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STEADY-STATE FINGERING PATTERNS FOR A PERIODIC

MUSKAT PROBLEM∗

MATS EHRNSTRÖM†, JOACHIM ESCHER‡ , AND BOGDAN–VASILE MATIOC‡

Abstract. We study global bifurcation branches consisting of stationary solutions of the Muskat
problem. It is proved that the steady-state fingering patterns blow up as the surface tension increases:
we find a threshold value for the cell height with the property that below this value the fingers will
touch the boundaries of the cell when the surface tension approaches a finite value from below;
otherwise, the maximal slope of the fingers tends to infinity.
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1. Introduction. Proposed in 1934 by Muskat (cf. [11]), the Muskat problem de-
scribes the evolution of the interface between to immiscible fluids in a porous medium.
In the recent investigation [6] this problem was studied in a new, periodic, setting in-
corporating gravity, viscosity, and surface tension effects. The current note aims at
an in-depth description of the stationary solutions found in that work.

When a heavier viscous fluid rests upon a lighter one, the interface between them
is in general not stable; depending on the different densities, and the surface tension,
one expects the upper fluid to, at least partially, sink into the lower one, and vice
versa. Due to their resemblance to an outstretched hand reaching into a viscous fluid,
the resulting shapes are often referred to as fingering patterns. The investigation of
such, in different settings, has brought a lot of attention (see, e.g., the pioneering
paper [15] and the later investigations [4, 10, 13, 14]).

In [6] smooth branches of stationary, i.e. time-independent, solutions of the
Muskat problem were found. They are periodic solutions of the Laplace-Young equa-
tion under a volume constraint (see (2.3)). The Laplace-Young equation is also known
as the capillarity equation and, subjected to boundary constrains, has been studied
by many authors (see [7] and the literature therein).

The solutions found in [6] are all even, but only in a small neighbourhood of the
trivial solutions can one via linearisation obtain an approximate picture of the finger-
ing patterns. This is due to the fact that global bifurcation theorems are inherently
implicit in nature, and thus have the drawback of not disclosing the behaviour of
the bifurcation branches away from the bifurcation point. In our present work, we
therefore take advantage of the theory for ordinary differential equations and certain
symmetry properties of the solutions to give a precise description of the solutions
found in [6]: we show that each global bifurcation branch consists entirely of steady-
state solutions of minimal period 2π/l, l ∈ N, and that the symmetric fingers described
by the interface i) either approach the bottom and the upper boundary of the cell, or
ii) display blow-up in the C1−norm, while the surface tension coefficient tends from
below to a finite value.
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Fig. 1. The periodic and vertical Hele-Shaw cell.

The plan is as follows. In Section 2 we give the necessary mathematical back-
ground of the problem, and show that, for stationary solutions, it may be reduced to
an ordinary differential equation with an additional non-local constraint. The proof
of the main result mentioned above is based on the study of the odd solutions of
this equation, and the one-to-one correspondence between the odd and the even so-
lutions thereof. This is done in the Section 3, and there we also show that there
exist infinitely many global bifurcation branches consisting of odd solutions of the
problem. In addition, we describe the behaviour of the steady fingers away from the
set of trivial solutions. Finally, it is interesting to see that the steady-state fingering
patterns we obtained correspond to certain solutions of the mathematical pendulum.
This correspondence is shown in the Appendix.

2. Preliminaries. Let h > 0, and consider a periodic medium occupying the
region S× [−h, h], with S denoting the unit circle. The bottom of this cell is assumed
to be impermeable, and the pressure on the upper boundary is constantly set to zero.
For a function f with ‖f‖C(S) < h, let

Γ(f(t)) := {(x, f(t, x)) : x ∈ S},

be the time-dependent interface separating the wetting phases, and Γ± := S × {±h}
the bottom and the upper boundaries of the cell (see Figure 1). We define the fluid
domains

Ω−(f(t)) := {(x, y) : −h < y < f(t, x)},

Ω+(f(t)) := {(x, y) : f(t, x) < y < h},

and write

κΓ(f) :=
fxx

(1 + f2
x)

3/2
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for the signed curvature of the graph Γ(f). The mathematical model can then be
stated as a two-phase moving-boundary problem,






∆u± = 0 in Ω±(f(t)),

∂νu+ = g1 on Γ+,

u− = g2 on Γ−,

u+ − u− = γκΓ(f) + g(̺+ − ̺−)f on Γ(f(t)),

∂tf = −
√
1 + f2

x

µ±

∂νu± on Γ(f(t)),

f(0) = f0,

(2.1)

with t ∈ [0, T ], where we use the subscripts ± to denote the upper and lower fluids,
respectively. As conventional, g stands for the gravitational constant of acceleration,
γ denotes the surface tension at the interface Γ(f), and ̺± and µ± are the densities
and viscosities of the two fluids, respectively, all of which are supposed to be given
positive constants. Physically, the potentials u± are defined by the relation

u± := p± + g̺±y,

where p stands for pressure, and y is the height coordinate. Furthermore, the functions
g1 and g2 are assumed to be known with

g1 ∈ C([0, T ], h1+α(S)) and g2 ∈ C([0, T ], h2+α(S)).

Given m ∈ N and α ∈ (0, 1), the small Hölder spaces hm+α(S) stand for the comple-
tions of the class of smooth functions in the Banach spaces Cm+α(S).

The problem consists of finding functions f and u± satisfying (2.1), but it can be
shown that this may be reduced to a parabolic problem with f as the single unknown
[6]. Hence, we shall refer to the function f parametrising the moving interface between
the fluids as a solution of (2.1).

Well-posedness results. It is shown in [6] that the Muskat problem is, at least
in a neighbourhood of some flat interface, of parabolic type. This observation is true,
when considering surface tension effects, independently of the boundary data g1 and
g2. On the other hand, when neglecting surface tension, certain restrictions must be
imposed on the boundary data to ensure parabolicity of (2.1). We then have (cf. [6,
Theorem 2.1]):

Theorem 2.1 (Well-posedness). Let γ ∈ [0,∞), c1, c2 ∈ R, and assume that

γ > 0 or g(ρ+ − ρ−) + c1

(
µ−

µ+
− 1

)
< 0. (2.2)

Then there exist open neighbourhoods of the zero function Oi ⊂ hi+α(S), i ∈ {1, 2},
and O ⊂ h2+2 sign(γ)+α(S), such that for all f0 ∈ O and gi ∈ C([0,∞), ci + Oi),
i = 1, 2, there exists T (f0) ≤ T and a unique maximal Hölder solution f of problem
(2.1) on [0, T (f0)) which fulfills f(t) ∈ O for all t ∈ [0, T (f0)).

If γ > 0, then we may choose Oi = hi+α(S), i ∈ {1, 2}.
Existence of classical solutions of the Muskat problem, and long-time existence

for small initial data, can also be found in [8, 16, 17, 18]. The approach in [6] yields
structural insight into the character of the Muskat problem and it is suitable for
studying the stability properties of the steady-state solutions of problem (2.1).
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Steady-state solutions. In the remainder of this paper we assume that g1 ≡ 0
and g2 ≡ const, meaning that the mass of both fluids is preserved in time, and that
the cell contains equal quantities of both fluids. The steady-state solutions of (2.1)
are then solutions of the problem

γ
f ′′

(1 + f ′2)3/2
+ g(̺+ − ̺−)f = const, and

∫

S

f dx = 0. (2.3)

Indeed, since f does not depend on time, it follows from uniqueness for the Dirichlet–
Neumann problem that the potentials u+ and u− are both constants also in the
spatial variable, which yields the first equation of (2.3). The second relation reflects
the earlier mentioned assumption that the cell contains equal amounts of both fluids.
By induction, we obtain

Remark 2.2. Any classical solution of (2.3) is smooth.

We shall refer to the set

Σ := {(γ, 0) : γ > 0}

as being the trivial branch of solutions of (2.3). Because of the integral constraint
in (2.3), the problem (2.3) is in general over-determined. One way to approach this
difficulty is to determine solution pairs (γ, f) ∈ (0,∞) × C2(S) of (2.3), under the
additional, but natural, requirement that ‖f‖C(S) < h, meaning that the fingers do
not touch the lower or upper boundaries of the cell.

In the situation when the less dense fluid lies on the bottom of the cell, i.e. when
̺+ > ̺−, we find—using the theorem on bifurcation from simple eigenvalues due to
Crandall and Rabinowitz [3, Theorem 1.7], and the global bifurcation theorem due
to Rabinowitz [9, Theorem II.3.3]—global bifurcation branches consisting of even,
stationary, finger-shaped solutions of (2.3). More precisely, if C3+α

0,e (S) denotes the

subspace of C3+α(S) consisting of even functions with integral mean zero, and

W :=
{
f ∈ C3+α

0,e (S) : ‖f‖C(S) < h
}
,

we have (cf. [6, Theorem 6.1 and Theorem 6.3]):

Theorem 2.3 (Bifurcation of stationary solutions). Let g1 ≡ 0, g2 ≡ const, and
̺+ > ̺−, 1 ≤ l ∈ N. The point

(γl, 0) := (g(̺+ − ̺−)/l
2, 0) (2.4)

belongs to the closure S of the set of nontrivial solutions of (2.3) in (0,∞) × W .
Denote by Cl the connected component of S to which (γl, 0) belongs. Then Cl has, in a
neighbourhood of (γl, 0), an analytic parametrisation (γl, fl) : (−δ, δ) → (0,∞)×W,

γl(ε) = γl +
3g(̺+ − ̺−)

8
ε2 +O(ε3),

fl(ε) = ε cos(lx) +O(ε2),

as ε → 0. Any other pair (γ, 0), γ > 0, belongs to a neighbourhood in (0,∞)×W with
only trivial solutions of (2.3).

Furthermore, if ε is small and γ = γl(ε), then fl(ε) is an unstable solution of
(2.1).
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Theorem 2.3 is obtained by differentiating the first relation of (2.3) and finding in
this way an equation for f only (this is why solutions in C3+α

0,e (S) are considered). It
is not difficult to show that if ̺− ≥ ̺+, then (2.3) has only the trivial solution f = 0
(see, e.g., [5]). In the paper at hand we show (cf. Remark 4.3) that this is the case
when ̺− < ̺+ too, as long as the surface tension coefficient is large enough.

3. Odd steady-state fingering solutions. In this section we consider the odd
solutions of (2.3). If f is an odd function on S, then f has integral mean 0 and
f(0) = f ′′(0) = 0. Hence, the odd steady states of the Muskat problem (2.1) are
exactly the odd solutions of the equation

f ′′

(1 + f ′2)3/2
+ λf = 0, λ > 0, (3.1)

within the set

U :=
{
f ∈ C∞(S) : ‖f‖C(S) < h

}
.

Here, the shorthand

λ :=
g(̺+ − ̺−)

γ
, (3.2)

indicates the character of (3.1) as an eigenvalue problem. Notice that, throughout
this work, we consider the unstable case when ̺+ > ̺−, i.e. when the heavier fluid
occupies the upper part of the membrane. Equation (3.1) admits the following scaling
property:

Proposition 3.1. If (γ, f) defines a solution of (3.1) through (3.2), then
(
l−2γ, l−1f(l·)

)
, l ∈ N, (3.3)

is also a solution of (3.1).

Proof. Since λ is inversely proportional to γ, the result is immediate.

The main result of this work is the following theorem, which states that a global
bifurcation branch consisting of odd functions of minimal period 2π emanates from
the trivial branch of solutions Σ at (γ1, 0), where γ1 is defined by (2.4). This will
later be used to characterise the global bifurcation branches of odd solutions which
arise at (γl, 0), l ≥ 2, (see Corollary 3.3 below), and in Section 4 to describe the global
bifurcation branches Cl obtained in Theorem 2.3.

Recall the definition of the beta function,

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt, Rex,Re y > 0.

Theorem 3.2. For each h > 0, there exists

λh ≥ λ∗ :=
1

2π2

(
B
(
3
4 ,

1
2

))2
, (3.4)

and corresponding γh ≤ γ∗ defined by (3.2), with the property that the nontrivial odd
solutions of (3.1) of minimal period 2π within U coincide with the global bifurcation
curve

Σ1 := {(γ,±fγ) : γ ∈ (γ1, γh)},
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Fig. 2. A qualitative picture of the 2π-periodic solutions described in Corollary 3.3.

where the odd function fγ ∈ C∞(S) is uniquely determined by γ ∈ (γ1, γ∗) if we

require that f ′
γ(0) ≥ 0. Let h∗ :=

√
2/λ∗, and let fγ denote the solution of (3.1) of

minimal period 2π (not necessarily in U). The map (γ1, γ∗) × S ∋ (γ, x) 7→ fγ(x) is
smooth, and

(i) if h < h∗, then γh < γ∗, and

‖fγ‖C(S) = fγ(π/2) ր h as γ ր γh;

(ii) if h = h∗, then γh = γ∗, and

‖fγ‖C(S) = fγ(π/2) ր h, ‖f ′
γ‖C(S) = f ′

γ(0) ր ∞ as γ ր γh;

(iii) if h > h∗, then γh = γ∗, and

‖f ′
γ‖C(S) = f ′

γ(0) ր ∞ as γ ր γh,

while sup[γ1,γ∗) ‖fγ‖C(S) < h.

Recall that γl, 1 ≤ l ∈ N, is the constant defined by (2.4). Combining Proposi-
tion 3.1 and Theorem 3.2 we conclude:

Corollary 3.3. Let 2 ≤ l ∈ N. There exists γl,h ∈ (γ1, γ∗] with the property
that

Σl :=
{
(l−2γ,±l−1fγ(l·)) : γ ∈ (γ1, γl,h)

}

consists exactly of the nontrivial odd solutions of minimal period 2π/l of (3.1) within
U . The alternatives (i)− (iii) of Theorem 3.2 hold true with the natural modifications.
The disjoint union

S2π := (∪∞
l=1Σl) ∪

(
∪∞
l=1

[(
γl+1, γl

)
× {0}

])
∪ [(γ1,∞)× {0}] (3.5)

constitutes all nontrivial 2π−periodic and odd solutions of (3.1) in U .

Remark 3.4. Put differently, Corollary 3.3 states that global bifurcation
branches consisting of odd solutions emanate from Σ at γl, 1 ≤ l ∈ N. Moreover,
these bifurcation branches are pairwise disjoint.

Remark 3.5. It is worth mentioning that, for the same γ, we may find 2π-
periodic odd solutions of (3.1) of different minimal periods (see Figure 2). Since
γl,h = γ∗ > γ1, for l large enough, there exists positive integers l ∈ N, such that

γl+1 < γl <
γ∗

(l + 1)2
<

γ∗
l2
.
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Consequently equation (3.1) possesses a solution which belongs to Σl and another one
in Σl+1, corresponding to the same γ.

In order to prove Theorem 3.2 we need some preliminary results.

Proposition 3.6. Let λ > 0 and α ∈ R be given. The initial-value problem





f ′′

(1 + f ′2)3/2
+ λf = 0 on S,

f(0) = 0,

f ′(0) = α

(3.6)

possesses a unique classical solution fλ,α. The solution is odd and periodic in x, and
smooth as a map

(0,∞)× R× R 7→ fλ,α(x).

Proof. Setting g := f ′, we rewrite (3.6) as an initial value problem for the pair
(f, g),

(
f
g

)′

= F

(
f
g

)
,

(
f
g

)
(0) =

(
0
α

)
, (3.7)

where F : R2 → R2 is defined by

F

(
f
g

)
=

(
g

−λf(1 + g2)3/2

)
.

Since F is smooth, there is a unique and smooth solution of (3.7), defined on a maximal
interval [0, T ); if T < ∞, then the solution blows up, i.e. sup[0,T ) |(f, g)| = ∞ (cf.
[1]).

Notice that if f is an odd solution of (3.1) with slope f ′(0) = α > 0, then −f
is also an odd solution of (3.1) with slope −α. Without loss of generality we may
therefore restrict our attention to solutions of (3.1) with nonnegative slope at x = 0.
Clearly, the solution of (3.6) with slope α = 0 is f ≡ 0.

Suppose now that α > 0. We prove that there exists a positive constant θλ,α such
that f ′ > 0 on [0, θλ,α) and f ′(θλ,α) = 0. Indeed, assuming the contrary, we obtain in
view of f ′(0) = α > 0, that f ′ > 0 on [0, T ).

On the one hand, if T = ∞, we infer from (3.1) that

0 = f ′′(x) + λf(x)
(
1 + (f ′(x))2

)3/2 ≥ f ′′(x) + λf(1), for all x ≥ 1.

Integration yields that

f ′(x) ≤ f ′(1)− λf(1)(x − 1) → −∞ as x → ∞,

which contradicts our assumption.
On the other hand, if T < ∞, then either sup[0,T ) f = ∞ or sup[0,T ) f

′ = ∞,
the latter case being excluded by the fact that f ′ is decreasing for positive f . If
sup[0,T ) f = ∞, we multiply (3.1) by −f ′ and integrate over [0, x] to obtain that

1

(1 + f ′2(x))1/2
=

1

(1 + α2)1/2
+

λf2(x)

2
, 0 < x < T. (3.8)
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Letting x → T , we obtain the desired contradiction. Consequently, there exists a
unique θλ,α > 0, such that f ′ > 0 on [0, θλ,α) and f ′(θλ,α) = 0.

It can be easily seen that the solution f extends to an odd function of minimal
period Tλ,α := 4θλ,α. Indeed, the map

fλ,α(x) :=






f(x), 0 ≤ x ≤ θλ,α,

f(2θλ,α − x), θλ,α ≤ x ≤ 2θλ,α,

−f(x− 2θλ,α), 2θλ,α ≤ x ≤ 3θλ,α,

−f(4θλ,α − x), 3θλ,α ≤ x ≤ 4θλ,α,

(3.9)

has an odd and Tλ,α−periodic extension on the whole of R.

We now explicitly determine the minimal period, called Tλ,α, of the solution fλ,α
of (3.6). In order to simplify calculations, we put

β :=
1√

1 + α2
.

From relation (3.8), we find for x = θλ,α that the maximum of fλ,α is

fλ,α(θλ,α) =
√
2λ−1 (1− β). (3.10)

We also infer from the same relation that

f ′
λ,α(x) =

√√√√
(
β +

λf2
λ,α(x)

2

)−2

− 1 for all x ∈ [0, θγ,α].

Dividing this equality by its right-hand side, we find that

θλ,α =

∫ θλ,α

0

f ′
λ,α(x)



(
β +

λf2
λ,α(x)

2

)−2

− 1




−1/2

dx,

and the substitution f(x) = s yields

θλ,α =

∫ fλ,α(θλ,α)

0

((
β +

λs2

2

)−2

− 1

)−1/2

ds.

Finally, setting τ := s/fλ,α(θλ,α), we obtain in virtue of (3.10) that

θλ,α =

√
2

λ

∫ 1

0

(1 − β)τ2 + β√
(1− τ2) [1 + (1 − β)τ2 + β]

dτ, (3.11)

for all α, λ > 0. Since α 7→ β is smooth, we may extend θλ,α continuously to the set
(0,∞)× [0,∞). More precisely, we state:

Lemma 3.7. The function θλ,α defined in (3.11),

(0,∞)× [0,∞) ∋ (λ, α) 7→ θλ,α ∈ (0,∞),
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is smooth, and strictly decreasing with respect to both λ and α. Moreover1

θλ,0 =
π

2
√
λ

and lim
αր∞

θλ,α =
1

2
√
2λ

B

(
3

4
,
1

2

)
. (3.12)

Proof. The integral on the right-hand side of (3.11) exists because the singularity
behaves like (1 − τ)−1/2 as τ → 1. Therefrom, the regularity assertion is clear. Let
us now show that θλ,α is strictly decreasing with respect to α. To this aim we fix
τ ∈ (0, 1) and define the function

gτ (α) := (1− β)τ2 + β

= (1− (1 + α2)−1/2)τ2 + (1 + α2)−1/2, α ≥ 0.

Since

θλ,α =

√
2

λ

∫ 1

0

1√
1− τ2

gτ (α)√
1 + gτ (α)

dτ,

we see that θλ,α is strictly decreasing with respect to λ, and it suffices to show that
the mapping

[
[0,∞) ∋ α 7→ gτ (α)(1 + gτ (α))

−1/2
]
has a negative derivative for all

τ ∈ (0, 1), α > 0. Indeed, since for such α and τ we have that

∂gτ
∂β

= 1− τ2 > 0 and
∂β

∂α
= − α

(1 + α2)3/2
< 0,

it follows from the chain rule that

d

dα

(
gτ (α)

1 + gτ (α)

)
=

g′τ (α)(2 + gτ (α))

2(1 + gτ (α))3/2
< 0, for all τ ∈ (0, 1).

In view of that gτ (0) = 1, the first equality in (3.12) follows. Taking into consideration
that limα→∞ gτ (α) = τ2, we obtain that

lim
α→∞

θλ,α =

√
2

λ

∫ 1

0

τ2√
1− τ4

dτ =
1

2
√
2λ

∫ 1

0

s−1/4(1− s)−1/2 ds

=
1

2
√
2λ

B

(
3

4
,
1

2

)
.

This completes the proof.

Recall that we are interested in determining the solutions of (3.1) which are not
only odd, but also of minimal period 2π. Thus, we are interested in determining the
set of λ and α such that θλ,α = π/2. The following lemma provides an answer in
terms of a function λ 7→ α.

Lemma 3.8. Let λ∗ be the constant defined by the relation (3.4). If λ 6∈ (λ∗, 1]
then θλ,α 6= π/2, but given λ ∈ (λ∗, 1] there exists a unique α(λ) ∈ [0,∞) such that
θλ,α(λ) = π/2. The mapping

(λ∗, 1] ∋ λ 7→ α(λ) ∈ [0,∞)

1Let λ > 0 be fixed. Recall that, given α > 0, the value Tλ,α = 4θλ,α denotes the minimal period
of the solution fλ,α of (3.6) and that the latter problem possesses the trivial solution fλ,0 ≡ 0 if

α = 0. Having said this, it is clear that the value θλ,0 = π/(2
√
λ) is not related to the trivial solution

fλ,0 ≡ 0, but is just the limit of θλ,α as α ց 0.
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is smooth, bijective, and decreasing.

Proof. In view of Lemma 3.7, we have that θλ,α = π/2 if and only if

1

2
√
2λ

B
(
3
4 ,

1
2

)
<

π

2
≤ π

2
√
λ
,

which is equivalent to that λ ∈ (λ∗, 1]. Since [(λ, α) 7→ θλ,α] is smooth and ∂αθλ,α < 0
for α > 0, we infer from the implicit function theorem that [λ 7→ α(λ)] is smooth as
well. Then

0 =
d

dλ
θλ,α(λ) = ∂λθλ,α + (∂αθλ,α)α

′(λ),

so that α′(λ) < 0 for λ ∈ (λ∗, 1) in view of Lemma 3.7. From (3.12) we infer that
α(1) = 0 and limλ→λ∗

α(λ) = ∞.

With these preparations done, we come to the proof of the main result as stated
in Theorem 3.2:

Proof of Theorem 3.2. It follows from Proposition 3.6 and Lemma 3.8 that the
odd solutions of (3.1) of minimal period 2π coincide with the set

{(λ,±fλ) : λ ∈ (λ∗, 1]},

where we simply write fλ := fλ,α(λ). In order for those solutions to be physically
realistic, we still have to require that fλ ∈ U , i.e. that ‖f‖C(S) < h. The maximum of
|fλ| is achieved at x = θλ,α(λ) = π/2, and we infer from (3.10) that λ ∈ (λ∗, 1] must
additionally satisfy

fλ(π/2) =
√
2λ−1

(
1− (1 + α2(λ))−1/2

)
< h. (3.13)

Let us first assume that h2 < 2λ−1
∗ . Since, in view of Lemma 3.8,

2λ−1
(
1− (1 + α2(λ))−1/2

)
րλ→λ∗

2λ−1
∗

we find a unique λh > λ∗ with the property that

max |fλh
| =

√
2λ−1

h

(
1− (1 + α2(λh))−1/2

)
= h.

By recalling that λ = g(̺+ − ̺−)/γ, we infer the main part of the theorem, including
(i).

If instead h2 = 2λ−1
∗ , then fλ ∈ U for all λ ∈ (λ∗, 1] and Lemma 3.8 implies that

|fλ| րλ→λ∗

√
2/λ∗, while f ′

λ(0) = α(λ) րλ→λ∗
∞.

We have thus shown that (ii) is valid, and assertion (iii) follows similarly.

Remark 3.9. Differentiating relation (3.8) with respect to λ and using a maxi-
mum principle argument, shows that fλ1

> fλ2
on (0, π) provided λ∗ < λ1 < λ2 ≤ 1.

The evolution of the solution fλ with respect to λ ∈ (λ∗, 1] is pictured in Figure 3.

Proof of Corollary 3.3. The constant γl,h is defined similarly to γh, and ensures
that l−1fγ(l·) remain in U for all γ ∈ [γ1, γl,h) (see the proof of Theorem 3.2). If l
is large enough relation (3.10) shows that γl,h = γ∗. The relation (3.5) now follows
in view of that the global bifurcation branch Σl consists exactly of functions with
minimal period 2π/l.
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f1

fλ1

fλ2

fλ∗

0 π/2 π

√
2/λ∗

x

y

Fig. 3. Steady-states fλ on Σ1, λ∗ < λ2 < λ1 < 1.

4. Description of the bifurcation branches Cl. Let us return to the setting
of Theorem 2.3. Define

Σ̃l := {(γ, fγ(·+ π/2l)) : (γ, fγ) ∈ Σl} ∪ {(γl, 0)}, 1 ≤ l ∈ N.

Since the functions fγ are odd (cf. (3.9)), the smooth curve Σ̃l consists of even
functions. Hence, it must be a subset of the maximal connected component of S to
which (γl, 0) belongs, i.e. Σ̃l ⊂ Cl. We shall prove that the converse is also true. This
means that the branches Cl consist, with the exception of the trivial solution (γl, 0),
exactly of even functions with minimal period 2π/l. Theorem 3.2 may be then used
to describe the global bifurcation branches Cl.

Theorem 4.1. Given l ∈ N, l ≥ 1, we have that Cl = Σ̃l.

Since the even solutions of (2.3) near (γl, 0) lie either on the trivial curve Σ or on

Cl, we conclude that Σ̃l and Cl coincide in a small neighbourhood of (γl, 0). Hence,
at least in small neighbourhood of (γl, 0), the (seemingly) arbitrary constant in (2.3)
is zero. Even more holds:

Lemma 4.2. Let (γ, f) ∈ (0,∞)×W be a solution of (2.3). We then have

f ′′

(1 + f ′2)3/2
+ λf = 0 in S.

Moreover, if 2π/l, l ≥ 1, is the minimal period of f, then f(·−π/2l) is an odd solution
of (2.3).

Proof. Assume by contradiction that we would find a solution (γ, f) ∈ (0,∞)×W
of (2.3) such that

f ′′

(1 + f ′2)3/2
+ λf = c in S,

with a constant c 6= 0. Let g := f − c/λ. Then g is an even solution of (3.1), but g
has no longer integral mean equal to 0. Since g′(0) = 0, it must hold that g(0) 6= 0.
Otherwise, g = 0, meaning that f = c/λ, which contradicts f ∈ W .

We may, without loss of generality, assume that g(0) > 0. There exists a positive
time Tc > 0 such that g > 0 on [0, Tc) and g(Tc) = 0. Indeed, if this is not the case, we
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infer from (3.1) that g′′ < 0. This is in contradiction with the fact that g is periodic.
The function g is a 4Tc−periodic function on R, since it must hold that

g(x) =






g(x), 0 ≤ x ≤ Tc,

−g(2Tc − x), Tc ≤ x ≤ 2Tc,

−g(x− 2Tc), 2Tc ≤ x ≤ 3Tc,

g(4Tc − x), 3Tc ≤ x ≤ 4Tc.

(4.1)

Moreover, g is 2π−periodic, so that Tc = π/(2k), for some k ∈ N. We conclude that
g has integral mean zero, which is in contradiction with f ∈ W and c 6= 0. Thus, f
must solve (3.1). The relation (4.1) then holds also for f , provided that Tc = π/2l.
This completes the proof.

In virtue of Corollary 3.3, Proposition 3.6, and the proof of Lemma 4.2 we con-
clude:

Remark 4.3. The solutions of (2.3) are, up to translation, odd. Moreover,
problem (2.3) has no solutions (γ, f) ∈ (0,∞)× U if γ > γh.

With this preparation done, the proof of Theorem 4.1 is immediate.

Proof of Theorem 4.1. Lemma 4.2 shows that the mapping

∪∞
l=1 (Σl ∪ {(γl, 0)}) → S, Σl ∪ {(γl, 0)} ∋ (γ, f) 7→ (γ, f(·+ π/2l)),

is one-to-one and onto. Recall that S is the closure of the set of nontrivial solutions
of (2.3) in (0,∞) ×W , and the union ∪∞

l=1 (Σl ∪ {(γl, 0)}) is, in virtue of Corollary

3.3, disjoint. The image of Σl ∪ {(γl, 0)} under this mapping is Σ̃l, hence Cl = Σ̃l.

Appendix. It is clear form Proposition 3.1 and Corrolary 3.3 that the
T−periodic solutions of (2.3) are exactly the elements of the set

ST :=

{
f

(
2π

T
·
)

: f ∈ S2π

}
.

The volume constraint in (2.3) for T−periodic solutions reads as
∫ T

0 f dx = 0. In
view of Remark 4.3 we show that each T−periodic solution f of (2.3) corresponds
to a unique function θ describing the evolution of a mathematical pendulum (or the
bending of an elastic rod):

θ′′ + λ sin(θ) = 0, (4.2)

cf. also [12]. We set λ := g/l, with l denoting the length of the pendulum. We refer
to [1, 2] for the deduction of (4.2). Herein, of interest are only the solutions of (4.2)
which satisfy

|θ| < π/2 and θ(0) = 0. (4.3)

Particularly, solutions of (4.2)-(4.3) are odd. We now state:

Theorem 4.4. There exists a one-to-one correspondence between the even solu-
tions f of (2.3) and the odd solutions θ of (4.2)-(4.3).

Given s ∈ R, θ(s) is the angle between the tangent to Γ(f) at z(s) and the Ox-axis,
with z : R → R a parametrisation of Γ(f) by the arc length.
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Proof. Take first f to be an even solution of (2.3). We define the function
p : R → R by

p(x) =

∫ x

0

√
1 + f ′2(t) dt, x ∈ R.

This mapping is bijective, and we let z denote its inverse. Let θ : R → R be given by

θ(s) = arctan f ′(z(s)), s ∈ R. (4.4)

If L = p(T ), then θ is L−periodic. Indeed, we have that

L = p(z(s+ L))− p(z(s)) =

∫ z(s+L)

z(s)

√
1 + f ′2(t) dt =

∫ z(s)+T

z(s)

√
1 + f ′2(t) dt,

hence z(s+L) = z(s)+T. Being a composition of odd functions, θ is also odd. Given
s ∈ R,

θ′(s) =
f ′′(z(s))

1 + f ′2(z(s))
z′(s) = −λf(z(s))z′(s)

√
1 + f ′2(z(s)) = −λf(z(s)),

due to

z′(s) =
1

p′(z(s))
=

1

(1 + f ′2(z(s)))1/2
. (4.5)

Hence

θ′′(s) = λf ′(z(s))z′(s) = −λ
f ′(z(s))√

1 + f ′2(z(s))
= −λ sin(θ(s)),

and θ is a L−periodic solution of (4.2)-(4.3).
Conversely, given a solution θ of (4.2)-(4.3), we let z : R → R be the function

defined by

z(s) :=

∫ s

0

cos(θ(t)) dt, s ∈ R,

and write p for its inverse. Setting T :=
∫ L

0 cos(θ(t)) dt, we have that p(x + T ) =
L+ p(x) for all x ∈ R. It can then be easily verified that f : R → R,

f(x) := −θ′(0)

λ
+

∫ x

0

tan(θ(p(t))) dt, x ∈ R,

is a T−periodic and even solution of (2.3).

With this observation, our result stated in Theorem 3.2 rewrites for the mathe-
matical pendulum equation as follows:

Corollary 4.5. There exists a smooth curve θλ, λ ∈ (λ∗, 1], consisting of
Lλ−periodic solutions of (4.2)-(4.3) with the property that

sup |θ| = arctan(α(λ)) րλ→λ∗
π/2.
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Remark 4.6. It is worth noticing that the period Lλ of these solutions is strictly
decreasing with respect to λ. Indeed, it holds that

Lλ =
2√
λ

∫ π/2

−π/2

dθ√
1− sin2(arctan(α(λ))/2) sin2(θ)

,

and since α decreases with respect to λ we obtain the desired conclusion. Though
Lλ can be calculated in terms of elliptic integrals, it is in general difficult to specify
for which solution θ of (4.2)-(4.3) of period L > 0 it holds that z(L) = 2π, so that
the corresponding solution of (2.3) has period 2π. Furthermore, the result stated in
Corollary 4.5 can not be obtained via standard bifurcation theorems, since the period
of Lλ must decrease with respect to λ. These facts serve as a motivation for our
approach.
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