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TRANSMISSION PROBLEM FOR THE ELECTROMAGNETIC

SCATTERING BY A DISSIPATIVE CHIRAL OBSTACLE∗

HANNA KIILI†

Abstract. Electromagnetic scattering by a dissipative chiral obstacle in achiral surrounding
leads to a transmission problem. The transmission problem is reduced to a single integral equation
over the boundary of the obstacle with one unknown tangential vector field. The equation is shown
to be uniquely solvable except for some values of the material parameters and the frequency. The
principal symbol of a boundary integral operator is also calculated.

Key words. Transmission problem, electromagnetic scattering, chiral media, boundary integral
equation.

AMS subject classifications. 35Q61, 45B05, 78A45.

1. Introduction. In the early nineteenth century Arago and Biot discovered in-
dependently that the plane of polarization of linearly polarized light rotates in certain
substances e.g. in sugar solution. In 1848 Pasteur proposed that this phenomenon is
caused by the chirality at the molecular level. Chirality is an asymmetry; a molecule
is called chiral if it cannot be superimposed onto its mirror image. Chiral media can
be characterized by constitutive equations, where the electric and magnetic fields are
coupled by a material parameter called chirality measure. There are different expres-
sions for these equations [13, 10], and we will use the Drude-Born-Fedorov constitutive
equations

{
D = ε(E + β∇× E)

B = µ(H + β∇×H),
(1)

where E is the electric field, H is the magnetic field, B is the magnetic flux density, D
is the electric flux density, ε is the electric permittivity, µ is the magnetic permeability
and β is the chirality measure.

In chiral media we have two wave numbers

γ1 =
k

1− kβ
and γ2 =

k

1 + kβ

for left-circularly (LCP) and right-circularly polarized (RCP) waves respectively. Here
k = ω

√
εµ and ω > 0 is the angular frequency. The real parts of the wave numbers

are related to unequal phase velocities of RCP and LCP waves, which causes the
rotation. Presence of the imaginary parts of γ1 and γ2 results in that RCP and LCP
waves attenuate unequally. This phenomenon is called optical activity.

In this work we solve the transmission problem for the electromagnetic scattering
by a chiral obstacle in an achiral medium by a single integral equation over the bound-
ary. We consider the problem in the time-harmonic case. We assume that the obstacle
and the surrounding are homogeneous and the material of the obstacle is defined by
complex material parameters. Earlier the problem has been solved by different meth-
ods. In the article [2] Athanasiadis and Stratis consider this transmission problem via
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a weak solution. In [6] Athanasiadis, Martin and Stratis solve the problem by a pair
of coupled boundary integral equations. In [4, 5] Athanasiadis, Costakis and Stratis
assume in addition that the surrounding is chiral, and in [19] Ola assumes that all
the material parameters are real. See also the book [21] for various electromagnetic
problems in chiral media.

The single integral equation method is used for solving acoustic transmission
problem by Kleinman and Martin in the article [12]. The simplest problem in electro-
magnetism, which can be written as one boundary integral equation, is the scattering
by a perfectly conducting obstacle in free space [7]. The case when perfectly conduct-
ing body is in a chiral environment is studied in [3]. In [15] Martin and Ola solve
the electromagnetic transmission problem for an achiral non-dissipative scatterer by
a single integral equation. The same problem with complex wave numbers is reduced
to a single integral equation by Costabel and Le Louër in [8]. They assume only Lip-
schitz continuity for the boundary of the obstacle whereas Martin and Ola consider
smooth boundary. In [15] the operator is proved to be Fredholm with index zero by
using pseudodifferential operators and in [8] by Grding inequality.

In this work we generalize a part of the article [15] for a chiral scatterer. The
transmission problem can be reduced to a single integral equation by first choosing
an ansatz (with one unknown tangential vector field) as a solution for the Maxwell’s
equations in the exterior domain and the representation formulas as a solution for the
Drude-Born-Fedorov equations (2) in the interior domain. Then the tangential traces
of both the solutions on the boundary and the transmission boundary conditions
give one boundary integral equation with one unknown. By solving the boundary
integral equation we get a solution for the transmission problem. Because some of
the operators in the equation are not compact, we interpret the boundary integral
operators as pseudodifferential operators and show that an operator is elliptic. For
proving the ellipticity with chiral scatterer we have to choose the ansatz differently
than in [15] (Remark 1) and calculate the principal symbol of a boundary integral
operator. Because we use pseudodifferential operators and compute a symbol in local
coordinates, we assume that the boundary of the obstacle is defined by C∞-functions.
However, by different method this transmission problem is shown to be uniquely
solvable for C2-domains [2]. Mainly the results in this paper were also proved in the
dissertation [11] where we consider real and positive permittivities and permeabilities
and real chirality. Now we show that the method works with complex parameters
as well, without any new difficulties. Compared to other methods the single integral
equation method seems to offer computational advantages.

In Section 2 we introduce the Drude-Born-Fedorov equations and formulate the
transmission problem. In Section 3 we define appropriate Sobolev spaces and needed
integral operators, their mapping properties and the representation formulas for
Drude-Born-Fedorov equations. In the last section we write the transmission problem
as a single integral equation and show that the equation is uniquely solvable with
some restrictions for the material parameters and the frequency.

2. Statement of the problem. We will consider the time-harmonic Maxwell’s
equations

{
∇× E = iωB

∇×H = − iωD.
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By substituting the constitutive equations (1) we get the Drude-Born-Fedorov equa-
tions

{
∇× E = γ2βE + iωµ

(
γ
k

)2
H

∇×H = γ2βH − iωε
(
γ
k

)2
E,

(2)

where γ2 = γ1γ2.
Let Ω ⊂ R3 be a bounded and smooth penetrable chiral obstacle in achiral medium

such that the exterior domain R3\Ω̄ is simply-connected. Then the scattering of time-
harmonic electromagnetic waves leads to the following problem:

Transmission Problem. Find vector fields {Ei, Hi} and {Esc, Hsc} that satisfy
the Maxwell’s equations

∇× Esc − iωµeHsc = 0 in R
3\Ω,

∇×Hsc + iωεeEsc = 0 in R
3\Ω,

the Drude-Born-Fedorov equations

∇× Ei − γ2βEi − iωµi

(
γ

ki

)2

Hi = 0 in Ω,

∇×Hi − γ2βHi + iωεi

(
γ

ki

)2

Ei = 0 in Ω,

and the transmission conditions

n× Ee = n× Ei and n×He = n×Hi on ∂Ω, (3)

where

Ee = Esc + Einc, He = Hsc +Hinc in R
3\Ω,

and the incident wave {Einc, Hinc} is a whole space solution of the Maxwell’s equation
with µ = µe and ε = εe. Furthermore, the scattered fields {Esc, Hsc} must satisfy
one of the Silver-Müller radiation conditions

x

|x| ×Hsc +

√
εe

µe
Esc = o

(
1

|x|

)
, |x| → ∞, (4)

or

x

|x| × Esc −
√

µe

εe
Hsc = o

(
1

|x|

)
, |x| → ∞,

uniformly for all directions x
|x| . We assume that the constants εe and µe are real and

positive. The constants β, εi and µi can be complex, and the following restrictions
must hold:

Im ki ≥ 0, Im γ1 ≥ 0, Im γ2 ≥ 0 and η > 0, (5)

where

ki = ω
√
εiµi, γ1 =

ki

1− kiβ
, γ2 =

ki

1 + kiβ
and η =

√
µi

εi
.
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In the following we always assume that |kiβ| < 1. The next boundary value
problem will be important in the uniqueness considerations.

Associated Problem. Find fields {E,H} that satisfy the Maxwell’s equations

∇× E − iωµH = 0 and ∇×H + iωεE = 0 in Ω

and the boundary condition

a(n× E) + b(n×H) = 0 on ∂Ω, (6)

where a and b are (complex) constants.

If this problem has a non-trivial solution, the constant k2 = ω2µε is called an
eigenvalue of the associated interior Maxwell problem.

3. Function spaces and integral operators. Let us assume that Ω is a
bounded smooth obstacle in R3. We denote by Hs(Ω) (or Hs(∂Ω)) the usual L2-
based Sobolev space in Ω (or on ∂Ω), where s ∈ R. In the exterior domain the space
H

s

loc(R
3\Ω) consists of all such distributions u ∈ D′(R3\Ω) that

u|B∩(R3\Ω) ∈ Hs(B ∩ (R3\Ω))

for all open balls B for which Ω ⊂ B. In this space

‖u‖2B = ‖u|B∩(R3\Ω)‖2Hs(B∩(R3\Ω))
, B an open ball, Ω ⊂ B,

are seminorms.
The aim is to find a solution {Ei, Hi} ∈ H1

Div(Ω) and {Esc, Hsc} ∈ H
1

loc,Div(R
3\Ω)

for the transmission problem, where

H1
Div(Ω) := {u ∈

(
H1(Ω)

)3
: Div(n× u|i∂Ω) ∈ H1/2(∂Ω)}

and

H
1

loc,Div(R
3\Ω) := {u ∈

(
H

1

loc(R
3\Ω)

)3

: Div(n× u|e∂Ω) ∈ H1/2(∂Ω)}.

Here Div is the surface divergence, n is an outward unit normal to ∂Ω and the notation
|ν∂Ω, ν = i, e, means the trace from the interior and the exterior domain, respectively.
The space H1

Div(Ω) is equipped with the norm

‖u‖2H1

Div
(Ω) = ‖u‖2(H1(Ω))3 + ‖Div(n× u|i∂Ω)‖2H1/2(∂Ω)

and H
1

loc,Div(R
3\Ω) with the family of seminorms

‖u‖2B,Div = ‖u‖2B + ‖Div(n× u|e∂Ω)‖2H1/2(∂Ω).

On the boundary we define the spaces

THs(∂Ω) := {u ∈ (Hs(∂Ω))
3
: n · u = 0}, s ∈ R,

and

TH
1/2
Div(∂Ω) := {u ∈ TH1/2(∂Ω) : Div u ∈ H1/2(∂Ω)}.
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The space TH
1/2
Div(∂Ω) is equipped with the norm

‖u‖2
TH

1/2
Div

(∂Ω)
= ‖u‖2

(H1/2(∂Ω))3
+ ‖Div u‖2H1/2(∂Ω).

The same spaces have been used e.g. in [20, 3, 4, 1, 11].
In the following, we will denote by x and y the points in Ω∪(R3\Ω) and by x and

y the points on ∂Ω. Further, we will use the subindex υ to denote in which domain
x belongs so that

υ =

{
i, if x ∈ Ω,

e, if x ∈ R3\Ω.

The single-layer potential is defined by

Sα,υf(x) =

∫

∂Ω

Φα(x− y)f(y) dσ(y),

where f is a scalar or vector-valued function and

Φα(x− y) =
eiα|x−y|

4π|x− y| , α ∈ C,

is a fundamental solution of the Helmholtz operator −∆ − α2I. For a vector-valued
function u we define the operators

Cα,υu = ∇× {Sα,υu} and Fα,υu = ∇×∇× {Sα,υu}.

It is known [20] that the mappings

Cα,i,Fα,i : TH
1/2
Div(∂Ω) → H1

Div(Ω) (7)

and

Cα,e,Fα,e : TH
1/2
Div(∂Ω) → H

1

loc,Div(R
3\Ω) (8)

are continuous. On the boundary we will need the tangential components of Cα,υ and
Fα,υ which we denote by

Mαu(x) = n(x)× (∇× {Sαu(x)})

and

Pαu(x) = n(x) × (∇×∇× {Sαu(x)}),

where

Sαu(x) =

∫

∂Ω

Φα(x− y)u(y) dσ(y), x ∈ ∂Ω.

If u ∈ TH
1/2
Div(∂Ω), we have the jump relations [7]

Mαu =
1

2
u+ n× (Cα,iu)|i∂Ω = −1

2
u+ n× (Cα,eu)|e∂Ω (9)



364 H. KIILI

and

Pαu = n× (Fα,iu)|i∂Ω = n× (Fα,eu)|e∂Ω. (10)

It is known [20, 14, 15, 11] that

Mα, Pα : TH
1/2
Div(∂Ω) → TH

1/2
Div(∂Ω), (11)

where Mα is compact and Pα is continuous, and

Mα : THs(∂Ω) → THs+1(∂Ω), s ∈ R, (12)

Pα : THs(∂Ω) → THs−1(∂Ω), s ∈ R, (13)

and

Pα′ − Pα : THs(∂Ω) → THs+1(∂Ω), s ∈ R, (14)

are continuous. Moreover, the operators Mα and Pα, α ∈ C, satisfy the equalities [17,
18]

1

α
P 2
α =

1

4
αI − αM2

α and MαPα = −PαMα (15)

on TH
1/2
Div(∂Ω).

If the fields {E,H} satisfy the Drude-Born-Fedorov equations in Ω, then E and
H have the representations [1]

−2E(x) = Ki(n× E)(x) + i

√
µ

ε
Di(n×H)(x), x ∈ Ω, (16)

and

−2H(x) = Ki(n×H)(x)− i

√
ε

µ
Di(n× E)(x), x ∈ Ω, (17)

where

Ki = Cγ1,i +Cγ2,i +
1

γ2
(γ2Fγ1,i − γ1Fγ2,i)

and

Di = Cγ1,i −Cγ2,i +
1

γ2
(γ2Fγ1,i + γ1Fγ2,i).

If we choose β = 0, we get the representation formulas for the usual Maxwell’s equa-
tions [7]

−2E(x) = Ck,i(n× E)(x) +
i

ωε
Fk,i(n×H)(x), x ∈ Ω, (18)

and

−2H(x) = Ck,i(n×H)(x)− i

ωµ
Fk,i(n× E)(x), x ∈ Ω. (19)
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When we denote

K = Mγ1
+Mγ2

+
1

γ2
(γ2Pγ1

− γ1Pγ2
)

and

D = Mγ1
−Mγ2

+
1

γ2
(γ2Pγ1

+ γ1Pγ2
),

we get by (9) and (10) that

Ku = u+ n× (Kiu)|i∂Ω = −u+ n× (Keu)|e∂Ω, (20)

and

Du = n× (Diu)|i∂Ω = n× (Deu)|e∂Ω. (21)

4. Single integral equations via representation formulas. In this section
we reduce the transmission problem to a boundary integral equation with one un-
known tangential vector field. We use an ansatz with one unknown tangential vector
field in the exterior domain and the representation formulas in the interior domain
for constructing the equation.

In achiral surrounding we choose that

Esc(x) = a
i

ωεe
Fke,ej(x) − bCke,ej(x), x ∈ R

3\Ω, (22)

and

Hsc(x) = aCke,ej(x) + b
i

ωµe
Fke,ej(x), x ∈ R

3\Ω, (23)

where j ∈ TH
1/2
Div(∂Ω), ke = ω

√
εeµe and a and b are complex constants. The con-

stants a and b will be chosen later. The fields Esc and Hsc satisfy the Maxwell’s
equations in the exterior domain and the Silver-Müller radiation condition (4) at
infinity. By (9) and (10) the tangential components on the boundary are

n× Esc = a
i

ωεe
Pkej − b

(
1

2
I +Mke

)
j := Tej (24)

and

n×Hsc = a

(
1

2
I +Mke

)
j + b

i

ωµe
Pkej := Lej. (25)

In the interior domain we use the representation formulas

−2Ei(x) = Ki(n× Ei)(x) + i

√
µi

εi
Di(n×Hi)(x), x ∈ Ω,

and

−2Hi(x) = Ki(n×Hi)(x) − i

√
εi

µi
Di(n× Ei)(x), x ∈ Ω.
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By the jump relations (20) and (21) and the boundary condition (3) we get that

−2n× Ee = (−I +K)(n× Ee) + i

√
µi

εi
D(n×He) (26)

and

−2n×He = (−I +K)(n×He)− i

√
εi

µi
D(n× Ee). (27)

Next we substitute the equalities

n× Ee = n× Esc + n× Einc = Tej + n× Einc (28)

and

n×He = n×Hsc + n×Hinc = Lej + n×Hinc (29)

into the equation (26) and obtain

(I +K)Tej + i

√
µi

εi
DLej = f, (30)

where

f = −(I +K)(n× Einc)− i

√
µi

εi
D(n×Hinc). (31)

In the same way, the equation (27) gives that

(I +K)Lej − i

√
εi

µi
DTej = g, (32)

where

g = −(I +K)(n×Hinc) + i

√
εi

µi
D(n× Einc). (33)

Notice that the functions f and g belong to TH
1/2
Div(∂Ω) because {n×Einc, n×Hinc} ∈

TH
1/2
Div(∂Ω) and the operators K and D map continuously on this space.
The boundary integral equations (30) and (32) are the single integral equations

which we are going to consider. If we solve j from either one of them, then the exterior
field {Esc, Hsc} is given by the representations (22) and (23), and the interior field is
given by the representation formulas with the boundary conditions (28) and (29) i.e.

−2Ei(x) = Ki(n× Einc + Tej)(x) + i

√
µi

εi
Di(n×Hinc + Lej)(x), x ∈ Ω, (34)

and

−2Hi(x) = Ki(n×Hinc + Lej)(x) − i

√
εi

µi
Di(n× Einc + Tej)(x), x ∈ Ω. (35)

Next we prove the connection between the equations (30) and (32) and the transmis-
sion problem. The proof is similar to the proof of [15, Theorem 7.1].



ELECTROMAGNETIC SCATTERING BY A CHIRAL OBSTACLE 367

Theorem 4.1. If j ∈ TH
1/2
Div(∂Ω) solves (30) or (32), then {Esc, Hsc} and

{Ei, Hi} given by (22), (23), (34) and (35) solve the transmission problem.

Proof. Because by the mapping properties (7) and (8) the fields {Ei, Hi} ∈
H1

Div(Ω) and {Esc, Hsc} ∈ H
1

loc,Div(R
3\Ω), and they satisfy the required equations, it

is enough to show that the transmission boundary conditions hold.
Assume that j solves (30). By the definition (24), the representation (34) and the

jump relations (20) and (21) we get that

2(n× Esc + n× Einc − n× Ei)

= 2(Tej + n× Einc)− Tej − n× Einc +K(n× Einc + Tej)

+ i

√
µi

εi
D(n×Hinc + Lej)

= (I +K)Tej + i

√
µi

εi
DLej − f

on the boundary. By the assumption it follows that n× Ee = n× Ei.
We still have to show that n×He = n×Hi. To prove this we construct the fields

2Ẽsc(x) = Ke(n× Einc + Tej)(x) + i

√
µi

εi
De(n×Hinc + Lej)(x), x ∈ R

3\Ω,

and

2H̃sc(x) = Ke(n×Hinc + Lej)(x) − i

√
εi

µi
De(n× Einc + Tej)(x), x ∈ R

3\Ω,

that satisfy the Drude-Born-Fedorov-equations in the exterior domain, which has the
same material parameters as the interior domain in the transmission problem. They
also satisfy the Silver-Müller radiation condition (4) which can be checked by using [7,
Theorem 4.4]. Since j solves (30), we get by (20) and (21) that n × Ẽsc = 0 on the
boundary. Because the exterior boundary value problem for the Drude-Born-Fedorov
equations has at most one solution (see [3, Lemma 1]), the fields Ẽsc = H̃sc = 0 in
R3\Ω. Since

2n× H̃sc = (I +K)(n×Hinc + Lej)− i

√
εi

µi
D(n× Einc + Tej) = 0,

we get that

2(n×Hsc + n×Hinc − n×Hi) = (I +K)Lej − i

√
εi

µi
DTej − g = 0.

Therefore n×He = n×Hi. The proof for the equation (32) is similar.

4.1. Uniqueness. Next we study the uniqueness of solutions to the boundary
integral equations (30) and (32). It will be shown that the uniqueness depends on the
eigenvalues of the associated interior Maxwell problem. If the incident fields are zero,
we have the homogeneous boundary integral equations

(
(I +K)Te + i

√
µi

εi
DLe

)
j0 = 0 (36)



368 H. KIILI

and
(
(I +K)Le − i

√
εi

µi
DTe

)
j0 = 0. (37)

Theorem 4.2. The equations (36) and (37) have a non-trivial solution j0 ∈
TH

1/2
Div(∂Ω) if and only if k2e is an eigenvalue of the associated interior Maxwell prob-

lem.

Proof. We will prove this claim in the similar manner as [15, Theorem 7.2]. First
we assume that j0 6≡ 0 solves (36) or (37). We denote by {E0

υ, H
0
υ}, υ = i, sc, such

fields (22), (23), (34) and (35) that j is replaced by j0 and n×Einc = n×Hinc = 0. By
Theorem 4.1 these fields solve the homogeneous transmission problem which has only
the trivial solution by [2, Theorem 1]. It means that the fields {E0

υ, H
0
υ}, υ = i, sc,

vanish identically.
Next we construct the fields

Ẽi(x) = a
i

ωεe
Fke,ij0(x)− bCke,ij0(x), x ∈ Ω,

and

H̃i(x) = aCke,ij0(x) + b
i

ωµe
Fke,ij0(x), x ∈ Ω,

which satisfy the Maxwell’s equations with the material parameters εe and µe. Be-
cause the field {E0

sc, H
0
sc} vanishes, we get by the jump relations (9) and (10) that

n× Ẽi = n× E0
sc + bj0 = bj0 (38)

and

n× H̃i = n×H0
sc − aj0 = −aj0 (39)

on the boundary. These equalities give us that

a(n× Ẽi) + b(n× H̃i) = 0 on ∂Ω.

Because j0 6≡ 0, then also H̃i 6≡ 0 and Ẽi 6≡ 0. Hence, k2e = ω2εeµe is an eigenvalue of
the associated interior Maxwell problem.

Next we assume that k2e is an eigenvalue of the associated interior Maxwell prob-
lem. Then the problem has a non-trivial solution which is given by the representation
formulas

−Ẽi(x) = Cke,i(n× Ẽi)(x) +
i

ωεe
Fke,i(n× H̃i)(x), x ∈ Ω,

and

−H̃i(x) = Cke,i(n× H̃i)(x)−
i

ωµe
Fke,i(n× Ẽi)(x), x ∈ Ω.

By the jump relations we get the equalities
(
1

2
I +Mke

)
(n× Ẽi) +

i

ωεe
Pke(n× H̃i) = 0 (40)
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and
(
1

2
I +Mke

)
(n× H̃i)−

i

ωµe
Pke(n× Ẽi) = 0 (41)

on the boundary. If a 6= 0, we can solve n× Ẽi from the boundary condition (6) and
substitute it into the above equalities. We get that Te(n×H̃i) = 0 and Le(n×H̃i) = 0,
and therefore n × H̃i is a non-trivial solution of the equations (36) and (37). In the
case a = 0 the boundary condition is equal to n × H̃i = 0. Then the equations (40)
and (41) give that Te(n × Ẽi) = 0 and Le(n × Ẽi) = 0, and the field n × Ẽi is a
non-trivial solution of (36) and (37).

4.2. Solvability. Let us denote

τ =
εe

εi
and ρ =

µi

µe
.

When we substitute (24) and (25) into the equation (30) and separate the a dependent
and b dependent terms, the equation (30) can be written in the form

(
a

i

ωεe
Bτ,β − bAρ,β

)
j = f,

where

Bτ,β =

(
I +Mγ1

+Mγ2
+

1

γ1
Pγ1

− 1

γ2
Pγ2

)
Pke

+ kiτ

(
Mγ1

−Mγ2
+

1

γ1
Pγ1

+
1

γ2
Pγ2

)(
1

2
I +Mke

)

and

Aρ,β =

(
I +Mγ1

+Mγ2
+

1

γ1
Pγ1

− 1

γ2
Pγ2

)(
1

2
I +Mke

)

+
ρ

ki

(
Mγ1

−Mγ2
+

1

γ1
Pγ1

+
1

γ2
Pγ2

)
Pke .

We will first consider this equation on the space TH1/2(∂Ω). In general, the

operator a
i

ωεe
Bτ,β − bAρ,β is not continuous on TH1/2(∂Ω). But, if we choose

a = − i
βωεe

τ + 1
and b = −1, (42)

we get the operator

Tβ :=
β

τ + 1
Bτ,β +Aρ,β : TH1/2(∂Ω) → TH1/2(∂Ω),

which is continuous. The operator is

Tβ =
1

2
I +

β

τ + 1

(
Pke −

1

2
(Pγ1

+ Pγ2
)

)
+

[
1

2ki
− τkiβ

2

2(τ + 1)

]
(Pγ1

− Pγ2
) +Mke

+
1

2
a+Mγ1

− 1

2
a−Mγ2

+ [a+Mγ1
− a−Mγ2

]Mke + [b+Mγ1
+ b−Mγ2

]Pke

+

(
a+

γ1
Pγ1

+
a−

γ2
Pγ2

)
Mke +

b+

γ1
Pγ1

Pke −
b−

γ2
Pγ2

Pke ,
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where

a± =
kiτβ ± (1 + τ)

τ + 1
and b± =

kiβ ± ρ(1 + τ)

ki(τ + 1)
,

and it is continuous because

PγjPke = Pγj (Pke − Pγj ) +
1

4
γ2
j (I −M2

γj
), j = 1, 2, (43)

which holds by the equality (15). From now on, we will only consider the equation (30).
The equation (32) could be handled in a similar manner.

We will prove the unique solvability of the equation

Tβj = f (44)

in TH1/2(∂Ω) by using the Fredholm alternative [16, Theorem 2.27], and therefore we
need to show that Tβ is a Fredholm operator with index zero. We get the Fredholm
property by showing that Tβ is an elliptic pseudodifferential operator (see [22]). A
classical pseudodifferential operator is said to be elliptic if the determinant of the
principal symbol is non-zero. All the operators we are considering in this work are
classical pseudodifferential operators.

Remark 1. In achiral case the operator Aρ,0 is elliptic and we can choose a = 0
and b = −1. In chiral case we need the combination of the operators Aρ,β and Bτ,β

in order to get an elliptic operator. Because of this we chose the ansatz (22) and (23)
differently than Martin and Ola in [15] (we replaced n × j by j). Furthermore, the
choice of the ansatz is related to the boundary condition of the associated interior
Maxwell problem (Theorem 4.2). Therefore, our associated interior Maxwell problem
differs from the impedance problem which was used in [15].

The principal symbols for Pα and PαPα′ are known [15] but for

Mαu(x) = n(x)×
(
∇x ×

∫

∂Ω

Φα(x− y)u(y) dσ(y)

)
, x ∈ ∂Ω,

where u is a tangential density, we need to calculate it. If we calculate the symbol for
the corresponding operator in halfspace, we will get zero matrix (see [9]). This is not
enough for us because we need Mα as an operator of order −1. Therefore we must
take into account the boundary of the domain. In the symbol calculations we will use
the following lemmas.

Lemma 4.1. Let Vx′ be a neighborhood of x′ = (x1, x2) ∈ R2 and let φ : Vx′ → R

be a C∞-function such that ∇φ(x′) = 0. Then

∂xl
Φα(x

′ − y′, φ(x′)− φ(y′)) = − xl − yl

4π|x′ − y′|3 +O(1), l = 1, 2,

as |x′ − y′| → 0.

Proof. Since ∇φ(x′) = 0, we get that

∂xl
Φα(x

′ − y′, φ(x′)− φ(y′)) = − xl − yl

4π|x′ − y′|3 a(x
′, y′) +O(1),
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where

a(x′, y′) =

(
1 +

|φ(x′)− φ(y′)|2
|x′ − y′|2

)−3/2

.

Furthermore, by the Taylor’s formula

φ(y′)− φ(x′) =
1

2

(
(y1 − x1)

2∂2
1φ(x

′) + 2(y1 − x1)(y2 − x2)∂1∂2φ(x
′)

+ (y2 − x2)
2∂2

2φ(x
′)
)
+O(|x′ − y′|3).

(45)

The claim follows by the binomial series because

a(x′, y′) = 1− 3

2

|φ(x′)− φ(y′)|2
|x′ − y′|2 +O

( |φ(x′)− φ(y′)|4
|x′ − y′|4

)

= 1 +O(|x′ − y′|2).

In the following we will need the Fourier transform

Fu(ξ) =

∫

R2

e− ix′·ξu(x′) dx′, ξ ∈ R
2,

and the inverse Fourier transform

F−1u(x′) =
1

(2π)2

∫

R2

eix
′·ξu(ξ) dξ, x′ ∈ R

2.

Lemma 4.2. Let x′ = (x1, x2) ∈ R2 and ξ = (ξ1, ξ2) ∈ R2. Then

F
(

x2
1

4π|x′|3
)
(ξ) =

ξ22
2|ξ|3 ,

F
(

x1x2

4π|x′|3
)
(ξ) = − ξ1ξ2

2|ξ|3 and F
(

x2
2

4π|x′|3
)
(ξ) =

ξ21
2|ξ|3 .

Proof. The first claim follows from

F
(

x2
1

4π|x′|3
)
(ξ) =

1

4π
F
(
x1

(
−∂1

1

|x|

))
(ξ) = ∂1

(
ξ1

2|ξ|

)
=

ξ22
2|ξ|3 .

The other claims can be proved in a similar manner.

In the next theorem it is essential to assume that the density is tangential. If the
normal component is involved, the symbol will be of order zero.

Theorem 4.3. Let φ be a C∞-function which graph defines the boundary ∂Ω
in a neighborhood of x′ ∈ R2. Then the operator Mα with tangential density has the
principal symbol of order −1 of the form

1

4|ξ|3
(

∂2
1φ(x

′)ξ22 − ∂2
2φ(x

′)ξ21 2∂1∂2φ(x
′)ξ22 − 2∂2

2φ(x
′)ξ1ξ2

2∂1∂2φ(x
′)ξ21 − 2∂2

1φ(x
′)ξ1ξ2 ∂2

2φ(x
′)ξ21 − ∂2

1φ(x
′)ξ22

)
.
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This statement holds in such a local coordinate system that ∇φ(x′) = 0.

Proof. Let u be a smooth tangential vector field on the boundary. Then the
operator Mα can be written as

Mαu(x) =

∫

∂Ω

[∇xΦα(x− y)][n(x) · u(y)] dσ(y)

−
∫

∂Ω

[n(x) · ∇xΦα(x− y)]u(y) dσ(y).

Let Ux be a neighborhood of x ∈ R3. Then it is enough to calculate the symbol in the
domain Ux ∩ ∂Ω, x ∈ ∂Ω, because the kernel Φα is smooth if x 6= y. Let us denote

(I1 − I2)u(x) :=

∫

Ux∩∂Ω

[∇xΦα(x− y)][n(x) · u(y)] dσ(y)

−
∫

Ux∩∂Ω

[n(x) · ∇xΦα(x− y)]u(y) dσ(y). (46)

We assume that φ is defined in a neighborhood Vx′ of x′. In addition, we choose such
a local coordinate system that at a fixed point x′ we have ∇φ(x′) = 0 which we get
by applying rotation in R3. Because the outward unit normal vector for y ∈ ∂Ω is of
the form

n(y) =
(−∇φ(y′), 1)√
1 + |∇φ(y′)|2

,

∇φ(x′) = 0 and n · u = 0, then n(x) = (0, 0, 1),

u3(y) = (∂1φ(y
′))u1(y) + (∂2φ(y

′))u2(y),

and further, ∇xΦα(x) = ∇(x′,φ(x′))Φα(x
′, φ(x′)). By these equalities and the change

of variables y = (y′, φ(y′)) we have in a neighborhood Vx′ that

I1u(x
′, φ(x′))

=

∫
[∇(x′,φ(x′))Φα(x

′ − y′, φ(x′)− φ(y′))]u3(y
′, φ(y′))

√
1 + |∇φ(y′)|2 dy′

=

∫
[∇(x′,φ(x′))Φα(x

′ − y′, φ(x′)− φ(y′))][(∂1φ(y
′)− ∂1φ(x

′))u1(y
′, φ(y′))

+(∂2φ(y
′)− ∂2φ(x

′))u2(y
′, φ(y′))]

√
1 + |∇φ(y′)|2 dy′.

By the binomial series and the Taylor’s formula

(1 + |∇φ(y′)|2)1/2 = (1 + |∇φ(y′)−∇φ(x′)|2)1/2

= 1 +
1

2
|∇φ(y′)−∇φ(x′)|2 + · · ·

= 1 +O(|x′ − y′|2).

Next we simplify the notations and denote

Φ̃α(x
′, y′) := Φα(x

′ − y′, φ(x′)− φ(y′))

and

ũl(y
′) := ul(y

′, φ(y′)), l = 1, 2. (47)
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Then by the Taylor’s formula the first component of the vector I1u is equal to

I11u(x
′, φ(x′)) := −

∫
[∂x1

Φ̃α(x
′, y′)][∇∂1φ(x

′) · (x′ − y′)ũ1(y
′)

+∇∂2φ(x
′) · (x′ − y′)ũ2(y

′)] dy′ +R(x′, y′)

= −∂2
1φ(x

′)

∫
[∂x1

Φ̃α(x
′, y′)](x1 − y1)ũ1(y

′) dy′

−∂2∂1φ(x
′)

∫
[∂x1

Φ̃α(x
′, y′)](x2 − y2)ũ1(y

′) dy′

−∂1∂2φ(x
′)

∫
[∂x1

Φ̃α(x
′, y′)](x1 − y1)ũ2(y

′) dy′

−∂2
2φ(x

′)

∫
[∂x1

Φ̃α(x
′, y′)](x2 − y2)ũ2(y

′) dy′ +R(x′, y′),

where

R(x′, y′) = −
∫
[∂x1

Φ̃α(x
′, y′)]k(x′, y′)[ũ1(y

′) + ũ2(y
′)] dy′,

and k(x′, y′) = O(|x′ − y′|2). Then by the power series of the exponential function
and the equality (45) the first component of the integral I2u is

I12u(x
′, φ(x′)) :=

∫
∂φ(x′)Φα(x

′ − y′, φ(x′)− φ(y′))ũ1(y
′) dy′

=
1

8π

∫ ∑

|α′|=2

∂α′

x′ φ(x′)(y′ − x′)α
′ |x′ − y′|−3ũ1(y

′) dy′

+

∫
k̃(x′, y′)ũ1(y

′) dy′,

where k̃(x′, y′) = O(1). By Lemma 4.1, the equality

∫
v(x′ − y′)u(y′) dy′ = F−1F(v ∗ u)(x′) = F−1(FvFu)(x′)

and Lemma 4.2 we obtain that the principal part of the first component of the operator
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Mα, i.e. the principal part of I11 − I12 , is

m1u(x
′, φ(x′)) := ∂2

1φ(x
′)

∫
(x1 − y1)

2

4π|x′ − y′|3 ũ1(y
′) dy′

+∂2∂1φ(x
′)

∫
(x1 − y1)(x2 − y2)

4π|x′ − y′|3 ũ1(y
′) dy′

+∂1∂2φ(x
′)

∫
(x1 − y1)

2

4π|x′ − y′|3 ũ2(y
′) dy′

+∂2
2φ(x

′)

∫
(x1 − y1)(x2 − y2)

4π|x′ − y′|3 ũ2(y
′) dy′

− 1

8π

∑

|α′|=2

∂α′

x′ φ(x′)

∫
(x′ − y′)α

′ |x′ − y′|−3ũ1(y
′) dy′

=
1

2
∂2
1φ(x

′)

∫
(x1 − y1)

2

4π|x′ − y′|3 ũ1(y
′) dy′

−1

2
∂2
2φ(x

′)

∫
(x2 − y2)

2

4π|x′ − y′|3 ũ1(y
′) dy′

+∂1∂2φ(x
′)

∫
(x1 − y1)

2

4π|x′ − y′|3 ũ2(y
′) dy′

+∂2
2φ(x

′)

∫
(x1 − y1)(x2 − y2)

4π|x′ − y′|3 ũ2(y
′) dy′

=
1

4(2π)2
∂2
1φ(x

′)

∫

R2

eix
′·ξ

(
ξ22
|ξ|3F ũ1(ξ)

)
dξ

− 1

4(2π)2
∂2
2φ(x

′)

∫

R2

eix
′·ξ

(
ξ21
|ξ|3F ũ1(ξ)

)
dξ

+
1

2(2π)2
∂1∂2φ(x

′)

∫

R2

eix
′·ξ

(
ξ22
|ξ|3F ũ2(ξ)

)
dξ

− 1

2(2π)2
∂2
2φ(x

′)

∫

R2

eix
′·ξ

(
ξ1ξ2

|ξ|3 F ũ2(ξ)

)
dξ.

In the same way, we get the principal part of the second component

m2u(x
′, φ(x′)) =

1

4(2π)2
∂2
2φ(x

′)

∫

R2

eix
′·ξ

(
ξ21
|ξ|3F ũ2(ξ)

)
dξ

− 1

4(2π)2
∂2
1φ(x

′)

∫

R2

eix
′·ξ

(
ξ22
|ξ|3F ũ2(ξ)

)
dξ

+
1

2(2π)2
∂1∂2φ(x

′)

∫

R2

eix
′·ξ

(
ξ21
|ξ|3F ũ1(ξ)

)
dξ

− 1

2(2π)2
∂2
1φ(x

′)

∫

R2

eix
′·ξ

(
ξ1ξ2

|ξ|3 F ũ1(ξ)

)
dξ.

These are all we need to calculate because the third component is equal to zero. When
we combine m1 and m2, we get that the principal part of the operator Mα is

mu(x′, φ(x′)) =
1

(2π)2

∫

R2

eix
′·ξ

(
m11(x

′, ξ) m12(x
′, ξ)

m21(x
′, ξ) m22(x

′, ξ)

)(
F ũ1(ξ)
F ũ2(ξ)

)
dξ,
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where

m11(x
′, ξ) =

1

4|ξ|3 (∂
2
1φ(x

′)ξ22 − ∂2
2φ(x

′)ξ21),

m12(x
′, ξ) =

1

2|ξ|3 (∂1∂2φ(x
′)ξ22 − ∂2

2φ(x
′)ξ1ξ2),

m21(x
′, ξ) =

1

2|ξ|3 (∂1∂2φ(x
′)ξ21 − ∂2

1φ(x
′)ξ1ξ2) and

m22(x
′, ξ) =

1

4|ξ|3 (∂
2
2φ(x

′)ξ21 − ∂2
1φ(x

′)ξ22).

Because the functions m11, m12, m21 and m22 belong to C∞(Vx′ × (R2\{0})) and are
positively homogeneous of degree −1 in ξ, then

(
m11(x

′, ξ) m12(x
′, ξ)

m21(x
′, ξ) m22(x

′, ξ)

)
(48)

is a classical symbol and the operator m is a classical pseudodifferential operator of
order −1 in R2. The operator m is the principal part of Mα, and therefore (48) is the
principal symbol for Mα.

We will denote the principal symbol of an operator T by σm(T ), where the
subindex m indicates the order of the operator T .

Lemma 4.3. The principal symbol of the operator PαMα′ for tangential fields is
equal to

σ0(PαMα′) =

(
a11(x

′, ξ) a12(x
′, ξ)

a21(x
′, ξ) a22(x

′, ξ)

)
,

where

a11(x
′, ξ) =

1

8|ξ|4
(
−∂2

1φ(x
′)ξ1ξ

3
2 − ∂2

2φ(x
′)ξ31ξ2 + 2∂2∂1φ(x

′)ξ21ξ
2
2

)
,

a12(x
′, ξ) =

1

8|ξ|4
(
2∂1∂2φ(x

′)ξ1ξ
3
2 − ∂2

2φ(x
′)ξ21ξ

2
2 − ∂2

1φ(x
′)ξ42

)
,

a21(x
′, ξ) =

1

8|ξ|4
(
∂2
1φ(x

′)ξ21ξ
2
2 + ∂2

2φ(x
′)ξ41 − 2∂2∂1φ(x

′)ξ31ξ2
)
,

a22(x
′, ξ) =

1

8|ξ|4
(
−2∂1∂2φ(x

′)ξ21ξ
2
2 + ∂2

2φ(x
′)ξ31ξ2 + ∂2

1φ(x
′)ξ1ξ

3
2

)
.

Proof. Because the principal symbol of the product PαMα′ is σ0(PαMα′) =
σ1(Pα)σ−1(Mα′) (see [22]), and [15]

σ1(Pα) =
1

2|ξ|

(
ξ1ξ2 ξ22
−ξ21 −ξ1ξ2

)
,

we get the symbol σ0(PαMα′) by Theorem 4.3 and straightforward calculations.

Lemma 4.4. The operator Tβ (for tangential fields) is elliptic if (kiβ)
2 6= 1,

τ 6= −1, (kiβ)
2 6= ρ

τ
(τ + 1)2 and (kiβ)

2 6= (1 + τ)(1 + ρ)

τ
. (49)
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Proof. Since MαPα = −PαMα by (15), and the principal symbols of the operators
Mα and Pα do not depend on α, we have that

σ0(Tβ) = σ0

(
1

2
I + [b+Mγ1

+ b−Mγ2
]Pke +

(
a+

γ1
Pγ1

+
a−

γ2
Pγ2

)
Mke

+
b+

γ1
Pγ1

Pke −
b−

γ2
Pγ2

Pke

)

=
1

2
I − 4β

τ + 1
σ0(PαMα′) +

b+

γ1
σ0(Pγ1

Pke)−
b−

γ2
σ0(Pγ2

Pke).

Since the principal symbol of Pγl
Pke , l = 1, 2, is (see [15])

σ0(Pγl
Pke) =

1

4|ξ|2
(

γ2
l ξ

2
1 + k2eξ

2
2 (γ2

l − k2e)ξ1ξ2
(γ2

l − k2e)ξ1ξ2 k2eξ
2
1 + γ2

l ξ
2
2

)
,

by Lemma 4.3 the principal symbol of the operator Tβ is equal to

σ0(Tβ) =
(

t11(x
′, ξ) t12(x

′, ξ)
t21(x

′, ξ) t22(x
′, ξ)

)
,

where

t11(x
′, ξ) =

1

2
− 4β

(τ + 1)
a11(x

′, ξ) +
b+

4γ1|ξ|2
(γ2

1ξ
2
1 + k2eξ

2
2)

− b−

4γ2|ξ|2
(γ2

2ξ
2
1 + k2eξ

2
2),

t12(x
′, ξ) = − 4β

(τ + 1)
a12(x

′, ξ) +
b+

4γ1|ξ|2
(γ2

1 − k2e)ξ1ξ2

− b−

4γ2|ξ|2
(γ2

2 − k2e)ξ1ξ2,

t21(x
′, ξ) = − 4β

(τ + 1)
a21(x

′, ξ) +
b+

4γ1|ξ|2
(γ2

1 − k2e)ξ1ξ2

− b−

4γ2|ξ|2
(γ2

2 − k2e)ξ1ξ2,

t22(x
′, ξ) =

1

2
− 4β

(τ + 1)
a22(x

′, ξ) +
b+

4γ1|ξ|2
(γ2

1ξ
2
2 + k2eξ

2
1)

− b−

4γ2|ξ|2
(γ2

2ξ
2
2 + k2eξ

2
1),

where aij , i, j = 1, 2 are given in Lemma 4.3. We get the determinant of this symbol
by using the equalities

1

4|ξ|2
(
b+

γ1
(γ2

1ξ
2
2 + k2eξ

2
1)−

b−

γ2
(γ2

2ξ
2
2 + k2eξ

2
1)

)
=

1

2|ξ|2 (A1ξ
2
2 +A2ξ

2
1),

1

4|ξ|2
(
b+

γ1
(γ2

1ξ
2
1 + k2eξ

2
2)−

b−

γ2
(γ2

2ξ
2
1 + k2eξ

2
2)

)
=

1

2|ξ|2 (A1ξ
2
1 +A2ξ

2
2),

1

4|ξ|2
(
b+

γ1
(γ2

1 − k2e)−
b−

γ2
(γ2

2 − k2e)

)
ξ1ξ2 =

1

2|ξ|2 (A1 −A2)ξ1ξ2,
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a11 = −a22, a11a22 − a12a21 = 0,

a11ξ
2
2 + a22ξ

2
1 − a12ξ1ξ2 − a21ξ1ξ2 = 0

and

a11ξ
2
1 + a22ξ

2
2 + a12ξ1ξ2 + a12ξ1ξ2 = 0,

where

A1 =
ρ(1 + τ) + (kiβ)

2

(τ + 1)(1− (kiβ)2)
and A2 =

k2e(ρ(1 + τ)− (kiβ)
2)

k2i (τ + 1)
.

Then the determinant is equal to

det[σ0(Tβ)] =
1

4
(A1 + 1)(A2 + 1),

and it is non-zero when the given assumptions hold.

Theorem 4.4. The operator Tβ is a Fredholm operator with index zero on
TH1/2(∂Ω) if the restrictions (49) and |kiβ| < 1 hold.

Proof. With the given restrictions the operator Tβ is Fredholm because of the
ellipticity. Thus, it is enough to show that the index is zero.

If |kiβ| < 1, the operator Tβt is continuous with respect to t ∈ [0, 1] in the operator
norm TH1/2(∂Ω) → TH1/2(∂Ω). Then it follows from [22, Proposition 8.1] that

index Tβ = index T0 = indexAρ,0.

In the same way,

indexAρ,0 = indexA0,0 = index
1

2
(I + 2Mke)(I + 2Mki) = 0

since Mke and Mki are compact.

The following theorem is the main result in this paper.

Theorem 4.5. Assume that |kiβ| < 1 and the restrictions (49) hold. If k2e is not
an eigenvalue of the associated interior Maxwell problem with the boundary condition

i
βωεe

τ + 1
(n× E) + (n×H) = 0,

the equation (44) is uniquely solvable in TH1/2(∂Ω). In addition, if f ∈ TH
1/2
Div(∂Ω),

then j ∈ TH
1/2
Div(∂Ω).

Proof. The first claim holds by Theorem 4.2, Lemma 4.4 and the Fredholm
alternative. So it remains to prove the second part of the theorem. First we use the
equality (43) for the terms Pγ1

Pke and Pγ2
Pke in the operator Tβ . Then we show that

all the operators or their combinations in Tβ map from TH1/2(∂Ω) to TH
1/2
Div(∂Ω),

except the identity operator I. First, by the mapping properties (12), (14) and (11)
we get that

Pα(Pke − Pα), PαMke : TH1/2(∂Ω) → TH
1/2
Div(∂Ω).
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Because the equality (15) gives us that

MαPke = Mα(Pke − Pα) +MαPα = Mα(Pke − Pα)− PαMα,

then

MαPke : TH1/2(∂Ω) → TH
1/2
Div(∂Ω).

Secondly, it is clear that

Mα,M
2
α, Pα − Pα′ : TH1/2(∂Ω) → TH

1/2
Div(∂Ω),

and hence

Tβ − cI : TH1/2(∂Ω) → TH
1/2
Div(∂Ω),

where c is the coefficient of I in the operator Tβ . The constant c is equal to

τ(1 − (kiβ)
2) + ρ(1 + τ) + 1

2(1− (kiβ)2)(τ + 1)
,

which is non-zero by the assumptions. Finally, if f ∈ TH
1/2
Div(∂Ω), then

cIj + (Tβ − cI)j = f

if and only if

j =
1

c
[f − (Tβ − cI)j] ∈ TH

1/2
Div(∂Ω).

Since the transmission problem has at most one solution [2], we get the following
corollary.

Corollary. If the same assumptions as in Theorem 4.5 hold, then the trans-
mission problem has a unique solution.
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