we
refer to [17]. When we write the system (1.4) in function of the momentum m = ρv,
the system reads as follows:




∂tρ+ divm− µ∆ρ = 0,

∂tm+ div(
m

ρ
⊗m)− µ∆m+ am = 0.

(1.5)

In particular we observe that (ρ,−µ∇ ln ρ) when:

∂tρ− µ∆ρ = 0,
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is a particular global solution of the system (1.6).

Remark 1. Let us mention that we can choose initial density which admits vac-
uum. In general it is not always possible to obtain global strong solution with initial
density close from the vacuum.
We would like also to mention that as in the case of the paper of Vaigant and
Kazhikhov [34], the viscosity coefficient plays a crucial role since they allows us to
exhibit explicit irrotational solutions.

In the sequel we will be interested in working around this global particular solution
(see remark 1) in order to prove the existence of global strong solution with large initial
data on the irrotational part. More precisely we shall obtain global strong solution
in critical space for the scaling of the equations with a small initial data m0 and a
large initial density q0 = ρ0− 1 (let us point out that it implies that via the definition
of v, u0 can be large). Let us briefly recall the notion of invariance by scaling of the
equation and by what we mean by critical initial data. By critical, we mean that we
want to solve the system (1.6) in functional spaces with invariant norm by the natural
changes of scales which leave (1.6) invariant. More precisely in our case, the following
transformation:

(ρ(t, x), u(t, x)) −→ (ρ(l2t, lx), lu(l2t, lx)), l ∈ R, (1.6)

verify this property, provided that the pressure term has been changed accordingly.
In particular we can observe that Ḣ

N
2 × Ḣ

N
2 −1 is a space invariant for the scaling of

the equation, more generally such Besov spaces:

(ρ0 − 1) ∈ B
N
p

p,1, u0 ∈ B
N
p1

−1

p1,1
,

with (p, p1) ∈ [1,+∞[ are also available.

1.1. Results. Let us state the two main result of this paper. The first one is an
improvement of the results of Vaigant and Kazhikhov [34].

Theorem 1.1. Let us assume the following hypothesis on the viscosity coeffi-
cients:

µ(ρ) = 1 and λ(ρ) = λρβ with β > 2.

Let u0 ∈ H2(T2), ρ0 ∈ W 1,q(T2) with q > 2 and:

0 < c ≤ ρ0(x) ≤ m < +∞ ∀x ∈ T
2,

then it exists a unique global strong solution to (1.6) such that:

u ∈W 2,1
2 (QT ) and ρ ∈ W 1,1

q,∞(QT ) ∀T > 0,

with QT = (0, T )× T
2.

Remark 2. As mentioned above, the main point compared with the result of [34]
concerns the fact that we can improve the range of β by assuming only β > 2. It would
be possible also to improve the regularity condition on the initial data by working in
Besov space invariant for the scaling of the system, but it is not the object of this
paper.
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Let us mention that this result has also been improved independently by Huang and Li
in [21] when β > 4

3 .

We are going to give our second result on Korteweg system with rcritical smallness
condition on the initial data; before let us give the following definition:

Definition 1.1. We set q = ρ− 1, m = ρv.

In the following theorem we are dealing with the euclidian space RN with N ≥ 2.

Theorem 1.2. Suppose that we are under the conditions (1.3). Assume that

m0 ∈ B
N
2 −1
2,1 and q0 ∈ B

N
2
2,1 with ρ0 ≥ c > 0. Then there exists a constant ε0 depending

on 1
ρ0

such that if:

‖m0‖
B

N
2

−1

2,1

≤ ε0,

then there exists a unique global solution (q,m) for system (1.5) with ρ bounded away
from zero and:

q ∈ C̃(R+
, B

N
2
2,1) ∩ L

1(R+
, B

N
2
+2

2,1 ) and m ∈ C̃(R+;B
N
2
−1

2,1 ) ∩ L
1(R+, B

N
2
−1

2,1 ∩ B
N
2
+1

2,1 ).

Remark 3. The main interest of this result consists in getting the existence

of global strong solution with large initial density q0 ∈ B
N
2
2,1 and with large initial

momentum u0 ∈ B
N
2 −1
2,1 . Indeed let us recall that m = ρv = ρu+ µ∇ρ such that:

u =
m

1 + q
− µ∇ ln(1 + q).

We observe that ∇ ln(1 + q0) belongs in B
N
2 −1
2,1 via the lemma 4 and can be choose

arbitrary large whereas m0

ρ0
= v0 is small in B

N
2 −1
2,1 via the lemma 4 and the smallness

assumption on m0. It implies that u0 can be large in B
N
2 −1
2,1 when N ≥ 2.

Let us mention that when N = 2 the initial data belongs in Besov space which are
very close from the energy space.

Remark 4. Let us mention that this result improves also the choice of the initial

data compared with [8] where the initial density belongs in B
N
2 −1
2,1 ∩B

N
2
2,1. Indeed here

via the introduction of the effective velocity we cancel out the coupling between density
and velocity since the addition of the pressure and of the friction term gives a damping
term in v. In other words at the difference with [8], the low frequencies on the density

do not play any role here, that is why we assume only q0 ∈ B
N
2
2,1.

Let us give the plane of this paper, we shall remind in section 2 some auxiliary
results of Gagliardo-Nirenberg’s inequality and in section 3 the Litllewood-Paley the-
ory. In section 4 and section 5, we will prove different a priori estimates on the density
and the velocity which show the theorem 1.1. We will conclude in section 6 by the
proof of theorem 1.2.

Notation. In all the paper, C will stand for a harmless constant, and we will
sometimes use the notation A . B equivalently to A ≤ CB.
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2. Auxiliary assertions. We are going to recall some lemma which are also
present in [34] and that we prefer to state for the sake of the completnes.

Lemma 1. Let Ω ∈ R
N be an arbitrary bounded domain satisfying the cone

condition. Then the following inequality is valid for every function u ∈ W 1,m(Ω),∫
Ω udx = 0

‖u‖Lq(Ω) ≤ C1‖∇u‖αLm(Ω)‖u‖1−α
Lr(Ω), (2.7)

where α =
1
r−

1
q

1
r−

1
m+ 1

n

, moreover if m < n then q ∈ [r, mn
n−m ] for r ≤ mn

n−m and q ∈
[ mn
n−m , r] for r >

mn
n−m . If m ≥ n then q ∈ [r,+∞) is arbitrary; moreover if m > n

then equality (2.7) is also valid for q = +∞.

Inequality (2.7) is a particular case of the more general inequalities proven in
[10, 23, 11]. Let us mention that an inequality of the form (2.7) is valid for the
function of class W 1,m(Ω) when M = 1

|Ω|

∫
Ω
u dx is not null. It suffices to consider

v = u−M and apply inequality (2.7) to the function v. We obtain then the inequality

‖u‖Lq(Ω) ≤ C2(‖∇u‖αLm(Ω)‖u‖1−α
Lr(Ω) + ‖u‖L1(Ω)), (2.8)

Lemma 2. Let Ω ∈ R
2 be an arbitrary bounded domain satisfying the cone con-

dition. Then every function u ∈W 1,m(Ω) with
∫
Ω udx = 0 satisfies the inequality

‖u‖
L

2m
2−m (Ω)

≤ C3(2−m)−
1
2 ‖∇u‖Lm(Ω), 1 ≤ m < 2, (2.9)

where C3 is a constant independent of m and the function u.

For a proof of this inequality see [35, 32]. The exact constant in inequality (2.9)
is obtained in the article [32].

Lemma 3. Let Ω ∈ R
2 be an arbitrary bounded domain satisfying the cone con-

dition. Then for an arbitrary number ε, 1 ≥ 2ε ≥ 0, every function h ∈ W 1, 2m
m+δ (Ω),

m ≥ 2, 1 ≥ δ ≥ 0, satisfies the inequality

‖h‖L2m(Ω) ≤ C4(‖h‖L1(Ω) +m
1
2 ‖∇h‖1−s

L
2m

m+δ (Ω)
‖h‖sL2(1−ε)(Ω)), (2.10)

where s = (1 − ε) 1−δ
m−δ(1−ε) and C4 is a positive constant independent of m, ε, δ and

the function h.

3. Littlewood-Paley theory and Besov spaces. Throughout the paper, C
stands for a constant whose exact meaning depends on the context. The notation
A . B means that A ≤ CB. For all Banach space X , we denote by C([0, T ], X) the
set of continuous functions on [0, T ] with values in X . For p ∈ [1,+∞], the notation
Lp(0, T,X) or Lp

T (X) stands for the set of measurable functions on (0, T ) with values
in X such that t → ‖f(t)‖X belongs to Lp(0, T ). Littlewood-Paley decomposition
corresponds to a dyadic decomposition of the space in Fourier variables. We can use
for instance any ϕ ∈ C∞(RN ), supported in C = {ξ ∈ R

N/ 3
4 ≤ |ξ| ≤ 8

3} such that:

∑

l∈Z

ϕ(2−lξ) = 1 if ξ 6= 0.
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Denoting h = F−1ϕ, we then define the dyadic blocks by:

∆lu = ϕ(2−lD)u = 2lN
∫

RN

h(2ly)u(x− y)dy and Slu =
∑

k≤l−1

∆ku .

Formally, one can write that:

u =
∑

k∈Z

∆ku .

This decomposition is called homogeneous Littlewood-Paley decomposition.

3.1. Homogeneous Besov spaces and first properties.

Definition 3.2. For s ∈ R, p ∈ [1,+∞], q ∈ [1,+∞], and u ∈ S ′

(RN ) we set:

‖u‖Bs
p,q

= (
∑

l∈Z

(2ls‖∆lu‖Lp)q)
1
q .

The Besov space Bs
p,q is the set of temperate distribution u such that ‖u‖Bs

p,q
< +∞.

Proposition 3.1. The following properties holds:
1. there exists a constant universal C such that:

C−1‖u‖Bs
p,r

≤ ‖∇u‖Bs−1
p,r

≤ C‖u‖Bs
p,r
.

2. If p1 < p2 and r1 ≤ r2 then Bs
p1,r1 →֒ B

s−N(1/p1−1/p2)
p2,r2 .

Let now recall a few product laws in Besov spaces coming directly from the
paradifferential calculus of J-M. Bony (see [4]) and rewrite in [3].

Proposition 3.2. We have the following laws of product:
• For all s ∈ R, (p, r) ∈ [1,+∞]2 we have:

‖uv‖Bs
p,r

≤ C(‖u‖L∞‖v‖Bs
p,r

+ ‖v‖L∞‖u‖Bs
p,r

) . (3.11)

• Let (p, p1, p2, r, λ1, λ2) ∈ [1,+∞]2 such that: 1p ≤ 1
p1

+ 1
p2
, p1 ≤ λ2, p2 ≤ λ1,

1
p ≤ 1

p1
+ 1

λ1
and 1

p ≤ 1
p2

+ 1
λ2
. We have then the following inequalities:

if s1 + s2 +N inf(0, 1− 1
p1

− 1
p2
) > 0, s1 +

N
λ2
< N

p1
and s2 +

N
λ1
< N

p2
then:

‖uv‖
B

s1+s2−N( 1
p1

+ 1
p2

−
1
p
)

p,r

. ‖u‖Bs1
p1,r

‖v‖Bs2
p2,∞

, (3.12)

when s1 +
N
λ2

= N
p1

(resp s2 + N
λ1

= N
p2
) we replace ‖u‖Bs1

p1,r
‖v‖Bs2

p2,∞
(resp

‖v‖Bs2
p2,∞

) by ‖u‖Bs1
p1,1

‖v‖Bs2
p2,r

(resp ‖v‖Bs2
p2,∞∩L∞), if s1 +

N
λ2

= N
p1

and s2 +
N
λ1

= N
p2

we take r = 1.

If s1 + s2 = 0, s1 ∈ ( N
λ1

− N
p2
, N
p1

− N
λ2
] and 1

p1
+ 1

p2
≤ 1 then:

‖uv‖
B

−N( 1
p1

+ 1
p2

−
1
p
)

p,∞

. ‖u‖Bs1
p1,1

‖v‖Bs2
p2,∞

. (3.13)

If |s| < N
p for p ≥ 2 and −N

p′ < s < N
p else, we have:

‖uv‖Bs
p,r

≤ C‖u‖Bs
p,r

‖v‖
B

N
p

p,∞∩L∞

. (3.14)
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The study of non stationary PDE’s requires space of type Lρ(0, T,X) for ap-
propriate Banach spaces X . In our case, we expect X to be a Besov space,
so that it is natural to localize the equation through Littlewood-Payley decom-
position. But, in doing so, we obtain bounds in spaces which are not type
Lρ(0, T,X) (except if r = p). We are now going to define the spaces of Chemin-
Lerner in which we will work, which are a refinement of the spaces Lρ

T (B
s
p,r).

Definition 3.3. Let ρ ∈ [1,+∞], T ∈ [1,+∞] and s1 ∈ R. We set:

‖u‖L̃ρ
T (B

s1
p,r)

=
(∑

l∈Z

2lrs1‖∆lu(t)‖rLρ(Lp)

) 1
r .

We then define the space L̃ρ
T (B

s1
p,r) as the set of temperate distribution u over (0, T )×

R
N such that ‖u‖L̃ρ

T (B
s1
p,r)

< +∞.

We set C̃T (B̃
s1
p,r) = L̃∞

T (B̃s1
p,r) ∩ C([0, T ], Bs1

p,r). Let us emphasize that, according
to Minkowski inequality, we have:

‖u‖L̃ρ
T (B

s1
p,r)

≤ ‖u‖Lρ
T (B

s1
p,r)

if r ≥ ρ, ‖u‖L̃ρ
T (B

s1
p,r)

≥ ‖u‖Lρ
T (B

s1
p,r)

if r ≤ ρ.

Remark 5. It is easy to generalize proposition 3.2, to L̃ρ
T (B

s1
p,r) spaces. The

indices s1, p, r behave just as in the stationary case whereas the time exponent ρ
behaves according to Hölder inequality.

In the sequel we will need of composition lemma in L̃ρ
T (B

s
p,r) spaces.

Lemma 4. Let s > 0, (p, r) ∈ [1,+∞] and u ∈ L̃ρ
T (B

s
p,r) ∩ L∞

T (L∞).

1. Let F ∈ W
[s]+2,∞
loc (RN ) such that F (0) = 0. Then F (u) ∈ L̃ρ

T (B
s
p,r). More

precisely there exists a function C depending only on s, p, r, N and F such
that:

‖F (u)‖L̃ρ
T (Bs

p,r)
≤ C(‖u‖L∞

T (L∞))‖u‖L̃ρ
T (Bs

p,r)
.

2. If v, u ∈ L̃ρ
T (B

s
p,r)∩L∞

T (L∞) and G ∈ W
[s]+3,∞
loc (RN ) then G(u)−G(v) belongs

to L̃ρ
T (B

s
p) and there exists a constant C depending only of s, p,N and G such

that:

‖G(u)−G(v)‖L̃ρ
T (Bs

p,r)

≤ C(‖u‖L∞

T (L∞), ‖v‖L∞

T (L∞))
(
‖v − u‖L̃ρ

T (Bs
p,r)

(1 + ‖u‖L∞

T (L∞)

+ ‖v‖L∞

T (L∞)) + ‖v − u‖L∞

T (L∞)(‖u‖L̃ρ
T (Bs

p,r)
+ ‖v‖L̃ρ

T (Bs
p,r)

)
)
.

Let us now give some estimates for the heat equation:

Proposition 3.3. Let s ∈ R, (p, r) ∈ [1,+∞]2 and 1 ≤ ρ2 ≤ ρ1 ≤ +∞. Assume

that u0 ∈ Bs
p,r and f ∈ L̃ρ2

T (B
s−2+2/ρ2
p,r ). Let u be a solution of:

{
∂tu− µ∆u = f

ut=0 = u0 .
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Then there exists C > 0 depending only on N,µ, ρ1 and ρ2 such that:

‖u‖
L̃

ρ1
T (B̃

s+2/ρ1
p,r )

≤ C
(
‖u0‖Bs

p,r
+ µ

1
ρ2

−1‖f‖
L̃

ρ2
T (B

s−2+2/ρ2
p,r )

)
.

If in addition r is finite then u belongs to C([0, T ], Bs
p,r).

4. Proof of Theorem 1.1. In the sequel we shall work on the torus Ω = T
2.

Let us start with recalling the energy estimate, when we multiply the momentum
equation we get:
∫

Ω

(ρ|u|2(t, x) + π(ρ)(t, x))dx +

∫ t

0

∫

Ω

|∇u|2(s, x)dsdx

+

∫ t

0

∫

Ω

(1 + λ(ρ)(s, x))(divu)2(s, x)dsdx ≤
∫

Ω

(ρ0(x)|u0(x)|2 +Π(ρ0)(x))dx

(4.15)

with π defined as follows:

π(ρ) = a(
1

γ − 1
(ργ − ρ)− ρ+ 1) for γ > 1.

Let us recall that P
′

(ρ) = ρπ
′′

(ρ) what implies by convexity that π(ρ) ≥ 0. Finally
as we assume that:

C1 =

∫

Ω

(1
2
ρ0(x)|u0(x)|2 + π(ρ0)(x) + ρ0(x)

)
dx

is finite, we obtain at least formally (if ρ and u are enough regular for performing
integration by parts) by energy estimate (4.15) and via the transport equation that:

∫

Ω

(ρ|u|2(t, x) + π(ρ)(t, x) + ρ(t, x))dx +

∫ t

0

∫

Ω

|∇u|2(s, x)dsdx

+

∫ t

0

∫

Ω

(1 + λ(ρ)(s, x))(divu)2(s, x)dsdx ≤ C1

(4.16)

Let us now explain how to get L2((0, T )× Ω) estimates on u, we are going to follow
Lions in [26] p4. Indeed by the momentum equation we have:

|
∫

Ω

ρu(t, x)dx| = |
∫

Ω

ρ0u0(x)dx| ≤ ‖ρ0u0‖L1(Ω).

Next we use the Poincaré-Wirtinger inequality and we have:

|
∫

Ω

ρ(t, x)[u(t, x) −
∫

Ω

u(t, y)dy]dx| ≤ C‖ρ(t, ·)‖Lγ‖∇u‖L2(Ω).

Hence for all t ≥ 0:

|
∫

Ω

u(t, x)dx| ≤ 1

(
∫
Ω ρ0dx)

(‖ρ0u0‖L1(Ω) + C‖ρ(t, ·)‖Lγ‖∇u‖L2(Ω)).

We conclude by Poincaré-Wirtinger inequality which implies that |
∫
Ω
u(t, x)dx| +

‖∇u‖L2(Ω) is an equivalent norm to the usual one in H1(Ω).

Now we are just going to explain where in the proof we can slightly improve
the range of the coefficient β in [34]. One of the main point of the proof in [34]
consists in getting a priori estimates on the density in L∞(Lp(T2)) for any p > 1.
This is possible due to the viscosity coefficient λ(ρ) = ρβ which provide such estimate
at least if β is large enough. Let us follow the arguments of the proof of [34] and
explain where by commutators estimates we can weaken the hypothesis β > 3.
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5. A priori estimates on the density and the velocity. First as in [34],
we are going to recall some estimates for solutions to the following two Neumann
problems:

∆ξ = div(ρu),

∫

Ω

ξdx = 0, ∂x1ξ|x1=0,x1=1 = ∂x2ξ|x2=0,x2=1 = 0. (5.17)

∆η = div(div(ρu⊗ u)),

∫

Ω

ηdx = 0, , ∂x1η|x1=0,x1=1 = ∂x2η|x2=0,x2=1 = 0. (5.18)

Therefore by [25] we have solution to the problems (5.17) and (5.18), whereas the
estimates for singular integrals in [30] provide the following inequalities:

‖∇(∆)−1div(ρu)‖L2m . m‖ρu‖L2m, 1 ≤ m < +∞,

‖∇(∆)−1div(ρu)‖L2−r . ‖ρu‖L2−r , 1 ≥ 2r ≥ 0,

‖Ri,j(ρuiuj)‖L2m . m‖ρu⊗ u‖L2m , 1 ≤ m < +∞.

Here we have roughly written ξ = (∆)−1div(ρu) and η = Ri,j(ρuiuj) (with the
summation notation).
By Hölder’s inequalities we obtain:

‖∇(∆)−1div(ρu)‖L2m . m‖ρ‖
L

2mk
k−1

‖u‖L2mk ,

‖∇(∆)−1div(ρu)‖L2−r . ‖ρ‖
L

2−r
r

‖√ρu‖
1
2

L2,

‖Ri,j(ρuiuj)‖L2m . m‖ρ‖
L

2mk
k−1

‖u‖2L4mk ,

(5.19)

where k > 1, m ≥ 1 and r ≥ 1, 1 ≥ 2r ≥ 0.
From the estimate of lemma 1-3, we obtain:

‖u‖L2m . m
1
2 ‖∇u‖L2, m > 2,

‖(∆)−1div(ρu)‖L2m . m
1
2 ‖∇(∆)−1div(ρu)‖ 2m

m+1
, m > 2.

(5.20)

We set now:

ϕ(t) =

∫

Ω

(
curlu2(t, x) + (2 + λ(ρ))divu2(t, x)

)
dx,

we obtain then by using (5.20), (5.19) with r = 2
m+1 and the energy inequality (4.16):

‖(∆)−1div(ρu)‖L2m . m
1
2 ‖ρ‖

1
2

Lm , m > 2. (5.21)

Similarly we have:

‖∇(∆)−1div(ρu)‖L2m . m
3
2 k

1
2 (ϕ(t))

1
2 ‖ρ‖

L
2mk
k−1

, m > 2, k > 1,

‖Ri,j(ρuiuj)‖L2m . m2kϕ(t)‖ρ‖
L

2mk
k−1

, m > 2, k > 1.
(5.22)
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5.1. Gain of integrability for the density. Following [34] the plan of the
proof of [34], we are interested in getting a gain of integrability on the density. We
follow here the method of Lions in [26] to get a gain of integrability on the pressure
and the argument developed in [34]. Apply the operator (∆)−1div to the momentum
equation, we obtain:

∂

∂t
(∆)−1div(ρu) + [Rij , uj ](ρui)− (2 + λ(ρ))divu

+ P (ρ)− 1

|Ω|

∫

Ω

(P (ρ)(t, x) − (2 + λ(ρ))divu)dx = 0.
(5.23)

We will set in the sequel:

B = (2 + λ(ρ))divu− P (ρ). (5.24)

Next if we renormalize the mass equation we have:

∂tθ(ρ) + u · ∇θ(ρ) + ρθ
′

(ρ)divu = 0.

where we have set:

θ(ρ) =

∫ ρ

1

1

s
(2 + λ(s))ds = 2 ln ρ+

1

β
(ρβ − 1).

Finally we get the following transport equation:

∂

∂t

[
(∆)−1div(ρu) + θ(ρ)

]
+ u · ∇

[
(∆)−1div(ρu) + θ(ρ)

]
+ [Rij , uj](ρui)

+ P (ρ)− 1

|Ω|

∫

Ω

[
P (ρ)(t, x) − (2 + λ(ρ))divu

]
dx = 0,

(5.25)

Denote by f the function:

f(t, x) = max(0, (∆)−1div(ρu) + θ(ρ))

and multiply the equation (5.25) by the function ρf2m−1 with m ∈ N and m ≥ 4 and
integrate over Ω , we obtain:

1

2m

d

dt

∫

Ω

ρf2mdx+

∫

Ω

ρP (ρ)f2m−1dx+

∫

Ω

[Rij , uj ](ρui)ρf
2m−1dx

+

∫

Ω

B dx

∫

Ω

ρf2m−1dx = 0.

(5.26)

As in [34] we set:

Z(t) =
( ∫

Ω

ρf2m(t, x)
) 1

2m (5.27)

Using Hölder’s inequality (2m−1
2m + 1

2m = 1, β
2mβ+1 +

1
2m(2mβ+1) =

1
2m ), we begin with

estimating the term |
∫
Ω[Rij , uj ](ρui)ρf

2m−1dx in (5.26) as follows:

∣∣
∫

Ω

[Rij , uj ](ρui)ρf
2m−1dx| ≤

∫

Ω

|[Rij , uj ](ρui)|ρ
1

2m ρ
2m−1
2m f2m−1dx

≤ ‖ |[Rij , uj ](ρui)|ρ
1

2m ‖L2m(Ω)Z
2m−1(t)

≤ ‖ρ‖
1

2m

L2mβ+1(Ω)
‖[Rij , uj](ρui)‖

L
2m+ 1

β (Ω)
Z2m−1(t)

(5.28)
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Next we recall a result of R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes in [7],
which says that the following map:

W 1,r1(TN )N × Lr2(TN )N →W 1,r3(TN )N

(a, b) → [aj , Ri,j ]bi

is continuous for any N ≥ 2 as soon as 1
r3

= 1
r1

+ 1
r2
. Hence we obtain that

[Rij , uj](ρui) belongs in W 1,p (where 1
p = 1

2 + 1
2(m+ 1

2β )k
+ k−1

2(m+ 1
2β )k

with k > 1

and p = 2− 2
m+1+ 1

2β

< 2) with the following inequality:

‖[Rij , uj](ρui)‖W 1,p(Ω) ≤ C‖∇u‖L2(Ω)‖u‖
L

2(m+ 1
2β

)k
(Ω)

‖ρ‖
L

2(m+ 1
2β

)k

k−1 (Ω)

,

≤ C‖∇u‖L2(Ω)‖u‖
L

2(m+ 1
2β

)k
(Ω)

‖ρ‖L2mβ+1(Ω),
(5.29)

where we have choose k such that
2(m+ 1

2β )k

k−1 = 2mβ + 1, let k = 2mβ+1
2m(β−1)+1− 1

β

. We

verifies that 1
q = 1

p − 1
2 = 1

2m+ 1
β

. Next by using lemma 2 and (5.29) we get:

‖[Rij , uj ](ρui)(t, ·)‖
L

2m+ 1
β (Ω)

.
(
m

1
2 ‖∇u(t, ·)‖L2(Ω)‖u(t, ·)‖

L
2(m+ 1

2β
)k

(Ω)
‖ρ(t, ·)‖L2mβ+1(Ω)

+ |
∫

Ω

[Rij , uj](ρui)(t, x)dx|
)
.

We can easily bound the last term on the right hand side by using the continuity of
the Riez transform in Lp(ω) with 1 < p < +∞:

|
∫

Ω

[Rij , uj](ρui)(t, x)dx| . ‖ρ(t, ·)‖Lγ(Ω)‖u(t, ·)‖2H1(Ω).

By (5.20) and the previous inequalities we obtain finally:

‖[Rij , uj](ρui)(t, ·)‖
L

2m+ 1
β (Ω)

≤ Cm‖∇u‖2L2(Ω)‖ρ‖L2mβ+1(Ω) + ‖ρ(t, ·)‖Lγ(Ω)‖u(t, ·)‖2H1(Ω).
(5.30)

We have then from (5.28) and (5.30):

∣∣
∫

Ω

[Rij , uj](ρui)ρf
2m−1dx|

. (m‖ρ‖1+
1

2m

L2mβ+1(Ω)
ϕ(t) + ‖ρ(t, ·)‖Lγ(Ω)‖u(t, ·)‖2H1(Ω))Z

2m−1(t).

Next as in [34] we get:

∣∣
∫

Ω

Bdx

∫

Ω

ρf2m−1dx
∣∣ . Z2m−1(t)‖ρ‖

1
2m

L1

∫

Ω

(
(2 + λ)|divu|+ P )dx

. Z2m−1(t)
(
1 + (ϕ(t))

1
2 (

∫

Ω

(2 + λ(ρ))dx)
1
2

)

. Z2m−1(t)(1 + ϕ(t)
1
2 + ‖ρ‖

β
2

L2mβ+1(Ω)
ϕ(t)

1
2 ).
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Collecting all the above inequalities, we obtain:

Z(t) . 1 +

∫ t

0

‖ρ‖Lγ(Ω)(τ)‖u‖2H1(Ω)(τ)dτ +

∫ t

0

mϕ(τ)‖ρ‖1+
1

2m

L2mβ+1(Ω)
(τ)dτ

+

∫ t

0

ϕ(τ)
1
2 ‖ρ‖

β
2

L2mβ+1(Ω)
(τ)dτ.

(5.31)

As we have seen that u belongs in L2((0, t), H1(Ω)) we have:

∫ t

0

‖ρ‖Lγ(Ω)(τ)‖u‖2H1(Ω)(τ)dτ . 1.

We obtain then:

Z(t) . 1 +

∫ t

0

mϕ(τ)‖ρ‖1+
1

2m

L2mβ+1(Ω)
(τ)dτ +

∫ t

0

ϕ(τ)
1
2 ‖ρ‖

β
2

L2mβ+1(Ω)
(τ)dτ. (5.32)

Next following [34] we introduce the measurable sets:

Ω1(t) = {x ∈ Ω/ρ ≥ 2m
′} and Ω2(t) = {x ∈ Ω1(t)/θ(ρ) + (∆)−1div(ρu) > 0}.

We then have:

‖ρ‖β
L2mβ+1(Ω)

.
( ∫

Ω1(t)

ρ2mβ+1dx
) β

2mβ+1 + 1. (5.33)

Moreover by the definition of the function θ(ρ), we have:

( ∫

Ω1(t)

ρ2mβ+1dx
) β

2mβ+1 .
( ∫

Ω1(t)

ρθ(ρ)2mdx
) β

2mβ+1 . (5.34)

Using the fact that on Ω1(t)\Ω2(t) we have 0 ≤ θ(ρ) ≤ |(∆)−1div(ρu)|, we derive the
following estimate:

∫

Ω1(t)

ρθ(ρ)2mdx

=

∫

Ω2(t)

ρ(θ(ρ) + (∆)−1div(ρu)− (∆)−1div(ρu))2mdx+

∫

Ω1(t)\Ω2(t)

ρθ(ρ)2mdx

≤ 22m−1
( ∫

Ω2(t)

ρf(ρ)2mdx+

∫

Ω2(t)

ρ|(∆)−1div(ρu)|2mdx
)

+

∫

Ω1(t)\Ω2(t)

ρ|(∆)−1div(ρu)|2mdx

≤ 22m(Z2m(t) +

∫

Ω

ρ|(∆)−1div(ρu)|2mdx).

From estimates (5.33) and (5.34) we deduce:

‖ρ‖β
L2mβ+1(Ω)

≤ C
(
(m

′

)β + Z(t)
2mβ

2mβ+1 (t) + (

∫

Ω

ρ|(∆)−1div(ρu)|2mdx)
β

2mβ+1
)
.
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In view of estimate (5.21), (5.22), we have:

∫

Ω

ρ|(∆)−1div(ρu)|2mdx ≤ ‖ρ‖L2mβ+1(Ω)‖(∆)−1div(ρu)‖2m
L

2m+ 1
β (Ω)

≤ ‖ρ‖L2mβ+1(Ω)

(
(m+

1

2β
)

1
2 ‖ρ‖

1
2

L
m+ 1

β (Ω)

)2m

≤ Cmmm‖ρ‖m+1
L2mβ+1(Ω)

.

Finally:

‖ρ‖β
L2mβ+1(Ω)

.
(
Z(t)

2mβ
2mβ+1 (t) +m

1
2 ‖ρ‖

β(m+1)
2mβ+1

L2mβ+1(Ω)

)
. (5.35)

By Young’s inequality (with q = 2mβ+1
m+1 and p = 2β

2β−1 + 1
m(2β−1)), we obtain:

‖ρ‖β
L2mβ+1(Ω)

.
(
Z(t) +

1

ε
m

β
2β−1+

1
2m(2β−1) + ε‖ρ‖β

L2mβ+1(Ω)

)
.

By bootstrap, we get:

‖ρ‖β
L2mβ+1(Ω)

. Z(t) +m
β

2β−1 . (5.36)

Therefore (5.31) and (5.36)give the following inequality:

‖ρ‖β
L2mβ+1(Ω)

.
(
m

β
2β−1 +

∫ t

0

mϕ(τ)‖ρ‖1+
1

2m

L2mβ+1(Ω)
(τ)dτ+

∫ t

0

ϕ(τ)
1
2 ‖ρ‖

β
2

L2mβ+1(Ω)
(τ)dτ

)
.

Next by Young’s inequality, we have:

‖ρ‖β
L2mβ+1(Ω)

.
(
1 +m

β
2β−1 +

∫ t

0

mϕ(τ)‖ρ‖1+
1

2m

L2mβ+1(Ω)
(τ)dτ +

∫ t

0

‖ρ‖β
L2mβ+1(Ω)

(τ)dτ
)
.

Using the fact that ϕ(t) ∈ L1(0, T ) and applying Grönwall’s inequality, wehave that:

‖ρ‖β
L2mβ+1(Ω)

≤ C
(
1 +m

β
2β−1 +

∫ t

0

mϕ(τ)‖ρ‖1+
1

2m

L2mβ+1(Ω)
(τ)dτ,

)

where C depends on t. Denote:

y(t) = m− 1
β−1 ‖ρ‖L2mβ+1(Ω), t ∈ [0, T ]. (5.37)

Then:

yβ(t)m
β

β−1 ≤ C(1 +m
β

2β−1 +mm(1+ 1
2m ) 1

β−1

∫ t

0

ϕ(τ)y1+
1

2m (τ)dτ
)

and we have:

mm(1+ 1
2m ) 1

β−1 = m
β

β−1+
1

2m(β−1) .

We have then:

yβ(t) ≤ C
(
1 +m

−β2

(β−1)(2β−1) +m
1

2m(β−1)

∫ t

0

ϕ(τ)y1+
1

2m (τ)dτ
)
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where β
2β−1 − β

β−1 = −β2

(β−1)(2β−1) < 0.

Recalling that β > 1 and ϕ(t) ∈ L1(0, T ) we find that for m big enough:

yβ(t) ≤ C
(
C1 +

∫ t

0

ϕ(τ)yβ(τ)dτ
)

whence by Grönwall inequality:

y(t) ≤ C, t ∈ [0, T ],

where C depends on t. We thus have:

‖ρ‖L2mβ+1 ≤ Cm
1

β−1 , t ∈ [0, T ].

Hence the inequality:

‖ρ‖Lk(Ω)(t) ≤ Ck
1

β−1 , t ∈ [0, T ]. (5.38)

is valid for every k ≥ 1, with C a positive constant independent of k ≥ 1 but depending
of the time.

Remark 6. Let us point out that the estimate (5.38) is the key point in order to
improve the range on β. Indeed this last one is a refinement of the corresponding one
in [34]. In particular we will be able to obtain the energy estimates (5.66) only with
assuming β > 2.

5.2. Second a priori estimate for the velocity. In this section, we are going
to furnish estimates on the velocity by using the gain of integrability on the density
proved in the previous section. We are going essentially to follow the proof of [34]
and to emphasize on the key point where we will only need the hypothesis β > 2. We
begin with recalling some equation on the effective pressure defined in [26] and the
rotational curl. We set:

A = curlu and B = (2 + λ(ρ))divu− P (ρ),

L =
1

ρ
(∂yA+ ∂xB) and H =

1

ρ
(−∂xA+ ∂yB).

We now want to obtain some estimates on the unknowns A and B, let us start with
rewriting the momentum equation under the following eulerian form:

∂tu+ u · ∇u− 1

ρ
∆u− 1

ρ
∇((µ + λ(ρ))divu) +∇(

P (ρ)

γρ
) = 0. (5.39)

Next if we apply the operator curl, we get:

∂tA+ u · ∇A+Adivu = ∂yL− ∂xH. (5.40)

Next we apply the operator div to the momentum equation (5.39):

∂tdivu+ u · ∇u− 1

ρ
∆u− 1

ρ
∇((µ + λ(ρ))divu) +∇(

P (ρ)

γρ
) = 0, (5.41)

and via the mass equation we have:

∂tB + U · ∇B − ρ(2 + λ)
(
B(

1

2 + λ
)
′

+ (
P

2 + λ
)
′)
divu

+ (2 + λ)(U2
x + 2UyVx + V 2

y ) = (2 + λ)(Lx +Hy).

(5.42)
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As in [34] multiplying the equation(5.40) by A and integrate over Ω we obtain:

∫

Ω

1

2

d

dt
[A2]dx +

1

2

∫

Ω

divuA2dx+

∫

Ω

(L∂yA−H∂xA)dx = 0. (5.43)

Similarly multiplying the equation(5.42) by 1
2+λB and integrate over Ω we have:

∫

Ω

1

2 + λ

d

dt
(
1

2
B2)dx− 1

2

∫

Ω

divu
B2

2 + λ
dx− 1

2

∫

Ω

u · ∇(
1

2 + λ
)B2dx

−
∫

Ω

ρBdivu
(
B(

1

2 + λ
)
′

+ (
P

2 + λ
)
′)
dx+

∫

Ω

B(U2
x + 2UyVx + V 2

y )dx

+

∫

Ω

(L∂xB +H∂yB)dx = 0.

(5.44)

We recall now that:

∂t(
1

2 + λ
) + (

1

2 + λ
)
′

ρdivu+∇(
1

2 + λ
) · u = 0.

By combining the previous equality and (5.44) we get:

1

2

∫

Ω

d

dt
(

1

2 + λ
B2)dx− 1

2

∫

Ω

divuB2
( 1

2 + λ
− ρ(

1

2 + λ
)
′)
dx

−
∫

Ω

ρBdivu
(
B(

1

2 + λ
)
′

+ (
P

2 + λ
)
′)
dx +

∫

Ω

B(divu)2dx

+ 2

∫

Ω

B(∂yU∂xV − ∂xU∂yV )dx +

∫

Ω

(L∂xB +H∂yB)dx = 0.

(5.45)

Summing (5.43) and (5.45) we have:

∫

Ω

1

2

d

dt
[(A2 +

B2

2 + λ
)]dx+

∫

Ω

1

2
divuA2dx+

∫

Ω

(Ay +Bx)
2 + (−Ax +By)

2

ρ
dx

− 1

2

∫

Ω

B2divu
( 1

2 + λ
− ρ(

1

2 + λ
)
′)
dx+ 2

∫

Ω

B(UyVx − UxVy)dx

−
∫

Ω

ρBdivu
(
B(

1

2 + λ
)
′

+ (
P

2 + λ
)
′)
dx+

∫

Ω

Bdivu2dx = 0.

As:

divu2 = divu(
B

2 + λ
+

P

2 + λ
),

we deduce:

∫

Ω

1

2

d

dt
[(A2 +

B2

2 + λ
)]dx+

∫

Ω

1

2
divuA2dx+

∫

Ω

(Ay +Bx)
2 + (−Ax +By)

2

ρ
dx

+

∫

Ω

1

2
B2divu

( 1

2 + λ
− ρ(

1

2 + λ
)
′)
dx+

∫

Ω

Bdivu
( P

2 + λ
)− ρ(

P

2 + λ
))

′)
dx

+ 2

∫

Ω

B(UyVx − UxVy)dx −
∫

Ω

ρBdivu
(
B(

1

2 + λ
)
′

+ (
P

2 + λ
)
′)
dx = 0.

(5.46)
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Let us set:

Z(t) =
( ∫

Ω

(A2 +
B2

2 + λ
)dx

) 1
2

a(t) =
( ∫

Ω

(Ay +Bx)
2 + (−Ax +By)

2

ρ
dx

) 1
2 , t ∈ [0, T ].

(5.47)

Next we have:
∫

Ω

(
(Ay +Bx)

2 + (−Ax +By)
2
)
dx =

∫

Ω

(A2
x +A2

y +B2
x +B2

y)dx.

Let us observe that for every r, 1 ≥ 4r > 0, from the result on elliptic system and by
Hölder inequalities we get as in [34]:

‖∇A‖L2(1−r)(Ω) + ‖∇B‖L2(1−r)(Ω) ≤ C
( ∫

Ω

(Ay +Bx)
2 + (−Ax +By)

2

ρ
dx

) 1
2

( ∫

Ω

ρ
1−r
r dx

) r
2(1−r) .

From (5.38), we have:

(
‖∇A‖L2(1−r)(Ω) + ‖∇B‖L2(1−r)(Ω)

)
≤ C(

1

r
)

1
2(β−1) a(t). (5.48)

Remark 7. Let us point out that the estimate (5.48) is better than the corre-
sponding one in [34] due to the better estimate (5.38).

Moreover via (5.38) we also obtain the following inequality:
(
‖∇u‖L2(Ω) + ‖A‖L2(Ω) + ‖

√
2 + λ divu‖L2(Ω)

)
≤ C(1 + Z(t)), t ∈ [0, T ]. (5.49)

Now, are interested in providing other estimates for the non positive terms of the
equality (6.76).

Estimates for the terms of (6.76). Following [34], using the lemma 1

(with α = 1−ε
2(1−2ε) ) and Young’s inequality (with p = 2(1−2ε)

1−ε , q = 2(1−2ε)
1−3ε and

p1 = (1−2ε)(2+ε)
1−ε , q1 = (1−2ε)(2+ε)

1−2ε−2ε2 ) the , we obtain:

∣∣1
2

∫

Ω

divuA2
∣∣ ≤ 1

2
‖divu(t)‖L2‖A(t)‖2L4 ,

≤ C‖divu‖L2(
1
2 ‖A‖L2)

1−3ε
1−2ε (

1
2 ‖∇A‖L2(1−ε))

1−ε
1−2ε

≤ C(1 + Z(t))Z(t)
1−3ε
1−2ε

(
(
1

ε
)

1
2(β−1) a(t)

) 1−ε
1−2ε

≤ δa2(t) + C(δ)(1 + Z(t))
2(1−2ε)
1−3ε Z(t)2(

1

ε
)

1
β−1

≤ δa2(t) + C(δ)(1 + Z(t)2)2+
ε

1−3ε (
1

ε
)

1
β−1 .

We now are interested in estimating the term in (6.76) corresponding to:

I1 =
∣∣1
2

∫

Ω

B2divu
( 1

2 + λ
− ρ(

1

2 + λ
)
′)
dx

∣∣

=
∣∣1
2

∫

Ω

B2(
B

2 + λ
+

P

2 + λ
)
( 1

2 + λ
− ρ(

1

2 + λ
)
′)
dx

∣∣.
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Easily there exist a positive constant C > 0 such that:

∣∣ 1

2 + λ
− ρ(

1

2 + λ
)
′ ∣∣ ≤ C,

for all ρ ∈ [0,+∞). We deduce that:

I1 ≤ C(m
′

)β
( ∫

Ω

|B|3
2 + λ

dx+

∫

Ω

|B|2
2 + λ

|P |dx
)
.

By Young’s inequality we have:

∣∣
∫

Ω

Bdivu
( P

2 + λ
− ρ(

P

2 + λ
)
′)
dx

∣∣ =
∣∣
∫

Ω

B(
B

2 + λ
+

P

2 + λ
)
( P

2 + λ
− ρ(

P

2 + λ
)
′)
dx

∣∣

≤ C(1 +

∫

Ω

|B|3
2 + λ

dx).

Now, the last term in (6.76) can be treated as follows:

∣∣2
∫

Ω

B(UyVx − UxVy)dx
∣∣ ≤

∫

Ω

|B|(U2
x + U2

y + V 2
x + V 2

y )dx.

Via the previous estimate, the notations (5.47), and using the equality (6.76), we get:

1

2
(Z2(t)) + a2(t) ≤ δa2(t) + C(δ)(1 + Z(t)2)1+

ε
1−3ε (

1

ε
)

2
β−1

+ C(1 +

∫

Ω

|B|3
2 + λ

dx) +

∫

Ω

|B|(U2
x + U2

y + V 2
x + V 2

y )dx.
(5.50)

It remains to estimate the two last terms on the right hand side of (5.50). In this
goal, from (2.10) we have:

‖B‖L2m(Ω) ≤ C(‖B‖L1(Ω) +m
1
2 ‖∇B‖1−s

L
2m

m+ε (Ω)
‖B‖sL2(1−ε)(Ω)) (5.51)

where: s = (1−ε)2

m−ε(1−ε) and C > 0 is a positive constant independent of m > 2.

Now in inequalities (5.50) and (5.51) we fix ε = 2−m with m > 2. Using estimate
(5.38) for the density, we derive the inequalities:

‖B‖L1(Ω) =

∫

Ω

|B|dx =

∫

Ω

(
1

2 + λ
)

1
2 |B|(2 + λ)

1
2 dx ≤ ‖(2 + λ)

1
2 ‖L2(Ω)Z(t) ≤ CZ(t).

‖B‖sL2(1−ε)(Ω) =
( ∫

Ω

(
1

2 + λ
)1−ε|B|2(1−ε)(2 + λ)1−εdx

) s
2(1−ε)

≤ Z(t)s‖2 + λ‖
s
2

L
1−ε
ε (Ω)

≤ C(
1

ε
)

βs
2(β−1)Zs(t) ≤ C22smZs(t),

≤ CZs(t).

From inequalities (5.48) and (5.51) we finally obtain:

‖B‖L2m(Ω) ≤ C
(
Z(t) +m

1
2 (
m

ε
)

1−s
2(β−1) (a(t))1−sZs(t)

)
,

≤ C
(
Z(t) +m

1
2 (
m

ε
)

1−s
2(β−1) (a(t))1−sZs(t)

)
.

(5.52)
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Now dealing with the integral with |B|3, we have:

∫

Ω

|B|3
2 + λ

dx =

∫

Ω

|B|2− 1
m−1

(2 + λ)1−
1

2(m−1)

(
1

2 + λ
)

1
2(m−1) |B|1+ 1

m−1 dx

≤
∫

Ω

|B|2− 1
m−1

(2 + λ)1−
1

2(m−1)

|B| m
m−1 dx ≤ Z(t)2−

1
m−1 ‖B‖

m
m−1

L2m(Ω),

≤ (

∫

Ω

|B|2
2 + λ

dx)1−
1

2(m−1) (

∫

Ω

|B|2mdx)
1

2(m−1) ≤−1+ 1
2(m−1) Z(t)2−

1
m−1 ‖B‖

m
m−1

L2m(Ω)

≤ CZ2− 1
m−1 (t)

(
Z(t)

m
m−1 +m

m
2(m−1) (

m

ε
)

m(1−s)
2(β−1)(m−1) (a(t))

m(1−s)
m−1 Z

ms
m−1 (t)

)
,

≤ C
(
Z(t)3 +m

m
2(m−1) (

m

ε
)

m(1−s)
2(β−1)(m−1) (a(t))

m(1−s)
m−1 Z2+ms−1

m−1 (t)
)
,

where C > 0 is a positive constant independent of m > 2 and ε = 2−m. Finally

applying applying Young’s inequality with p = 2(m−1)
m(1−s) and q = 2(m−1)

m(s+1)−2 we have:

∫

Ω

|B|3
2 + λ

dx ≤ C
(
Z3(t) +m

1
2 (
m

ε
)

1
2(β−1) a

m(1−s)
m−1 (t)Z2+ms−1

m−1 (t)
)
,

≤ δa2(t) + C(δ)
(
Z3(t) +m

m−1
m(s+1)−2 (

m

ε
)

m−1
(β−1)(m(s+1)−2)Z4+ 2(1−ms)

m(s+1)−2 (t)
) (5.53)

From (5.51), we verify that:

1−ms = 1− m(1− ε)2

m− ε(1− ε)
= ε

m(2− ε) + ε− 1

m− ε(1− ε)
, (5.54)

and then:

lim
m→+∞

(2m(1−ms)) = 2,

hence via (5.53) and (5.54) we get:

∫

Ω

|B|3
2 + λ

dx ≤ δa2(t) +C(δ)
(
(1 +Z2(t))2 +m(

m

ε
)

1
β−1 (1 +Z2(t))2+

1−ms
m(s+1)−2

)
. (5.55)

Now, consider the last term in (5.50):

I2 =

∫

Ω

|B|(U2
x + U2

y + Vx + V 2
y ) ≤ ‖B‖L2m(Ω)(

∫

Ω

(|∇U |2 + |∇V |2) 2m
2m−1 dx)1−

1
2m .

Recalling the relation 3 > 4m
2m−1 > 2, m > 2, from the properties of elliptic system

[24] we derive the inequality:

(

∫

Ω

(|∇U |2 + |∇V |2) 2m
2m−1 dx)1−

1
2m ≤ C(‖divu‖2

L
4m

2m−1 (Ω)
+ ‖A‖2

L
4m

2m−1 (Ω)
).

Thus the previous inequality furnish the estimate:

I2 ≤ C‖B‖L2m(Ω)(‖divu‖2
L

4m
2m−1 (Ω)

+ ‖A‖2
L

4m
2m−1 (Ω)

). (5.56)
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Next we have as A vanishes on the boundary of the domain Ω, we applythe Gagliardo-
Niremberg inequality:

‖A‖2
L

4m
2m−1 (Ω)

≤ C‖A‖2−
1−ε

m(1−2ε)

L2(Ω) ‖∇A‖
1−ε

m(1−2ε)

L2(1−ε)(Ω)
,

≤ CZ2− 1−ε
m(1−2ε) (t)

(
(
1

ε
)

1
2(β−1) a(t)

) 1−ε
m(1−2ε) ≤ CZ2− 1−ε

m(1−2ε) (t)(a(t))
1−ε

m(1−2ε) .

(5.57)

Since B = (2 + λ)divu− P , estimate (5.38) provides:

‖divu‖2
L

4m
2m−1 (Ω)

= ‖ B

2 + λ
+

P

2 + λ
‖2
L

4m
2m−1 (Ω)

,

≤ C(‖ B

2 + λ
‖2
L

4m
2m−1 (Ω)

+ 1).

(5.58)

We can now deal with the right-hand side of (5.58) as follows:

‖ B

2 + λ
+

P

2 + λ
‖2
L

4m
2m−1 (Ω)

≤
( ∫

Ω

|B|
2m(2m−3)

(m−1)(2m−1)

2 + λ
|B| 2m

(m−1)(2m−1) dx
)1− 1

2m ,

≤ ‖B‖
1

m−1

L2m(Ω)

( ∫

Ω

|B|2

(2 + λ)
(m−1)(2m−1)

m(2m−3)

dx
) 2m−3

2m−2 ≤ ‖B‖
1

m−1

L2m(Ω)

( ∫

Ω

|B|2
(2 + λ)

dx
) 2m−3

2m−2 ,

≤ ‖B‖
1

m−1

L2m(Ω)(Z(t))
2m−3
2m−2 = ‖B‖

1
m−1

L2m(Ω)(Z(t))
2− 1

m−1 .

Thus,

‖divu‖2
L

4m
2m−1 (Ω)

≤ C(1 + (Z(t))2−
1

m−1 ‖B‖
1

m−1

L2m(Ω)). (5.59)

Using estimates (5.57) and (5.59), from (5.56) we have:

I2 ≤ C‖B‖L2m(Ω)(1 + Z2− 1−ε
m(1−2ε) (t)(a(t))

1−ε
m(1−2ε) + Z2− 1

m−1 (t)‖B‖
1

m−1

L2m(Ω)

)
.

Using estimate (5.52) for ‖B‖L2m(Ω), we finally get:

I2 ≤ C
(
(Z(t))3−

1−ε
m(1−2ε) (a(t))

1−ε
m(1−2ε) + Z(t) + Z3(t)

+m
1
2 (
m

ε
)

1−s
2(β−1)Z2+s− 1−ε

m(1−2ε) (t)(a(t))1−s+ 1−ε
m(1−2ε)

+m
1
2 (
m

ε
)

m(1−s)
2(β−1)(m−1)Z2+ms−1

m−1 (t)(a(t))
m(1−s)
m−1 +m

1
2 (
m

ε
)

1−s
2(β−1)Zs(t)(a(t))1−s

)
.

(5.60)
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Using Young’s inequality, we treat the summand in (5.60) as follows:

C(Z(t))3−
1−ε

m(1−2ε) (a(t))
1−ε

m(1−2ε) ≤ δa2(t) + C(1 + Z2(t))2,

C(Z(t) + Z3(t)) ≤ C(1 + Z2(t))2,

Cm
1
2 (
m

ε
)

1−s
2(β−1)Z2+s− 1−ε

m(1−2ε) (t)(a(t))1−s+ 1−ε
m(1−2ε)

≤ δa2(t) + Cm(
m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms+(2ms−1)ε
(1+s)m(1−2ε)−1+ε ,

Cm
1
2 (
m

ε
)

1−s
2(β−1)Zs(t)(a(t))1−s ≤ δa2(t) + Cm(

m

ε
)

1
β−1 (1 + Z2(t)),

m
1
2 (
m

ε
)

m(1−s)
2(β−1)(m−1)Z2+ms−1

m−1 (t)(a(t))
m(1−s)
m−1

≤ δa2(t) + Cm(
m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms
(1+s)m−2 .

Here δ is a small positive constant to be mentioned below. From inequality (5.60) we
derive that:

I2 ≤ δa2(t) + C
(
m(

m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms+(2ms−1)ε
(1+s)m(1−2ε)−1+ε

+ (1 + Z2(t))2 +m(
m

ε
)

1
β−1 (1 + Z2(t)) +m(

m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms
(1+s)m−2

(5.61)

From (5.55) and (5.61), and inequality (5.50) we have:

1

2

d

dt
(Z2(t) + a2(t)) ≤ δa2(t) + C(δ)(1 + Z2(t))2+

ε
3−ε (

1

ε
)

1
β−1

+ C(1 + δa2(t)) + CC(δ)(1 + Z2(t))2 + CC(δ)
(
m(

m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms
m(s+1)−2

+ 4δa2(t) + C
(
((1 + Z2(t))2 +m(

m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms+(2ms−1)ε
(1+s)m(1−2ε)−1+ε

+m(
m

ε
)

1
β−1 (1 + Z2(t))2 +m(

m

ε
)

1
β−1 (1 + Z2(t))2+

1−ms
m(s+1)−2

)
.

(5.62)
Choose δ > 0 such that:

5δ + δC =
1

2
.

Since s = (1−ε)2

m−ε(1−ε) and ε = 2−m, m > 2, we have:

1−ms

m(s+ 1)− 2
≤ 4ε,

1−ms+ (2ms− 1)ε

(1 + s)m(1− 2ε)− 1 + ε
≤ 4ε and

ε

1− 3ε
≤ 4ε.

Then by (5.62) and the fact that Z2(t) ∈ L1(0, T ), we obtain the inequality with
0 < T̄ < T

2 :

1

2

d

dt
(1 + Z2(t)) + a2(t) ≤ m(

m

ε
)

1
β−1 (1 + Z2(t))2+4ε. (5.63)

From (5.63) we have for 0 ≤ t < T :

1

(1 + Z2(t))4ε
− 1

(1 + Z2(T̄ ))4ε
+ Cmε(

m

ε
)

1
β−1 ≥ 0.
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Remark 8. Let us point out that the last inequality is better than in [34] and
allows us to assume only β > 2.

Now, take N > 2 such that:

1− CNε(
N

ε
)

1
β−1 (1 + Z2(0̄))4ε ≥ 1

2
, ε = 2−N .

Here the fact that β > 2 allows to conclude and by this fact improve the results of
[34]. We get finally that for 0 ≤ t < T :

Z2(t) ≤ 22
N−2

(1 + Z2(0))− 1, t ∈ [0, T ]. (5.64)

Now, from inequality (5.63) we get moreover that:

∫ T

0

a2(t)dt ≤ C. (5.65)

Now by estimate (5.38) for the density, there exists a positive constant C depending
continuously on the data of the problem and such that:

sup
0<t<T

∫

Ω

(
(curlu)2 +

1

2 + λ(ρ)

(
(2 + λ(ρ))divu− P (ρ)

)2
)
(t, x)dx ≤ C,

sup
0<t<T

∫

Ω

(
(curlu)2 + (2 + λ(ρ))(divu)2

)
(t, x)dx ≤ C,

∫ T

0

∫

Ω

(Ay +Bx)
2 + (−Ax +By)

2

ρ
dxdy ≤ C.

(5.66)

The rest of the proof follows exactly the same lines than in [34] and then we refer to
[34].

6. Proof of Theorem 1.2. We are interested in proving the existence of global
strong solution with small initial data for the system (1.5). W is the semi group
associated to the following linear system (6.67) with (q1,m1) a solution:

{
∂tq1 + divm1 − µ∆q1 = 0,

∂tm1 − µ∆m1 + am1 = 0.
(6.67)

Denote q = qL + q̄, m = mL + m̄ where (qL,mL) are solutions of (6.67) with initial
data (q0,m0). We are going to use a contracting mapping argument for the function
ψ defined as follows:

ψ(q̄, m̄) =

∫ t

0

W (t− s)

(
0

G(qL + q̄,mL + m̄)

)
ds . (6.68)

where The non linear terms G is defined as follows:

G(q,m) =− div(
m

1 + q
⊗ q). (6.69)

We are going to check that we can apply a fixed point theorem for the function ψ in
E

N
2 defined below, the proof is divided in two step the stability of ψ for a ball B(0, R)

in E
N
2 and the contraction property. We define E

N
2 by:

E
N
2 =

(
C̃(B

N
2
2,1) ∩ L̃1(B

N
2 +2
2,∞ )

)
×
(
C̃(B

N
2 −1
2,1 ) ∩ L̃1(B

N
2 −1
2,1 ∩B

N
2 +1
2,1 )

)N
.
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1) First step, stability of B(0, R):. Let:

η = ‖q0‖
B

N
2

2,1

+ ‖m0‖
B

N
2

−1

2,1

.

We are going to show that ψ maps the ball B(0, R) into itself if R is small enough.
According to proposition 3.3, we have:

‖W (t, ·) ∗
(

q0
m0

)
‖
E

N
2
≤ C(‖q0‖

B
N
2

2,1

+ ‖m0‖
B

N
2

2,1

) = Cη . (6.70)

According to the proposition 3.3 it implies also that it exists C > 0 such that:

‖ψ(q̄, m̄)‖
E

N
2
≤ C‖G(q,m)‖

L̃1(B
N
2

−1

2,1 )
. (6.71)

Making the assumption:

‖q‖L∞(R+×RN ) ≤
1

2
. (6.72)

The main task consists in using the propositions 3.2 to obtain estimates on
‖G(q, u)‖

L̃1(B
N
2

−1

2,1 )
. Hence by proposition 3.2 and lemma 4 it yields:

‖div( m

1 + q
⊗m)‖

L1(B
N
2

−1

2,1 )
≤ ‖ m

1 + q
⊗m‖

L1(B
N
2

−1

2,1 )
,

≤ C‖m‖2
L2

T (B
N
2

2,1)

(
‖ 1

1 + q
− 1‖

L∞

T (B
N
2

2,1)
+ 1

)
,

≤ C‖m‖2
L2

T (B
N
2

2,1)

(
‖q‖

L∞

T (B
N
2

2,1)
+ 1

)
.

(6.73)

We are now going to assume that (q, u) belongs in the ball B(0, R) of E
N
2 with R > 0.

Combining the estimates (6.70), (6.71), (6.72) and (6.73) we get:

‖ψ(q̄, m̄)‖
E

N
2
≤ C((C + 1)η +R)2. (6.74)

By choosing R and η small enough we have:

C((C + 1)η +R)2 ≤ R. (6.75)

To do this it suffices in a first time to verify the assumption (6.72), let c be a constant
such that ‖ · ‖

B
N
2

2,1

≤ c implies ‖ · ‖L∞ ≤ 1
2 , we choose R ≤ c and finally we can choose

R and η such that:

R ≤ inf((3C)−1, c, 1), and η ≤ inf(R, c)

C + 1
. (6.76)

It implies that the ball B(0, R) of E
N
2 is stable under ψ, indeed we have:

ψ(B(0, R)) ⊂ B(0, R) .
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2) Second step: Property of contraction. We consider (q̄1, m̄1), (q̄2, m̄2) in
B(0, R) and we are interested in verifying that ψ is a contraction. According to the
proposition 3.3 we have:

‖ψ(q̄2, m̄2)− ψ(q̄1, m̄1)‖
E

N
2
≤ C‖G(q2,m2)−G(q1,m1)‖

L̃1(B
N
2

−1

2,1 )
. (6.77)

We set:

δq = q̄2 − q̄1 and δm = m̄2 − m̄1.

We have then:

G(q2,m2)−G(q1,m1) = div(m1 ⊗m1(
q2

1 + q2
− q1

1 + q1
)− m2 ⊗ δm+ δm⊗m1

1 + q2
).

Applying proposition 3.2 and lemma 4 we obtain:

‖G(q2,m2)−G(q1,m1)‖
L̃1(B

N
2

−1

2,1 )

≤ C‖(δq, δm)‖
E

N
2
(‖(q̄1, m̄1)‖

E
N
2
+ 2‖(qL,mL)‖

E
N
2
).

Now, if (R, η) satisfies (6.76)(for a greater constant C if necessary), it yields:

‖ψ(q̄2, m̄2)− ψ(q̄1, m̄1)‖
E

N
2
≤ 1

2
‖(δq, δm)‖

E
N
2
.

Since E
N
2 is a Banach space, we have proved via the fixed point theorem the existence

of a unique global solution of the system (1.5) in the ball B(0, R) of E
N
2 . It concludes

the proof.
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