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ON POSSIBLE ISOLATED BLOW-UP PHENOMENA AND
REGULARITY CRITERION OF THE 3D NAVIER-STOKES

EQUATION ALONG THE STREAMLINES∗

CHI HIN CHAN† AND TSUYOSHI YONEDA‡

Abstract. The first goal of our paper is to give a new type of regularity criterion for solutions
u to Navier-Stokes equation in terms of some supercritical function space condition u ∈ L∞(Lα,∞)

(with 3
4

(17
1
2 − 1) < α < 3) and some exponential control on the growth rate of div( u

|u| ) along the

streamlines of u. This regularity criterion greatly improves a previous result of the first author.
However, we also point out that totally new idea which involves the use of the new supercritical
function space condition is necessary for the success of our new regularity criterion in this paper.

The second goal of our paper is to give a geometric description or characterization of a possi-
ble divergence free vector field u within a flow-invariant tubular region with increasing twisting of
streamlines towards one end of a bundle of streamlines. The increasing twisting of streamlines is
controlled in such a way that the associated quantities ‖u‖Lp , for some fixed choice of (2 < p < 3)
and ‖ div( u

|u| )‖L6 blow up while preserving the finite energy property u ∈ L2 at the same time. We

also briefly mention how this construction is related to the regularity criterion proved in our paper.
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1. Introduction. The first goal of this paper is to give a new type of regularity
criterion of solutions u to the Navier-Stokes equation in terms of some weak Lα space
condition on the velocity u (with some 3

4 (17
1
2 − 1) < α < 3 ) and some exponential

control of div u
|u| along the streamlines. The second goal of this paper is to give

possible blow-up situations for 3D-Navier-Stokes equation through the construction
of a finite energy divergence free velocity field u with u /∈ Lα with 2 < α < 3 and
div u /∈ L6. The Navier-Stokes equation on R3 is given by{

∂tu−4u+ div(u⊗ u) +∇P = 0,

div(u) = 0, u|t=0 = u0
(1.1)

in which u is a vector-valued function representing the velocity of the fluid, and P
is the pressure. The initial value problem of the above equation is endowed with the
condition that u(0, ·) = u0 ∈ L2(R3).

Modern regularity theory for solutions to equation (1.1) began with the works of
Leray [12] and Hopf [6] in which they established, with respect to any given initial
datum u0 ∈ L2(R3) which is weakly divergence free, the existence of a weak solutions
u : [0,∞)×R3 → R3 lying in the class of L∞(0,∞;L2(R3))∩L2(0,∞; Ḣ1(R3)) which
satisfies the global energy inequality. Since the time of Leary and Hopf, any weak
solution to equation (1.1) which satisfies the finite energy, finite dissipation, and global
energy inequalities is called Leray-Hopf solutions to (1.1).

After the fundamental works of Leray and Hopf, progress in addressing the full
regularity of Leray-Hopf solutions has been very slow. It was only in 1960 that
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significant progress was made by Prodi [14], Serrin [15], Ladyzhenskaya [11], and
their joint efforts lead to the following famous Prodi-Serrin-Ladyzhenskaya criterion
for Leray-Hopf solutions (see the introduction of [7] for more historical remarks about
this).

Theorem 1.1. [Prodi, Serrin, Ladyzhenskaya] Let u ∈ L∞(0, T ;L2(R3)) ∩
L2(0, T ; Ḣ1(R3)) be a Leray-Hopf weak solution to (1.1), which also satisfies u ∈
Lp(0,∞;Lq(R3)), for some p, q satisfying 2

p + 3
q = 1, with q > 3. Then, u is smooth

on (0, T ]× R3 and is uniquely determined in the following sense

• suppose v ∈ L∞(0, T ;L2(R3))∩L2(0, T ; Ḣ1(R3)) is another Leray-Hopf weak
solution such that u(0, ·) = v(0, ·). Then, it follows that u = v on (0, T ]×R3.

The success of the Prodi-Serrin-Ladyzhenskaya criterion was based on the fact
that the integral condition u ∈ Lp(Lq) with p, q satisfying 2

p+ 3
q = 1 and q > 3 ensures

that the Leray-Hopf solution u behaves like a solution to a slightly pertubated heat
equation. It is also worthwhile to mention that the exceptional case of u ∈ L∞(L3)
was missed in the above regularity criterion of Prodi, Serrin, and Ladyzhenskaya, and
it was not until very recently that the regularity of solutions in the exceptional case
u ∈ L∞(L3) was finally established in the famous work [7] due to L. Escauriaza, G.
Seregin, and V. Sverak.

After the appearance of the Prodi-Serrin-Ladyzhenskaya criterion, many different
regularity criteria of solutions to (1.1) was established by researchers working in the
regularity theory of (1.1). Among these, for instance, Beirão da Veiga established in
[2] a regularity criterion in terms of the integral condition ∇u ∈ Lp(0,∞; (Lq(R3)))
with 2

p + 3
q = 2 (and 1 < p < ∞) imposed on ∇u. In the same spirit of [2], Beale,

Kato and Majda [1] gave a regularity criterion for solutions u to (1.1) in terms of the
condition ω ∈ L1(0,∞;L∞(R3)) imposed on the vorticity ω = curl u associated to u.
This regularity criterion was further improved by Kozono and Taniuchi in [10] (see
also [13]). Besides these, other important works such as [5] and [9], in which type
I blow up was excluded for axisymmetric solutions to (1.1), are attracting a lot of
attentions. Due to the limitation of space and the vast literature in the regularity
theory for solutions to (1.1), we do not try to do a complete survey here.

However, we would like to mention an interesting regularity criterion in [16] due
to Vasseur, since it is related to the main result of this paper and also to the previous
partial result [4] by the first author. [16] gave a regularity criterion for solutions u to
(1.1) in terms of the integral condition div( u

|u| ) ∈ L
p(0,∞;Lq(R3)) with 2

p + 3
q 6 1

2

imposed on the scalar quantity F = div( u
|u| ).

One of the main purposes of this paper, however, is to establish the following
regularity criterion for solutions u to (1.1) in terms of some exponential control on
the rate of change of F = div( u

|u| ) along the streamlines of u and some weak Lα space

condition imposed on u.

Theorem 1.2. Let u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ; Ḣ1(R3)) be a Leray Hopf
solution to (1.1) which is smooth up to a possible blow up time T with u0 ∈ S(R3).
Let us assume that u, F = div( u

|u| ), and the pressure P satisfy the following conditions.

• u ∈ L∞(0, T ;Lα,∞(R3)), for some given α ∈ (2, 3) which satisfies 1 + 2(α3 −
3
α ) > 0.

• There exists some r0 > 0 and M0 > 0 such that |u| 6 M0 is valid on the
region [0, T )× {x ∈ R3 : |x| > r0}
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• For some given constants A > 0 and L > 0, the property |u·∇F|u| | ≤ A|F | is

valid on {(t, x) ∈ [0, T ) × B(r0) : |F (t, x)| > L} (Here, B(r0) = {x ∈ R3 :
|x| < r0}).

• P ∈ L 5
3 ((0, T )× R3).

Then the smoothness of u can be extended beyond the time T .

Here, we give a few remarks which illustrate the significance of Theorem 1.2.
We start with the third condition in Theorem 1.2 in which we see the condition
|u·∇F|u| | ≤ A|F | imposed on the region [0, T ) × {x ∈ R3 : |x| > r0} ∩ {|F | > L}. We

can see the geometric meaning of the constraint |u·∇F|u| | ≤ A|F | on [0, T )× {x ∈ R3 :

|x| > r0} ∩ {|F | > L} if we recast it in the following geometric language.

• For any time slice t ∈ [0, T ), and any streamline γ : [0, S)→ R3 of the velocity
profile u(t, ·) which is parameterized by arclength (that is, dγds = u

|u| (γ(s))) and

with image γ([0, S)) lying in the region {x ∈ R3 : |x| > r0, |F (t, x)| > L}, we
have | dds (F (γ(s)))| 6 A · |F (γ(s))|, for any 0 6 s 6 S.

The condition | dds (F (γ(s)))| 6 A · |F (γ(s))| gives some exponential control on
F along each streamline of the fluid within the space region on which both u and
F = div( u

|u| ) are large. Our original motivation was to prove that the smoothness of

the solution u : [0, T )× R3 → R3 to (1.1) can be extended beyond the possible blow
up time T under the third condition of Theorem 1.2 and the Leray-Hopf property
u ∈ L∞(L2) ∩ L2(Ḣ1) of the solution. But our experience told us that this cannot
be so easily achieved without the involvement of the following additional condition
(which is the first condition of Theorem 1.2 ).

• u ∈ L∞(0, T : Lα,∞(R3)), for some given α ∈ (2, 3) with 1 + 2(α3 −
3
α ) > 0.

To clarify the necessity of the condition u ∈ L∞(Lα,∞) with some α ∈ (2, 3)
satisfying 1 + 2(α3 −

3
α ) > 0, let us mention a piece of work [4] by the first author in

which smoothness of a Leray-Hopf solution u : [0, T )×R3 → R3 is established beyond
the possible blow up time T under the following condition.

• (condition in the regularity criterion of [4]) |u·∇F|u|δ | 6 A|F | is valid on [0, T )×
R3, with A > 0 to be a given constant and δ to be a given constant with
0 < δ < 1

3 .

The above mentioned regularity criterion based on the condition |u·∇F|u|δ | 6 A|F |
(with 0 < δ < 1

3 ) was established in [4] through applying the De Giorgi’s method as
developed by A. Vasseur in [17]. The main idea of the De Giorgi’s method in [17] is
based on the establishment of the following nonlinear recurrence relation of the energy
Uk of a truncated function vk = [|u| − R(1 − 1

2k
)]+ of the solution u to (1.1) over a

certain space time region (for a precise definition of Uk, see section 3 of this paper,
or alternatively [17] or [4]),

Uk ≤
Ck0
Rλ

Uβk−1. (1.2)

According to the idea in [17], for a given solution u to (1.1) on [0, T ) × R3 with
possible blow up time T , the L∞-boundedness conclusion |u| 6 R over [T2 , T ) × R3

(for some sufficiently large R) can be drawn from relation (1.2) provided one can
ensure that β > 1 and λ > 0 are valid simultaneously. Roughly speaking, λ > 0
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ensures the smallness of the energy U1 of the first truncated function v1, due to the
fact that 1

Rλ
will become small as R is sufficiently large. The smallness of U1 will

trigger the nonlinear recurrence effect of relation (1.2) which eventually causes the
very fast decay of Uk to 0 (see Lemma 3.2 which originally appeared in [17] ). This
resulting decay of Uk to 0 then implies the desired boundedness conclusion |u| 6 R
over [T2 , T ) × R3, which in turn extends the smoothness of u beyond the possible
blow up time T . However, it was illustrated in [4] that the requirement that β > 1
and λ > 0 have to hold simultaneously prevents us to push the constant δ (in the
condition |u·∇F|u|δ | 6 A|F |) to go beyond the range (0, 13 ). This limitation of the De

Giorgi method of [17] basically comes from the fact that the index β in relation (1.2)
is typically 5

3 or 4
3 , which is too large for the survival of the condition λ > 0 in the

same relation (1.2).

As a result, the use of the extra condition u ∈ L∞(Lα,∞), with α ∈ (2, 3)
satisfying 1 + 2(α3 −

3
α ) > 0 can help us to lower the index β of relation (1.2) from

the typical 5
3 or 4

3 to become as close to 1 as possible, and this in turn ensures
the survival of λ > 0 in the same relation (1.2). On the other hand, we have to
address the question of whether the condition of u ∈ L∞(Lα,∞), with α ∈ (2, 3)
satisfying 1 + 2(α3 −

3
α ) > 0 is too strong as an assumption. Note that the constraint

1 + 2(α3 −
3
α ) > 0 on 2 < α < 3 is equivalent to the constraint 3

4 (17
1
2 − 1) < α < 3.

This indicates that the condition u ∈ L∞(Lα,∞) with such a α lying in ( 3
4 (17

1
2 −1), 3)

is beyond the classical Prodi-Serrin-Ladyzhenskaya range and the L∞(L3) criterion
of [7]. This means that this extra assumption, which is the first technical condition
in the hypothesis of Theorem 1.2, is reasonable.

On the other hand, we do not require the Leray-Hopf solution u which we
consider in Theorem 1.2 to be a suitable weak solution. This is due to the fact that
the function spaces (such as the Lp spaces) on which we are working in the proof of
Theorem 1.2 are in the R3 setting, and that there is nowhere in the proof at which the
localized version of the energy inequality about the solution u is employed. Indeed,
the smoothness condition as imposed on the Leray-Hopf solution u : [0, T )×R3 → R3

priori to the possible blow up time T is more than enough to justify the validity
of relation (4.2) on [0, T ) × R3 in the pointwise sense, on which our mathematical
argument leading to the conclusion of Theorem 1.2 is based.

Another related matter is the suitable assumption as imposed on the pressure
term P associated to the solution u in Theorem 1.2. In order to ensure that P will
have good enough far range decay in R3 for us to carry out basic integration by part
procedure, we require that the condition P ∈ L 5

3 ([0, T ) × R3) has to be imposed on
the pressure term P associated to the solution u in Theorem 1.2. This integrable
condition as imposed on P is a natural one, since conventional wisdom from fluid
mechanics teaches that P should behave like |u|2, while u ∈ L

10
3 ([0, T ) × R3)

is a natural consequence which follows from the Leray-Hopf condition imposed
on u, through an application of Sobolev embedding theorem and interpolation
inequality. Under the condition P ∈ L 5

3 ([0, T ) × R3), we can always identify P with∑
RiRj(uiuj) with Ri to be the Riesz’s transforms on R3.

Next, let us mention that there is nothing deep about the second condition in
Theorem 1.2, which says that the large velocity region {x ∈ R3 : |u(t, x)| > M0} of
the solution is restricted within the open ball {x ∈ R3 : |x| < r0} of some given radius
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r0. Even in the case when this second condition is lacking (i.e. not available) in
the hypothesis of Theorem 1.2, it can be derived as a consequence from the notion of
suitable weak solutions through an application of the partial regularity theorem in [3] ,
provided the Leray-Hopf solution u which we consider is further known to be a suitable
weak solution. So, from a technical stand-point, imposing the second condition in the
hypothesis of Theorem 1.2 is the price we have to paid in order to get rid of the use of
the notion of suitable weak solutions (and hence to avoid any localization procedure
on the solution u in the proof of Theorem 1.2 ). Indeed, if u is a Leray-Hopf solution
to the Navier-Stokes equation on the time-space region (−2, 0] × R3, and suppose
further that u is also simultaneously a suitable weak solution in that u satisfies the
following differential inequality on (−2, 0]× R3 in the distributional sense.

∂t(
|u|2

2
) + |∇u|2 −4(

|u|2

2
) + div(

|u|2

2
u) + u · ∇P 6 0. (1.3)

Then, the condition u ∈ L
10
3 ((−2, 0) × R3) immediately follows from the fact

that u is a Leray-Hopf solution, through an application of the Sobolev embed-
ding theorem and standard interpolation inequality. With the natural condition
P ∈ L

5
3 ((−2, 0) × R3) as imposed on the associated pressure P , one readily sees

that
∫
(−2,0)×{x:|x|>R} |u|

3 + |P | 32 trends to 0 as R trends to +∞. As a result, when

R is chosen to be large enough, then,
∫
(−2,0)×{x:|x|>R} |u|

3 + |P | 32 will eventually be

smaller than the absolute constant ε0 > 0, which is the one as required in the following
key lemma which was due to Caffarelli, Kohn, and Nirenberg in [3] .

Theorem 1.3. (Partial Regularity Theorem [3]) There exists an absolute constant
ε0 > 0 such that the following assertion holds for any suitable weak solution (u, P ) to
the Navier-Stokes equation on (−1, 0]×B(1).

• If it happens that
∫
(−1,0)×B(1)

|u|3 + |P | 32 < ε0, then it follows that |u| 6 1

holds on [− 1
4 , 0]×B( 1

2 ).

As a result, for such a large enough R > 4, one sees that, for any
(t, x) ∈ [−1, 0]× {x : |x| > R+ 1}, the integral of |u|3 + |P | 32 over the parabolic cube
Q(t,x)(1) = (t− 1, t]×Bx(1) will be smaller than the absolute constant ε0 > 0 of the
above Lemma, and this in turns implies, through an application of the above key
lemma that, |u| is bounded by 1 on Q(t,x)(

1
2 ) = (t − 1

4 , t] × Bx( 1
2 ). This argument

shows that |u| is essentially bounded by 1 on (−1, 0] × {x ∈ R3 : |x| > R + 1}, for
some sufficiently large R > 0. The above argument, which can be founded in [7], is
standard and well-known to PDE specialists working in the area of the regularity
theory of Navier-Stokes equation. It shows that the same qualitative result which
says that large velocity region of a solution u to (1.1) has to be confined within a
certain ball with some sufficiently large radius R0 (depending on u) can be deduced
by means of an application of the partial regularity theorem provided the solution u
is further known to be a suitable weak solution. So, to a certain extent, the second
condition imposed on Theorem 1.2 is not very crucial and is imposed here for the
sole purpose of avoiding to impose the notion of suitable weak solution as an extra
condition upon the solution u in the hypothesis of Theorem 1.2.

Before we finish the discussion about Theorem 1.2, we point out that the proof
of Theorem 1.2 as presented in Section 4 of our paper closely follows the proof of the
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regularity criterion in [4]. However, we also point out that we have given completely

new idea which allows us to use the extra weak Lα space condition with 3
4 (17

1
2 −1) <

α < 3 to lower down the index β in (1.2) from the typical value of 5
3 or 4

3 to become
as close to 1 as possible. For those readers who are interested only in those new ideas
contributed to the proof of Theorem 1.2, we have given, in Section 3 of our paper,
an outline of those crucial and important ideas which make the old argument of [4]
become strong enough to arrive at Theorem 1.2. But we also give, in Section 4 of our
paper, the complete details of the proof of Theorem 1.2 by including those new ideas
outlined in Section 3 in the technical argument.

Besides the main result in Theorem 1.2, we will also give some sufficient mathe-
matical conditions, through the use of geometric languages such as those in Definitions
2.1 through 2.7, for a given divergence free velocity field u within a stream-tube seg-
ment in an attempt to obtain a geometric visualization of the possible increasing
twisting (i.e. increasing swirl) among the streamlines of u towards the ending cross
section of the stream-tube. The geometric conditions or characterizations, as given in
Section 2, for a given velocity field u demonstrates the possible way in which exces-
sive twisting of streamlines towards the ending cross section of the stream-tube can
result in the blow up of the quantities ‖u‖Lα (for some fixed choice of α ∈ (2, 3)) and
‖ div( u

|u| )‖L6 while at the same time preserving the finite energy property u ∈ L2(R3)

of the fluid. We do not claim that such geometric characterizations being given in
Section 2 would in anyway imply the actual existence of such a divergence free vector
field having the increasing twisting property which we desire. The true purpose of
such a demonstration is just to illustrate the possibility of having a finite energy ve-
locity field with increasing swirl which is beyond the scope covered by the regularity
criterion of Vasseur in [16] and the L∞(L3) criterion of [7]. In a certain sense, the
possible excessive twisting of streamlines of the velocity field as considered in Section
2 within a stream-tube segment with almost constant cross section everywhere (see
Definition 2.7) will cause the streamlines to become densely packed together towards
the ending cross section of the stream-tube, and this potentially denser and denser
packing of streamlines eventually leads to the blow up of the velocity field at a singular
point lying at the center of the ending cross section of the stream-tube. According to
the regularity criterion in Theorem 1.2, one can speculate that if the velocity field u
as described in Section 2 with increasing swirl towards the ending cross section of the
stream-tube (provided it exists) can be realized as an instantaneous profile v(T, ·) of
a time-dependent solution v : [0, T )×R3 → R3 to (1.1) in which singularity occurs at
the blow up time T , then, it must be that the rate of increase of F = div( u

|u| ) along

those streamlines with increasing twisting must go beyond the exponential growth
rate. Even though the geometric description in Section 2, with the main result to be
summarized in the form of an assertion in proposition 2.14, is interesting, it is totally
independent of the regularity criterion of Theorem 1.2, and the reader should treat
this as a separate topic.

2. Possible blow-up profile of a velocity field with large swirl. In this
section, we give geometric conditions, such as those in Definitions 2.10, 2.11, and
2.12, in order to characterize a possible divergence free velocity field u which is
specified in a stream-tube segment around a representative streamline (with an
incoming cross section and an ending cross section), and whose streamlines will
have unbounded increasing swirl (ie increasing twisting around the representative
streamline) towards the ending cross section of the stream-tube segment(see Definition
2.3). The uncontrolled increasing swirl of those streamlines towards the ending
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Fig. 1. Increasing twisting streamlines.

cross section of the stream-tube segment will lead to an isolated singularity of
the velocity field which will be located at the point of intersection between the
center representative streamline and the ending cross section of the stream-tube.
Even though the conditions as given in Definitions 2.10, 2.11, and 2.12 look rather
technical, the geometric intuitions hidden behind them are demonstrated by figure
1 depicting a bundle of streamlines with increasing swirl (with regard to the source
and credit of figure 1, please see the Acknowledgments on the last page of this
article). After we state the required geometric setting and concepts in Definitions
2.1 through 2.7, we will give sufficient conditions, in Definitions 2.10, 2.11, and
2.12, for the divergence free velocity field u under consideration to characterize the
properties u ∈ L2, u 6∈ Lα (for some given 2 < α < 3) and div u

|u| 6∈ L6 of such a

velocity field with increasing swirl. However, we do not claim that we have showed
the actual existence of such a divergence velocity field which satisfies the three
characterizing conditions as given in Definitions 2.10, 2.11, and 2.12 respectively.
Indeed, the purpose of imposing such geometric conditions upon the given divergence
free velocity field is just to give a way to visualize how such a velocity profile might
look like. Moreover, within this section, we will confine our discussion within the
class of Lp-integrable velocity fields, and that no weak Lp space will be involved.
Before we start our discussion, let us mention that the main result of this section is
summarized in the form of an assertion in proposition 2.14 at the end of Section 2 .

In order to describe such a velocity field u with increasing swirl towards the ending
cross section of the stream-tube segment, we first specify the center representative
streamline γη : [0, S)→ R3 as follow.

Definition 2.1. (Representative stream line.) Let γη : [0, S)→ R3 be such that

∂sγη(s) =
u

|u|
(γη(s)) and γη(0) = η ∈ R3. (2.1)

Note that the ending value S is excluded from the definition of the representative
streamline, since γη(S) is supposed to be the isolated singularity point created by the
unbounded increasing swirl of those streamlines close to the representative streamline.
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Before we can create the stream-tube segment around the representative streamline
γη, we need to specify the initial streamplane A with parameter r as follow.

Definition 2.2. (Initial stream plane A with parameter r.) Let {Ā0(r)}r∈(0,1]
be a smooth family of smoothly bounded open set in R2 s.t. Ā0(r) ⊂ Ā0(r′) (r < r′),
Ā0(r)→ {0} (r → 0). Let

A0(r) = {x ∈ R3 : R(x− η) ∈ Ā0(r)}, (2.2)

where R is a rotation matrix s.t. R( u
|u| (η, t)) = (0, 0, 1).

The initial streamplane A0(1) is exactly the incoming cross section of the stream-
tube segment which will be specified. To construct the stream-tube segment with
A0(1) as its incoming cross section, we just need to specify, for each s ∈ (0, S), the
associated stream-plane A(r, s) intersecting γη at the point γη(s) as follow.

Definition 2.3. (Stream-planes.) Let

A(r, s) :=
⋃

η′∈A0(r)

{γη′(s′) : s′ is the minimum among all possible τ > 0 for which

γη′(τ) belongs the plane which passes through the point γη(s)

and is perpendicular to ∂sγη(s)}.

For simplicity, we just set A(s) := A(1, s). Then, we can define the stream-tube
to be

TA[0,S) =
⋃

06s<S

A(s) (2.3)

We remark that, for any x ∈ A(s), there is r s.t. x ∈ ∂A(r, s). This is due to the
fact that for each s ∈ [0, S), A(r, s) is strictly shrinking towards the representative
streamline as r → 0+. Based on this observation, we introduce an orthonormal
coordinate frame system within the stream-tube TA[0,S) in the following definition.

Definition 2.4. For x, y ∈ ∂A(r, s), let eθ(x) := limy→x
x−y
|x−y| , ez(x) :=

u
|u| (γη(s)) and let er(x) be s.t.

〈ez(x), er(x)〉 = 〈eθ(x), er(x)〉 = 0 and |er(x)| = 1. (2.4)

We emphasize that the notations eθ, ez and er are borrowed from the notations of
the standard cylindrical coordinate frame ∂r,

1
r∂θ and ∂z for axi-symmetric velocity

field about the z-axis. This is a good choice of notation, since one can imagine that the
representative streamline γη plays a similar role as the axi-symmetric axis provided
γη is relatively straight. Next, in order to describe the increasing swirl of u towards
the ending cross section A(S) = A(1, S) of the stream-tube segment TA[0,S), we will
now decompose u

|u| into its radial component, z-component, and swirl component as

in the following definition.

Definition 2.5. (Decomposition of normalized streamline.) Let ωθ, ωr and ωz
be s.t.

u

|u|
(x) = ωθ(x)eθ(x) + ωr(x)er(x) + ωz(x)ez(x). (2.5)



ON POSSIBLE BLOW UP & REGULARITY CRITERION OF THE N.S. EQ. 219

Remark 2.6. We see that ω2
θ + ω2

r + ω2
z = 1 and ωz(x) → 1 (x → γη(s)) if u is

smooth.

At a glance, ωθ, ωr and ωz do not give us any information about the size of |u|.
Nevertheless, the balance of ωθ, ωr and ωz will tell us something about the size of |u|.
In particular, |u| is proportional to 1/|ωz|. Roughly speaking, the successive increase
in the twisting of the streamlines will eventually lead to |ωθ| → 1. It means that |ωz|
tends to zero and thus |u| becomes bigger and bigger (see Remark 2.9).

In order to give a model of possible blow-up situation, we need to define “uniform
bundle” as follows:

Definition 2.7. We call that “the stream-tube segment TA[0,S) has a uniform
bundle” if the following two properties hold

• For any B(0) ⊂ A(0) and any s ∈ [0, S], we have C−1 6 |B(s)|
|B(0)| 6 C, for some

universal constant C > 0. Here, B(s) is defined in the same way as A(r, s)
through replacing A0(r) by B(0) in Definition 2.3.

• For the same universal constant C > 0, we have supy∈A(0) u · ez(y) ≤
C infy∈A(0) u · ez(y).

Remark 2.8. Since
∫
B(0)

u · ez(y)dσy =
∫
B(s)

u · ez(y)dσy by divergence free, we

see u ·ez(x) = limB(s)3x
1

|B(s)|
∫
B(s)

u ·ez(y)dσy ≈ limB(0)3x′
1

|B(0)|
∫
B(0)

u ·ez(y)dσy =

u ·ez(x′) for any two points x ∈ A(s) and x′ ∈ A(0) connected by a streamline passing
through A(0) and A(s) , if A(s) has a uniformly bundle.

Remark 2.9. If A(s) has a uniformly bundle, we can see from divergence free
condition∫

B(0)

u · ez(y)dσy =

∫
B(s)

u · ez(y)dσy ≈ |B(s)||u · ez| = |B(s)||u|ωz (2.6)

and then ∫
B(0)

u · ez(y)dσy

|B(s)||ωz(x)|
≈ |u(x)| for x ∈ B(s) ⊂ A(s). (2.7)

Now, we want to characterize the properties u ∈ L2, u 6∈ Lα (for some given
2 < α < 3) and div u

|u| 6∈ L6 in terms of some conditions specifying how fast the

streamlines are increasing their swirl towards the ending cross section A(s) of the
stream-tube segment TA[0,S).

To specify the increasing swirl of streamlines towards the ending cross section
A(S) of the stream-tube segment TA[0,S), we need to decompose each stream-plane

A(s) into the disjoint union of a countable list of ring-shaped regions Aj(s) as follow.
We first select a decreasing sequence of positive numbers {rj}∞j=1 dropping down to
0(rj ↘ 0) as j →∞. We then set Aj(s) := A(rj , s) \A(rj+1, s). Notice that Aj(s) is
shrinking towards the representative streamline γη as j becomes large. We also set

ωAjz (s) :=

∫
Aj(s)

ωz(y)dσy/|Aj(s)|. (2.8)
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That is, ω
Aj
z (s) is the average of ωz over the ring-shaped region Aj(s) in the stream-

plane A(s). We can assume, according to Definition 2.7, that

|Aj(s)| ≈ |Aj(0)| for s ∈ (0, S]. (2.9)

Since we require that u blows up at the isolated singular point γη(S) lying in A(S),
in light of condition (2.9) and (2.7), we would require that, as s becomes close to

S, ω
Aj
z (s) should become small as j becomes large, which indicates that the average

swirl (or twisting) of those streamlines passing through Aj(s) should become large as
s→ S and j →∞.

Now, in order to ensure that u ∈ L2, we impose (S − s) 1
2−ε as the lower bound

for ωz as follow.

Definition 2.10. ( The condition to ensure u ∈ L2 ) For any 0 < s < S, we

have (S − s) 1
2−ε 6 ωz(γη′(s)) < 1 for any η′ ∈ A(0).

The purpose of the above condition is to prevent the swirl of streamlines passing
through Aj(s) to become too large as s → S and j → ∞, because we want to have

the finite energy property for u. Under the condition (S − s) 1
2−ε < ωz(γη′(s)) < 1, a

direct calculation yields the finite L2 property of u as follow.

‖u‖2L2 ≈ ‖u‖2L2(TA
[0,S)

)≈
∫
TA
[0,S)

∣∣∣∣ωAz (0)

ωz(x)

∣∣∣∣2 dx ≈ ∫ S

0

∫
A

∣∣∣∣ ωAz (0)

ωz(γη(s))

∣∣∣∣2 dηds
6
∫ S

0

C

(S − s)1−2ε
ds <∞,

(2.10)

where

ωAz (s) :=

∫
A(s)

ωz(y)dσy/|A(s)|

as defined in (2.8). The second approximation in (2.10) follows from (2.7), which gives

|u(x)| ≈ |ωAz (s)|
|B(s)||ωz(x)|

together with B(s) ≈ B(0) and ωAz (s) ≈ ωAz (0) (see Definition 2.7 and Remark 2.9).

In order to ensure that u 6∈ Lα, we impose (S − s) 1
α as the upper bound for ωz

as follow.

Definition 2.11. (The condition to ensure u 6∈ Lα) Let {Sj}j ⊂ [0, S) be s.t.
Sj → S (j →∞) and

|Aj(0)|
∫ Sj

0

(S − s)−1ds > C.

For any 0 < s < Sj, we have

|ωz(γη′(s))| ≤ (S − s)1/α for η′ ∈ Aj(0).

We show u 6∈ Lα. By Remark 2.6, we see ωAj (0) ≈ 1. Thus

‖u‖αLα ≈ ‖u‖αLα(TA
[0,S)

)≈
∫
TA
[0,S)

∣∣∣∣ωAz (0)

ωz(x)

∣∣∣∣α dx (2.11)

>
∑
j

∫ Sj

0

∫
Aj

∣∣∣∣∣ ω
Aj
z (0)

ωz(γη(s))

∣∣∣∣∣
α

dηds >
∑
j

∫ Sj

0

|Aj(0)|
(S − s)

ds =∞. (2.12)
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In order to show
∥∥∥div u

|u|

∥∥∥
L6

= ∞, we impose (S − s)−1 as the upper bound for

|∂sω
Aj
z (s)|6 as follow.

Definition 2.12. (The condition to ensure div(u/|u|) 6∈ L6 ) Let {S̃j}j ⊂ [0, S)

be s.t. Sj < S̃j < S and

|Aj(0)|
∫ S̃j

Sj

(S − s)−1ds > C,

where C is a universal constant. For any Sj < s < S̃j, we have

|∂sωAjz (s)|6 > (S − s)−1.

Remark 2.13. There exists ωz which satisfies the above three conditions. In
fact, we can choose ωz in order to satisfy ω(γη′(s)) = (S − s)1/2−ε and ω

Aj
z (s) =

(S − s)1/2−ε for η′ ∈ Aj(0), s ∈ [0, S̃j) and j = 1, 2 · · · .

We need to get a rough expression of 1
Aj(s)

∫
Aj(s)

div( u
|u| )dy as follow. Let s > 0

be fixed. Then, for any s1 > s to be sufficiently close to s, we consider the following

stream-tube T
Aj
[s,s1]

connecting the stream-plane Aj(s) to Aj(s1).

T
Aj
[s,s1]

=
⋃

s6τ6s1

Aj(s). (2.13)

From Definition 2.3, we can view the stream-tube T
Aj
[s,s1]

as being formed by the union

of those streamlines which first pass into the stream-tube through the cross section
Aj(s) and eventually leave the same stream-tube through the cross section Aj(s1).

Since s1 is chosen to be close to s, the stream-tube T
Aj
[s,s1]

is roughly the same as

the product Aj(s)× [s, s1], which, together with condition (2.9), makes the following
deduction justifiable.

1

Aj(s)

∫
Aj(s)

div(
u

|u|
)dy = lim

s1→s

1

(s1 − s)

∫ s1

s

1

|Aj(τ)|

∫
Aj(τ)

div(
u

|u|
)dydτ

≈ lim
s1→s

1

(s1 − s)|Aj(s)|

∫
T
Aj
[s,s1]

div(
u

|u|
)dy

= lim
s1→s

1

|Aj(s)|(s1 − s)
{
∫
Aj(s1)

u

|u|
· ezdσ −

∫
Aj(s)

u

|u|
· ezdσ}

= lim
s1→s

1

|Aj(s)|(s1 − s)
{
∫
Aj(s1)

ωzdσ −
∫
Aj(s)

ωzdσ}

= lim
s1→s

1

|Aj(s)|(s1 − s)
(
ωAjz (s1)|Aj(s1)| − ωAjz (s)|Aj(s)|

)
=

1

|Aj(s)|
∂s{ωAjz (s)|Aj(s)|} =

(
∂sω

Aj
z (s) +

∂s|Aj(s)|
|Aj(s)|

ωAjz (s)

)
.

Hence, it follows from the above calculation and an application of Holder inequality
that
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∫
Aj(s)

|div(
u

|u|
)|6 >

1

|Aj(s)|5

∣∣∣∣∣
∫
Aj(s)

div(
u

|u|
)

∣∣∣∣∣
6

≈ |Aj(s)|
(
∂sω

Aj
z (s) +

∂s|Aj(s)|
|Aj(s)|

ωAjz (s)

)6

≈ |Aj(0)|
(
∂sω

Aj
z (s) +

∂s|Aj(s)|
|Aj(s)|

ωAjz (s)

)6

≥ |Aj(0)||∂sωAjz (s)|6.

Therefore,

∥∥∥∥div
u

|u|

∥∥∥∥6
L6(TA

[0,S)
)

≈
∑
j

∫
[0,S)

∫
Aj(s)

|div(
u

|u|
)|6 ≥

∑
j

∫
[Sj ,S̃j)

|Aj(0)||∂sωAjz (s)|6ds

>
∑
j

C =∞.

Before we leave this section, let us summarize what we have done in the form of
the following statement.

Proposition 2.14. Consider a locally defined smooth velocity field u as given in
a stream-tube around a representative streamline in the sense of Definitions 2.1, 2.2,
and 2.3. Moreover, suppose further that such a locally defined velocity field u satisfies
the three conditions as stated in Definitions 2.10, 2.11, and 2.12. Then, it follows that
within such a stream-tube region, the following properties of u hold: u ∈ L2, u 6∈ Lα
for the same α ∈ (2, 3) which appears in Definition 2.11, and div u

|u| 6∈ L
6.

3. Outline of the proof of Theorem 1.2. The proof of Theorem 1.2 is quite
similar to the one in [4]. The purpose of this section is just to outline those crucial and
important changes which have to be made to the structure of the proof as presented
in [4], so that the modified proof will be strong enough to give the result of Theorem
1.2. In other words, we will only state the essential changes to the main argument in
[4] which are the new ideas contributed in this paper.

Just in the same way as [4], we will follow the parabolic De Giorgi’s method
developed by Vasseur in [17]. So, let us fix our notation as follow. We remark that,
without the lost of generality, we will assume that the possible blow up time T is
just 1.

• for each k > 0, let Qk = [Tk, 1]× R3, in which Tk = 3
4 −

1
4k+1 .

• for each k > 0, let vk = {|u| −R(1− 1
2k

)}+.

• for each k > 0, let wk = {|u|−Rβ(1− 1
2k

)}+ , with β > 1 to be selected later.

• for each k > 0, let d2k =
R(1− 1

2k
)

|u| χ{|u|>R(1− 1

2k
)}|∇|u||2 + vk

|u| |∇u|
2.

• for each k > 0, let D2
k =

Rβ(1− 1

2k
)

|u| χ{|u|>Rβ(1− 1

2k
)}|∇|u||2 + wk

|u| |∇u|
2.

• for each k > 0, let Uk = 1
2‖vk‖

2
L∞(Tk,1;L2(R3)) +

∫ 1

Tk

∫
R3 d

2
kdx dt.

With the above setting, the first author proved the following proposition (see [4]).
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Proposition 3.1. Let u be a suitable weak solution for the Navier-Stokes equa-
tion on [0, 1]× R3 which satisfies the condition that |u·∇F|u|γ | 6 A|F |, where A is some

finite-positive constant, and γ is some positive number satisfying 0 < γ < 1
3 . Then,

there exists some constant Cp,β, depending only on 1 < p < 5
4 , and β > 6−3p

10−8p ,and
also some constants 0 < α,K <∞, which do depend on our suitable weak solution u,
such that the following inequality holds

Uk 6Cp,β2
10k
3 { 1

Rβ
10−8p

3p −
2−p
p

‖u‖2(1−
1
p )

L∞(0,1;L2(R3))U
5−p
3p

k−1 +

(1 +A)(1 +
1

α
)(1 +K1− 1

p )(1 + ‖u‖L∞(0,1;L2(R3)))×

[(
1

R
10
3 −2pβ+1−γ−p

)
1
pU

5
3p

k−1 +
1

R
10
3 −2β−γ

U
5
3

k−1]},

(3.1)

for every sufficiently large R > 1.

The nonlinear recurrence relation as given in (3.1) was indeed the main corner-
stone leading to the regularity criterion in [4]. More precisely, the structure of (3.1)
directly gives the smallness of U1 as long as R is sufficiently large. The smallness of
U1, together with the nonlinear recurrence structure of relation (3.1), then allowed us
to deduce in [4] the decay of Uk to 0 (as k → ∞) by means of the following useful
lemma as appeared in [17].

Lemma 3.2. For any given constants B, b > 1, there exists some constant C∗0
such that for any sequence {ak}k>1 satisfying 0 6 a1 6 C∗0 and 0 6 ak 6 Bkabk−1, for
any k > 1, we have limk→∞ak = 0.

The resulting decay of Uk to 0 as k → ∞ allowed the first author to draw the
conclusion that u is essentially bounded by some sufficiently large constant R > 1
over [ 34 , 1)× R3, and this lead to the following theorem in [4].

Theorem 3.3. Let u : [0, T )× R3 → R3 be a Leray-Hopf solution to (1.1) which
is smooth on [0, T )× R3 (with T to be the possible blow up time) and which satisfies
the condition that |u·∇F|u|γ | 6 A|F |, in which A is some positive constant, and γ is some

positive constant for which 0 < γ < 1
3 . Then, it follows that the u is L∞-bounded on

[ 34 , 1)× R3 and hence the smoothness of u can be extended beyond T .

In this paper we will refine the γ in Theorem 3.3 to be 1. As indicated in the
introduction, the problem we face here is that those powers of Uk−1 such as 5−p

3p ,
5
3p and 5

3 (appearing in Proposition 3.1), are too far from 1. However, the use of

Lemma 3.2 only requires that β > 1, so the extra condition u ∈ L∞(0, 1;Lα,∞(R3)),
with α ∈ (2, 3) satisfying 1 + 2(α3 −

3
α ) > 0 can help us to bring the powers of Uk−1

to become very close to 1, and this in turn allows us to replace the old condition
|u·∇F|u|γ | ≤ A|F | with γ ∈ (0, 13 ) by the new one |u·∇F|u| | ≤ A|F |.

Technically speaking, the key idea which allows us to use the condition u ∈
L∞(Lα,∞) (with α ∈ (2, 3) satisfying 1 + 2(α3 −

3
α ) > 0) to lower down the powers

of Uk−1 to become close to 1 is the following lemma. We can establish the following
lemma for any truncations wk−1 = (|u| − Rβ(1 − 1

2k−1 ))+ (with k ≥ 2) of a Leray-

Hopf solution u ∈ L∞(0, 1;L2(R3)) ∩ L2(0, 1; Ḣ1(R3)) satisfying the condition u ∈
L∞(0, 1;Lα,∞(R3)) for some given α ∈ (2, 3).

Lemma 3.4. Consider a Leray-Hopf weak solution u ∈ L∞(0, 1;L2(R3)) ∩
L2(0, 1; Ḣ1(R3)) which satisfies the condition u ∈ L∞(0, 1;Lα,∞(R3)) for some given
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α ∈ (2, 3). Then, the truncation wk−1 = (|u| − Rβ(1 − 1
2k−1 ))+ of |u| satisfies the

following inequality for each k > 2 and each δ with 0 < δ < 4
3 .∫

Qk−1

w
10
3

k−1 6 C0{
2α−1

α− 2
‖u‖L∞(0,1;Lα,∞(R3))}

2
3−δ

U1+δ
k−1

Rβ(α−2)(
2
3−δ)

, (3.2)

in which C0 is a universal constant essentially arising from the Sobolev embedding
theorem. In the same way, the truncation vk = (|u| − R(1 − 1

2k
))+ also satisfies the

following inequality for each k > 2 and each δ with 0 < δ < 4
3 .∫

Qk−1

v
10
3

k−1 6 C0{
2α−1

α− 2
‖u‖L∞(0,1;Lα,∞(R3))}

2
3−δ

U1+δ
k−1

R(α−2)( 2
3−δ)

. (3.3)

Proof. To begin, let u ∈ L∞(0, 1;L2(R3)) ∩ L2(0, 1; Ḣ1(R3)) to be a Leray-Hopf
solution which satisfies the condition u ∈ L∞(0, 1;Lα,∞(R3)) for some given α with
2 < α < 3. Recall that the truncation wk−1 = (|u| − Rβ(1 − 1

2k−1 ))+ satisfies the

property that |∇wk−1| 6 Dk−1 6 5
1
2 dk−1, for k > 2 (The relation |∇wk−1| 6 Dk−1

can be verified easily, while the relation Dk−1 6 5
1
2 dk−1 was justified in Lemma 4.1

of [4]). So, it follows from standard interpolation inequality that

∫
Qk−1

w
10
3

k−1 6 C0‖wk−1‖
4
3

L∞(Tk−1,1;L2(R3))‖∇wk−1‖
2
L2(Qk−1)

6 C0{ sup
t∈[Tk−1,1]

∫
R3

w2
k−1(t, x)dx} 2

3Uk−1

6 C0U
1+δ
k−1{ sup

t∈[Tk−1,1]

∫
R3

w2
k−1(t, x)dx} 2

3−δ.

(3.4)

But according to the assumption that u ∈ L∞(0, 1;Lα,∞(R3)), we can control∫
R3 w

2
k−1(t, x)dx (for each k > 2) uniformlly over t ∈ [0, 1] as follow.∫
R3

w2
k−1(t, x)dx = 2

∫ ∞
0

r|{x ∈ R3 : wk−1(t, x) > r}|dr

6 2

∫ ∞
0

r|{x ∈ R3 : |u(t, x)| > r +Rβ(1− 1

2k−1
)}|dr

6 2

∫ ∞
0

(r +
Rβ

2
)|{x ∈ R3 : |u(t, x)| > r +

Rβ

2
}|dr

= 2

∫ ∞
Rβ

2

r|{x ∈ R3 : |u(t, x)| > r}|dr

≤ 2‖u‖L∞(0,1;Lα,∞(R3))

∫ ∞
Rβ

2

r1−αdr

=
2α−1

α− 2
‖u‖L∞(0,1;Lα,∞(R3))

1

Rβ(α−2)
.

(3.5)

Hence, inequality (3.2) follows from the above two inequality estimations. By the
same way, we can also derive inequality (3.3) by replacing wk by vk = (|u|−R(1− 1

2k
))

and Rβ by R.
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As a corollary of Lemma 3.4, we have the following result which allows us to raise
up the index for the terms ‖χ{wk>0}‖Lq(Qk−1) and ‖χ{vk>0}‖Lq(Qk−1).

Lemma 3.5. Suppose that the given suitable weak solution u : [0, 1] × R3 → R
satisfies the condition u ∈ L∞(0, 1;Lα,∞(R3)) for some given α ∈ (2, 3). Then, for
any 1 < q <∞, and any 1 < δ < 4

3 , we have

‖χ{wk>0}‖Lq(Qk−1) 6 C(α,δ,q)
2

10k
3q

R
1
q [

10β
3 +β(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)

1
q

L∞(Lα,∞)U
(1+δ) 1

q

k−1 , (3.6)

in which the constant C(α,δ,q) is given by C(α,δ,q) = C
1
q

0 [ 2α−1

(α−2) ]
( 2
3−δ)

1
q , with C0 to

be a universal constant arising from the Sobolev embedding theorem and standard
interpolation.

In the same way, we have the following estimate for ‖χ{vk>0}‖Lq(Qk−1), with

1 < q <∞ and 1 < δ < 4
3 .

‖χ{vk>0}‖Lq(Qk−1) 6 C(α,δ,q)
2

10k
3q

R
1
q [

10
3 +(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)

1
q

L∞(Lα,∞)U
(1+δ) 1

q

k−1 . (3.7)

Remark. Notice that the constant C(α,δ,q) as appears in inequality (3.6) blows
up to∞ as the choice of α approaches to 2, which means that inequality (3.6) applies
only in the case of α > 2. We also point out that replacing the old Lemma 3.2 and
Lemma 3.3 in [4] by the above lemma (i.e. Lemma 3.5) is the crucial decision leading
to the final success of our new proof of Theorem 1.2 (see the next section, in which
we will give all the details of the new proof of Theorem 1.2).

Proof. We recall that the sequence of truncations wk is defined to be wk =

(|u| − Rβ(1 − 1
2k

))+. So, it is easy to see that {wk > 0} ⊂ {wk−1 > Rβ

2k
}. Hence, it

follows from inequality (3.2) that

∫
Qk−1

χ{wk>0} 6
∫
Qk−1

χ{wk−1>
Rβ

2k
}

6
2

10k
3

R
10β
3

∫
Qk−1

w
10
3

k−1

6
2

10k
3

R
10β
3

· C0{
2α−1

α− 2
‖u‖L∞(0,1;Lα,∞(R3))}

2
3−δ

U1+δ
k−1

Rβ(α−2)(
2
3−δ)

.

(3.8)

Hence, inequality (3.6) follows from taking the power 1
q on both sides of the above

inequality. The deduction of inequality (3.7) follows in the same way.

In order to adopt to the new hypothesis |u · ∇F | 6 A|u| · |F | on {(t, x) ∈ [0, 1)×
B(r0) : |F (t, x)| > L} (for some given constant L > 0) , the second refinement is on
the function ψ appearing in Step five of the proof in [4]. We redefine the function
ψ : R→ R as the one which satisfies the following conditions

• ψ(t) = 1, for all t > L+ 1.
• 0 < ψ(t) < 1, for all t with L < t < L+ 1.
• ψ(t) = 0, for all −L 6 t 6 L .
• −1 < ψ(t) < 0, for all t with −L− 1 < t < −L.
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• ψ(t) = −1, for all t 6 −L− 1.
• 0 6 d

dtψ 6 2, for all t ∈ R.

We further remark that the smooth function ψ : R → R characterized by the
above properties must also satisfy the property that dψ

dt |(t) = 0, on t ∈ (−∞,−L −
1) ∪ (−L,L) ∪ (L+ 1,∞).

Up to this point, we have already spelled out all the important changes that have
to be made to the old argument in [4]. In the next section, we will redo the old
argument in [4] by including all those important changes given here, and see the way
in which the modified new argument will lead to the result of Theorem 1.2.

4. Appendix: Technical steps of the proof of Theorem 1.2. The purpose
of this section is to convince the readers of the correctness of the outline in the previous
section through giving all the technical details of the proof of Theorem 1.2. Except
those crucial and important changes as given in the outline of the previous section,
the structure of the proof of theorem 1.2 is in many aspects the same as the one in [4].
It is also not surprising that some of the technical aspects of the proof of Theorem 1.2
as given below are directly transported (or copied) from that of [4] (This is justified
for those parts to which no change is necessary). So, in a certain sense, all the new
ideas of the proof of Theorem 1.2 has already been given in the outline of the previous
section, and we spell out all the details of the proof of Theorem 1.2 here only for the
sake of completeness. Moreover, we remark that, within this section, the definitions
of Tk, Qk, vk, wk dk etc were given in the beginning of Section 3. Moreover, the
possible finite blow up time for the solution u; [0, 1) × R3 → R3 under consideration
is assumed to be 1.
We will begin our discussion by stating and proving the following technical lemma,
from which we can easily derive the conclusion of Theorem 1.2 in the final part of this
section.

Lemma 4.1. Consider u : [0, 1)× R3 → R3 to be a Leray-Hopf solution which is
smooth up to the possible blow up time T = 1, and which also satisfies all the hypothesis
of Theorem 1.2. Let {Uk}∞k=0 to be the sequence of truncated energies associated to
u, which is defined precisely as in the beginning of section 3. Then, for any fixed
choice of positive constant β ∈ ( 3

α ,
1
2 + α

3 ) (whose existence is ensured by the condition
1+2(α3 −

3
α ) > 0 in the hypothesis of Theorem 1.2), the following nonlinear recurrence

relation of {Uk}∞k=0 holds for any positive parameter p > 1 which is sufficiently close
to 1, and any positive parameter δ > 0 which is sufficiently close to 0.

Uk 6
2

10k
3

R
4
3

C0U
5
3

k−1 + C(β,A, L, p, δ, ‖u‖L∞L2 , ‖u‖L∞Lα,∞)2
10k
3

× {
U

1
p+δ(

2−p
2p )

k−1

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]−(
2−p
p )

+ (
U

(1+δ)
k−1

R
10
3 −2pβ+(α−2)( 2

3−δ)−p
)

1
p +

U1+δ
k−1

R
10
3 −2β+(α−2)( 2

3−δ)−1
},

(4.1)

where the constant C0 is basically the one arising from the standard
Sobolev embedding theorem from H1(R3) into L6(R3), while the constant
C(β,A, L, p, δ, ‖u‖L∞L2 , ‖u‖L∞Lα,∞) is the one which depends only on β ,A ,L



ON POSSIBLE BLOW UP & REGULARITY CRITERION OF THE N.S. EQ. 227

, p, δ , ‖u‖L∞L2 , ‖u‖L∞Lα,∞ (recall that A, and L are the two constants as given in
the hypothesis of Theorem 1.2).

In that which follows, we will give a detailed proof of Lemma 4.1, which by itself
will be splitted into six different steps (from Step1 to Step6).

Proof.

Step one. To begin the argument, we notice that the truncations vk = {|u| −
R(1 − 1

2k
)} of the solution u : [0, 1) × R3 → R3 as considered in Theorem 1.2 satisfy

the following equality for every point (t, x) ∈ [0, 1)× R3.

∂t(
v2k
2

) + d2k −4(
v2k
2

) + div(
v2k
2
u) +

vk
|u|
u∇P 6 0. (4.2)

We note that there is no difficulty in justifying the validity of the above equality
for every point (t, x) ∈ [0, 1) × R3. this is simply because the Leray-Hopf solution
u : [0, 1) × R3 → R3 as considered in Theorem 1.2 is assumed to be smooth on
[0, 1)× R3, even though t = 1 is the possible blow up time.

Next, let us consider the variables σ , t verifying Tk−1 6 σ 6 Tk 6 t 6 1. Then,
we have

•
∫ t
σ

∫
R3 ∂t(

v2k
2 )dx ds =

∫
R3

v2k(t,x)
2 dx−

∫
R3

v2k(σ,x)
2 dx.

•
∫ t
σ

∫
R34(

v2k
2 )dx ds = 0.

•
∫ t
σ

∫
R3 div(

v2k
2 u)dx ds = 0.

So, it is straightforward to see that

∫
R3

v2k(t, x)

2
dx+

∫ t

σ

∫
R3

d2kdx ds 6
∫
R3

v2k(σ, x)

2
dx+

∫ t

σ

|
∫
R3

vk
|u|
u∇Pdx|ds,

for any σ, t satisfying Tk−1 6 σ 6 Tk 6 t 6 1. By taking the average over the variable
σ, we yield

∫
R3

v2k(t, x)

2
dx+

∫ t

Tk

∫
R3

d2kdx ds 6
4k+1

6

∫ Tk

Tk−1

∫
R3

v2k(s, x)dx ds+

∫ t

Tk−1

|
∫
R3

vk
|u|u∇Pdx|ds.

By taking the sup over t ∈ [Tk, 1]. the above inequality will give the following

Uk 6
4k+1

6

∫
Qk−1

v2k +

∫ 1

Tk−1

|
∫
R3

vk
|u|
u∇Pdx|ds.

But, by using the interpolation inequality ‖f‖
L

10
3 (Qk)

6 ‖f‖
2
5

L∞(Tk,1;L2(R3))‖∇f‖
3
5

L2(Qk)

(see Lemma 3.1 of [4] or [17]) and the inequality ‖χvk>0‖Lq(Qk−1) 6 ( 2k

R )
10
3qC

1
qU

5
3q

k−1
(see Lemma 3.2 of [4] or [17]), we can carry out the following estimate.
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∫
Qk−1

v2k =

∫
Qk−1

v2kχ{vk>0}

6 (

∫
Qk−1

v
10
3

k )
3
5 ‖χ{vk>0}‖L 5

2 (Qk−1)

6 ‖vk‖2
L

10
3 (Qk−1)

2
4k
3

R
4
3

C
2
5U

2
3

k−1

6 ‖vk−1‖2
L

10
3 (Qk−1)

2
4k
3

R
4
3

C
2
5U

2
3

k−1

6 CU
5
3

k−1
2

4k
3

R
4
3

.

As a result, we have the following conclusion

Uk 6
2

10k
3

R
4
3

CU
5
3

k−1 +

∫ 1

Tk−1

|
∫
R3

vk
|u|
u∇pdx|ds. (4.3)

Step two. Now, in order to estimate the term
∫ 1

Tk−1
|
∫
R3

vk
|u|u∇Pdx|ds, we would

like to carry out the following computation

−4P =
∑

∂i∂j(uiuj)

=
∑

∂i∂j{(1−
wk
|u|

)ui(1−
wk
|u|

)uj}+ 2
∑

∂i∂j{(1−
wk
|u|

)ui
wk
|u|
uj}

+
∑

∂i∂j{
wk
|u|
ui
wk
|u|
uj},

in which wk is given by wk = {|u| − Rβ(1 − 1
2k

)}+, and β > 1 is some arbitrary
index which will be determined later. This motivates us to decompose P as P =
Pk1 + Pk2 + Pk3, in which

−4Pk1 =
∑

∂i∂j{(1−
wk
|u|

)ui(1−
wk
|u|

)uj}, (4.4)

−4Pk2 =
∑

∂i∂j{2(1− wk
|u|

)ui
wk
|u|
uj} (4.5)

−4Pk3 =
∑

∂i∂j{
wk
|u|
ui
wk
|u|
uj}. (4.6)

Here, we have to remind ourself that the cutting functions which are used in the
decomposition of the pressure are indeed wk = {|u| − Rβ(1 − 1

2k
)}+, for all k > 0 ,

in which β is some suitable index strictly greater than 1. With respect to the cutting
functions wk, we need to define the respective Dk as follow:

D2
k =

Rβ(1− 1
2k

)

|u|
χ{wk>0}|∇|u||2 +

wk
|u|
|∇u|2.

Then, just like what happens to the cutting functions vk, we have the following
assertions about the cutting functions wk, which are easily verified (see [17]).
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• |∇wk| 6 Dk, for all k > 0.
• |∇(wk|u|ui)| 6 3Dk, for all k > 0, and 1 6 i 6 3.

• |∇(wk|u| )ui| 6 2Dk, for any k > 0, and 1 6 i 6 3.

• Dk ≤ 5
1
2 dk as long as R is larger than some fixed constant R0 (see Lemma

4.1 of [4] for a proof of this).

Now, let us recall that we have already used the cutting functions wk to obtain
the decomposition P = Pk1 + Pk2 + Pk3, in which Pk1, Pk2, andPk3 are described in
equations (4.4), (4.5), and (4.6) respectively.
Due to the incompressible condition div(u) = 0, we have the following two identities

•
∫
R3

vk
|u|u∇Pk2dx =

∫
R3( vk|u| − 1)u∇Pk2dx.

•
∫
R3

vk
|u|u∇Pk3dx =

∫
R3( vk|u| − 1)u∇Pk3dx.

Hence, it follows that∫ 1

Tk−1

|
∫
R3

vk
|u|
u∇Pdx|dt 6

∫ 1

Tk−1

|
∫
R3

∇(
vk
|u|

)uPk1dx|dt+

∫
Qk−1

(1− vk
|u|

)|u||∇Pk2|

+

∫
Qk−1

(1− vk
|u|

)|u||∇Pk3|.

(4.7)

Step three. We are now ready to deal with the term
∫
Qk−1

(1 − vk
|u| )|u||∇Pk2|.

For this purpose, let p be such that 1 < p < 5
4 , and let q = p

p−1 , so that 2 < q < ∞.

We remark that the purpose of the condition 1 < p < 5
4 is to ensure that the quantity

2p
2−p will satisfy the condition 2 < 2p

2−p < 10
3 , which is required in the forthcoming

inequality estimation (4.10). Next, by applying Holder’s inequality, we find that

‖(1− vk
|u|

)u‖Lq(R3) 6 ‖(1−
vk
|u|

)u‖
2
q

L2(R3)‖(1−
vk
|u|

)u‖1−
2
q

L∞(R3)

6 R1− 2
q ‖(1− vk

|u|
)u‖

2
q

L2(R3)

6 R
2
p−1‖u‖2(1−

1
p )

L∞(0,1;L2(R3)).

Hence, it follows from Holder’s inequality that∫
R3

(1− vk
|u|

)|u||∇Pk2|dx 6 R
2
p−1‖u‖2(1−

1
p )

L∞(0,1;L2(R3)){
∫
R3

|∇Pk2|pdx}
1
p .

Hence, we have∫
Qk−1

(1− vk
|u|

)|u||∇Pk2| 6 R
2
p−1‖u‖2(1−

1
p )

L∞(0,1;L2(R3))‖∇Pk2‖Lp(Qk−1). (4.8)

But, we recognize that

∇Pk2 =
∑

RiRj{2(1− wk
|u|

)ui∇[
wk
|u|
uj ] + 2(1− wk

|u|
)uj [

wk
|u|
∇ui]− 2∇[

wk
|u|

]ui
wk
|u|
uj}.

Moreover, it is straightforward to see that for any 1 6 i, j 6 3, we have

• |2(1− wk
|u| )ui∇[wk|u|uj ] + 2(1− wk

|u| )uj [
wk
|u|∇ui]| 6 8RβDk.
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• |2∇[wk|u| ]ui
wk
|u|uj | 6 8wkDk.

So, we can decompose ∇Pk2 as ∇Pk2 = Gk21 +Gk22, where Gk21 and Gk22 are given
by

• Gk21 =
∑
RiRj{2(1− wk

|u| )ui∇[wk|u|uj ] + 2(1− wk
|u| )uj [

wk
|u|∇ui]}.

• Gk22 = −
∑
RiRj{2∇[wk|u| ]ui

wk
|u|uj}.

In order to use inequality (4.8), we need to estimate ‖Gk21‖Lp(Qk−1) and

‖Gk22‖Lp(Qk−1) respectively, for p with 1 < p < 5
4 . Indeed, by applying the Zygmund-

Calderon Theorem, we can deduce that

• ‖Gk21‖Lp(Qk−1) 6 CpR
β‖Dk‖Lp(Qk−1),

• ‖Gk22‖Lp(Qk−1) 6 Cp‖wkDk‖Lp(Qk−1),

where Cp is some constant depending only on p. But it turns out that

‖Dk‖pLp(Qk−1)
=

∫
Qk−1

Dp
kχ{wk>0}

6 {
∫
Qk−1

D2
k}

p
2 ‖χ{wk>0}‖

L
2

2−p (Qk−1)

6 5
p
2 ‖dk‖pL2(Qk−1)

Cα,p
2

5(2−p)k
3

Rβ(
2−p
2 )[ 103 +(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)(

2−p
2 )

L∞(Lα,∞) U
(1+δ)( 2−p

2 )

k−1

6 Cα,p,δ
2

5(2−p)k
3

Rβ(
2−p
2 )[ 103 +(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)(

2−p
2 )

L∞(Lα,∞) · U
1+δ( 2−p

2 )

k−1 .

That is , we have

‖Dk‖Lp(Qk−1) 6 Cα,p,δ
2

5(2−p)k
3p

Rβ(
2−p
2p )[ 103 +(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)(

2−p
2p )

L∞(Lα,∞) · U
1
p+δ(

2−p
2p )

k−1 .

Hence, it follows that

‖Gk21‖Lp(Qk−1) 6 Cα,p,δ
2

5(2−p)k
3p

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]
· ‖u‖(

2
3−δ)(

2−p
2p )

L∞(Lα,∞) ·U
1
p+δ(

2−p
2p )

k−1 . (4.9)

On the other hand, we have

‖wkDk‖pLp(Qk−1)
=

∫
Qk−1

wpkD
p
k

6 {
∫
Qk−1

w
2p

2−p
k }

2−p
2 {
∫
Qk−1

D2
k}

p
2

6 Cp{
∫
Qk−1

w
2p

2−p
k }

2−p
2 U

p
2

k−1.

Now, let us recall that 1 < p < 5
4 , and put r = 2p

2−p . we then recognize that

2 < r = 2p
2−p <

10
3 , if 1 < p < 5

4 . So, we can have the following estimation
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∫
Qk−1

w
2p

2−p
k =

∫
Qk−1

wrkχ{wk>0}

6
∫
Qk−1

wrkχ{wk−1>
Rβ

2k
}

6
1

Rβ(
10
3 −r)

2k(
10
3 −r)

∫
Qk−1

w
10
3

k

6
Cα,δ‖u‖

2
3−δ
L∞(Lα,∞)

Rβ[
20−16p
3(2−p) +(α−2)( 2

3−δ)]
2
k(20−16p)

3(2−p) U1+δ
k−1 .

(4.10)

Hence, it follows that

‖Gk22‖Lp(Qk−1) 6 Cp‖wkDk‖Lp(Qk−1)

6 Cα,p,δ
2

(10−8p)k
3p

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]
‖u‖(

2
3−δ)(

2−p
2p )

L∞(Lα,∞) U
1
p+δ(

2−p
2p )

k−1 .
(4.11)

By combining inequalities (4.8), (4.9), (4.11), we deduce that∫
Qk−1

(1− vk
|u|

)|u||∇Pk2| 6
2

(10−8p)k
3p C(α, p, δ;u)

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]−(
2−p
p )

U
1
p+δ(

2−p
2p )

k−1 , (4.12)

in which the constant C(α, p, δ;u) is in the form of

C(α, p, δ;u) = Cα,p,δ‖u‖
2(1− 1

p )

L∞(L2)‖u‖
( 2
3−δ)(

2−p
2p )

L∞(Lα,∞) . (4.13)

As for the term
∫
Qk−1

(1− vk
|u| )|u||∇Pk3|. We first notice that

Pk3 =
∑

RiRj{
wk
|u|
ui
wk
|u|
uj}.

So, we know that

∇Pk3 =
∑

RiRj{∇[
wk
|u|
ui]

wk
|u|
uj +

wk
|u|
ui∇[

wk
|u|
uj ]},

with

|∇[
wk
|u|
ui]

wk
|u|
uj +

wk
|u|
ui∇[

wk
|u|
uj ]| 6 6wkDk.

Again, by the Riesz’s theorem, we have ‖∇Pk3‖Lp(R3) 6 Cp‖wkDk‖Lp(R3), in which Cp
is some constant depending only on p. So, we can repeat the same type of estimation,
just as what we have done to the term

∫
Qk−1

(1− vk
|u| )|u||∇Pk2|, to conclude that

∫
Qk−1

(1− vk
|u|

)|u||∇Pk3| 6 R
2
p−1‖u‖2(1−

1
p )

L∞(0,1;L2(R3))‖∇Pk3‖Lp(Qk−1)

6
2

(10−8p)k
3p C(α, p, δ;u)

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]−(
2−p
p )

U
1
p+δ(

2−p
2p )

k−1 ,

(4.14)
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in which the constant C(α, p, δ;u) is again in the form of (4.13).

We have to ensure that the quantity β[ 10−8p3p + ( 2−p
2p )(α − 2)( 2

3 − δ)] − ( 2−p
p ) is

strictly greater than 0. To this end, recall that p > 1 can be as close to 1 as possible,
and δ > 0 can also be as close to 0 as possible. So, by passing to the limit as p→ 1+,
and δ → 0+, we have

lim
p→1+,δ→0+

β[
10− 8p

3p
+ (

2− p
2p

)(α− 2)(
2

3
− δ)]− (

2− p
p

) = β(
α

3
)− 1. (4.15)

Now, we insist that the choice of β has to satisfy the condition β > 3
α , under which

we must have the limiting value β(α3 ) − 1 to be strictly positive. Hence, for such a
choice of β, it follows from (4.15) that the following relation holds for all p > 1 to be
sufficiently close to 1, and all δ > 0 to be sufficiently close to 0.

β[
10− 8p

3p
+ (

2− p
2p

)(α− 2)(
2

3
− δ)]− (

2− p
p

) > 0. (4.16)

Step four.

We now have to raise up the index for the term
∫ 1

Tk−1
|
∫
R3 ∇( vk|u| )uPk1dx|ds.

Recall that, in the hypothesis of Theorem 1.2, there is some constant M0 > 0 for
which |u| 6M0 is valid on the outer region [0, 1)×{x ∈ R3 : |x| > r0} for some given
radius r0 > 0. As a result, we will now choose R > 2M0 so that, for each k ≥ 1 and
t ∈ [0, 1) we have {|u(t, ·)| > R(1− 1

2k
)} ⊂ B(r0), which means that both vk(t, ·) and

dk(t, ·) are compactly supported in B(r0). Hence, for such a choice of R > 2M0, we
always can express Uk as

Uk =
1

2
sup

t∈[Tk,1)

∫
B(r0)

v2k(t, ·)dx+

∫ 1

Tk

∫
B(r0)

d2kdxdt.

Since ∇( vk|u| )u = −R(1− 1
2k

)Fχ{vk>0}, we have for any R > 2M0 that

|
∫
R3

∇(
vk
|u|

)uPk1dx| = |
∫
B(r0)

R(1− 1

2k
)Fχ{vk>0}Pk1dx|

6 R

∫
B(r0)

|F |χ{vk>0}|Pk1 − (Pk1)B(r0)|dx

+R

∫
B(r0)

|F |χ{vk>0}|(Pk1)B(r0)|dx,

for all k > 1, and all 1
2 < t < 1 (here, the symbol (Pk1)B stands for the average value

of Pk1 over the ball B ). From now on, we will always assume, within this section, that
our choice of R has to satisfy R > 2M0 . Now, since Pk1 =

∑
RiRj{(1− wk

|u| )ui(1−
wk
|u| )uj}, it follows from the Riesz’s Theorem in the theory of singular integral that

‖Pk1(t, ·)‖L2(R3) 6 C2R
β‖u(t, ·)‖L2(R3), for all t ∈ [0, 1], in which C2 is some constant

depending only on 2. So, we can use the Holder’s inequality to carry out the following
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estimation

|(Pk1)B(r0)(t)| 6
1

|B(r0)|

∫
B(r0)

|Pk1(t, x)|dx

6
1

|B(r0)| 12
‖Pk1(t, ·)‖L2(B(r0))

6
1

|B(r0)| 12
C2R

β‖u(t, ·)‖L2(R3)

6 C(r0)Rβ‖u‖L∞(0,1;L2(R3)),

in which the constant C(r0) = 1

|B(r0)|
1
2
C2 depends on r0. As a result, it follows that

|
∫
R3

∇(
vk
|u|

)uPk1dx| 6 R

∫
B(r0)

|F |χ{vk>0}|Pk1 − (Pk1)B(r0)|dx

+ C(r0)R‖u‖L∞(0,1;L2(R3))

∫
B(r0)

Rβ |F |χ{vk>0}.

(4.17)

Indeed, the operator RiRj is indeed a Zygmund- Calderon operator, and so RiRj
must be a bounded operator from L∞(R3) to BMO(R3). Hence we can deduce that

‖Pk1(t, ·)− (Pk1)B(r0)(t)‖BMO = ‖Pk1(t, ·)‖BMO

6 C0‖(1−
wk
|u|

)ui(1−
wk
|u|

)uj‖L∞(R3)

6 C0R
2β ,

for all t ∈ (0, 1), in which C0 is some constant depending only on R3.

Just as the proof of the main result in [4], at this stage, we need the assistant of
the following Lemma, which is a straightforward corollary of the famous BMO result
[8] of John and Nirenberg. For a proof of this lemma, we refer to Lemma 4.3 of [4].

Lemma 4.2. (see [4])Let B be a ball with finite radius sitting in R3. There exists
some finite positive constants ν and K,depending only on B, such that for every
measurable function µ > 0, and every f ∈ BMO(R3) with

∫
B
fdx = 0, and p with

1 < p <∞, we have
∫
B
µ|f | 6 2p

ν(p−1){1 +K1− 1
p }‖f‖BMO{(

∫
B
µ)

1
p +

∫
B
µlog+µ}.

So, we now apply Lemma 4.2 with µ = |F |χ{vk>0}, and f = Pk1 − (Pk1)B(r0) to
deduce that∫
B(r0)

|F |χ{vk>0}|Pk1 − (Pk1)B(r0)|dx 6
2pC0

ν(p− 1)
{1 +K1− 1

p }×

{(
∫
B(r0)

R2pβ |F |χ{vk>0})
1
p +

∫
B(r0)

R2β |F |log+|F | · χ{vk>0}},

in which the symbol (Pk1)B(r0) stands for the mean value of Pk1 over the open ball

B(r0). Since we know that {vk > 0} is a subset of {|u| > R
2 }, for all k > 1, so it
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follows from the above inequality that∫
B(r0)

|F |χ{vk>0}|Pk1 − (Pk1)B(r0)|dx 6
2C0

ν

p

p− 1
4pβ{1 +K1− 1

p }×

{(
∫
B(r0)

|u|2pβ |F |χ{vk>0})
1
p

+

∫
B(r0)

|u|2β |F | log+ |F | · χ{vk>0}}.

So, we can conclude from inequality (4.17), and the above inequality that∫ 1

Tk−1

|
∫
R3

∇(
vk
|u|

)uPk1dx|dt 6 R
2C0

ν

p

p− 1
4pβ(1 +K1− 1

p )×

{(
∫ 1

Tk−1

∫
B(r0)

|u|2pβ |F |χ{vk>0})
1
p

+

∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{vk>0}}

+ C(r0)2βR‖u‖L∞(L2)

∫ 1

Tk−1

∫
B(r0)

|u|β |F |χ{vk>0}.

(4.18)

In order to use the given hypothesis that |u · ∇F |(t, x) 6 A|u(t, x)||F (t, x)|, for any
(t, x) ∈ [0, 1)×B(r0) satisfying |F (t, x)| > L (with L > 0 to be the given constant in
Theorem 1.2), we carry out the following estimate.∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{vk>0}

6
∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{|F |6L+1}χ{vk>0}

+

∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{|F |>L+1}χ{vk>0}

6 (L+ 1) log(L+ 2)

∫ 1

Tk−1

∫
B(r0)

|u|2βχ{vk>0}

+

∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{|F |>L+1}χ{vk>0}.

(4.19)

Step five. To deal with the second term in the last line of inequality (4.19), we
consider the sequence {φk}∞k=1 of nonnegative continuous functions on [0,∞), which
are defined by

• φk(t) = 0, for all t ∈ [0, Ck].
• φk(t) = t− Ck, for all t ∈ (Ck, Ck + 1).
• φk(t) = 1, for all t ∈ [Ck + 1,+∞).

where the symbol Ck stands for Ck = R(1 − 1
2k

), for every k > 1. Here, we remark
that, for the purpose of taking spatial derivative, the composite function φk(|u|) is
a good substitute for χ{vk>0} = χ{|u|>R(1− 1

2k
)}, since φk is Lipschitz. Moreover, we

also need a smooth function ψ : R→ R satisfying the following conditions that:
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• ψ(t) = 1, for all t > L+ 1.
• 0 < ψ(t) < 1, for all t with L < t < L+ 1.
• ψ(t) = 0, for all −L 6 t 6 L.
• −1 < ψ(t) < 0, for all t with −L− 1 < t < −L.
• ψ(t) = −1, for all t 6 −L− 1.
• 0 6 d

dtψ 6 2, for all t ∈ R.

We further remark that the smooth function ψ : R → R characterized by the above
properties must also satisfy the property that ψ′(t) = dψ

dt |(t) = 0, on t ∈ (−∞,−L −
1)∪(−L,L)∪(L+1,∞), which will be employed in forthcoming inequality estimations
4.21 and 4.24 without explicit mention. With the above preparation, let β be such
that 3

α < β < 10
3α , with α to be the given index as specified in Theorem 1.2.

We now consider the function F = div( u
|u| ), and recall that our solution u satisfies

|u ·∇F | 6 A|F | · |u| on {(t, x) ∈ [0, 1)×B(r0) : |F (t, x)| > L}. for some given constant
L > 0.

it follows that
• |u · ∇F |(t, x) 6 A(L + 1)|u(t, x)|, if (t, x) ∈ [0, 1) × B(r0) satisfies L 6
|F (t, x)| 6 L+ 1.

• |u·∇|F |1+|F | | 6
|u·∇|F ||
|F | = |u·∇F |

|F | 6 A|u| is valid on [0, 1)×B(r0) ∩ {|F (s)| ≥ L}.
Then, we carry out the following calculation on [0, 1)×B(r0), for each k > 1.

div{|u|2β−1uψ(F ) log(1 + |F |)φk(|u|)} = −(2β − 1)|u|2βFψ(F ) log(1 + |F |)φk(|u|)
− |u|2β+1Fψ(F ) log(1 + |F |)χ{Ck<|u|<Ck+1}

+ |u|2β−1 dψ
dt

(F )(u · ∇F ) log(1 + |F |)φk(|u|)

+ |u|2β−1ψ(F )
u · ∇|F |
1 + |F |

φk(|u|),

(4.20)

Since R > 2M0 ensures that, for each t ∈ [0, 1), φk(|u|)(t, ·) is compactly supported in
B(r0), we have the following equality for each t ∈ [0, 1).∫

B(r0)

div{|u|2β−1uψ(F ) log(1 + |F |)φk(|u|)} = 0.

So, it follows from inequality (4.20) that

Λ1 + Λ2 6
∫ 1

Tk−1

∫
B(r0)

|u|2β−1|dψ
dt

(F )| · |u · ∇F | log(1 + |F |)φk(|u|)

+

∫ 1

Tk−1

∫
B(r0)

|u|2β−1|ψ(F )| · |u · ∇|F |
1 + |F |

|φk(|u|)

6
∫ 1

Tk−1

∫
B(r0)

|u|2β−1(2)(A(L+ 1)|u|) log(L+ 2)φk(|u|)

+

∫ 1

Tk−1

∫
B(r0)

|u|2β−1 ·A · |u|φk(|u|) · χ{|F |>L}

6 A[2(L+ 1) log(L+ 2) + 1]

∫ 1

Tk−1

∫
B(r0)

|u|2βφk(|u|)

6 A[2(L+ 1) log(L+ 2) + 1]

∫ 1

Tk−1

∫
B(r0)

|u|2βχ{vk>0},

(4.21)
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in which the terms Λ1, and Λ2 are given by

• Λ1 = (2β − 1)
∫ 1

Tk−1

∫
B(r0)

|u|2βFψ(F ) · log(1 + |F |)φk(|u|).
• Λ2 =

∫ 1

Tk−1

∫
B(r0)

|u|2β+1(Fψ(F )) · log(1 + |F |)χ{Ck<|u|<Ck+1} .

We then notice that

• Since β > 3
α > 1, we have Λ1 >

∫ 1

Tk−1

∫
B(r0)

|u|2β(Fψ(F )) log(1 +

|F |)χ{|u|>Ck+1}.

• Λ2 > R
2

∫ 1

Tk−1

∫
B(r0)

|u|2βFψ(F ) log(1 + |F |)χ{Ck<|u|<Ck+1}, for every k > 1.

Notice that this is true because Ck = R(1 − 1
2k

), and that (1 − 1
2k

) > 1
2 , for

every k > 1.

Since |F |χ{|F |>L+1} 6 |F ||ψ(F )| = Fψ(F ), it follows from inequality (4.21) that

∫ 1

Tk−1

∫
B(r0)

|u|2β |F | log(1 + |F |)χ{|F |>L+1}χ{vk>0}

6
∫ 1

Tk−1

∫
B(r0)

|u|2βFψ(F ) log(1 + |F |)χ{vk>0}

6
∫ 1

Tk−1

∫
B(r0)

|u|2βFψ(F ) log(1 + |F |)χ{Ck<|u|<Ck+1}

+

∫ 1

Tk−1

∫
B(r0)

|u|2βFψ(F )log(1 + |F |)χ{|u|>Ck+1}

6
2

R
Λ2 + Λ1

6 2A[2(L+ 1) log(L+ 2) + 1]

∫
Qk−1

|u|2βχ{vk>0}.

(4.22)

By using inequality (3.3) in Lemma 3.4, we raise up the index for the term∫
Qk−1

|u|θχ{vk>0}, for any θ with 0 < θ < 10
3 , in the following way

∫
Qk−1

|u|θχ{vk>0} =

∫
Qk−1

{R(1− 1

2k
) + vk}θχ{vk>0}

6 Cθ{Rθ
∫
Qk−1

χ{vk>0} +

∫
Qk−1

vθkχ{vk>0}}

6
Cθ

R
10
3 −θ
{2 10k

3 + 2(
10
3 −θ)k}

∫
Qk−1

v
10
3

k−1

6
Cθ

R
10
3 −θ+(α−2)( 2

3−δ)
2

10k
3 { 2α−1

α− 2
‖u‖L∞(Lα,∞)}

2
3−δU1+δ

k−1 ,

for every θ with 0 < θ < 10
3 , where Cθ is some positive constant depending only on θ.
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Hence it follows from inequalities(4.19), (4.22), and our last inequality that∫ 1

Tk−1

∫
B(r0)

|u|2β |F | · log(1 + |F |)χ{vk>0}

6 (L+ 1) log(L+ 2)

∫ 1

Tk−1

∫
B(r0)

|u|2βχ{vk>0}

+

∫ 1

Tk−1

∫
B(r0)

|u|2β |F |log(1 + |F |)χ{|F |>L+1}χ{vk>0}

6
(L+ 1) log(L+ 2)C2β2

10k
3

R
10
3 −2β+(α−2)( 2

3−δ)
{ 2α−1

α− 2
‖u‖L∞(Lα,∗)}

2
3−δU1+δ

k−1

+ C(A,L)

∫
Qk−1

|u|2βχ{vk>0}

6 C(β,A,L) · 2
10k
3 { 2α−1

α− 2
‖u‖L∞(Lα,∞)}

2
3−δU1+δ

k−1

× { 1

R
10
3 −2β+(α−2)( 2

3−δ)
},

(4.23)

in which β > 3
α , and that β is sufficiently close to 3

α , and Cβ,A,L is some
constant depending only on β, A, and L. Next, we also need to deal with

(
∫ 1

Tk−1

∫
B(r0)

|u|2pβ |F |χ{vk>0})
1
p , and

∫ 1

Tk−1

∫
B(r0)

|u|β |F |χ{vk>0}, which appear in in-

equality (4.18). For this purpose, we will consider λ which satisfies 3
α < λ < 10

3 (we
will take λ to be 2pβ and β respectively in forthcoming inequality estimates 4.25 and
4.26 ), and let us carry out the following computation, in which ψ and φk etc are just
the same as before.

div{|u|λ−1uψ(F )φk(|u|)} = −(λ− 1)|u|λFψ(F )φk(|u|)

+ |u|λ−1 dψ
dt

(F )(u · ∇F )φk(|u|)

− |u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}.

Since R > 2M0 ensures that φk(|u|) is compactly supported in B(r0), we have, for
each t ∈ [0, 1), that ∫

B(r0)

div{|u|λ−1uψ(F )φk(|u|)} = 0.

Hence, it follows from |dψdt (F )| 6 2χ{L<|F |<L+1} and the above equality that

(λ− 1)

∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )φk(|u|) +

∫ 1

Tk−1

∫
B(r0)

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

6
∫ 1

Tk−1

∫
B(r0)

|u|λ−1|dψ
dt

(F )| · |u · ∇F |φk(|u|)

6
∫
Qk−1

|u|λ−1(2)(A(L+ 1)|u|)χ{vk>0}

6 2A(L+ 1)

∫
Qk−1

|u|λχ{vk>0}.

(4.24)
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By the same calculation as in inequality (4.21), we can see that

∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )χ{vk>0}

6
∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )χ{Ck<|u|<Ck+1}

+

∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )χ{|u|>Ck+1}

6
2

R

∫ 1

Tk−1

∫
B(r0)

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

+

∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )φk(|u|)

6 (2 +
1

λ− 1
){
∫ 1

Tk−1

∫
B(r0)

|u|λ+1Fψ(F )χ{Ck<|u|<Ck+1}

+ (λ− 1)

∫ 1

Tk−1

∫
B(r0)

|u|λFψ(F )φk(|u|)}

6 2A(L+ 1)(2 +
1

λ− 1
)

∫
Qk−1

|u|λχ{vk>0},

in which λ satisfies 3
α < λ < 10

3 . Now, put λ = 2pβ, with β > 3
α to be sufficiently

close to 3
α , and p > 1 to be sufficiently close to 1. Since |F |χ{|F |>L+1} 6 |F ||ψ(F )| =

Fψ(F ), it follows from our last inequality that

∫ 1

Tk−1

∫
B(r0)

|u|2pβ |F |χ{vk>0}

=

∫ 1

Tk−1

∫
B(r0)

|u|2pβ |F |χ{|F |6L+1}χ{vk>0}

+

∫ 1

Tk−1

∫
B(r0)

|u|2pβχ{|F |>L+1}χ{vk>0}|F |

6 (L+ 1)

∫
Qk−1

|u|2pβχ{vk>0}

+ 2A(L+ 1)(2 +
1

2pβ − 1
)

∫
Qk−1

|u|2pβχ{vk>0}

6
C(β,A,L,p)

R
10
3 −2pβ+(α−2)( 2

3−δ)
· 2 10k

3 { 2α−1

α− 2
‖u‖L∞(Lα,∞)}

2
3−δU1+δ

k−1 .

(4.25)

In exactly the same way, by setting λ to be β, with β > 3
α to be sufficiently close to
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3
α , it also follows that∫ 1

Tk−1

∫
B(r0)

|u|β |F |χ{vk>0}

=

∫ 1

Tk−1

∫
B(r0)

|u|β |F |χ{|F |6L+1}χ{vk>0}

+

∫ 1

Tk−1

∫
B(r0)

|u|β |F |χ{|F |>L+1}χ{vk>0}

6 (L+ 1)

∫
Qk−1

|u|βχ{vk>0} + 2A(L+ 1)(2 +
1

β − 1
)

∫
Qk−1

|u|βχ{vk>0}

6
C(β,A,L)

R
10
3 −β+(α−2)( 2

3−δ)
· 2 10k

3 { 2α−1

α− 2
‖u‖L∞(Lα,∞)}

2
3−δU1+δ

k−1 .

(4.26)

By combining inequalities (4.18), (4.23), and (4.25),and (4.26) we now conclude that∫
Qk−1

|
∫
Qk−1

∇(
vk
|u|

)uPk1dx|ds

6 (1 +
1

α
)C(β,A, L, p)(1 +K1− 1

p )(1 + ‖u‖L∞(L2)))

{[ 2α−1

α− 2
‖u‖L∞(Lα,∞)]

2
3−δ + [

2α−1

α− 2
‖u‖L∞(Lα,∞)]

( 2
3−δ)

1
p }

{( 1

R
10
3 −2pβ+(α−2)( 2

3−δ)−p
)

1
p 2

10k
3p U

1
p (1+δ)

k−1

+
1

R
10
3 −2β+(α−2)( 2

3−δ)−1
2

10k
3 U1+δ

k−1}.

(4.27)

Before we proceed to the last step and complete the proof of Theorem 1.2,
let us briefly explain why the condition 1 + 2(α3 −

3
α ) > 0 imposed on

2 < α < 3 is necessary. Notice that if p → 1+, and β → 3
α

+
, and δ → 0+

, we have (10
3 − 2pβ + (α − 2)( 2

3 − δ) − p) → 1 + 2(α3 −
3
α ), and that

( 10
3 − 2β + (α − 2)( 2

3 − δ) − 1) → 1 + 2(α3 −
3
α ). This explains that the con-

dition 1 + 2(α3 −
3
α ) > 0 on α ∈ (2, 3) is necessary if we insist that both

( 10
3 − 2pβ+ (α− 2)( 2

3 − δ)− p) and ( 10
3 − 2β+ (α− 2)( 2

3 − δ)− 1) have to be positive.

Step six: Final step of the proof of Lemma 4.1.
By combining inequalities (4.3), (4.7), (4.12), (4.14), and (4.27), we conclude that

the following estimate is valid, and hence we arrive at the conclusion of Lemma 4.1.

Uk 6
2

10k
3

R
4
3

C0U
5
3

k−1 + C(β,A, L, p, δ, ‖u‖L∞L2 , ‖u‖L∞Lα,∞)2
10k
3

× {
U

1
p+δ(

2−p
2p )

k−1

Rβ[
10−8p

3p +( 2−p
2p )(α−2)( 2

3−δ)]−(
2−p
p )

+ (
U

(1+δ)
k−1

R
10
3 −2pβ+(α−2)( 2

3−δ)−p
)

1
p +

U1+δ
k−1

R
10
3 −2β+(α−2)( 2

3−δ)−1
}

(4.28)
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Now, with the nonlinear recurrence relation of {Uk}∞k=1 as given in Lemma 4.1
to be available, we will see in that which follows that Theorem 1.2 is nothing other
than an easy consequence of Lemma 4.1.

Proof of Theorem 1.2: A direct consequence of Lemma 4.1. Again,
let u : [0, 1) × R3 → R3 to be the Leray-Hopf solution which is smooth up to the
possible blow up time T = 1, and which also satisfies all the hypothesis of Theorem
1.2. Here, in order to derive the conclusion that |u| is L∞-bounded on [ 34 , 1)×R3 by
using inequality (4.28), we have to be very careful in the selection of the constants
β, p, δ etc. This is due to the following observations.

On the one hand, we require all the powers of Uk−1 such as 1
p + δ( 2−p

2p ), 1
p (1 + δ),

and 1 + δ to be strictly greater than 1. In order to select some suitable p > 1 and
δ > 0 for which the quantities 1

p + δ( 2−p
2p ), 1

p (1 + δ) will all be strictly greater than

1, we observe that the requirement 1
p + δ( 2−p

2p ) > 1 is equivalent to the condition
1+δ
1+ δ

2

> p, which indicates that the positive parameter p > 1 has to be selected in the

open interval (1, 1+δ
1+ δ

2

) (for some δ > 0 to be given). For such a choice of p ∈ (1, 1+δ
1+ δ

2

),

the second requirement 1
p (1 + δ) > 1 is nothing but a consequence which follows

from the fact that (1 + δ) > p(1 + δ
2 ) > p. Of course, the third condition 1 + δ > 1 is

always true as long as δ is strictly greater than 0. In summary, we see that we will
have all the three conditions 1

p + δ( 2−p
2p ) > 1, 1

p (1 + δ) > 1 and 1 + δ > 1 to be valid

simultaneously, provided we choose δ > 0 and p ∈ (1, 1+δ
1+ δ

2

).

On the other hand, the constant C(β,A, L, p, δ, ‖u‖L∞L2 , ‖u‖L∞Lα,∞) will blow
up to ∞ if p→ 1+. So, to clarify the situation, we have to fix the choice of β first by
using the condition 1 + 2(α3 −

3
α ) > 0 on α ∈ (2, 3). Once the choice of β is fixed, we

will fix the parameter δ > 0, and subsequently the parameter p ∈ (1, 1+δ
1+ δ

2

).

Observe that the condition 1 + 2(α3 −
3
α ) > 0 on α ∈ (2, 3) is equivalent to

1
2 + α

3 >
3
α , and this allows us to select some β to be in the interval ( 3

α ,
1
2 + α

3 ). Now,
let β to be a fixed choice of positive number which satisfies 3

α < β < 1
2 + α

3 . Next,
recall that we have the following limiting relations.

• limp→1+,δ→0+ β[ 10−8p3p + ( 2−p
2p )(α− 2)( 2

3 − δ)]− ( 2−p
p ) = β(α3 )− 1.

• limp→1+,δ→0+{ 103 − 2pβ + (α− 2)( 2
3 − δ)− p} = 2{ 12 + α

3 − β}.
• limδ→0+

10
3 − 2β + (α− 2)( 2

3 − δ)− 1 = 2{ 12 + α
3 − β} .

Notice that the fixed choice of β with 3
α < β < 1

2 + α
3 ensures that the limiting

constants β(α3 ) − 1 and 2{ 12 + α
3 − β} are both positive simultaneously. The above

three limiting relations motivate us to first choose some fixed choice of δ > 0 which is
sufficiently close to 0, in a manner dependent on the choice of β ∈ ( 3

α ,
1
2 + α

3 ). Due to

the fact that the length of the open interval (1, 1+δ
1+ δ

2

) is shrinking down to 0 as δ > 0

becomes small, any choice of p ∈ (1, 1+δ
1+ δ

2

) for sure will be sufficiently close to 1, as

long as δ > 0 is sufficiently small (that is, p→ 1+, as long as δ → 0+). So, according
to the above three limiting relations, it follows that the following three constants will
become strictly positive, as long as a sufficiently small parameter δ > 0 is chosen in a
way dependent on the choice of β ∈ ( 3

α ,
1
2 + α

3 ), with the parameter p ∈ (1, 1+δ
1+ δ

2

) to

be selected subsequently.
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• β[ 10−8p3p + ( 2−p
2p )(α− 2)( 2

3 − δ)]− ( 2−p
p ) > 0.

• { 103 − 2pβ + (α− 2)( 2
3 − δ)− p} > 0.

• 10
3 − 2β + (α− 2)( 2

3 − δ)− 1 > 0.

This observation allows us to use nonlinear recurrence relation (4.28) (with β ∈
( 3
α ,

1
2 + α

3 ), δ > 0 to be small, and p ∈ (1, 1+δ
1+ δ

2

)) to deduce that as long as R > M0 + 1

is chosen to be sufficiently large, U1 will become smaller than the universal constant
C∗0 as required by Lemma 3.2. According to Lemma 3.2, this smallness of U1 will
lead to the decay of Uk to 0 as k → ∞, and this in turn will lead to the conclusion
that |u| 6 R is valid over [ 34 , 1)×R3, for some sufficiently large constant R. Hence, it
follows that the smoothness of u can be extended beyond the possible blow up time
1.
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