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1. Introduction. This is a survey on some recent results concerning scaling and
the related singular limits in the models of complete fluids. We start by introducing
the Navier-Stokes-Fourier system in the “entropy” form:

∂t̺+ divx(̺u) = 0, (1.1)

∂t(̺u) + divx(̺u⊗ u) +∇xp(̺, ϑ) = divxS(ϑ,∇xu), (1.2)

∂t(̺s(̺, ϑ)) + divx(̺s(̺, ϑ)u) + divx

(

q(ϑ,∇xϑ)

ϑ

)

= σ,

σ =
1

ϑ

(

S : ∇xu− q · ∇xϑ

ϑ

)

.

(1.3)

The system (1.1 - 1.3) governs the evolution of a compressible, viscous, and heat
conducting fluid described in terms of the mass density ̺ = ̺(t, x), the absolute
temperature ϑ = ϑ(t, x), and the velocity field u = u(t, x) in the Eulerian reference
system, see Gallavotti [27]. Furthermore, the symbol S = S(ϑ,∇xu) stands for the
viscous stress, here given by the standard Newton rheological law

S(ϑ,∇xu) = µ(ϑ)

(

∇xu+∇t
xu− 2

3
divxuI

)

+ η(ϑ)divxuI, (1.4)

and q(ϑ,∇xϑ) is the heat flux determined by the Fourier law

q = −κ(ϑ)∇xϑ. (1.5)

Finally, p = p(̺, ϑ) is the pressure and s = s(̺, ϑ) the specific entropy related to the
specific internal energy e = e(̺, ϑ) via Gibbs’ equation

ϑDs(̺, ϑ) = De(̺, ϑ) + p(̺, ϑ)D

(

1

̺

)

. (1.6)

In addition to (1.6) we impose the thermodynamic stability hypothesis

∂p(̺, ϑ)

∂̺
> 0,

∂e(̺, ϑ)

∂ϑ
> 0 (1.7)
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The author acknowledges the support of the project LL1202 in the programme ERC-CZ funded by
the Ministry of Education, Youth and Sports of the Czech Republic.

115



116 E. FEIREISL

that will play a crucial role in the analysis (see Callen [10] for the physical background
of (1.6), (1.7)).

Equations (1.1–1.3) represent our primitive system that is supposed to provide a
complete description of a given fluid in motion. Given the enormous scope of appli-
cations of continuum fluid mechanics, solutions of the Navier-Stokes-Fourier system
describe the motion of general gases and compressible liquids around or without pres-
ence of rigid bodies, the atmosphere and oceans in meteorology, and even the evolution
of gaseous stars. Obviously, these phenomena may occur on very different time and
spatial scales, where simplified models may provide equally good if not better picture
of reality. Our goal is to show how these models can be rigorously derived as singular
limits of a scaled version of (1.1–1.3), where certain characteristic numbers tend to
zero or become excessively large.

1.1. Scaling and dimensionless equations. The method of scaling is well
known and frequently used in engineering. Instead of considering the physical quanti-
ties in their original (typically S.I.) units, we replace a quantity X by X/Xchar, where
Xchar is the characteristic value of X . Applying this procedure to the system (1.1–
1.3) and keeping the same symbols for physical quantities and their dimensionless
counterparts, we arrive at the following scaled Navier-Stokes-Fourier system:

[Sr]∂t̺+ divx(̺u) = 0, (1.8)

[Sr]∂t(̺u) + divx(̺u⊗ u) +

[

1

Ma2

]

∇xp(̺, ϑ) =

[

1

Re

]

divxS(ϑ,∇xu), (1.9)

[Sr]∂t(̺s(̺, ϑ)) + divx(̺s(̺, ϑ)u) +

[

1

Pe

]

divx

(q

ϑ

)

= σ,

σ =
1

ϑ

([

Ma2

Re

]

S : ∇xu−
[

1

Pe

]

q · ∇xϑ

ϑ

)

,

(1.10)

with the characteristic numbers :
• Strouhal number (Čeněk Strouhal [1850–1922]):

[Sr] =
lengthchar

timecharvelocitychar
;

• Mach number (Ernst Mach [1838–1916]):

[Ma] =
velocitychar

√

pressurechar/densitychar
;

• Reynolds number (Osborne Reynolds [1842–1912]):

[Re] =
densitycharvelocitycharlengthchar

viscositychar
;

• Péclet number (Jean Claude Eugène Péclet [1793–1857]):

[Pe] =
pressurecharvelocitycharlengthchar

heat conductivitychartemperaturechar
.
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As a matter of fact, specific values of characteristic numbers may correspond to
physically different systems. For instance, high Reynolds number may be associated
to low viscosity of the fluid or to extremely large length scales. We refer to the survey
of Klein et al [37] for a thorough discussion of singular limits and the applications of
scaling in numerical analysis.

1.2. Inviscid, incompressible limit. We focus on the situation when

Sr = 1, Ma = ε, Re = ε−a, Pe = ε−b, a, b > 0,

where ε > 0 is a small parameter. Our goal is to identify the limit system for ε → 0,
meaning the inviscid, incompressible limit of the scaled Navier-Stokes-Fourier system:

∂t̺+ divx(̺u) = 0, (1.11)

∂t(̺u) + divx(̺u⊗ u) +
1

ε2
∇xp(̺, ϑ) = εadivxS(ϑ,∇xu), (1.12)

∂t(̺s(̺, ϑ)) + divx(̺s(̺, ϑ)u) + εbdivx

(q

ϑ

)

= σ,

σ =
1

ϑ

(

ε2+a
S : ∇xu− εb

q · ∇xϑ

ϑ

)

,

(1.13)

supplemented with the initial conditions:

̺(0, ·) = ̺0,ε = ̺+ ε̺
(1)
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ

(1)
0,ε, u(0, ·) = u0,ε, (1.14)

where the reference values ̺, ϑ are positive constants. Note that the initial distribution
of the density and the temperature are prepared anticipating the constant values
expected in the asymptotic limit for ε → 0.

1.3. Limit system. Formally, it is easy to identify the limit system of equations.
Indeed the fact that the Mach number is small indicates incompressibility of the limit
fluid flow; whence the limit system reads:

divxv = 0, (1.15)

∂tv + divx(v ⊗ v) +∇xΠ = 0, (1.16)

∂tT + v · ∇xT = 0, (1.17)

which is nothing other than the incompressible Euler system, supplemented with the
transport equation for the temperature deviation T ,

T ≈ lim
ε→0

ϑε − ϑ

ε
.
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1.4. Boundary conditions. Real fluid systems are typically confined to a phys-
ical space - a domain Ω ⊂ R3. Accordingly, the boundary behavior of certain quan-
tities must be specified. In order to avoid the so far unsurmountable problem of the
boundary layer in the inviscid limit, see for instance Kato [32], we restrict ourselves
to the Navier slip boundary condition

u · n|∂Ω = 0, εc[S(ϑ,∇xu)n]tan + β(ϑ)u|∂Ω = 0, c, β > 0. (1.18)

In addition, we impose the no-flux condition for the total energy, specifically, in
terms of the heat flux q,

q(ϑ,∇xϑ) · n|∂Ω = −βεd|u|2|∂Ω, d = 2 + a− c− b. (1.19)

Condition (1.19) implies, in particular, that the total energy of the system is a con-
served quantity:

d

dt

∫

Ω

(

ε2̺|u|2 + ̺e(̺, ϑ)
)

dx = 0. (1.20)

1.5. Singular limit. Our main goal is to discuss the singular limit process from
the scaled Navier-Stokes-Fourier system (1.11 - 1.14), supplemented with the bound-
ary conditions (1.18), (1.19), to the target Euler system (1.15 - 1.17) as ε → 0. Our
working plan reads as follows:

• In Section 2, we introduce the relative entropy inequality together with the
concept of dissipative solutions to the (primitive) Navier-Stokes-Fourier sys-
tem.

• We use the relative entropy inequality to derive stability estimates for the
solutions of the scaled system, see Section 3.

• In Section 4, we analyze the asymptotic behavior of acoustic waves and show
the relevant dispersive estimates.

• Section 5 contains final comments and concluding remarks.

2. Weak and dissipative solutions. Solutions of the system (1.11 - 1.13),
(1.18), (1.19) satisfy, together with the total energy balance (1.20), the total entropy
production relation in the form

d

dt

∫

Ω

̺s(̺, ϑ) dx =

∫

Ω

σ dx+ ε2+a−c

∫

∂Ω

β

ϑ
|u|2 dSx. (2.1)

Thus, adding (1.20), (2.1) together, we obtain

d

dt

∫

Ω

[

1

2
̺|u|2 + 1

ε2

(

̺e(̺, ϑ)−Θ̺s(̺, ϑ)
)

]

dx

+
Θ

ε2

∫

Ω

σ dx+ Θεa−c

∫

∂Ω

β

ϑ
|u|2 dSx = 0

(2.2)

for any positive constant Θ. Relation (2.2) is usually termed total dissipation balance.
The functional

(̺, ϑ,u) 7→
∫

Ω

[

1

2
̺|u|2 + 1

ε2

(

̺e(̺, ϑ)−Θ̺s(̺, ϑ)
)

]

dx

turns out to be a Lyapunov function for the Navier-Stokes-Fourier system.
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2.1. Ballistic free energy. The functional

HΘ(̺, ϑ) = ̺
(

e(̺, ϑ)−Θs(̺, ϑ)
)

(2.3)

is called ballistic free energy, see Ericksen [19].
It is a routine matter to compute

∂2HΘ(̺,Θ)

∂̺2
=

1

̺

∂p(̺,Θ)

∂̺
and

∂HΘ(̺, θ)

∂ϑ
= ̺

∂s(̺, ϑ)

∂ϑ
(ϑ−Θ).

Using the hypothesis of thermodynamic stability (1.7) we therefore conclude that

̺ 7→ HΘ(̺,Θ) is strictly convex, (2.4)

and

ϑ 7→ HΘ(̺, ϑ) is decreasing for ϑ < Θ and increasing for ϑ > Θ for any fixed ̺. (2.5)

2.2. Relative entropy. Motivated by the discussion in the preceding section,
we introduce the relative entropy functional in the form

E
(

̺, ϑ,u
∣

∣

∣
r,Θ,U

)

=

∫

Ω

(

1

2
̺|u−U|2 +HΘ(̺, ϑ)−

∂HΘ(r,Θ)

∂̺
(̺− r)−HΘ(r,Θ)

)

dx.

(2.6)

In the light of the coercivity properties (2.4), (2.5), it is easy to check that the
relative entropy represents a kind of distance between the trio (̺, ϑ,u) and (r,Θ,U).
Going back to the total dissipation inequality (2.2) we obtain

d

dt
Eε

(

̺, ϑ,u
∣

∣

∣
̺, ϑ, 0

)

+
ϑ

ε2

∫

Ω

σ dx+ ϑεa−c

∫

∂Ω

β

ϑ
|u|2 dSx = 0, (2.7)

where we have set

Eε
(

̺, ϑ,u
∣

∣

∣
r,Θ,U

)

=

∫

Ω

[

1

2
̺|u−U|2 + 1

ε2

(

HΘ(̺, ϑ)−
∂HΘ(r,Θ)

∂̺
(̺− r)−HΘ(r,Θ)

)]

dx,

(2.8)

and where ̺, ϑ are the positive constants appearing in the initial conditions (1.14),
chosen in such a way that, at least formally,

∫

Ω

(̺− ̺) dx = 0 (2.9)

If Ω is a bounded domain, the satisfaction of (2.9) is guaranteed if the perturbation

̺
(1)
0,ε is taken of zero integral mean as the total mass of the fluid

M0 =

∫

Ω

̺(t, ·) dx
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is a constant of motion. In general, the constants ̺, ϑ will be always chosen in such
a way that (2.7) holds. The trio (̺, ϑ, 0) is trivially a solution to the Navier-Stokes-
Fourier system (1.1 - 1.3) that is called a static state. In view of the coercivity prop-
erties of the relative entropy established in (2.4), (2.5), relation (2.8) yields stability
of the “static” states with respect to perturbations.

Our next goal is to derive a relation (inequality) similar to (2.7) provided (̺, ϑ,u)
is a weak solution of the Navier-Stokes-Fourier system, and (r,Θ,U) is an arbitrary
trio of “test functions” satisfying natural boundary conditions. To this end, a short ex-
cursion in the theory of weak solutions to the Navier-Stokes-Fourier system is needed.

2.3. Weak solutions. Following [21, Chapter 3] we introduce the concept of
weak solution to the Navier-Stokes-Fourier system (1.1 - 1.3), with the boundary
conditions (1.18), (1.19), and the initial conditions

̺(0, ·) = ̺0, ϑ(0, ·) = ϑ0, u(0, ·) = u0. (2.10)

To simplify presentation, we suppose that Ω ⊂ R3 is a bounded domain with smooth
boundary.

2.3.1. Constitutive relations. Besides the existing restrictions imposed on the
thermodynamic functions p, e, and s through Gibbs’ equation (1.6) and the thermo-
dynamic stability hypothesis (1.7), we introduce rather technical but still physically
grounded assumptions required by the existence theory developed in [21]. More specif-
ically, we suppose that the pressure p is given in the form

p(̺, ϑ) = ϑ5/2P
( ̺

ϑ3/2

)

+
a

3
ϑ4, a > 0, P (0) = 0. (2.11)

Here, the term proportional to ϑ4 is attributed to the radiation pressure, while the
specific form

ϑ5/2P
( ̺

ϑ3/2

)

can be derived from the Gibbs’ equation (1.6) as the universal formula for the
monoatomic gas satisfying

p(̺, ϑ) =
2

3
̺e(̺, ϑ),

see [21, Chapter 1].
Accordingly, we take

e(̺, ϑ) =
3

2
ϑ

(

ϑ3/2

̺

)

P
( ̺

ϑ3/2

)

+
a

̺
ϑ4, (2.12)

and

s(̺, ϑ) = S
( ̺

ϑ3/2

)

+
4a

3

ϑ3

̺
, (2.13)

where

S′(Z) = −3

2

5
3P (Z)− P ′(Z)Z

Z2
.
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The thermodynamic stability hypothesis (1.7) stated in terms of the structural
properties of the function P gives rise to:

P ′(Z) > 0, 0 <
5
3P (Z)− P ′(Z)Z

Z2
< c for all Z > 0. (2.14)

In particular, the function Z 7→ P (Z)/Z5/3 is non-increasing, and we take

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (2.15)

Finally, the Third law of thermodynamics is imposed through

lim
Z→∞

S(Z) = 0. (2.16)

As for the transport coefficients µ, λ, β and κ, we shall assume that they are con-
tinuously differentiable functions of the absolute temperature ϑ ∈ [0,∞) satisfying:

µ ∈ C1[0,∞) is globally Lipschitz continuous, 0 < µ(1 + ϑ) ≤ µ(ϑ), (2.17)

0 ≤ η(ϑ) ≤ η(1 + ϑ), (2.18)

and

β(1 + ϑ) ≤ β(ϑ) ≤ β(1 + ϑ), κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3). (2.19)

2.3.2. Variational formulation. We introduce a weak (variational) formula-
tion of the Navier-Stokes-Fourier system, taking into account the boundary conditions
(1.18), (1.19), together with the initial conditions (2.10), see [21, Chapter 3].

We say that a trio (̺, ϑ,u) is a weak solution of the (unscaled) Navier-Stokes-
Fourier system (1.1 - 1.3) if

̺ ≥ 0, ̺ ∈ Cweak([0, T ];L
5/3(Ω)) ∩ Lq((0, T )× Ω) for a certain q >

5

3
, (2.20)

ϑ > 0 a.a. in (0, T )× Ω, ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

log(ϑ) ∈ L2(0, T ;W 1,2(Ω)),
(2.21)

u ∈ L2(0, T ;W 1,2(Ω;R3)), u · n|∂Ω = 0, ̺u ∈ Cweak([0, T ];L
5/4(Ω)), (2.22)

and the following integral identities are satisfied:
[
∫

Ω

̺ϕ(t, ·) dx
]τ

t=0

=

∫ τ

0

∫

Ω

(̺∂tϕ+ ̺u · ∇xϕ) dx dt (2.23)

for any τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω);

[
∫

Ω

̺u · ϕ(t, ·) dx
]τ

t=0

=

∫ τ

0

∫

Ω

(̺u · ∂tϕ+ (̺u× u) : ∇xϕ+ p(̺, ϑ)divxϕ− S : ∇xϕ) dx dt

−
∫ τ

0

∫

∂Ω

βu · ϕ dSx

(2.24)
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for any τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω;R3), ϕ · n|∂Ω = 0;

[
∫

Ω

̺s(̺, ϑ)ϕ(t, ·) dx
]τ

t=0

≥
∫ τ

0

∫

Ω

(

̺s(̺, ϑ)∂tϕ+ ̺s(̺, ϑ)u · ∇xϕ+
q

ϑ
· ∇xϕ− S

)

dx dt

+

∫ τ

0

∫

Ω

1

ϑ

(

S : ∇xu− q · ∇xϑ

ϑ

)

ϕ dx dt+

∫ τ

0

∫

∂Ω

β|u|2ϕ dSx dt

(2.25)

for a.a. τ ∈ [0, T ], and any ϕ ∈ C∞
c ([0, T ]× Ω), ϕ ≥ 0.

Since the weak formulation is stated for the unscaled system, we have taken
ε = 1 in the boundary conditions (1.18), (1.19). Note that the initial conditions are
“hidden” in the quantities on the left-hand side of the above integral formulas.

While the integral identities (2.23), (2.24) represent the standard weak formula-
tion of the equations (1.1), (1.2), the reader will have noticed that the entropy balance
(1.3) has been replaced by inequality (2.25) corresponding to the entropy production
rate

σ ≥ 1

ϑ

(

S : ∇xu− q · ∇xϑ

ϑ

)

.

In order to compensate for this obvious lack of information, the variational formulation
will be augmented, similarly to [21, Chapter 3], by the total energy balance

[
∫

Ω

(

1

2
̺|u|2 + ̺e(̺, ϑ)

)

dx

]τ

t=0

= 0 for a.a. τ ∈ [0, T ]. (2.26)

It can be shown that any weak solution that is sufficiently smooth solves the
system of equations (1.1 - 1.3), see [21, Chapter 2]. The resulting concept of weak
solution is mathematically tractable. In particular, we report the following global-in-
time existence result in the class of weak solutions, see [21, Theorems 3.1,3.2].

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain of class C2+ν . Suppose that the
thermodynamic functions p, e, s, and the transport coefficients µ, η, β, κ comply with
the structural restrictions introduced in Section 2.3.1. Finally, let the initial data be
taken such that

̺0 > 0, ϑ0 > 0 a.a. in Ω, E0 =

∫

Ω

(

1

2
̺0|u0|2 + ̺0e(̺0, ϑ0)

)

dx < ∞.

Then the Navier-Stokes-Fourier possesses a weak solution in (0, T ) × Ω for any
T > 0 in the sense specified through (2.20 - 2.26).

Possible generalizations with respect to the structural properties of p, e, and s as
well as relaxation of the growth conditions (2.17), (2.18) are discussed at length in
[21, Chapter 3]. We also remark that the initial density ̺0 may be taken only non-
negative in Ω, however, such a generalization seems to be at odds with the standard
derivation of the Navier-Stokes system as a model of non-dilute fluids.

An alternative approach in the framework of weak solutions to the Navier-Stokes-
Fourier system was proposed by Bresch and Desjardins [6], [7]. They assume that
the viscosity coefficients depend on the density ̺ in a special way and derive a priori
bounds on the density gradient in certain function spaces.



SINGULAR LIMITS IN FLUID MECHANICS 123

2.4. Dissipative solutions. The dissipative solutions of the Navier-Stokes-
Fourier system will be characterized by relative entropy inequality we are going to
derive. After a bit tedious but absolutely routine manipulation we obtain

[

E
(

̺, ϑ,u

∣

∣

∣
r,Θ,U

)]τ

t=0

+

∫ τ

0

∫

Ω

Θ

ϑ

(

S(ϑ,∇xu) : ∇xu−
q(ϑ,∇xϑ) · ∇xϑ

ϑ

)

dx dt +

∫ τ

0

∫

∂Ω

Θβ

ϑ
|u|2 dSx dt

≤

∫ τ

0

∫

Ω

(

̺
(

∂tU+ u · ∇xU
)

· (U− u) + S(ϑ,∇xu) : ∇xU
)

dx dtdt

+

∫ τ

0

∫

∂Ω
βu ·U dSx +

∫ τ

0

∫

Ω

[(

p(r,Θ)− p(̺, ϑ)
)

divU+
̺

r
(U− u) · ∇xp(r,Θ)

]

dxdt

−

∫ τ

0

∫

Ω

(

̺
(

s(̺, ϑ)− s(r,Θ)
)

∂tΘ+ ̺
(

s(̺, ϑ)− s(r,Θ)
)

u · ∇xΘ+
q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)

dx dt

+

∫ τ

0

∫

Ω

r − ̺

r

(

∂tp(r,Θ) +U · ∇xp(r,Θ)
)

dx dt

(2.27)

for any (smooth) solution (̺, ϑ,u) of the Navier-Stokes-Fourier system and any trio
of smooth “test” functions (r,Θ,U) satisfying

r > 0, Θ > 0,U · n|∂Ω = 0, (2.28)

see [23].
Relation (2.27) is called relative entropy inequality. Our next observation is that

it can be extended to the class of weak solutions. Indeed we may write

E
(

̺, ϑ,u
∣

∣

∣
r,Θ,U

)

=
6

∑

i=1

Ii,

where

I1 =

∫

Ω

(

1

2
̺|u|2 + ̺e(̺, ϑ)

)

dx,

I2 = −
∫

Ω

̺u ·U dx,

I3 =

∫

Ω

1

2
̺|U|2 dx,

I4 = −
∫

Ω

̺s(̺, ϑ)Θ dx,

I5 = −
∫

Ω

∂HΘ(r,Θ)

∂̺
̺ dx,

and

I6 =

∫

Ω

(

∂HΘ(r,Θ)

∂̺
r −H(r,Θ)

)

dx.

Since the functions (r,Θ,U) are smooth and U satisfies the relevant boundary condi-
tions, all quantities [Ii]

τ
t=0 can be expressed by means of the weak formulation (2.23

- 2.26), cf. [23] for details.
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Motivated by a similar definition introduced by DiPerna and Lions [41] in the
context of inviscid fluids, we say that (̺, ϑ,u) is a dissipative solution to the Navier-
Stokes-Fourier system if the relative entropy inequality (2.27) holds for all smooth test
functions satisfying (2.28).

As we have just observed, the weak solutions of the Navier-Stokes-Fourier sys-
tem in a bounded regular domain Ω are dissipative solutions. The relative entropy
inequality is a powerful tool that has been successfully applied to the following topics:

• the unconditional stability of the static states and attractors for the full
Navier-Stokes-Fourier system, see [25];

• the problem of weak-strong uniqueness, see [23];
• the singular limits for low Mach and high Reynolds and Péclet numbers, see
[22].

Here, we focus on the last issue discussing the limit ε → 0 in the scaled system.

2.4.1. Possible extensions. The concept of dissipative solution can be eas-
ily extended to problems on general unbounded domains. In such a situation, the
constants ̺, ϑ are taken to characterize the far field behavior, specifically,

̺ → ̺, ϑ → ϑ as |x| → ∞. (2.29)

Moreover, we shall always assume that the velocity vanishes for large x,

u → 0 as |x| → ∞. (2.30)

Now, the relative entropy inequality remains formally the same as (2.27), where,
in addition to (2.28), the test functions r, Θ, U admit suitable “far field” behavior.
We may assume that

r − ̺, ϑ− ϑ, U ∈ C∞
c ([0, T ]× Ω), (2.31)

or that they decay rapidly to their asymptotic limits depending on the integrability
of the weak solutions.

As the relative entropy inequality contains a complete piece of information we
need to perform the singular limit we are interested in, we focus in the future only
on dissipative solutions. Note that the global-in-time existence of dissipative solutions
occupying a general unbounded physical space can be easily shown via the method
of invading domains, where we construct weak (dissipative) solutions on a family of
bounded domains

ΩR = Ω ∩ {|x| < R}

and let R → ∞, see Jesslé, Jin, and Novotný [29].

Since in the future we will deal exclusively with the scaled system (1.11 - 1.13),
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we start by reformulating (2.27) in the ε−framework:
[

Eε
(

̺, ϑ,u

∣

∣

∣
r,Θ,U

)]τ

t=0

+

∫ τ

0

∫

Ω

Θ

ϑ

(

εaS(ϑ,∇xu) : ∇xu− εb−2 q(ϑ,∇xϑ) · ∇xϑ

ϑ

)

dx dt+ εa−c

∫ τ

0

∫

∂Ω

Θβ

ϑ
|u|2 dSx dt

≤

∫ τ

0

∫

Ω

(

̺
(

∂tU+ u · ∇xU
)

· (U − u) + εaS(ϑ,∇xu) : ∇xU
)

dx dt+ εa−c

∫ τ

0

∫

∂Ω
βu ·U dSx dt

+
1

ε2

∫ τ

0

∫

Ω

[(

p(r,Θ)− p(̺, ϑ)
)

divU+
̺

r
(U− u) · ∇xp(r,Θ)

]

dxdt

−
1

ε2

∫ τ

0

∫

Ω

(

̺
(

s(̺, ϑ)− s(r,Θ)
)

∂tΘ+ ̺
(

s(̺, ϑ)− s(r,Θ)
)

u · ∇xΘ+ εb
q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)

dx dt

+
1

ε2

∫ τ

0

∫

Ω

r − ̺

r

(

∂tp(r,Θ) +U · ∇xp(r,Θ)
)

dx dt

(2.32)

for all test functions

r > 0, Θ > 0, U · n|∂Ω
= 0, ̺− r, ϑ−Θ ∈ C∞

c ([0, T ]× Ω), U ∈ C∞
c ([0, T ]× Ω;R3).

(2.33)

As we shall see in the next section, the integrability properties of the dissipative
solutions on unbounded domains are slightly different from those on bounded ones.
As a matter of fact, they follow directly from (2.32).

3. Uniform bounds, stability. Anticipating the existence of global-in-time
dissipative solutions (̺ε, ϑε,uε) satisfying the relative entropy inequality (2.32), we
derive uniform bounds independent of ε → 0. To this end, it is convenient to introduce
the following notation:

h = hess + hres, hess = Ψ(̺ε, ϑε)h, hres = h− hess,

Ψ ∈ C∞
c (0,∞)2, 0 ≤ Ψ ≤ 1, Ψ = 1 on an open neighborhood of the point (̺, ϑ)

for any measurable function h. The idea behind this notation is that it is the essential
component hess that bears all the relevant information while the residual part hres

disappears in the asymptotic limit, see [21, Chapter 4] for details.

3.1. Coercivity of the relative entropy and uniform bounds. Let K ⊂
K ⊂ (0,∞)2 be an open set containing (r,Θ). It follows from relations (2.4), (2.5),
and the structural restrictions imposed of the functions e, s in Section 2.3.1 that

HΘ(̺, ϑ)−
∂HΘ(r,Θ)

∂̺
(̺−r)−HΘ(r,Θ) ≥ c(K)

(

|̺− r|2 + |ϑ−Θ|2
)

for all (̺, ϑ) ∈ K,

(3.1)

HΘ(̺, ϑ)−
∂HΘ(r,Θ)

∂̺
(̺− r) −HΘ(r,Θ)

≥ c(K) (1 + ̺e(̺, ϑ) + ̺s(̺, ϑ)) whenever (̺, ϑ) ∈ [0,∞)2 \K,

(3.2)

see [21, Chapter 3, Proposition 3.2].
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3.1.1. First application of the relative entropy inequality. The desired
uniform bounds follow immediately from the relative entropy inequality (2.32) evalu-
ated at r = ̺, Θ = ϑ, U = 0 yielding

[

Eε
(

̺ε, ϑε,uε

∣

∣

∣
̺, ϑ, 0

)]τ

t=0

+

∫ τ

0

∫

Ω

ϑ

ϑ

(

εaS(ϑε,∇xuε) : ∇xuε − εb−2q(ϑε,∇xϑε) · ∇xϑε

ϑε

)

dx dt

+εa−c

∫ τ

0

∫

∂Ω

ϑβ(ϑε)

ϑε
|uε|2 dSx dt ≤ 0.

(3.3)

Observing that Eε
(

̺0,ε, ϑ0,ε,u0,ε

∣

∣

∣
̺, ϑ, 0

)

remains bounded for ε → 0 as soon as

we have

‖̺(1)0,ε‖L2∩L∞(Ω) + ‖ϑ(1)
0,ε‖L2∩L∞(Ω) + ‖u0,ε‖L2(Ω;R3) ≤ c (3.4)

in (1.14), we deduce the following list of estimates:

ess sup
t∈(0,T )

‖√̺εuε‖L2(Ω;R3) ≤ c, (3.5)

ess sup
t∈(0,T )

∥

∥

∥

∥

[

̺ε − ̺

ε

]

ess

∥

∥

∥

∥

L2(Ω)

≤ c, (3.6)

ess sup
t∈(0,T )

∥

∥

∥

∥

[

ϑε − ϑ

ε

]

ess

∥

∥

∥

∥

L2(Ω)

≤ c, (3.7)

ess sup
t∈(0,T )

[

‖1res‖L1(Ω) + ‖[̺ε]res‖
5/3

L5/3(Ω)
+ ‖[ϑε]res‖

4
L4(Ω)

]

≤ ε2c, (3.8)

together with the “integral” bounds:

εa
∫ T

0

∫

Ω

∣

∣

∣

∣

∇xuε +∇t
xuε −

2

3
divxuεI

∣

∣

∣

∣

2

dx dt+ εa−c

∫ T

0

∫

∂Ω

|uε|2 dSx dt ≤ c, (3.9)

εb−2

∫ T

0

∫

Ω

|∇xϑε|2 dx dt ≤ c, (3.10)

where all constants are independent of ε → 0.

3.2. Convergence. The uniform bounds (3.5 - 3.10) are sufficient to pass to the
limit in the family of solutions (̺ε, ϑε,uε) for ε → 0. We obtain, in accordance with
(3.5), (3.6), and (3.8),

ess sup
t∈(0,T )

‖̺ε(t, ·)− ̺‖L2(Ω)+L5/3(Ω) ≤ εc (3.11)

ϑε − ϑ

ε
→ T weakly-(*) in L∞(0, T ;L2(Ω)), (3.12)

and
√
̺εuε → ũ weakly-(*) in L∞(0, T ;L2(Ω;R3)). (3.13)
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3.2.1. Another use of the relative entropy inequality. Of course, our goal
is to show that ũ =

√
̺v, where v is a solution of the limit Euler system (1.15),

(1.16), and that T solves the transport equation (1.17). To this end, we use again
the relative entropy inequality (2.32), this time for the choice of “test functions” that
corresponds to the first order ε−approximation. Specifically, we rewrite formally the
system (1.11 - 1.13) as

ε∂t
̺ε − ̺

ε
+ divx(̺εuε) = 0, (3.14)

ε∂t (̺εuε) +∇x

(

∂̺p(̺, ϑ)
̺ε − ̺

ε
+ ∂ϑ(̺, ϑ)

ϑε − ϑ

ε

)

= F1,ε, (3.15)

∂t

(

̺∂ϑs(̺, ϑ)
ϑε − ϑ

ε
+ ̺∂̺s(̺, ϑ)

̺ε − ̺

ε

)

+divx

[(

̺∂ϑs(̺, ϑ)
ϑε − ϑ

ε
+ ̺∂̺s(̺, ϑ)

̺ε − ̺

ε

)

uε

]

= F2,ε,

(3.16)

where, in view of the uniform bounds established in Section 3.1.1, the “forces” F1,ε,
F2,ε tend to zero for ε → 0.

Thus we have

̺ε ≈ ̺+ εRε, ϑε ≈ ϑ+ εTε, uε ≈ v +∇xΦε,

where v is a solution of the Euler system (1.15), (1.16), and the functions Rε, Tε, Φε

satisfy the acoustic equation























∂t (αRε + βTε) + ω∆Φε = 0,

∂t∇xΦε +∇x (αRε + βTε) = 0,

∇xΦε · n|∂Ω = 0,























(3.17)

together with the transport equation

∂t (δTε − βRε) + divx [(δTε − βRε) (v +∇xΦε)] = 0, (3.18)

see [22] for details.
In accordance with (3.14 - 3.16),

α =
1

̺
∂̺p(̺, ϑ) > 0, β =

1

̺
∂ϑp(̺, ϑ), δ = ̺∂ϑs(̺, ϑ) > 0, ω = ̺

(

α+
β2

δ

)

> 0.

The initial values are determined in accordance with (1.14), more specifically, we
set

Rε(0, ·) = R0,ε,δ =
[

̺
(1)
0,ε

]

δ
, Tε(0, ·) = T0,ε,δ =

[

ϑ
(1)
0,ε

]

δ
,

while

v0 = H[u0], ∇xΦ0,ε = ∇xΦ0,ε δ =
[

H⊥[u0,ε]
]

δ
,
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where H denotes the standard Helmholtz projection onto the space of solenoidal func-
tions in Ω, and where [·]δ are suitable regularizing operators specified in Section 4.2
below. The reason for regularizing the data is that we want to take

r = rε = Rε, Θ = Θε = Tε, U = Uε = v +∇xΦε

as test functions in the relative entropy inequality (2.32).
Seeing that

Eε
(

̺ε, ϑε,uε

∣

∣

∣
rε,Θε,Uε

)

(0) ≈
∫

Ω

̺0,ε
∣

∣H[u0,ε − u0] +H⊥[u0,ε]−
[

H⊥[u0,ε]
]

δ

∣

∣

2
dx

+

∫

Ω

(

∣

∣

∣
̺
(1)
0,ε −

[

̺
(1)
0,ε

]

δ

∣

∣

∣

2

+
∣

∣

∣
ϑ
(1)
0,ε −

[

ϑ
(1)
0,ε

]

δ

∣

∣

∣

2
)

dx

we suppose that

̺
(1)
0,ε → ̺

(1)
0 in L2(Ω) and weakly-(*) in L∞(Ω), (3.19)

ϑ
(1)
0,ε → ϑ

(1)
0 in L2(Ω) and weakly-(*) in L∞(Ω), (3.20)

and

u0,ε → u0 in L2(Ω;R3). (3.21)

The leading idea of the proof of convergence towards the limit (target) system is
to let first ε → 0, then δ → 0, in the relative entropy inequality and to use a Gronwall
type argument to “absorb” all terms in the remainder on the right-hand side of (2.32).
This step was performed in full detail in [22] in the case Ω = R3. The same procedure
can be repeated for a general unbounded domain Ω ⊂ R3 as soon as we make sure
that:

• the Euler system (1.15), (1.16) possesses a regular solution on some time
interval [0, Tmax) for the initial datum

v(0, ·) = H[u0];

• the acoustic waves described by the system (3.17) become “negligible”, mean-
ing vanish, in the asymptotic limit ε → 0.

These issues will be addressed in the remaining part of the paper.

3.3. Solvability of the Euler system. The Euler system (1.15), (1.16) is well
known to possess local-in-time regular solutions provided the initial datum v0 is suf-
ficiently smooth. Results of this type were obtained by many authors, starting with
the pioneering papers by Lichtenstein [40] and Wolibner [52], for more recent results
see Beirao da Veiga [5], Kato [31], Kato and Lai [33], among others. Moreover, in
their remarkable work, Beale, Kato, and Majda [4] identified a celebrated regularity
criterion, namely, the local smooth solution v can be extended up to the critical time
Tmax provided

∫ Tmax

0

‖curl v‖L∞ dt < ∞.

Of course, these results depend also on the geometry of the underlying physical
space Ω. Starting with the known local existence result of Kato and Lai [33] on
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bounded domains, we can construct local-in-time solutions on a general (unbounded)
domain Ω by taking

ΩR = Ω ∩ {|x| < R}
and passing to the limit for R → ∞. Such a method works provided

• we restrict ourselves to finite energy solutions decaying to zero for |x| → ∞
in sufficiently high-order Sobolev spaces;

• we are interested only in local-in-time solutions.
Indeed the technique of Kato [31], Kato and Lai [33] is based on energy estimates
obtain via multiplication of the equations by v and its derivatives and the resulting
existence time can be taken independent of the size of the domain.

Of course, the situation becomes more delicate if a specific piece of information
on the decay rate and/or asymptotic behavior of solutions for |x| → ∞ is required.
The weighted Sobolev space setting to attack this problem was used by Kikuchi [35],
Jellouli [28].

In what follows, we shall therefore assume that the initial velocity satisfies

v0 = H[u0] ∈ W k,2(Ω;R3) for a certain k >
5

2
, (3.22)

for which the Euler system (1.15), (1.16), supplemented with the boundary condition

v · n|∂Ω = 0 (3.23)

admits a unique solution on the time interval [0, Tmax) belonging to the class

v ∈ C([0, Tmax),W
k,2(Ω, R3)), ∂tv ∈ C([0, Tmax);W

k−1,2(Ω;R3)). (3.24)

Note that global existence of solutions to the Euler system, say in the class of
weak solutions, is a delicate problem, where many surprising new facts emerged only
recently in the work by DeLellis and Székelyhidi [15], [16], Wiedemann [51]. For
earlier related results, see Delort [17], the survey by Shnirelman [46] as well as the
references cited therein.

4. Acoustic waves. We study the decay properties of solutions to the acoustic
equation (3.17) that can be written in a more concise form as

ε∂tZ +∆Φ = 0, ε∂tΦ+ Z = 0, (4.1)

∇xΦ · n|∂Ω = 0, Φ, Z → 0 as |x| → ∞, (4.2)

Φ(0, ·) = Φ0, Z(0, ·) = Z0, (4.3)

which is nothing other than a (scaled) linear wave equation for the acoustic potential
Φ supplemented with the homogeneous Neumann boundary conditions. For the sake
of simplicity, we dropped the subscript ε and set ω ≡ 1.

4.1. Neumann Laplacean, Duhamel’s formula. The Neumann Laplacean
−∆N can be viewed as a non-negative self-adjoint operator in the Hilbert space L2(Ω)
with a domain of definition

D(−∆N ) =

{

w ∈ W 1,2(Ω)
∣

∣

∣

∫

Ω

∇xw · ∇xφ dx

=

∫

Ω

gφ dx for a certain g ∈ L2(Ω) and all φ ∈ C∞
c (Ω)

}

,
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where we set

−∆Nw = g.

As a consequence of the standard elliptic theory, we have

D(−∆N ) ∈ W 2,2
loc (Ω),

where the estimates can be extended up to the boundary ∂Ω provided the latter is
smooth.

Accordingly, using the standard functional calculus related to −∆N , we can write
solutions of the acoustic equation (4.1 - 4.3) by means of Duhamel’s formula:

Φ(t, ·) = 1

2
exp

(

i
√

−∆N
t

ε

)[

Φ0 −
i√

−∆N

Z0

]

+
1

2
exp

(

−i
√

−∆N
t

ε

)[

Φ0 +
i√

−∆N

Z0

]

,

(4.4)

Z(t, ·) = 1

2
exp

(

i
√

−∆N
t

ε

)

[

i
√

−∆N [Φ0] + Z0

]

+
1

2
exp

(

−i
√

−∆N
t

ε

)

[

−i
√

−∆N [Φ0] + Z0

]

.

(4.5)

4.1.1. Decay and dispersive estimates. Our strategy is based on eliminating
the effect of acoustic waves by means of dispersion. In other words, if Ω is “large”,
solutions of (4.1 - 4.3) will decay to zero locally in space as t → ∞, therefore they will
vanish as ε → 0 for any positive time. A direct inspection of Duhamel’s formula (4.4),
(4.5) yields immediately that such a scenario is precluded by the presence of trapped
modes - eigenvalues with corresponding eigenfunctions in L2(Ω). In particular, all
bounded domains must be excluded from future analysis.

On the other hand, the existence of eigenvalues of the Neumann Laplacean on a
general unbounded domain is a delicate and highly unstable problem, see Davies and
Parnovski [14]. Examples of domains, where ∆N has void point spectrum are R3,
exterior domains in R3, flat waveguides in R3, see Lesky and Racke [39].

From now on, we shall therefore assume that the point spectrum of ∆N defined in
Ω is empty. In such a case, the celebrated RAGE theorem can be used to obtain local
decay estimates for solutions of the acoustic equation, see Cycon et al. [12, Theorem
5.8]):

Theorem 4.1. Let H be a Hilbert space, A : D(A) ⊂ H → H a self-adjoint
operator, C : H → H a compact operator, and Pc the orthogonal projection onto the
space of continuity Hc of A, specifically,

H = Hc ⊕ clH

{

span{w ∈ H | w an eigenvector of A}
}

.

Then
∥

∥

∥

∥

1

τ

∫ τ

0

exp(−itA)CPc exp(itA) dt

∥

∥

∥

∥

L(H)

→ 0 as τ → ∞. (4.6)
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Taking H = L2(Ω), A =
√
−∆N , C = χ2G(−∆N ), with

χ ∈ C∞
c (Ω), χ ≥ 0, G ∈ C∞

c (0,∞), 0 ≤ G ≤ 1,

we may apply Theorem 4.1 for τ = 1/ε to obtain

∫ T

0

∥

∥

∥

∥

χG(−∆N ) exp

(

i
√

−∆N
t

ε

)

[X ]

∥

∥

∥

∥

2

L2(Ω)

dt ≤ ω(ε)‖X‖2L2(Ω) for any X ∈ L2(Ω),

(4.7)
where T > 0 is fixed and

ω(ε) → 0 as ε → 0.

Relation (4.7) is a kind of spatially and “frequency” localized estimates that are
quite general and require only the absence of eigenvalues of the operator ∆N in Ω and
certain smoothness of ∂Ω. The decay rate characterized through ω may be arbitrarily
slow depending on the geometrical properties of ∂Ω, see [20]. The “optimal” rate
ω(ε) ≈ ε can be achieved provided the operator ∆N satisfies the limiting absorption
principle (LAP), see Leis [38], Văınberg[50] :

We say that ∆N satisfies the limiting absorption principle (LAP) if the cut-off
resolvent operator

(1 + |x|2)−s/2 ◦ [−∆N − µ± iδ]−1 ◦ (1 + |x|2)−s/2, δ > 0, s > 1 (4.8)

can be extended as a bounded linear operator on L2(Ω) for δ → 0 and µ belonging to
compact subintervals of (0,∞).

If ∆N satisfies (LAP), the relevant alternative to the RAGE theorem is provided
by a result of Kato [30] (see also Burq et al. [9]):

Theorem 4.2. [ Reed and Simon [44, Theorem XIII.25 and Corollary] ] Let A
be a closed densely defined linear operator and H a self-adjoint densely defined linear
operator in a Hilbert space X. For λ /∈ R, let RH [λ] = (H − λId)−1 denote the
resolvent of H. Suppose that

Γ = sup
λ/∈R, v∈D(A∗), ‖v‖X=1

‖A ◦RH [λ] ◦A∗[v]‖X < ∞. (4.9)

Then

sup
w∈X, ‖w‖X=1

π

2

∫ ∞

−∞

‖A exp(−itH)[w]‖2X dt ≤ Γ2.

If ∆N satisfies (LAP), Theorem 4.2 yields (see [24] for details) the decay rate

∫ ∞

0

∥

∥

∥
χG(−∆N ) exp

(

±i
√

−∆N t
)

[X ]
∥

∥

∥

2

L2(Ω)
dt ≤ c‖X‖2L2(Ω) for any X ∈ L2(Ω),

(4.10)
which is, in fact, equivalent to (4.7) with ω(ε) = ε.
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4.2. Smoothing operators. Keeping in mind the solution formulas (4.4), (4.5),
we introduce the smoothing operators






[w]δ = Gδ(
√
−∆N )[w], Gδ ∈ C∞

c (R \ {0}), Gδ(−Z) = Gδ(Z), Z ∈ R

0 ≤ Gδ ≤ 1, Gδ(Z) ր 1 as δ → 0.







(4.11)

First, as a consequence of the elliptic regularity,

‖[w]δ‖Wk,2(Ω) ≤ c(k, δ)‖w‖L2(Ω) for any k = 0, 1, . . . (4.12)

as long as ∂Ω is smooth.
Next, we show that [w]δ decays very fast as |x| → ∞ for compactly supported w.

Let us take

ϕ ∈ C∞
c (Ω), supp[ϕ] ⊂ {|x| < R}.

Our goal is to estimate [ϕ]δ outside the ball {|x| < 2R}. To this end, we introduce a
weighted (pseudo-norm)

‖v‖2s,(2R)c =

∫

Ω∩{|x|>2R}

|v|2|x|2s dx,

and write

Gδ(
√

−∆N )[ϕ] =
1

2

∫ ∞

−∞

G̃δ(t)
(

exp(i
√

−∆N t) + exp(−i
√

−∆N t)
)

[ϕ] dt,

where G̃δ denotes the Fourier transform of Gδ.
Next, we compute

∥

∥

∥
Gδ(

√
−∆N)[ϕ]

∥

∥

∥

s,(2R)c
≤ 1

2

∫ ∞

−∞

|G̃δ(t)|
∥

∥

∥

(

exp(i
√
−∆N t) + exp(−i

√
−∆N t)

)

[ϕ]
∥

∥

∥

s,(2R)c
dt,

where
∥

∥

∥

(

exp(i
√

−∆N t) + exp(−i
√

−∆N t)
)

[ϕ]
∥

∥

∥

2

s,(2R)c

=

∫

Ω

sgn+(|x| − 2R)|x|2s
∣

∣

∣

(

exp(i
√

−∆N t) + exp(−i
√

−∆N t)
)

[ϕ]
∣

∣

∣

2

dx.

However, because of the finite speed of propagation of the wave operator
exp(±i

√
−∆N t), we may infer that
∫

Ω

sgn+(|x| − 2R)|x|2s
∣

∣

∣

(

exp(i
√

−∆N t) + exp(−i
√

−∆N t)
)

[ϕ]
∣

∣

∣

2

dx

≤ sgn+(|t| −R)(|t|+R)2s
∫

Ω

∣

∣

∣

(

exp(i
√

−∆N t) + exp(−i
√

−∆N t)
)

[ϕ]
∣

∣

∣

2

dx

≤ c(s)|t|2s‖ϕ‖L2(Ω);

whence
∥

∥

∥
Gδ(

√

−∆N )[ϕ]
∥

∥

∥

2

s,(2R)c
≤ c(s, δ)‖ϕ‖L2(Ω) provided supp[ϕ] ⊂ {|x| < r}.

Applying the same argument to −∆α[ϕ] we deduce that

sup
x∈Ω,|x|>2R

|x|s|∂k
x [w]δ| ≤ c(s, δ, k)‖w‖L2(Ω) for all w ∈ L2(Ω), supp[w] ⊂ {|x| < R}.

(4.13)
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4.3. Dispersive estimates revisited. The local dispersive estimates (4.7),
(4.10) are not strong enough to be used in the analysis of the inviscid limits. Some
“global” version is needed, where the cut-off function can be taken χ ≡ 1. Of course,
this is not possible with the L2−norm as the total energy of acoustic waves is con-
served. On the other hand, if Ω = R3, solutions of the system (4.1 - 4.3) satisfy the
Strichartz estimates :

∫ ∞

−∞

∥

∥

∥
exp

(

±i
√
−∆t

)

[h]
∥

∥

∥

p

Lq(R3)
dt ≤ ‖h‖pH1,2(R3),

1

2
=

1

p
+

3

q
, q < ∞, (4.14)

where H1,2 denotes the homogeneous Sobolev space of functions having first deriva-
tives square integrable in R3, see Keel and Tao [34], Strichartz [48].

In addition, the free Laplacean satisfies also the local energy decay in the form
∫ ∞

−∞

∥

∥

∥
χ exp

(

±i
√
−∆t

)

[h]
∥

∥

∥

2

Hα,2(R3)
dt ≤ c(χ)‖h‖2Hα,2(R3), α ≤ 3

2
, χ ∈ C∞

c (R3),

(4.15)
see Smith and Sogge [47, Lemma 2.2].

The estimates (4.14), (4.15) remain valid for the Neumann Laplacean on a ”flat”
space, for instance, on half-spaces in R3, where the functions can be extended as even
(with respect to the normal direction) on the whole space R3.

4.3.1. Frequency localized Strichartz estimates. We assume that Ω is a
“compact” perturbation of a larger domain on which the Neumann Laplacean satisfies
the estimates (4.14), (4.15). For the sake of simplicity, we take the exterior domain
Ω = R3 \ K, where K is a compact, not necessarily connected set. Applications to
other domains like local perturbations of a half-space can be handled in a similar
manner.

Our goal is to show
∫ ∞

−∞

∥

∥

∥
G(−∆N ) exp

(

±i
√

−∆N t
)

[h]
∥

∥

∥

p

Lq(Ω)
≤ c(G)‖h‖pH1,2(Ω),

1

2
=

1

p
+

3

q
, q < ∞

(4.16)
for any G ∈ C∞

c (0,∞), adapting the method developed by Burq [8], Smith and Sogge
[47].

We start by writing

U(t, ·) = G(−∆N ) exp
(

±i
√

−∆N t
)

[h] = exp
(

±i
√

−∆N t
)

G(−∆N )[h]

as

U = v + w, v = χU, w = (1 − χ)U,

where

χ ∈ C∞
c (R3), 0 ≤ χ ≤ 1, χ radially symmetric, χ(x) = 1 for |x| ≤ R,

where R is so large that the ball {|x| < R} contains K.
Accordingly,

w = w1 + w2,

where w1 solves the homogeneous free wave equation

∂2
t,tw

1 −∆w1 = 0 in R3,
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supplemented with the initial conditions

w1(0) = (1 − χ)G(−∆N )[h], ∂tw
1(0) = ±i(1− χ)

√

−∆NG(−∆N )[h],

while

∂2
t,tw

2 −∆w2 = F in R3,

w2(0) = ∂tw
2(0) = 0,

with

F = −∇xχ∇xU − U∆χ.

As a consequence of the standard Strichartz estimates (4.14), we get

∫ ∞

−∞

∥

∥w1
∥

∥

p

Lq(R3)
dt ≤ c(G)‖h‖pH1,2(R3),

1

2
=

1

p
+

3

q
, q < ∞. (4.17)

Furthermore, using Duhamel’s formula, we obtain

w2(τ, ·) = 1

2
√
−∆

[

exp
(

i
√
−∆τ

)

∫ τ

0

exp
(

−i
√
−∆s

)

[η2F (s)] ds

]

− 1

2
√
−∆

[

exp
(

−i
√
−∆τ

)

∫ τ

0

exp
(

i
√
−∆s

)

[η2F (s)] ds

]

,

with

η ∈ C∞
c (R3), 0 ≤ η ≤ 1, η radially symmetric, η = 1 on supp[F ].

Similarly to [8], we use the following result of of Christ and Kiselev [11]:

Lemma 4.1. Let X and Y be Banach spaces and assume that K(t, s) is a con-
tinuous function taking its values in the space of bounded linear operators from X to
Y . Set

T [f ](t) =

∫ b

a

K(t, s)f(s) ds, W [f ](t) =

∫ t

a

K(t, s)f(s) ds,

where

0 ≤ a ≤ b ≤ ∞.

Suppose that

‖T [f ]‖Lp(a,b;Y ) ≤ c1‖f‖Lr(a,b;X)

for certain

1 ≤ r < p ≤ ∞.

Then

‖W [f ]‖Lp(a,b;Y ) ≤ c2‖f‖Lr(a,b;X),
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where c2 depends only on c1, p, and r.

We aim to apply Lemma 4.1 in the situation

X = L2(R3), Y = Lq(R3), q < ∞,
1

2
=

1

p
+

3

q
, r = 2,

and

f = F, K(t, s)[F ] =
1√
−∆

exp
(

±i
√
−∆(t− s)

)

[η2F ].

Writing

∫ ∞

0

K(t, s)F (s) ds = exp
(

±i
√
−∆t

) 1√
−∆

∫ ∞

0

exp
(

∓i
√
−∆s

)

[χ2F (s)] ds,

we have to show, keeping in mind the Strichartz estimates (4.14), that

∥

∥

∥

∥

∫ ∞

0

exp
(

±i
√
−∆s

)

[η2F (s)] ds

∥

∥

∥

∥

L2(R3)

≤ c‖F‖L2(0,∞;L2(R3)). (4.18)

However,

∥

∥

∥

∥

∫ ∞

0

exp
(

±i
√
−∆s

)

[χ2F (s)] ds

∥

∥

∥

∥

L2(R3)

= sup
‖v‖L2(R3)≤1

∫ ∞

0

〈

exp
(

±i
√
−∆s

)

[χ2F (s)]; v
〉

ds

= sup
‖v‖L2(R3)≤1

∫ ∞

0

〈

χF (s);χ exp
(

−i
√
−∆s

)

[v]
〉

ds;

whence the desired conclusion (4.18) follows from the local energy decay estimates
stated in (4.15).

As the norm of F is bounded in view of the local estimates established in (4.15),
we may infer that

∫ ∞

−∞

∥

∥w2
∥

∥

p

Lq(R3)
dt ≤ c(G)‖h‖pH1,2(R3),

1

2
=

1

p
+

3

q
, q < ∞. (4.19)

Finally, since v = χU is compactly supported, we deduce from (4.15) combined
with the standard elliptic regularity theory of ∆N that

∫ ∞

0

‖v‖2Lq(Ω) dt ≤ c(G)‖h‖2H1,2(Ω); (4.20)

while, by virtue of the energy estimates,

sup
t>0

‖v(t, ·)‖Lq(Ω) ≤ c(G)‖h‖H1,2(Ω), (4.21)

where q < ∞ is the same as in (4.16).
Interpolating (4.20), (4.21) and combining the result with the previous estimates,

we get (4.16). As a matter of fact, our conclusion can be “strengthened” to:
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∫ ∞

−∞

∥

∥

∥
G(−∆N ) exp

(

±i
√

−∆N t
)

[h]
∥

∥

∥

p

Lq(Ω)
≤ c(G)‖h‖pL2(Ω),

1

2
=

1

p
+

3

q
, q < ∞

(4.22)
for any G ∈ C∞

c (0,∞).

In accordance with the previous discussion, we say that a domain Ω ⊂ R3 is
admissible if:

• Ω is an (unbounded) smooth domain in R3, on which the Neumann Laplacean
∆N satisfies the limiting absorption principle (4.8).

• There is R > 0 and a domain D ⊂ R3 such that ∆N satisfies the Strichartz
and local decay estimates (4.14), (4.15) on D and D∩{|x| > R} = Ω∩{|x| >
R}.

As we have just observed, the Neumann Laplacean ∆N satisfies the frequency
localized Strichartz estimates (4.22) as soon as Ω is an admissible domain. Typically,
the “reference” domain D is taken R3 or a half-space in applications.

5. Conclusion. The uniform estimates established in Section 4, specifically
(4.22), are sufficient to pass to the limit in the relative entropy inequality, first ε → 0,
then δ → 0. This step can be performed exactly as in [22]. Thus we have shown
(strong) convergence of the dissipative solutions of the scaled Navier-Stokes-Fourier
system (1.11 - 1.14) to the (unique) solution of the target problem (1.15 - 1.17),
endowed with the initial data

v0 = H[u0], T (0, ·) = ̺∂ϑs(̺, ϑ)ϑ
(1)
0 − 1

̺
∂ϑp(̺, ϑ)̺

(1)
0 . (5.1)

The convergence takes place on any compact time interval [T1, T2] provided 0 < T1 <
T2 < Tmax, where Tmax ≤ ∞ is the life span of the smooth solution to the target
system. The details of the proof can be found in [22].

Let us summarize our results that may be viewed as a generalization of [22,
Theorem 3.1] to the class of admissible domains introduced in Section 4.3.1:

Theorem 5.1. Let Ω ⊂ R3 be an admissible domain in the sense specified in
Section 4.3.1. Suppose that the thermodynamic functions p, e, s and the transport
coefficients µ, λ, κ, and β comply with the structural restrictions introduced in Section
2.3.1, with

b > 0, 0 ≤ c < a <
10

3
,

Furthermore, suppose that the initial data (1.14) satisfy

{̺(1)0,ε}ε>0, {ϑ(1)
0,ε}ε>0 bounded in L2 ∩ L∞(Ω), ̺

(1)
0,ε → ̺

(1)
0 , ϑ

(1)
0,ε → ϑ

(1)
0 in L2(Ω),

and

u0,ε → u0 in L2(Ω;R3),

where

̺
(1)
0 , ϑ

(1)
0 ∈ W 1,2 ∩W 1,∞(Ω), H[u0] = v0 ∈ W k,2(Ω;R3) for a certain k >

5

2
.
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Let Tmax ≤ ∞ be the maximal life-span of the regular solution v to the Euler system
(1.15), (1.16), with the initial datum v(0, ·) = v0. Finally, let {̺ε, ϑε,uε}ε>0 be a
family of dissipative weak solutions of the scaled Navier-Stokes-Fourier system (1.11
- 1.14) in (0, T )×R3, T < Tmax, supplemented with the boundary conditions (1.18),
(1.19).

Then

ess sup
t∈(0,T )

‖ ̺ε(t, ·)− ̺ ‖L2+L5/3(Ω) ≤ εc,

√
̺εuε →

√

̺ v in L∞
loc((0, T ];L

2
loc(Ω;R

3)) and weakly-(*) in L∞(0, T ;L2(Ω;R3)),

and

ϑε − ϑ

ε
→ T in L∞

loc((0, T ];L
q
loc(Ω)), 1 ≤ q < 2, and weakly-(*) in L∞(0, T ;L2(Ω)),

where v, T is the unique solution of the Euler-Boussinesq system (1.15 - 1.17), with
the initial data

v0 = H[u0], T0 = ̺
∂s(̺, ϑ)

∂ϑ
ϑ
(1)
0 − 1

̺

∂p(̺, ϑ)

∂ϑ
̺
(1)
0 .

5.1. Related results, alternative techniques. An alternative approach to
singular limits is based on strong solutions for both the primitive and the target
system, see Klainerman and Majda [36]. Necessarily, the results are only local-in-time
even if the target system happens to admit a global solution for a specific choice of the
data. The initial data for the primitive system must be regular and their convergence
to the limit values takes place in stronger topologies. We refer to Alazard [1], [2], [3]
for very interesting results concerning the full Navier-Stokes-Fourier system.

There is a vast amount of literature concerning the incompressible limits of both
viscous (Navier-Stokes) or inviscid (Euler) systems. The dispersive estimates were
used by Danchin [13], Desjardins and Grenier [18], Ukai [49], for more applications of
the RAGE theorem in this context, see Métivier and Schochet [43]. The interested
reader may salso consult the surveys by Gallagher [26], Masmoudi [42], and Schochet
[45] for more material.
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[24] E. Feireisl, A. Novotný, and H. Petzeltová, Low Mach number limit for the Navier-Stokes

system on unbounded domains under strong stratification, Commun. Partial Differential
Equations, 35 (2010), pp. 68–88.
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