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SCHAUDER ESTIMATES FOR SOLUTIONS OF HIGHER-ORDER

PARABOLIC SYSTEMS∗

SERENA BOCCIA†

Abstract. We prove global Schauder estimates for the derivatives of solutions to non-divergence
form higher-order parabolic systems. All coefficients are taken only measurable in the time variable
and Hölder continuous in the space variables. Moreover we require that the principal coefficients sat-
isfy the so-called Legendre-Hadamard ellipticity condition. Using such estimates and some classical
results, we also give a proof of existence and uniqueness for the Cauchy problem.
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1. Introduction. This paper deals with the parabolic system

ut(t, x) + (−1)mLu(t, x) = f(t, x), (1.1)

where the operator L is defined as

L = L(t, x) =
∑

|γ|≤2m

Aγ(t, x)Dγ , (1.2)

(t, x) in (−∞, T ]× Rd if T ∈ (−∞,∞) and in Rd+1 if T = ∞, m positive integer, u
and f complex vector-valued functions, Aγ complex matrix-valued function. Moreover
the leading coefficients satisfy the so-called Legendre-Hadamard ellipticity condition,
which is more general than the strong ellipticity condition considered, for example,
in [3, 15] and is still stronger than the uniform parabolicity condition in the sense of
Petrovskii, which was used in [6, 17, 21].

The main aim of this investigation is to obtain a Hölder space estimate for the
derivatives of the solutions u of the above written system in terms of f and u.

The Schauder (and similar) estimates play a fundamental role in the existence
and regularity theory for linear and non-linear elliptic and parabolic equations and
systems. In the literature derivations of these estimates are based on representations
of solutions via Green’s functions, used in [1, 7, 8, 21]; on the Campanato approach,
introduced in [4], and used, for example, in [20]. The essence of Campanato’s tech-
nique consists in a characterization of Hölder continuity via mean square oscillations
and in obtaining the Schauder estimates for a general operator perturbing off the
homogeneous, constant coefficient case. In this way it is possible to obtain estimates
for the solution without resorting the direct estimate of the Newtonian potential as
in the classical approach. A very nice exposition of this approach and its applica-
tions to various issues in the elliptic second-order theory can be found in the book by
Giaquinta [9].

More recently, Safonov [19] has proved the Schauder estimates using the Har-
nack inequality of Krylov and Safonov [14]. Many of these Hölder estimates (with
assumptions of continuity in the space and time for the derivatives) remain true even
when the coefficients of the equation are not continuous in time (see, for instance,
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[2, 10, 16]). In particular, using maximum principle arguments, Brandt [2] showed
that the second space derivatives of solutions of second order parabolic equations are
Hölder in space and then Knerr [10] proved their Hölder continuity in time.

Some similar results were recently used in [13] for parabolic second-order equations
with growing first-order coefficients to obtain the solvability in usual Hölder spaces
(without weights).

In this paper we prove that each space derivative of solutions of system (1.1)
admits a Hölder space estimate in x and even in t without Aγ and f being assumed
to satisfy a Hölder condition in t. Such result extends to higher-order systems the
results obtained by Brandt and Knerr for second-order equations.

When the leading coefficients are independent of x and the lower-order coeffi-
cients are zero, the method relies on mean oscillation estimates of solutions to the
systems. This approach was introduced by Krylov to deal with second-order elliptic
and parabolic equations in the whole space, and can be found in his book [12]. For
instance, by the mean oscillation estimate of D2mu we mean a pointwise estimate of
the form

∫

–

Qr

∣

∣D2mu−
(

D2mu
)

Qr

∣

∣dxdt

≤ Nk−1

(

∫

–

Qkr

∣

∣D2mu|2dxdt

)
1
2

+Nkm+d
2

(

∫

–

Qkr

∣

∣f
∣

∣

2
dxdt

)
1
2

(1.3)

for all r ∈ (0,∞) and k ∈ [k0,∞), where Br is a ball with center in the origin and
radius r, Qr = (−r2m, 0) × Br, k0 is a fixed integer. The mean oscillation estimates
we prove follow by a particular case of a mean oscillation estimate contained in [5],
similar to that in estimate (1.3), and are obtained by suitably adapting the techniques
in [12] to higher-order systems.

When the leading coefficients depend on t and x and the lower-order coefficients
are zero, we use the method of freezing the coefficients. Afterwards some interpolation
inequalities are used to obtain Schauder type estimates in the presence of lower-order
terms. These results allow us to prove the solvability of the related Cauchy problem.

For future work we intend to generalize the results in [13] for higher-order systems.
In particular, we intend to prove the following result for elliptic systems.

Theorem. Let Aγ be independent of t and satisfy the assumptions stated in
Section 2. Let Mu = (Mu1, ...,Mun) be given by

Muk = aijDiDju
k + biDiu

k,

where (aij) is a constant nonnegative definite matrix and bi are constant. Then there
exists a constant N depending only on δ, α, K, n, and m (see Section 2), but inde-
pendent of aij and bi such that

|u|2m+α ≤ N(|(L+M)u|α + |u|0)

for any u ∈ C2m+α(Rd).

To the best of the author’s knowledge this result is unknown even for single
equations of second order. Even the following version of a slightly more general result
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than the above theorem seems to be unknown: in one dimensional case (d = m = 1,
u real valued) we have

[u]2+α ≤ [au′′ + bu′ + cu]α,

whenever a, b, and c are constant and a ≥ 1 and c ≤ 0.
This result would be rather surprising since it states that the constants in the

classical Schauder estimates for systems with constant coefficients are independent of
the magnitudes of first and zero-order coefficients.

The proof of the above theorem we have in mind only works on the basis of the
solvability of parabolic systems with coefficients measurable in time variable.

The paper is organized as follows. We introduce some notation and state the main
results in the next section. Section 3 deals with some necessary auxiliary results. In
Sections 4 and 5 we consider the case in which the leading coefficients of the operator
L are independent of x and all other coefficients are zero. In particular, Section 4 is
devoted to some preliminary mean oscillation estimates. In Section 5 we are able to
prove our first main result, Theorem 2.1, after proving Lemma 5.1. In Section 6, we
consider the more general case when the leading coefficients depend on t and on x and
we prove our second main result, Theorem 2.4, that, together with some interpolation
inequalities and with the results from Section 3, gives us Hölder space estimates in x
and in t for the space derivatives of the solutions to our system. In the last section
we state and prove an existence and uniqueness result for the Cauchy problem in a
domain Ω = [0, T ]×Rd. Actually, to solve such problem, we divide the domain Ω into
a finite number of domains [εs−1, εs]×R

d with each εs sufficiently small and smaller
than T . First we solve the Cauchy problem in the smaller domains and then we find
the solution of the Cauchy problem in the whole domain Ω. A similar tecnique was
used in [21].

Acknowledgement. Boccia conducted the research while visiting the School of
Mathematics, University of Minnesota. The author is very grateful to N. V. Krylov
for his invaluable insights, suggestions and guidance during the work. The author
would also like to thank the referees for their useful comments.

2. Main result. We first introduce some notation used throughout the paper.
A point in R

d is denoted by x = (x1, . . . , xd). For any T ∈ (−∞,∞), we define

R
d+1
T = (−∞, T ]× R

d, (2.1)

and, if T = ∞, we set Rd+1
T = Rd+1. A point in R

d+1
T is denoted by X = (t, x).

We set Br(x) = {y ∈ Rd : |x−y| < r}, Br = Br(0), Qr(t, x) = (t− r2m, t)×Br(x)
and Qr = Qr(0, 0). Denote

uQr(t,x) =

∫

–

Qr(t,x)

u(s, y)dyds =
1

|Qr(t, x)|

∫

Qr(t,x)

u(s, y)dyds,

the average value of a function u(s, y) over Qr(t, x) and

uBr(x)(t) =

∫

–

Br(x)

u(t, y)dy =
1

|Br(x)|

∫

Br(x)

u(t, y)dy

the average value of a function u(t, y) over Br(x).
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Now we specify some notations in (1.1) and (1.2). The symbol γ denotes a multi-
index, i.e.,

γ = (γ1, . . . , γd), γi ≥ 0 ∀i = 1, . . . , d, |γ| = γ1 + . . .+ γd,

Dγ = Dγ1

1 . . .Dγd

d , Dγi

i =
∂γiu

∂xγi

i

∀i = 1, . . . , d, ut =
∂u

∂t
.

Sometimes, if γ is a multi-index of length k, we use the notation Dk to denote Dγ .
For each γ,Aγ = [Aγ

ij(t, x)]
n
i,j=1 is an n×n complex matrix-valued function. The

involved functions are complex vector-valued functions, that is,

u = (u1, . . . , un)tr , f = (f1, . . . , fn)tr.

Moreover, we put

L0 = L0(t, x) =
∑

|γ|=2m

Aγ(t, x)Dγ .

In the first part of the paper we will be fixing our attention on the system

ut(t, x) + (−1)mL0u(t, x) = f(t, x), (t, x) ∈ (−∞, T )× R
d. (2.2)

For k = 0, 1, 2, . . ., as usual, we denote Ck
loc(R

d) the set of all functions u = u(x)
whose derivatives Dγu for |γ| ≤ k are continuous in Rd. We set

|u|0 = sup
Rd

|u|, [u]k = max
|γ|=k

|Dγu|0.

The space Ck(Rd) is the Banach space of all functions u ∈ Ck
loc(R

d) for which the
following norm

|u|k =
k
∑

j=0

[u]j

is finite. If α ∈ (0, 1), we call u Hölder continuous with exponent α if the seminorm

[u]α = sup
x,y∈Rd

x 6=y

|u(x)− u(y)|

|x− y|α

is finite. We set

[u]k+α = max
|γ|=k

[Dγu]α

and Ck+α(Rd) is the space of functions u ∈ Ck(Rd) such that

|u|k+α = |u|k + [u]k+α

is finite.
For any function f(t, x), defined for x in Rd and for t in some range, we denote

|f |0(t) = |f(t, ·)|0, |f |k(t) = |f(t, ·)|k (2.3)

[f ]α(t) = [f(t, ·)]α, |f |k+α(t) = |f(t, ·)|k+α, (2.4)
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which are functions of the time variable.
Let T ∈ (−∞,∞] and S ∈ [−∞, T ). We will be working with the set C2m+α(S, T )

of functions u(t, x) defined for all finite t ∈ [S, T ] and x ∈ Rd such that
(i) the function u is continuous in its domain;
(ii) for each finite S ≤ t ≤ T , we have u(t, ·) ∈ C2m+α(Rd) and |u|2m+α(t) is

bounded in t;
(iii) there is a measurable function g(t, x) defined on the domain of the function

u such that for any ζ ∈ C∞
0 (R) the function ζ(t)g(t, x) is bounded and α - Hölder

continuous in x with constant independent of t and for any x ∈ R
d and any finite s

and t, such that S ≤ s < t ≤ T , we have

u(t, x)− u(s, x) =

∫ t

s

g(r, x)dr. (2.5)

For such a function u we denote ut = g. Obviously g is the generalized derivative
of u with respect to t. By C2m+α(T ) we denote the space C2m+α(S, T ) when S = −∞.

Recall that a continuous function u has a bounded generalized derivative with
respect to a coordinate if and only if it is Lipschitz continuous with respect to this
coordinate and if and only if u is absolutely continuous with respect to the coordinate
and its classical derivative (existing almost everywhere) is bounded. Under any of
the above conditions the classical derivative coincides with the generalized one and
its essential supremum equals the Lipschitz constant.

The solution of the Cauchy problem (which we will consider in the last section)
will be looked for in C2m+α(0, T ) and in this class (1.1) is equivalent to the fact that,
for any x ∈ Rd and finite 0 ≤ s < t ≤ T , we have

u(t, x)− u(s, x) =

∫ t

s

f(r, x)dr − (−1)m
∫ t

s

Lu(r, x)dr. (2.6)

In addition to the well known spaces Lp and W k
p , we introduce the following

function spaces:

W 1,2m
p (Rd+1) = {u : ut, D

γu ∈ Lp(R
d+1), |γ| ≤ 2m}

equipped with its natural norm.
For any T ∈ (−∞,∞], we define the parabolic distance between two points

(t, x), (s, y) ∈ R
d+1
T with finite t, s in the following way:

〈(t− s, x− y)〉 := |t− s|
1

2m + |x− y|.

If f is a function defined on R
d+1
T we denote

[f ]α,T = sup
(t,x),(s,y)∈R

d+1
T

(t,x)6=(s,y)

∣

∣f(t, x)− f(s, y)
∣

∣

〈(t− s, x− y)〉α
, |f |0,T = sup

(t,x)∈R
d+1
T

|u(t, x)|.

By C
α

2m ,α(Rd+1
T ) we denote the space of all functions f for which [f ]α,T + |f |0,T <∞.

Let δ,K > 0 be two constants. We assume that all coefficients are measurable in
Rd+1, complex valued, bounded,

|Aγ(t, x)| ≤ δ−1, ∀γ, |γ| ≤ 2m, ∀(t, x) ∈ R
d+1, (2.7)
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and, for some α ∈ (0, 1),

[Aγ ]α(t) ≤ K ∀γ, |γ| ≤ 2m, ∀t ∈ R. (2.8)

In addition, we impose the Legendre-Hadamard ellipticity condition on the leading
coefficients (see, for instance, [8], [9]). Here we call Aγ the leading coefficients if |γ| =
2m. All the other coefficients are called lower-order coefficients. By the Legendre-
Hadamard ellipticity condition we mean

ℜ





∑

|γ|=2m

θtrξγAγ(t, x)θ



 ≥ δ|ξ|2m|θ|2

for all (t, x) ∈ Rd+1, ξ ∈ Rd, and θ ∈ Cn. Here we use ℜ(f) to denote the real part of
f and ξγ to denote (ξγ1

1 ) · . . . · (ξγd

d ).
From now on, we always suppose that our previous hypotheses on the coefficients

are satisfied. Let T ∈ (−∞,∞] and α ∈ (0, 1) be the number for which hypothesis
(2.8) holds.

Note that the notation sup
t≤T

f(t) we often deal with in the following has the usual

meaning if T is finite and means the upper bound over all finite t if T = ∞.
Here are our main results.

Theorem 2.1. If the coefficients of the operator L0 depend only on t and u ∈
C2m+α(T ) satisfies (2.2), then for all (t, x), (s, y) ∈ R

d+1
T with finite t, s and for all γ

such that |γ| = 2m, we have

|Dγu(t, x)−Dγu(s, y)| ≤ N sup
t≤T

[f ]α(t)〈(t − s, x− y)〉α, (2.9)

where N = N(d, α, n,m, δ).

Remark 2.2. This is a basic Hölder space estimate for parabolic systems. A
somewhat unusual feature of it is that D2mu admit a Hölder space estimate even in t
without requiring f and the coefficients of the operator to satisfy a Hölder condition
in t. Of course, if the leading coefficients and f are C

α
2m Hölder in t uniformly respect

to x, then from the equation ut = f − (−1)mL0u we see that ut is also C
α
2m Hölder

in t and Cα Hölder in x, which gives a standard basic Hölder space estimates for
parabolic systems.

Remark 2.3. One can ask a natural question as to weather Theorem 2.1 can
be extended to bounded domains. Unfortunately, it cannot. Even in one space di-
mension for the scalar heat equation ut = D2u + It≤1 in {x ∈ (0, 1)} with boundary
data u(t, 0) = 0 the function D2u cannot be Hölder continuous in x with constant
independent of t because by our Corollary 3.3 it would be then Hölder continuous
with respect to t but It≤1 = ut(t, 0)−D2u(t, 0) = D2u(t, 0) and the left-hand side is
not even continuous.

Theorem 2.4. Let u ∈ C2m+α(T ) satisfy (1.1). Then there exists a constant
N = N(K, d, α, n,m, δ) such that

sup
s≤T

|u|2m+α(s) ≤ N sup
t≤T

(

[f ]α(t) + |f |0(t) + |u|0(t)
)

. (2.10)
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Remark 2.5. As consequence of Theorem 2.4, by means of interpolation inequal-
ities, we will obtain an a priori estimate analogous to (2.10) for the solutions to (1.1).
Such estimate will be necessary to use the classical method of continuity and, then,
to solve our Cauchy problem.

3. An embedding theorem. This section is devoted to prove a result, that
is, actually, an embedding theorem which has little to do with parabolic systems.
However it is very useful in order to show that, under suitable hypotheses about the
function u, the derivatives D2mu in x are Hölder continuous with respect to the time
variable.

Before to state and prove the theorem, we need of the following elementary result.
In the sequel k denotes a fixed positive integer number.

Lemma 3.1. Let V be a convex closed round cone in Rd with vertex at the origin
and nonempty interior. Let uγ be a collection of real numbers varying the multi-index
γ of length k. Then, for any γ, |γ| = k, there is a constant N , independent of uγ ,
such that

|uγ | ≤ N max
|ξ|=1,ξ∈V

∣

∣

∣

∑

|η|=k

uηξη
∣

∣

∣. (3.1)

Proof. By contradiction, we assume that for each n ∈ N, exists a sequence {uγn}
such that

max
|γ|=k

|uγn| ≥ n max
|ξ|=1,ξ∈V

∣

∣

∣

∑

|η|=k

uηnξ
η
∣

∣

∣. (3.2)

Without loss of generality, we can assume that

max
|γ|=k

|uγn| = 1. (3.3)

Then from (3.2) and (3.3) we obtain

max
|ξ|=1,ξ∈V

∣

∣

∣

∑

|η|=k

uηnξ
η
∣

∣

∣ ≤
1

n
. (3.4)

By the boundedness of the sequence uγn, we deduce that there exists a subsequence,
still denoted by uγn, such that

lim
n→+∞

uγn = uγ ∀γ, |γ| = k. (3.5)

Passing to the limit in (3.3) and in (3.4) we get, respectively,

max
|γ|=k

|uγ | = 1, (3.6)

∑

|η|=k

uηξη = 0 ∀ξ ∈ V, |ξ| = 1. (3.7)

We show that (3.7) implies that

uη = 0 ∀η, |η| = k (3.8)
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and this is a contradiction. In order to prove (3.8), denote

f(ξ) =
∑

|η|=k

uηξη (3.9)

and observe that, using (3.7), we can say that for any multi-index η,

Dηf(ξ) = 0 ∀ξ ∈ V, |ξ| = 1. (3.10)

In particular, if ξ ∈ V such that |ξ| = 1 and η is a multi-index of length k, we have

Dηf(ξ) = η!uη = 0 (3.11)

and so (3.8). The proof is complete.

Take γ and V as in Lemma 3.1, take an h > 0, and consider the truncated cone

Vh = V ∩
{

x : |x| ≤
k

2
h
}

.

The spaces Cα(Vh) are defined in the same way as Cα(Rd). We also write [·]α,Vh
to

denote the usual Hölder seminorm in Cα(Vh). In the same way we introduce the spaces
Ck+α(Vh) and the seminorms [·]k+α. Notice that Vh is a closed set. In particular, the
functions from Ck+α(Vh) are k-times continuously differentiable in the interior of
Vh and their derivatives admit continuous extension to the boundary of Vh. In the
following lemma by Dγu(r, 0) we mean these continuations.

Theorem 3.2. Let u : [0, hk] × Vh → R be a continuous function such that
u(t, ·) ∈ Ck+α(Vh), t ∈ [0, hk], and assume that there exists a function g(t, x) defined
on [0, hk]× Vh such that g(t, ·) ∈ Cα(Vh), t ∈ [0, hk], and (2.5) is verified for 0 ≤ s ≤
t ≤ hk, x ∈ Vh (we set ut = g).

Then there is a constant N > 0, independent of h and u such that, for any γ,
|γ| = k,

|Dγu(hk, 0)−Dγu(0, 0)| ≤ NIhh
α, (3.12)

where

Ih := sup
r∈[0,hk]

([ut]α,Vh
(r) + [u]k+α,Vh

(r)) .

Proof. The parabolic dilation (s, x) →
(

(2−1h)ks, 2−1hx
)

allows us to assume
that h = 2.

Next assume that the first basis vector l is inside V2 = Vh. After denoting with
Ty the operator u(t, x) → u(t, x+ y) and with γ1 = (k, 0, . . . , 0), we can write

∣

∣Dγ1u(2k, 0)−Dγ1u(0, 0)
∣

∣ ≤
∣

∣

∣Dγ1u(2k, 0)−
[

(Tl − 1)k u(2k, 0)
]∣

∣

∣

+
∣

∣

∣Dγ1u(0, 0)−
[

(Tl − 1)
k
u(0, 0)

]∣

∣

∣+ I (3.13)

where

I =
∣

∣[(Tl − 1)ku](2k, 0)− [(Tl − 1)ku](0, 0)
∣

∣ . (3.14)
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Before estimating the quantities in (3.13), we need to observe some facts.
By induction we prove that, for each (t, x) in [0, hk]× V2,

(Tl − 1)k u(t, x) = (Dγ1u)(t, x+ θl), 0 ≤ θ ≤ k. (3.15)

When k = 1, our aim is to prove that

(Tl − 1)u(t, x) = (D1u)(t, x+ θl), 0 ≤ θ ≤ 1, (3.16)

and this easily follows by Lagrange Theorem.
Now consider k > 1 and suppose that (3.15) holds for k − 1, we want to prove

that holds for k. If we denote

V (t, x) = (Tl − 1)
k−1

u(t, x) (3.17)

by (3.16) and the induction hypotesis, we have

(Tl − 1)
k
u(t, x) = (Tl − 1)V (t, x) = (D1V )(t, x + θl)

= (Tl − 1)
k−1

(D1u)(t, x+ θl) = Dγ2
(

D1u
)

(t, x+ θl + θ1l) (3.18)

where 0 ≤ θ ≤ 1 , 0 ≤ θ1 ≤ k − 1 and γ2 = (k − 1, 0, . . . , 0). From the last equality,
we easily get (3.15).

Then, using (3.15), we obtain
∣

∣

∣Dγ1u(2k, 0)−
[

(Tl − 1)
k
u(2k, 0)

]∣

∣

∣ =
∣

∣Dγ1u(2k, 0)−Dγ1u(2k, θ1l)
∣

∣

≤ C1

[

Dγ1u(2k, ·)
]

α,V2
(3.19)

and
∣

∣

∣Dγ1u(0, 0)−
[

(Tl − 1)
k
u(0, 0)

]∣

∣

∣ =
∣

∣Dγ1u(0, 0)−Dγ1u(2k, θ2l)
∣

∣

≤ C2

[

Dγ1u(2k, ·)
]

α,V2
, (3.20)

where C1, C2 depend only on k, 0 ≤ θ1, θ2 ≤ k.
Now we estimate I. First we note that for each function v(t, x), defined on

[0, hk]× V2,

|(Tl − 1) v(t, x)| ≤ 2max{|v(t, y)| : x ≤ y ≤ x+ l}. (3.21)

Using (3.21), by induction, we can easily see that, for any k > 1,
∣

∣

∣(Tl − 1)
k
v(t, x)

∣

∣

∣ ≤ 2k max{|v(t, y)| : x ≤ y ≤ x+ kl}. (3.22)

Observe that, by the linearity of the operator and Newton-Leibnitz formula, it follows
that for any function c independent of x

I =

∫ 2k

0

[

(Tl − 1)kut
]

(r, 0)dr =

∫ 2k

0

[

(Tl − 1)k(ut − c)
]

(r, 0)dr. (3.23)

Choosing c = ut(r, 0) and using (3.22), from the last equality, we get

I ≤ 22k sup
0≤x≤kl

0≤r≤2k

|ut(r, x)− ut(r, 0)| ≤ C3 sup
r∈[0,2k]

[ut(r, ·)]α,V2 , (3.24)
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where C3 depends only on k.
Upon combining the above estimates, we come to

∣

∣Dγ1u(2k, 0)−Dγ1u(0, 0)
∣

∣ ≤ NI2. (3.25)

Since by an orthonormal change of coordinates any unit vector ξ ∈ V2 can be trans-
formed into the first basis vector, we have the previous estimate proved also for the
k-order directional derivative of u along ξ, i.e.,

∣

∣

∣

∣

∑

|γ|=k

(

ξγDγu(2k, 0)− ξγDγu(0, 0)
)

∣

∣

∣

∣

≤ NI2 (3.26)

for all unit ξ ∈ V2 and for any multi-index γ, |γ| = k.
The result now follows from Lemma 3.1.

Corollary 3.3. Let S be in [−∞, T ). For any u ∈ Ck+α(S, T ) and finite S ≤
t, s ≤ T , x ∈ Rd and γ, |γ| = k we have

|Dγu(t, x)−Dγu(s, x)| ≤ NI|t− s|α/k, (3.27)

where N is independent of u, t, s, x and

I = sup
r∈[s,t]

([ut(r, ·)]α + [u(r, ·)]k+α) . (3.28)

Proof. It is sufficient to apply Theorem 3.2 denoting t− s = hk and shifting the
origin in Rd+1 to point (s, x).

Remark 3.4. If we come back to our system, Corollary 3.3 allows us to conclude
that if the solution u of (1.1) belongs to C2m+α(S, T ) then the derivatives D2mu are
also Hölder continuous in t with exponent α/2m. Moreover, the Hölder seminorm in
t of each space derivative of order less or equal than 2m is bounded by

N sup
r

([ut(r, ·)]α + |u(r, ·)|2m+α) .

Here the constant N being independent of u depends only on d, α, n, andm. However,
the author does not know any way how to compute this constant.

In connection to this, is also worth noting that if u ∈ C2m+α(S, T ), then u is
locally Lipschitz in (t, x) since, by the definition of such space, the derivative Du is
bounded and ut is locally bounded.

It is noteworthy that, for example, the estimate (3.27) may not be as useful as
estimates as in (2.9) where information about the constant N is known.

4. Auxiliary results. Throughtout the next two sections we consider only the
case when the leading coefficients are independent of x and the lower-order coefficients
are zero.

From Corollary 2 in [5] we obtain the following

Theorem 4.1. Let r ∈ (0,∞), k ∈ [8,∞), X0 = (t0, x0) ∈ Rd+1 and f ∈
L2,loc(R

d+1). Assume that u ∈W 1,2m
2,loc (R

d+1) satisfies

ut + (−1)mL0u = f in Qkr(X0). (4.1)
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Then for any γ, |γ| = 2m, we have

∫

–

Qr(X0)

∣

∣Dγu− (Dγu)Qr(X0)

∣

∣dxdt ≤ Nk−1

(

∫

–

Qkr(X0)

|Dγu|2dxdt

)
1
2

+Nkm+ d
2

(

∫

–

Qkr(X0)

|f |2dxdt

)
1
2

(4.2)

where N = N(d, n,m, δ) > 0.

Remark 4.2. The system considered in [5] is formally different from our sys-
tem. However, if we take into consideration the fact that every multi-index of length
2m can be written as the sum of two multi-indices of length m, we obtain that
all the hypotheses of Corollary 4.7 in [5] are verified. This last states that, for
any r ∈ (0,∞), k ∈ [8,∞), λ > 0, X0 = (t0, x0) ∈ Rd+1 and f ∈ L2,loc(R

d+1), if

u ∈ W 1,2m
2,loc (R

d+1) satisfies ut + (−1)mL0u + λu = f in Qkr(X0) then for any γ,
|γ| = 2m we have

∫

–

Qr(X0)

∣

∣Dγu− (Dγu)Qr(X0)

∣

∣dxdt + λ

∫

–

Qr(X0)

∣

∣u− (u)Qr(X0)

∣

∣dxdt

≤ Nk−1
2m
∑

i=0

λ1−
i

2m

(

|Diu|2
)

1
2

Qkr(X0)
+Nkm+ d

2

(

|f |2
)

1
2

Qkr(X0)

where N = N(d, n,m, δ) > 0. Then we can use it, after letting λց 0.

Improving the above theorem and following the hints to Exercises 4.3.5 and 4.3.6
in [12], we get the following two corollaries.

Corollary 4.3. Let r ∈ (0,∞), k ∈ [8,∞), X0 = (t0, x0) ∈ R
d+1 and f ∈

L2,loc(R
d+1). Assume that u ∈W 1,2m

2,loc (R
d+1) satisfies (4.1). Then for any γ, |γ| = 2m,

we have

∫

–

Qr(X0)

∣

∣Dγu− (Dγu)Qr(X0)

∣

∣dxdt ≤ Nk−1

(

∫

–

Qkr(X0)

|Dγu|2dxdt

)
1
2

+Nkm+d
2

(

∫

–

Qkr(X0)

∣

∣f −

∫

–

Bkr(X0)

f(t, y)dy
∣

∣

2
dxdt

)
1
2

(4.3)

where N = N(d, n,m, δ) > 0.

Proof. We consider a new function v defined in the following way

v(t, x) = u(t, x)−

∫ t

0

∫

–

Bkr(X0)

f(s, x)dxds. (4.4)
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By the definition it follows that v ∈W 1,2m
2,loc (R

d+1) and satisfies

vt + (−1)mL0v = f −

∫

–

Bkr(X0)

f(t, x)dx. (4.5)

Applying Theorem 4.1 to the function v, we obtain for any γ, |γ| = 2m,

∫

–

Qr(X0)

∣

∣Dγv−
(

Dγv
)

Qr(X0)

∣

∣dxdt ≤ Nk−1

(

∫

–

Qkr(X0)

∣

∣Dγv
∣

∣

2
dxdt

)
1
2

+Nkm+ d
2

(

∫

–

Qkr(X0)

∣

∣

∣f −

∫

–

Bkr(X0)

f(t, y)dy
∣

∣

∣

2

dxdt

)
1
2

(4.6)

where N = N(d, n,m, δ) > 0. Again by the definition of v, it follows Dγv = Dγu and
so we, easily, have the result.

In the following corollary having the factor k−1 in (4.7), which can be made as
small as we wish, will be crucial to obtain a Hölder space estimate.

Corollary 4.4. Let r ∈ (0,∞), k ∈ [8,∞), X0 = (t0, x0) ∈ Rd+1, and f ∈
L2,loc(R

d+1). Assume that u ∈W 1,2m
2,loc (R

d+1) satisfies (4.1). Then for any γ, |γ| = 2m,
we have

∫

–

Qr(X0)

∣

∣Dγu−
(

Dγu
)

Qr(X0)

∣

∣dxdt

≤ Nk−1

(

∫

–

Qkr(X0)

∣

∣Dγu−
(

Dγu
)

Qkr(X0)

∣

∣

2
dxdt

)
1
2

+Nkm+d
2

(

∫

–

Qkr(X0)

∣

∣f −

∫

–

Bkr(X0)

f(t, y)dy
∣

∣

2
dxdt

)
1
2

(4.7)

where N = N(d, n,m, δ) > 0.

Proof. We define a new function v in the following way:

v(t, x) = u(t, x)−
∑

|γ|=2m

Bγxγ (4.8)

where

Bγ =
1

γ!

∫

–

Qkr(X0)

Dγu(t, x)dtdx.

It is easy to see that v ∈W 1,2m
2,loc (R

d+1) and v satisfies

vt + (−1)mL0v = f − (−1)m
∑

|γ|=2m

AγBγγ! (4.9)
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Now apply Corollary 4.3 to the function v and we get for any γ, |γ| = 2m,

∫

–

Qr(X0)

∣

∣Dγv −
(

Dγv
)

Qr(X0)

∣

∣dxdt ≤ Nk−1

(

∫

–

Qkr(X0)

∣

∣Dγv
∣

∣

2
dxdt

)
1
2

+Nkm+d
2

(

∫

–

Qkr(X0)

∣

∣

∣f − (−1)m
∑

|γ|=2m

AγBγγ!

−

∫

–

Bkr(X0)

(

f − (−1)m
∑

|γ|=2m

AγBγγ!
)

dy
∣

∣

∣

2

dxdt

)
1
2

(4.10)

where N = N(d, n,m, δ) > 0. By the definition of v and taking into account that the
average value of a constant on a set is the same constant, it follows

Dγv = Dγu−Bγγ! = Dγu− (Dγu)Qkr(X0), (4.11)

Dγv −
(

Dγv
)

Qr(X0)
= Dγu−

(

Dγu
)

Qr(X0)
. (4.12)

Combining the previous inequalities, we have the result.

5. A Schauder estimate for systems with coefficients independent of x.
If T = ∞ the statement of the following lemma becomes a more general version of an
exercise suggested by Krylov in [12] (see Chapter 10, Exercise 9).

Lemma 5.1. Assume that we have a function u = u(t, x) of class C
α

2m ,α(Rd+1
T )

such that for all (t, x), (s, y) ∈ R
d+1
T with finite t, s and ρ > 0, we have

∫

Qρ(t,x)

∫

Qρ(s,y)

|u(r1, p1)− u(r2, p2)|dr1dp1dr2dp2

≤M〈(t− s, x− y)〉α+2d+4m (5.1)

whenever

4ρ ≤ 〈(t− s, x− y)〉, Qρ(t, x), Qρ(s, y) ⊂ R
d+1
T ,

where M is a constant. Then for all (t, x), (s, y) ∈ R
d+1
T it holds that

|u(t, x)− u(s, y)| ≤ NM〈(t− s, x− y)〉α, (5.2)

where N = N(d, α, n,m).

Proof. Define

P = sup
(t,x),(s,y)∈R

d+1
T

(t,x)6=(s,y)

∣

∣u(t, x)− u(s, y)
∣

∣

〈(t− s, x− y)〉α
.

By the hypothesis about u, P < ∞. Take a ρ > 0 and for (r1, p1) ∈ Qρ(t, x),
(r2, p2) ∈ Qρ(s, y) write

|u(t, x)− u(s, y)| ≤ |u(t, x)− u(r1, p1)|+ |u(r1, p1)− u(r2, p2)|

+ |u(r2, p2)− u(s, y)| ≤ P2α+1ρα + |u(r1, p1)− u(r2, p2)|. (5.3)
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Assuming that ρ = µ〈(t−s, x−y)〉 where the constant µ ∈ (0, 14 ], we integrate through
this estimate over (r1, p1) ∈ Qρ(t, x) and (r2, p2) ∈ Qρ(s, y) and due to (5.1) find

ρ4m+2d|u(t, x)− u(s, y)| ≤ P2α+1ρα+2d+4m +NM〈(t− s, x− y)〉α+2d+4m,

|u(t, x)− u(s, y)| ≤
(

P2α+1µα +MNµ−2d−4m
)

〈(t− s, x− y)〉α, (5.4)

where N depends only on d, which by the definition of P means that

P ≤ P2α+1µα +MNµ−2d−4m. (5.5)

Finally, choose any µ so that not only µ ≤ 1
4 but also 2α+1µα ≤ 1

2 which is possible
due to α > 0. So we obtain the result.

Proof of Theorem 2.1. Take a ρ > 0 such that 4ρ ≤ 〈(t − s, x − y)〉 and a
multi-index γ such that |γ| = 2m. For (t, x), (s, y) ∈ R

d+1
T write

∫

Qρ(t,x)

∫

Qρ(s,y)

∣

∣Dγu(r1, p1)−Dγu(r2, p2)
∣

∣dr1dp1dr2dp2

≤

∫

Qρ(t,x)

∫

Qρ(s,y)

∣

∣Dγu(r1, p1)−
(

Dγu
)

Qr(C)

∣

∣dr1dp1dr2dp2

+

∫

Qρ(t,x)

∫

Qρ(s,y)

∣

∣Dγu(r2, p2)−
(

Dγu
)

Qr(C)

∣

∣dr1dp1dr2dp2

≤ Nr4m+2d

∫

–

Qr(C)

∣

∣Dγu(r3, p3)−
(

Dγu
)

Qr(C)

∣

∣dr3dp3 (5.6)

where N = N(d), Qr(C) is a cylinder with radius r = 2〈(t − s, x − y)〉 and center
C = (s, x+y

2 ) if s ≥ t otherwise C = (t, x+y
2 ). Using only the condition about ρ and

the definition of parabolic distance, one can easily check that Qr(C) is a subset of
R

d+1
T which contains both Qρ(t, x) and Qρ(s, y).

Now, if we define u(t, x) := u(T, x) for t > T , we can apply Corollary 4.4 to the
extended function, which we still call u, to obtain

∫

–

Qr(C)

∣

∣Dγu(r3, p3)−
(

Dγu
)

Qr(C)

∣

∣dr3dp3

≤ N1k
−1

(

∫

–

Qkr(C)

∣

∣Dγu(r3, p3)−
(

Dγu
)

Qkr(C)

∣

∣

2
dr3dp3

)
1
2

+N1k
m+ d

2

(

∫

–

Qkr(C)

∣

∣f(r3, p3)− fBkr(C)

∣

∣

2
dr3dp3

)
1
2

(5.7)

where N1 = N1(d, n,m, δ), and k ∈ [8,∞). Taking into consideration that the follow-
ing estimates hold

(

∫

–

Qkr(C)

∣

∣Dγu(r3, p3)−
(

Dγu
)

Qkr(C)

∣

∣

2
dr3dp3

)
1
2

≤ N2

(

kr
)α

[Dγu]α,T (5.8)
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(

∫

–

Qkr(C)

∣

∣f(r3, p3)− fBkr(C)

∣

∣

2
dr3dp3

)
1
2

≤ N3

(

kr
)α

sup
r3≤T

[f ]α(r3), (5.9)

where N2 and N3 depend only on α, by (5.6) and (5.7) we find that the function Dγu
verifies (5.1) with constant

M = N4k
α−1[Dγu]α,T +N4k

m+ d
2+α sup

r3≤T
[f ]α(r3),

where N4 = N4(d, α, n,m, δ). Combining the hypothesis about the function u with
Corollary 3.3, we see that Dγu verifies the assumptions of Lemma 5.1. Then, applying
it, we obtain

[Dγu]α,T ≤ N5k
α−1[Dγu]α,T +N5k

m+ d
2+α sup

r3≤T
[f ]α(r3) (5.10)

where N5 = N5(d, α, n,m, δ). Finally, choose any k so that not only k ≥ 8 but also
N5k

α−1 < 1
2 , which is possible due to 0 < α < 1, we have the result.

6. Schauder estimates in the general case. From now on, we assume that
all coefficients depend on t and x. We recall the following well-known lemma that is
proved for scalar-valued functions in [11] (see Section 4.1).

Lemma 6.1. Fix a cut-off function ζ ∈ C∞
0 (Rd) such that ζ(x) = 1 for |x| ≤ 1

and ζ(x) = 0 for |x| ≥ 2 and 0 ≤ ζ ≤ 1, and fix an integer r. Then there is a
constant N = N(d, r, n, θ) such that for any θ ∈ [0, 1], R ≥ 1, finite t ≤ T and
u(t, ·) ∈ Cr+θ(Rd) we have

|u|r+θ(t) ≤ N sup
y∈Rd

([uζyR]r+θ(t) + |uζyR|0(t)) , (6.1)

where ζyR(x) = ζ(R−1(x − y)).

Before proceeding, we recall an inequality which will be used in the proof of
Theorem 2.4. If u(t, ·), v(t, ·) ∈ Cα(Rd) for any t ≤ T then

[uv]α(t) ≤ |u|0(t)[v]α(t) + |v|0(t)[u]α(t). (6.2)

Proof of Theorem 2.4. Take a constant R ≥ 1, the function ζ from Lemma 6.1,
take a point y ∈ Rd and finite s ≤ T . We use the idea of freezing the coefficients to
obtain, by Theorem 2.1,

[uζyR]2m+α(s) ≤ N sup
t≤T

(

[(uζyR)t + (−1)mL0(t, y)(uζ
y
R)]α(t)

)

, (6.3)

where N = N(d, α, n,m, δ). After evaluating L0(t, y)(u(t, x)ζ
y
R(x)) and applying in-

equality (6.2), we obtain

[(uζyR)t + (−1)mL0(t, y)(uζ
y
R)]α(t) ≤ [ζyR(ut + (−1)mL0(t, y)u)]α(t)

+NR−1|u|2m−1+α(t) ≤ [ζyRf ]α(t) + [ζyR{L0(t, y)− L0}u]α(t)

+NR−1|u|2m+α(t). (6.4)
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Moreover,

[ζyRf ]α(t) ≤ [f ]α(t) +NR−α|f |0(t), (6.5)

[ζyR{L0(t, y)− L0}u]α(t) ≤ N max
|γ|=2m

|ζyR{A
γ(t, y)−Aγ}|0(t) · |u|2m+α(t)

+N [u]2m(t){[ζyR]α(t) + max
|γ|=2m

[Aγ ]α(t)} ≤ NRα|u|2m+α(t)

+N(R−α +K)[u]2m(t). (6.6)

By (6.6), applying an interpolation inequality (see Theorem 3.2.1 in [11]), we get

[ζyR{L0(t, y)− L0}u]α(t) ≤ N(Rα +R−αεα + εα)|u|2m+α(t)

+N(R−αε−2m + ε−2m)|u|0(t) (6.7)

for all ε > 0.
Coming back to (6.3) we get

[uζyR]2m+α(s) ≤ N sup
t≤T

(

NR−α|f |0(t) + [f ]α(t) + c1(R, ε)|u|2m+α(t)

+ c2(R, ε)|u|0(t)
)

, (6.8)

which by Lemma 6.1 implies that

|u|2m+α(s) ≤ N sup
t≤T

(

[f ]α(t) +NR−α|f |0(t) + c1(R, ε)|u|2m+α(t)

+ c2(R, ε)|u|0(t)
)

. (6.9)

One can choose first R and then ε such that

N · c1(R, ε) ≤
1

2
. (6.10)

Using (6.10), from (6.9), it follows

sup
s≤T

|u|2m+α(s) ≤ N sup
t≤T

(

[f ]α(t) +N |f |0(t) +N |u|0(t)
)

. (6.11)

As consequence of the previous theorem, we obtain a Hölder estimate for the
solutions of system with non-zero lower-order terms.

Corollary 6.2. Let u ∈ C2m+α(T ) satisfy (1.1). Then there exists a constant
N = N(K, d, α, n,m, δ) such that

sup
s≤T

|u|2m+α(s) ≤ N sup
t≤T

(

[f ]α(t) + |f |0(t) + |u|0(t)
)

. (6.12)

Proof. Considering the fact that we can write our system in the form

ut + (−1)mL0u = f + (−1)m
∑

|γ|<2m

AγDγu, (6.13)
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and then using Theorem 2.4, we get

sup
s≤T

|u|2m+α(s)

≤ sup
t≤T

(

[f ]α(t) +
∑

|γ|<2m

(

[AγDγu]α(t) + [AγDγu]0(t)
)

+ |f |0(t) + |u|0(t)
)

, (6.14)

where N = N(K, d, α, n,m, δ). As always, using (6.2) and some interpolation in-
equalities, the additional terms on the right can be estimated through ε|u|2m+α(t)
plus N(ε)|u|0(t); and then by choosing small ε, collecting like terms we arrive at
(6.12). The corollary is proved.

7. An existence result. Let T ∈ (0,∞) and f be in the space C α(0, T ) of all
measurable functions defined on [0, T ]× R

d such that

||f ||Cα(0,T ) := sup
0≤t≤T

|f |α(t) <∞. (7.1)

The aim of this section is to prove the unique solvability in a suitable space of
the problem

{

ut + (−1)mLu = f in (0, T )× Rd,

u(0, x) = 0 in Rd.
(7.2)

In order to do this, we start to solve the same system in a smaller domain. To be
more precise, let ε be a small positive number. We consider the following problem:

ut + (−1)mLu = f in (0, ε)× R
d. (7.3)

Introduce the space C 2m+α(0, ε) as a subspace of C2m+α(0, ε) such that u(0, x) =
0 for any x ∈ R

d and

||u||C 2m+α(0,ε) := sup
0≤t≤ε

|ut|α(t) + sup
0≤t≤ε

|u|2m+α(t) <∞. (7.4)

One can easily check that C
α(0, T ) and C

2m+α(0, ε) are Banach spaces.

Theorem 7.1. There exists ε > 0 such that, for any f ∈ C
α(0, ε), system (7.3)

admits a unique solution u ∈ C 2m+α(0, ε).

Proof. Let ε be a positive number lesser than T which we will specify later. At
first suppose that such solution u ∈ C 2m+α(0, ε) of (7.3) exists. We define u(t, x)
for negative t as zero, f(t, x) for t < 0 and t > ε as zero and we still call u and f
the extended functions. By the definition, the function u belongs to C2m+α(ε) and
satisfies

ut + (−1)mLu = f in R
d+1
ε . (7.5)

By Corollary 6.2 we get the a priori estimate

sup
0≤t≤ε

|u|2m+α(t) ≤ N sup
0≤t≤ε

([f ]α(t) + |f |0(t) + |u|0(t)) , (7.6)

where N = N(K, d, α, n,m, δ).
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Now, Newton-Leibnitz formula allows us to estimate the last term in the right
hand side of (7.6) in the following way

sup
0≤t≤ε

|u|0(t) ≤ ε sup
0≤t≤ε

|ut|0(t). (7.7)

From system (7.3) we get an estimate of |ut|α(t) in terms of [f ]α(t) and |f |0(t).
In fact

sup
0≤t≤ε

|ut|0(t) ≤ sup
0≤t≤ε

(|f |0(t) +N |u|2m(t)) , (7.8)

and

sup
0≤t≤ε

[ut]α(t) ≤ sup
0≤t≤ε

([f ]α(t) +N |u|2m+α(t)) . (7.9)

Then, using again Corollary 6.2,

sup
0≤t≤ε

|ut|α(t) ≤ N sup
0≤t≤ε

([f ]α(t) + |f |0(t) + |u|0(t)) . (7.10)

Moreover, from (7.7), using (7.8), we have

sup
0≤t≤ε

|u|0(t) ≤ sup
0≤t≤ε

(ε|f |0(t) +Nε|u|2m+α(t)) , (7.11)

Combining such estimate with (7.6) and (7.10), we get

sup
0≤t≤ε

|ut|α(t) + sup
0≤t≤ε

|u|2m+α(t) ≤ N sup
0≤t≤ε

(c(ε)|f |α(t) + ε|u|2m+α(t)) . (7.12)

Choosing ε such that ε < min{ 1
2N , T } we deduce

||u||C 2m+α(0,ε) ≤ N ||f ||Cα(0,ε) (7.13)

where N = N(K, d, α, n,m, δ).
Now we are interested in the proof of the existence of a unique solution u which

solves (7.3). Uniqueness obviously follows from this last estimate. To prove existence,
we use the method of continuity. For τ ∈ [0, 1] define

Lτ = τL+ (1 − τ)∆2m (7.14)

where ∆2m denotes the operator with coefficients Aγ = δγIn×n, and let Z be the set
of all points τ ∈ [0, 1] for which the statement of the theorem is true (with Lτ in place
of L).

First we want to prove that Z is not empty. Our aim is to find a unique function
u in C 2m+α(0, ε) which solves the system

ut + (−1)m∆2mu = f in (0, ε)× R
d. (7.15)

Observe that if f is Hölder continuous also in time, the proof of this fact becomes
well known.

In our case, let Φ(t) be a smooth compactly supported function in R, with
∫

R
Φ(t)dt = 1. For any ν > 0 and (t, x) ∈ Rd+1 we introduce the function

f (ν)(t, x) = (f(·, x) ∗ Φν)(t) (7.16)
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where

Φν(t) =
1

ν2m
Φ

(

t

ν2m

)

. (7.17)

For any ν, the functions f (ν) are Hölder continuous in both variables. Then, by a
classical result (see Theorem 4′.3 of [6]), we get that there exists a unique function
u(ν), with all derivatives of order less or equal than 2m Hölder continuous in t and in
x, solution of the system

(u(ν))t + (−1)m∆2mu(ν) = f (ν) in (0, ε)× R
d, (7.18)

and that satisfies the initial zero condition. Obviously, for such function, the a priori
estimate

||u(ν)||C 2m+α(0,ε) ≤ N ||f (ν)||Cα(0,ε) (7.19)

holds with N independent of f and ε. This estimate shows that the family u(1/j),
D1u(1/j), D2u(1/j), . . . , D2mu(1/j) is uniformly bounded and equicontinuous on any
bounded subset of [0, ε]× Rd. Then, by Ascoli-Arzelà theorem and Theorem 7.17 in
[18], there are a continuous function u on [0, ε]× Rd having bounded and continuous
derivatives with respect to x up to the order 2m and a sequence jn → ∞ such that

(u(1/jn), D1u(1/jn), D2u(1/jn), . . . , D2mu(1/jn)) −→ (u,D1u,D2u, . . . , D2mu)

as j → ∞, uniformly on bounded subsets of [0, ε]×Rd. Passing to the limit in equation
(7.18) (of course, in the integral form, see (2.6)), corresponding to u(1/jn) we obtain
that u satisfies (7.15). The fact that u ∈ C 2m+α(0, ε) follows by estimate (7.19) which
holds with the same N with u in place of u(1/j). So we obtain the desidered result.

Obviously estimate (7.13) holds with the same constant N for all solutions of the
equation ut + (−1)mLτu = f. This implies that Z is closed. Therefore, to finish the
proof it remains only to prove that Z is open in the topology of [0, 1]. Take any point
τ0 in Z ∩ [0, 1] and define the linear operator

R : C
α(0, ε) −→ C

2m+α(0, ε) (7.20)

such that it takes any f ∈ C α(0, ε) into the set of functions C 2m+α(0, ε) which solve
ut + (−1)mLτ0u = f . By the assumption R is well defined and by (7.13) is bounded.

Now in order to show that for τ ∈ [0, 1] close to τ0 the system ut+(−1)mLτu = f
is solvable, we write this system as

ut + (−1)mLτ0u = f + (−1)m(Lτ0 − Lτ )u (7.21)

or, equivalently,

u = Rf + R[(−1)m(Lτ0 − Lτ )]u, (7.22)

and we show that the operator R[(−1)m(Lτ0 − Lτ )] is a contraction in C α(0, ε) for
all τ close to τ0.

By the above for certain constants N independent of τ, u

||R[(−1)m(Lτ0 − Lτ )]u||C 2m+α(0,ε) ≤ N ||(Lτ0 − Lτ )||Cα(0,ε)

= N |τ0 − τ | |(L −∆2m)|Cα(0,ε) ≤ N1|τ0 − τ |||u||C 2m+α(0,ε). (7.23)
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For τ such that N1|τ0 − τ | ≤ 1
2 , the operator R(Lτ0 −Lτ ) is indeed a contraction and

the theorem is proved.

Our next result concerns the Cauchy problem with non-zero initial condition.

Corollary 7.2. Assume that we are given a function ψ ∈ C2m+α(Rd). Let ε
the positive number which comes out from Theorem 7.1. Then for any f ∈ C α(0, ε)
there exists a unique u ∈ C2m+α(0, ε) satisfying (7.3) and such that u(0, x) = ψ(x)
for any x ∈ Rd.

Proof. From Theorem 7.1 we know that there exists a unique solution v ∈
C 2m+α(0, ε) of the problem

vt + (−1)mLv = f̃ (7.24)

with f̃ = f − (−1)mLψ in C α(0, ε).
Now, if we consider the function u(t, x) = v(t, x) + ψ(x), we easily see that

u ∈ C2m+α(0, ε) is a solution of (7.3) and satisfies u(0, x) = ψ(x) for any x ∈ Rd.
The uniqueness of such solution follows by the uniqueness of (7.24).

Finally we conclude explaining as the above results can be used to solve problem
(7.2).

Let f ∈ C α(0, T ), ε be the positive number which comes out from Theorem 7.1,
f|[0,ε] be the right-hand side of equation (7.3) and u be in C 2m+α(0, ε) the correspond-
ing solution of such equation. Consider the following problem:

{

vt + (−1)mLv = f|[ε,2ε] in (ε, 2ε)× Rd,

v(ε, x) = u(ε, x) in Rd.
(7.25)

Repeating the argument of Corollary 7.2, replacing, in the definitions, (0, ε) with
(ε, 2ε), we obtain the existence of a unique function v in C2m+α(ε, 2ε) solution of
(7.25).

Thus, after a finite number of steps, we obtain a unique solution u in C
2m+α(0, T )

which solves problem (7.2). Such solution is built as combination, through character-
istics functions, of the solutions in the smaller domains. The fact that this solution is
just in the space C 2m+α(0, T ) is guaranteed by the required initial conditions and by
the integral form (2.6) of the systems considered in the single Cauchy problems. The
uniqueness follows by the uniqueness of the single solutions.

So we have proved the following.

Theorem 7.3. For any f in C α(0, T ), there exists a unique u in C 2m+α(0, T ),
solution of (7.2).

Remark 7.4. Taking into account Corollary 3.3, we can also state that the
derivatives D2mu of the solution u that comes out from the last theorem are Hölder
continuous in t with exponent α

2m . Owing to the lack of regularity of the coefficients
with respect to the variable t, we do not expect the solution to problem (7.2) to be
continuously t-differentiable in the whole of [0, T ] × Rd even if the coefficients are
smooth with respect to x. Nevertheless, the discontinuity of the coefficients does not
influence the regularity of the solution with respect to the space variables.
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ematical Society, Providence, RI, 1996.
[12] N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, American Math-

ematical Society, Providence, RI, 2008.
[13] N. V. Krylov and E. Priola, Elliptic and parabolic second-order PDEs with growing coeffi-

cients, Comm. Partial Differential Equations, 35 (2010), pp. 1–22.
[14] N. V. Krylov and M. V. Safonov, Certain properties of solutions of parabolic equations with

measurable coefficients, Izv. Akad. Nauk, 44 (1980), pp. 161-175 (Russian); English transl.
in Math. USSR-Izv., 16 (1981), pp. 155-164.
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