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A GEOMETRICAL VIEW OF THE NEHARI MANIFOLD∗

JOSÉ MARIA GOMES†

Abstract. We study the Nehari manifold N associated to the boundary value problem

−∆u = f(u) , u ∈ H1
0 (Ω) ,

where Ω is a bounded regular domain in R
n. Using elementary tools from Differential Geometry,

we provide a local description of N as an hypersurface of the Sobolev space H1
0 (Ω). We prove that,

at any point u ∈ N , there exists an exterior tangent sphere whose curvature is the limit of the
increasing sequence of principal curvatures of N . Also, the H1-norm of u ∈ N depends on the
number of principal negative curvatures. Finally, we study basic properties of an angle decreasing
flow on the Nehari manifold associated to homogeneous non–linearities.
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1. Introduction. The variational method introduced by Nehari in [10]–[11] was
a significant outcome of his research on the non–oscillating nature of solutions to
certain classes of second order equations. For instance, concerning the linear problem

y′′ + p(x)y = 0 , y(a) = y′(b) = 0 ,

where p is a continuous positive function, [Theorem 1, [9]] sets the equivalence between
the existence of a positive solution in [a,+∞[ and the fact that the lowest eigenvalue

λ := min

∫ b

a
y′2 dx

∫ b

a py
2 dx

satisfies λ > 1 for all b > a. In [8], a solution to the non–linear equation

y′′ + p(x)y2n+1 = 0 , y(a) = y(b) = 0

with a prescribed number m of intermediate zeros a < a1 < ... < am < b is obtained
by minimizing the functional

J̃(u; a1, ..., am) :=

m+1
∑

ν=1

[J̃ν ]
1
n ,

where u ∈ C0,1
0 [a, b] satisfies u(a1) = ... = u(am) = 0 and

J̃ν(w) =

(

∫ aν+1

aν
w′2 dx

)n+1

∫ aν+1

aν
pw2n+2 dx

.
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is the Rayleigh coefficient on C0,1
0 ([aν , aν+1]). Similar ideas were later exploited in

[15] and [16]. In fact, as it was defined in [10], the “normalization condition” (known
a posteriori as the Nehari constrain)

∫ b

a

y′
2
dx =

∫ b

a

y2F (y2, x) dx (u 6= 0) ,

was the basis of a more comprehensive method allowing the proof of the existence of
solutions to a second order non-linear equation of type

y′′ + yF (y2, x) = 0 ,

where the non-homogeneous term prevented the method of minimizing a Rayleigh
coefficient.

In the past few decades, the Nehari method has been extensively used on the study
of existence of ground–state, nodal, multi-spike or multi-bump solutions, in what can
be considered as a natural enlargement of Nehari’s concerns about oscillatory aspects
of second order non-linear differential equations (see for instance [2], [5],[6] and [13]).
For the interested reader on an abstract treatment of the Nehari method (or on further
references about the subject) we recommend the survey [14]. Our purpose to bring
out a clearer picture of a variational framework known since 1960 was, in some sense,
stimulated by the study of [3].

Along this article we consider the space H1
0 (Ω), where Ω is a bounded and regular

domain of RN . We assume H1
0 (Ω) is endowed with the norm

‖u‖2 = 〈u, u〉 :=

∫

Ω

|∇u|2(x) dx .

As usual, we denote 2∗ = 2N
N−2 and 2∗ = +∞ if N = 2, so that the embedding

H1
0 (Ω) ⊂ Lq(Ω)

is compact for 1 ≤ q < 2∗. Under well known assumptions on the non-linear term f
(see, for instance [12]), solutions of the equation

(1.1) −∆u = f(u) in Ω , u = 0 on ∂Ω ,

are critical points Euler-Lagrange functional

(1.2) J(u) :=
1

2

∫

Ω

|∇u|2(x) dx −

∫

Ω

F (u)(x) dx ,

defined over H1
0 (Ω) where F (u) =

∫ u

0
f(s) ds. In our case, we require

(f1) f ∈ C2(R,R).

(f2) f(u)u ≤ βf ′(u)u2 where 0 < β < 1.

(f3) There exist positive constants ξ1 ≤ ξ2 such that

ξ1|u|
p−2 ≤ f ′(u) ≤ ξ2|u|

p−2 ,

where 2 < p < 2∗.

Note that condition (f2) implies that f(0) = 0 as well as

(1.3) ζF (u) ≤ f(u)u ,
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for some ζ > 2, which is the classical Ambrosetti-Rabinowitz condition. Condition
(f3) implies

(1.4)
ξ1

p− 1
|u|p ≤ f(u)u and

ξ1
p(p− 1)

|u|p ≤ F (u) .

Further, we will require

(f3’) There exist positive constants ξ1 ≤ ξ2 such that

ξ1|u|
p−2 ≤ f ′′(u)u ≤ ξ2|u|

p−2 .

Condition (f3’) implies (f3) (adapting, if necessary, the constants ξ1 and ξ2).
The Nehari manifold is defined as

(1.5) N := {u ∈ H1
0 (Ω) : u 6= 0 and 〈∇J(u), u〉 = 0}.

Condition 〈∇J(u), u〉 = 0 writes

(1.6)

∫

Ω

|∇u|2(x) dx −

∫

Ω

f(u)u(x) dx = 0 .

Our paper is organized as follows. In section 2 we recall well known facts about
the Nehari manifold. In particular, we prove that, given a sequence (uj) of functions
in N and a corresponding sequence of finite dimensional subspaces (Vj) such that
limdimVj = ∞ and

D2
vvJ(uj) ≤ 0 ∀v ∈ Vj ,

then

(1.7) lim
j→∞

J(uj) = +∞ .

In section 3, we use basic notions of Differential Geometry to describe the Nehari
manifold as an hypersurface of H1

0 (Ω) (see for instance, [1] or [7]). More precisely,
the tangent space Tu of N at u is orthogonal to the normal vector

n(u) =
N(u)

‖N(u)‖

with N(u) = 2u+∆−1(f ′(u)u+ f(u)). As

Lu := Dn(u)[.] : Tu 7→ Tu

is an operator of type 2(I + Tu), where I is the identity and Tu is compact, the
Weingarten map Lu has a sequence of eigenvalues (kn) that naturally extend the
principal curvatures of an hypersurface in a finite-dimensional space. Our main result
is the following:

Theorem 1. Suppose that conditions (f1), (f2) and (f3’) are verified. Let u ∈
W 1,∞

0 (Ω)∩N and (kn) be the corresponding increasing sequence of eigenvalues of the
Weingarten map Lu. Then:
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1.

lim
n→∞

kn =
2

‖N(u)‖
.

2. There exists C > 0 independent of u such that

−
C(2 + ‖u‖2(p−2)/p)

‖u‖
≤ kn(u) ≤

C

‖u‖
, ∀n ∈ N .

3. Suppose that

ki(u) ≤ 0 , i = 1, ..., n .

Then, there exist positive constants C1 and C2 independent of u such that

J(u) ≥ max{C1‖en‖
2p

p−2 , C2} ,

where (en) is an orthogonal sequence of vectors in H1
0 (Ω) such that lim ‖en‖ =

∞.

Assertion 3 in the above Theorem may be re-phrased as in (1.7) considering,
instead of the dimension of the subspaces Vj , the number nj of non-positive principal
curvatures at uj.

In the last section, we propose an alternative flow on the Nehari manifold (as-
suming an homogeneous nonlinearity) whose stable stationnary points are, under
appropriate conditions, solutions of the second order equation

−∆u = f(u) , u ∈ H1
0 (Ω) .

This work is a personal tribute to Nehari’s pioneering works [10]–[11] fifty years after
their publication. I thank Luis Sanchez and Pedro Girao for their interest and support.

2. Preliminary results. We define a sequence (en) in H1
0 (Ω) in the following

way. Let e1 be such that

‖e1‖
2 = min

{

‖u‖2 :

∫

Ω

F (u)(x) dx = 1

}

,

and for n > 1

‖en‖
2 = min

{

‖u‖2 :

∫

Ω

F (u)(x) dx = 1 , u ∈ ( span{e1, ..., en−1})
⊥

}

.(2.1)

We have the following fact whose proof we postpone to the appendix:

The sequence (en) is an orthogonal basis of H1
0 (Ω). Also (‖en‖) is non-decreasing

and

lim
n→∞

‖en‖ = ∞.

Remark 1. Each en satisfies the relation

(2.2) −∆en = λnnf(en) +

n−1
∑

i=1

λni(−∆ei)
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for some Lagrange multipliers λni. In particular, en ∈ C3,α(Ω) ∩ C0(Ω). Multiplying
(2.2) by en, and integrating by parts we conclude

λnn =
‖en‖2

∫

Ω f(en)en (x) dx
> 0 .

A similar argument yields, for all m > n,

(2.3) 0 =

∫

Ω

∇en∇em(x) dx = λnn

∫

Ω

f(en)em(x) dx.

Then (2.3) implies

for all m > n 〈∇J(en), em〉 = 0 .

In the next Proposition we obtain estimates on a function u ∈ N based on the
dimension of a space where the second derivative of J at u is negative definite.

Proposition 2. Assume f ∈ C1(R,R) satisfies (f2)–(f3). Let u ∈ N and Vj be
a j-dimensional subspace of H1

0 (Ω) such that

(2.4) D2Jvv(u) ≤ 0 for all v ∈ Vj .

Then

J(u) ≥ max{C1‖ej‖
2p

p−2 , C2},

where ej was defined in (2.1) and C1, C2 are positive constants independent of u.

Proof. By (1.6), assumption (f2) and Sobolev’s Embedding Theorem we have, for
some constant cp,

(2.5) ‖u‖2 ≤ βξ2

∫

Ω

|u|p(x) dx ≤ βξ2cp‖u‖
p.

Then, for C = (βξ2cp)
− 1

p−2 , we conclude

(2.6) ‖u‖ ≥ C .

By (1.2), (1.3) and (1.6),

(2.7) J(u) ≥

(

1

2
−

1

ζ

)

‖u‖2 .

The previous estimates prove that J(u) ≥ C2 with C2 = (1/2− 1/ζ)C2.
Let

S = {v ∈ Vj : ‖v‖ = 1} .

We have γ(S) = j where γ is the the genus of a closed symmetric set (see [12]). Let

Ej = (span{e1, ..., ej−1})
⊥ .
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Since γ(S) > codimension Ej , we conclude by [Proposition 7.8, [12]] that

S ∩ Ej 6= ∅ .

We may therefore choose v ∈ Vj ∩Ej and, multiplying if necessary by an appropriate
constant, assume

∫

Ω
F (v)(x) dx = 1. We have

(2.8) D2Jvv(u) =

∫

Ω

|∇v|2(x) dx −

∫

Ω

f ′(u)v2(x) dx ≤ 0 .

By (2.8), Holder inequality and (1.4),

∫

Ω

|∇v|2(x) ≤

(
∫

Ω

|f ′(u)|
p

p−2 (x) dx

)

p−2

p
(
∫

Ω

|v|p(x) dx

)
2
p

≤

K

(
∫

Ω

|u|p(x) dx

)

p−2

p
(
∫

Ω

F (v)(x) dx

)
2
p

= K

(
∫

Ω

|u|p(x) dx

)

p−2

p

(2.9)

where K = ξ
p−2

p

2

(

(p−1)p
ξ1

)
2
p

. By the definition of (en) and our assumptions on v we

have,

(2.10)

∫

Ω

|∇v|2(x) dx ≥

∫

Ω

|∇ej|
2(x) dx.

We conclude, by (2.7), (1.4), (2.9) and (2.10)

J(u) ≥

(

1

2
−

1

ζ

)
∫

Ω

|∇u|2(x) dx =

(

1

2
−

1

ζ

)
∫

Ω

f(u)u(x) dx ≥(2.11)

(

1

2
−

1

ζ

)

ξ1
p− 1

∫

Ω

|u|p(x) dx ≥ C1‖ej‖
2p

p−2

where C1 = K−p/(p−2)
(

1
2 − 1

ζ

)

ξ1
p−1 .

Remark 2. We conclude from Proposition 2 and Lemma 6 that, given a sequence
(uj) of functions in N and a corresponding sequence of finite dimensional subspaces
(Vj) such that lim dim Vj = ∞ and

D2
vvJ(uj) ≤ 0 ∀v ∈ Vj ,

then

lim
j→∞

J(uj) = +∞ .

Given u ∈ N the tangent space Tu of N at u consists on the functions v ∈ H1
0 (Ω)

such that

(2.12) 2

∫

Ω

∇u∇v (x) dx −

∫

Ω

f ′(u)uv(x) dx −

∫

Ω

f(u)v(x) dx = 0 .

The next proposition sets some well–known facts.
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Proposition 3. Assume f satisfies (f1)–(f3). There exists C′ > 0 such that

(2.13) u ∈ N ⇒ ‖u‖ ≥ C′ .

Moreover, N is locally diffeomorphic to

S := {u ∈ H1
0 (Ω), ‖u‖ = 1} .

Given u ∈ N ,

(2.14) ∇J(u) = 0 ⇔ Πu(∇J(u)) = 0 ,

where Πu is the orthogonal projection on Tu.

Proof. Condition (2.13) was already proved in Proposition 2. Given u ∈
H1

0 (Ω)\{0}, consider the function

g(t) := 〈∇J(tu), tu〉 = t2
∫

Ω

|∇u(x)|2 dx−

∫

Ω

tf(tu)u (x) dx .

By (f2)–(f3), we have g(t) > 0 if 0 < t < ǫ for ǫ sufficiently small. Also

lim
t→+∞

g(t) = −∞ .

Therefore there exists t0 > 0 such that g(t0) = 0. By (1.6) and (f2),

g′(t0) = 2t0

∫

Ω

|∇u(x)|2 dx−

∫

Ω

f(t0u)u+ f ′(t0u)u
2 dx < 0 .

Consequently, t0 > 0 is uniquely determined. Also, by the Implicit Function Theorem,

t0(u) ∈ C2(H1
0 (Ω)\{0}),R\{0}) .

Consider the C2–application

PN : H1
0 (Ω)\{0} 7→ N u→ t0(u)u .

Clearly, the restriction

PN |S 7→ N

is a local diffeomorphism.
We now turn to (2.14). The first implication is trivial. Consider the constraint

φ(u) := 〈∇J(u), u〉 = 0. By (f2), for any u ∈ N ,

〈∇φ(u), u〉 =

∫

Ω

|∇u|2(x) dx−

∫

Ω

f ′(u)u2(x) dx =

∫

Ω

f(u)u− f ′(u)u2(x) dx < 0 ,

i.e., u /∈ Tu. Then, Πu(∇J(u)) = 0 and 〈∇J(u), u〉 = 0 imply ∇J(u) = 0.
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3. Local geometry of the Nehari manifold. In this section we prove Theo-
rem 1. We assume that assumptions (f1), (f2) and (f3’) are verified. We denote by
∆−1 the inverse of the Laplacian operator with Dirichlet boundary conditions. Using
the Riesz representation of a linear functional in H1

0 (Ω) and (2.12), the tangent space
can also be characterized as

Tu := {v ∈ H1
0 (Ω) : 〈N(u), v〉 = 0 } ,

with N(u) = 2u+∆−1(h(u)) and

(3.1) h(u) = f ′(u)u+ f(u) .

We recall that, by standard regularity theory (see for instance [4]), the operator
u 7→ ∆−1(h(u)) maps H1

0 (Ω) into itself and is compact. Prescribe

n(u) =
N(u)

‖N(u)‖
,

as unitary normal to Tu. By (f2),

(3.2) 〈n(u), u〉 < 0

for all u ∈ N . Our assumptions on f imply that the map u → n(u) is of class C1 in
H1

0 (Ω)\{0}. Given u ∈ N , we formally define a Weingarten map

Lu : Tu 7→ Tu Lu(v) = Dn(u)[v] .

In fact, given u ∈ N , v ∈ Tu and a regular path γ such that

γ : ]− 1, 1[ 7→ N , γ(0) = u , γ′(0) = v,

we have

〈n(γ(t)), n(γ(t))〉 = 1 ∀t ∈]− 1, 1[ .

In particular

〈Dn(γ(0))[γ′(0)], n(γ(0))〉 = 0 ,

i.e.

Dn(u)[v] ∈ Tu

for all v ∈ Tu. We also recall the classical formula

(3.3) Dn(u)[v] = −DΠu(v, n(u)) .

Computing,

(3.4) Dn(u)[v] =
1

‖N(u)‖

(

2v +∆−1(h′(u)v)− n(u)
〈

2v +∆−1(h′(u)v) , n(u)
〉)

.

If we assume u ∈ W 1,∞
0 (Ω) ⊂ H1

0 (Ω) the operator

Lu(v) := Dn(u)[v] =
1

‖N(u)‖
(2I + Tu(v))
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where

Tu(v) = ∆−1(h′(u)v)− n(u)
〈

2v +∆−1(h′(u)v) , n(u)
〉

is well-defined for all v ∈ H1
0 (Ω). Moreover the operator

Tu : Tu 7→ Tu

is self-adjoint and compact (note that the term
〈

2v +∆−1(h′(u)v) , n(u)
〉

maps into
R). We may therefore provide an orthogonal basis for Tu of eigenvectors of Tu. To
an eigenvector v of Tu with associated eigenvalue λ corresponds the same eigenvector
v of Lu with associated eigenvalue

(3.5) k =
2 + λ

‖N(u)‖
.

Remark 3. The assumption that u ∈ W 1,∞
0 (Ω) may be weakened. Consider

the case where Ω is a bounded regular subset of R
2. As H1

0 (Ω) ⊂ Lq(Ω) for any
q ∈ [1,+∞[ with compact embedding, the application of H1

0 (Ω) into H1
0 (Ω)

∗
defined

by

v 7→ Hv , Hv(w) ≡

∫

Ω

h′(u)vw dx (w ∈ H1
0 (Ω))

is compact. Consequently, identifying H1
0 (Ω) with its dual, we conclude that

∆−1(h′(u)v) is self-adjoint and compact so that the principal curvatures are defined
for all u ∈ H1

0 (Ω) ∩ N . However, the class of functions in W 1,∞
0 (Ω) is of special in-

terest regarding its invariance property for relevant energy decreasing flows associated
to Euler-Lagrange functionals.

We have the following property of the non-zero eigenvalues of the compact oper-
ator Tu.

Lemma 1. Given u ∈ N ∩W 1,∞
0 (Ω), the distinct non-zero eigenvalues of Tu form

an increasing sequence (λn(u)) converging to zero.

Proof. As usual, we determine the sequence of the non-zero eigenvalues and
corresponding eigenvectors of Tu by means of a recurrent sequence of minimization
problems:

λn := inf
{

〈Tu(v), v〉 : v ∈ Tu , ‖v‖ = 1 , v ∈ (span{v1, ..., vn−1})
⊥
}

and a corresponding eigenvector vn is a function where the infimum is attained. Nec-
essarily, (λn) is an increasing sequence. In case λn+1 = λn the eigenvalue λn has
multiplicity greater than 1. Since 〈n(u), v〉 = 0, we have

〈Tu(v), v〉 = 〈∆−1(h′(u)v), v〉 = −

∫

Ω

h′(u)v2(x) dx ,

and conclude λn ≤ 0 for all n ∈ N.
Assume, for some n, that λn = 0 and λn−1 < 0. Then for any k ≥ n, we have

λk = 0 and a corresponding eigenfunction vk satisfies
∫

h′(u)v2k(x) dx = 0 .
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Then, by (f3),

vk ≡ 0 in supp(u) ∀k ≥ n .

As any w such that

support(w) ⊂ support(u)

is orthogonal to vk with k ≥ n, w necessarily belongs to span{v1, ..., vn−1}. This
would imply, for any bounded regular domain ω such that ω ⊂ supp(u),

(

H1
0 (ω) ∩ Tu

)

⊂ span{v1, ..., vn−1}

which is absurd since the first subspace is infinite dimensional.

If
∫

Ω

h′(u)v2(x) dx > 0 , ∀v ∈ Tu\{0} ,

the sequence (vi) of eigenvectors associated to the sequence of non-zero eigenvalues
(λi) provides an Hilbert basis of Tu. This is the case if u(x) 6= 0 a.e. in Ω. In general,
we may write

Tu = Ker(Tu)⊕R(Tu) ,

where R(Tu) is the closure of the subspace generated by the family {vi}.

In view of (3.5), we will refer an eigenvalue ki of Lu as a (signed) principal
curvature of N at u if the corresponding eigenvalue λi of Tu satisfies λi < 0. The
sequence (ki) is increasing and converges to 2/‖N(u)‖. We denote by Ku the set of
all eigenvalues of Lu. We have

(3.6) Ku ⊆ {ki}i∈N ∪ {2/‖N(u)‖} ,

with equality of sets in the degenerate case Ker(Tu) 6= {0}. In particular, at any point
u ∈ N , the principal curvatures are positive, except at most for a finite number.

Remark 4. Let P be a plane containing the inward normal n(u) and a direction
v(u) associated to a positive curvature. Using the reference frame of center u and
vectors v(u) and n(u), if w ∈ P ∩ N\{u} is sufficiently close to u, then

w = x v(u) + y n(u) with (x, y) ∈ R
2 , y < 0 .

In view of (3.6), we may locally describe the Nehari manifold saying that, at any point
u ∈ N ∩W 1,∞

0 (Ω), there exists an “exterior” tangent sphere to the Nehari manifold,
with center

C(u) = u−
‖N(u)‖

2
· n(u) = −

1

2
∆−1(h(u)) ,

and radius ‖N(u)‖/2, whose curvature is the limit of the sequence of principal curva-
tures (ki).
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We have the following estimates on the curvatures of the Nehari manifold.

Lemma 2. There exists C > 0 such that, for every u ∈W 1,∞
0 (Ω) ∩ N and i ∈ N

(3.7) −
C(2 + ‖u‖2(p−2)/p)

‖u‖
≤ ki(u) ≤

C

‖u‖
.

Proof. As

〈N(u), u〉 = 2‖u‖2 −

∫

f(u)u dx−

∫

f ′(u)u2 dx

by (1.6) and (f2)

|〈N(u), u〉| ≥
1− β

β
· ‖u‖2 ,

and, by Schwarz inequality,

(3.8) ‖N(u)‖ ≥
1− β

β
‖u‖ .

In view of (3.5), we conclude from Lemma 1 and (3.8) the right hand-side of (3.7). In
order to prove the complete estimate it suffices to set the inequality to k1. Assume
‖v‖ = 1. Necessarily

λ1 ≥ λ := min
‖v‖=1

−

∫

Ω

h′(u)v2(x) dx .

By (f3’) and (3.1),

h′(u) ≤ C1 |u|
p−2

for C1 = ξ2/(p− 1). Then, by Holder inequality, (1.6) and Sobolev Imbedding Theo-
rem, for some constant C2 > 0

∫

Ω

h′(u)v2(x) dx ≤ C1

(
∫

Ω

|u|p(x) dx

)

p−2

p
(
∫

Ω

|v|p(x) dx

)
2
p

≤ C2

(
∫

Ω

f(u)u(x) dx

)(p−2)/p

= C2‖u‖
2(p−2)/p ,(3.9)

thereby proving inequality (3.7).

Remark 5. Note that, if p ≤ 4, the curvatures are uniformly bounded below on
the Nehari manifold by a negative constant. In particular, there exists K > 0 such
that, for all u ∈ N ,

|ki(u)| ≤ K ∀i ∈ N .

Analogously to Proposition 2, we obtain lower bounds on the the energy of u ∈ N
based on the number of negative principal curvatures of the Weingarten map Lu.

Lemma 3. Let u ∈ N ∩W 1,∞
0 (Ω) be such that

ki(u) ≤ 0 , i = 1, ..., j .
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Then, there exist positive constants C1 and C2 independent of u such that

J(u) ≥ max{C1‖ej‖
2p

p−2 , C2} ,

where ej was defined in (2.1).

Proof. The proof is similar to the proof of Proposition 2 so we omit the details.
Consider the subspaces

Vj := span{v1, ...vj̄} and Ej = (span{e1, ..., ej−1})
⊥

where the vi’s are eigenvectors associated to k1, ..., kj (necessarily, j̄ ≥ j). For any
v ∈ Vj ,

(3.10) 〈Dnu(v), v〉 =
1

‖N(u)‖
〈2v + Tu(v), v〉 =

1

‖N(u)‖

(

2‖v‖2 −

∫

Ω

h′(u)v2(x) dx

)

≤ 0 ,

or

‖v‖2 −
1

2

∫

Ω

h′(u)v2(x) dx ≤ 0 .

As in Lemma 2, we may choose v ∈ Vj ∩ Ej such that
∫

ΩH(v)(x) dx = 1 for H(v) =
∫ v

0 h(s) ds. Recalling that, by (3.1), h′(u) = 2f ′(u) + f ′′(u)u, we may estimate as in
(2.9)–(2.11) and conclude the proof.

Remark 6. We may assert the existence of points on the Nehari manifold with
an arbitrarily large number of negative principal curvatures. In fact, let us consider a
multi-bump function

u :=
n
∑

k=1

vk

where, for i 6= j,

support (vi) ∩ support (vj) = ∅

and

vk ∈ N ∩W 1,∞
0 (Ω)

for all k = 1, ..., n. As

2‖vi‖
2 −

∫

Ω

h′(u)v2i (x) dx = 2‖vi‖
2 −

∫

Ω

h′(vi)v
2
i (x) dx < 0

and the set of functions {vi}i=1,...,n is orthogonal, we may conclude the existence of
n− 1 orthogonal vectors ṽi in Tu such that 〈Lu(ṽi), ṽi〉 < 0. In particular

k1 < ... < kn−1 < 0 ,

where ki is the sequence of eigenvalues of Lu.
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4. An angle-decreasing flow. In the next section, we assume

(4.1) f(u) =

{

c1|u|p−2u if u ≤ 0

c2|u|p−2u , if u > 0 ,

where c1, c2 > 0. In case where the non-linearity f is as in (4.1), then

J(u) =

(

1

2
−

1

p

)

‖u‖2 ∀u ∈ N .

In particular, critical points of the distance functional u 7→ ‖u‖ constrained to N are
solutions of (1.1).

We introduce an auxiliary functional on the Nehari manifold:

θu ≡ θ(u) =:

〈

n(u),
u

‖u‖

〉

.

The functional θ is the restriction to N of a functional of class C1(H1
0 (Ω)\{0},R) that

we will also denote by θ. Note that, by (3.2) and Schwarz inequality

θ(N ) ⊂ [−1, 0[ .

Also, arccos(θu) corresponds to the angle between the vectors u and n(u).
Assuming u ∈ W 1,∞

0 (Ω), we use our previous decomposition of the tangent space
Tu to calculate

Πu(∇θu) .

For any v ∈ Tu,

(4.2) 〈∇θu, v〉 = Dθu(v) =

〈

Dn(u)[v],
u

‖u‖

〉

− 〈n(u), u〉
〈u, v〉

‖u‖3
.

Choosing v an eigenvector with corresponding eigenvalue k, as 〈n, v〉 = 0 we obtain
by (3.4),

(4.3) 〈∇θu, v〉 =

(

k −
θu
‖u‖

)〈

v,
u

‖u‖

〉

.

We may write, in the non-degenerate case Ker(Tu) = {0},

(4.4) Πu(∇θu) =
1

‖u‖

∞
∑

i=1

(

ki −
θu
‖u‖

)

〈vi, u〉 · vi .

More generally, denoting by Π0
u the projection on Ker(Tu) ⊂ Tu,

(4.5) Πu(∇θu) =
1

‖u‖

∞
∑

i=1

(

ki −
θu
‖u‖

)

〈vi, u〉 · vi +
1

‖u‖

(

2

‖N(u)‖
−

θu
‖u‖

)

· Π0
u(u).

Remark 7. Using (4.4)–(4.5) and Lemma 2, a simple estimate shows that, for
some C > 0 ,

‖Πu(∇θu)‖ ≤ C‖u‖(p−4)/p ≤ C‖u‖ , ∀u ∈ N .
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In case ∇J(u) = 0 then ∇θu = 0 but the inverse is not true. However, in case
θu/‖u‖ /∈ Ku,

∇J(u) = 0 ⇔ ∇θu = 0 .

In the next proposition we establish the existence of an “angle–decreasing” flow.

Proposition 4. Let Ω ⊂ R
N be a bounded and regular domain and

Φ :W 1,∞
0 (Ω) ∩ N 7→W 1,∞

0 (Ω) , Φ(u) = Πu(∇θu) .

Given u0 ∈ N ∩W 1,∞
0 (Ω), the initial value problem

(4.6) η(0, u0) = u0 ,
dη

dt
(t) = −Φ(η(t, u0)) .

has a unique solution

η : N ∩W 1,∞
0 (Ω)× [0, τ0[ 7→ N ∩W 1,∞

0 (Ω) ,

for some τ0 > 0. In case Ω is a bounded regular domain of R
2, then the same

conclusion holds with τ0 = +∞.

The proof of Proposition 4 will follow from a sequence of lemmas.

Lemma 4. Let f : R → R be a locally Lipschitz function. Define

Ψ : W 1,∞
0 (Ω) 7→W 1,∞

0 (Ω) , u→ ∆−1(f(u)) .

Then Ψ is locally Lipschitz continuous.

Proof. Trivially, W 1,∞
0 (Ω) ⊂ C0 (Ω) with continuous injection. By standard

regularity theory (see [4], theorems 8.33-8.34) we have ∆−1(f(u)) ∈ C1,α
0

(

Ω
)

so Ψ is
well-defined.

Let Bǫ(u) be the ball of radius ǫ and center u in C0 (Ω). By our assumptions on
f , for any v ∈ Bǫ(u), we have

|f(u)− f(v)| ≤ Kǫ|u− v| ,

for some Kǫ > 0. We conclude that the functional

ψ :W 1,∞
0 (Ω) 7→ C

(

Ω
)

, u→ f(u)

is locally Lipschitz continuous. Since ∆−1 : C
(

Ω
)

7→ C1,α
0 (Ω) is Lipschitz continuous,

we conclude that Ψ = ∆−1◦ψ is locally Lipschitz continuous. The proof is complete.

Remark 8. With similar arguments, we may prove that, for locally Lipschitz
functions f, g : R 7→ R,

u 7→ ∆−1[∆−1(f(u))g(u)]

is locally Lipschitz continuous in W 1,∞
0 (Ω).

Lemma 5. Let

Φ : W 1,∞
0 (Ω) ∩N 7→W 1,∞

0 (Ω) , Φ(u) = Πu(∇θu) .
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For any u1 ∈W 1,∞
0 (Ω)∩N , there exists aW 1,∞-ball B1 centered at u1 and a Lipschitz

continuous function

F : B1 ∩W
1,∞
0 (Ω) 7→W 1,∞

0 (Ω)

such that

F (u) = Φ(u) , ∀u ∈ B1 ∩W
1,∞
0 (Ω) ∩ N .

Proof. Let B1 be a W 1,∞-ball centered at u1 such that ‖u‖ and ‖N(u)‖ are
uniformly bounded below by a positive constant in B1. We consider the following
extensions N,n : B1 7→W 1,∞

0 (Ω) and θ : B1 7→ R,

N(u) = 2u+∆−1(h(u)) , n(u) =
N(u)

‖N(u)‖
, θ(u) =

〈

n(u),
u

‖u‖

〉

.

In the homogeneous case, h(u) = f(u) + f ′(u)u = pf(u). Then,

θ(u) =
1

‖N(u)‖ · ‖u‖

(

2‖u‖2 − p

∫

Ω

f(u)u dx

)

.

Define

J1(u) = ‖N(u)‖2 = 4‖u‖2 + 4p〈u,∆−1(f(u))〉+ p2‖∆−1(f(u))‖2 ,

and

J2(u) =

(

2‖u‖ −
p

‖u‖

∫

Ω

f(u)u dx

)

,

so that

(4.7) θ(u) =
J2(u)
√

J1(u)
.

By (3.8) and Proposition 3, we have, for all u ∈ N ,

J1(u) ≥
C′(1− β)

β
> 0 .

As the square root function is Lipschitz in any interval [δ,+∞[ with δ > 0, in order to
prove that ∇θ is locally Lipschitz it will suffice to prove that ∇θ1 and ∇θ2 are locally
Lipschitz. By Lemma 4 J1 :W 1,∞

0 (Ω) → R is locally Lipschitz continuous. Moreover

〈∇J1(u), v〉 =

8〈u, v〉+ 4p〈v,∆−1(f(u))〉+

4p〈u,∆−1(f ′(u)v)〉 + 2p2〈∆−1(f ′(u)v),∆−1(f(u))〉 .(4.8)

As

〈u,∆−1(f ′(u)v)〉 = −

∫

Ω

f ′(u)uv dx = (p− 1)〈v,∆−1(f(u))〉 ,
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and

〈∆−1(f ′(u)v),∆−1(f(u))〉 = (p− 1)〈v,∆−1[∆−1(f(u))f ′(u)]〉 ,

we conclude that

(4.9) ∇J1(u) = 8u+ 4p2∆−1(f(u)) + 2p2(p− 1)∆−1[∆−1(f(u))f ′(u)] .

Then, by Remark 8, we conclude that ∇J1 :W 1,∞
0 (Ω) →W 1,∞

0 (Ω) is locally Lipschitz
continuous. Similarly, we may prove that J2 : W 1,∞

0 (Ω) → R and ∇J2 : W 1,∞
0 (Ω) →

W 1,∞
0 (Ω) are locally Lipschitz continuous.
Finally, writing

F (u) := ∇θ(u)− 〈∇θ(u), n(u)〉n(u)

we conclude from (4.7) that

F :W 1,∞
0 (Ω) ∩B1 7→W 1,∞

0 (Ω) ,

is locally Lipschitz continuous and

F (u) = Πu(∇θu) , ∀u ∈ N .

Proof of Proposition 4. Assuming [0, τ0[ is the maximal domain of η(t, u0) in
W 1,∞

0 (Ω), one easily verifies that η(t, u0) ∈ N for all t ∈ [0, τ0[. Consider the case
where Ω is a bounded regular domain of R2. Suppose, in view of a contradiction, that
τ0 < ∞. Then, by Remark 7 and classical Gronwall estimates, as t → τ0 necessarily
η(t, u0) → w ∈ N in H1-norm. Consider the H1-ball BR(w) centered at w and
radius R = ‖w‖/2. Noting that BR(w) is bounded in Lq(Ω) for arbitrarily large q, by
standard regularity theory (see section 8.11–[4]), we have, for all u ∈ BR(w),

‖∆−1(f(u))‖W 1,∞(Ω) ≤ ‖∆−1(f(u))‖C1,α(Ω) ≤ C

and

‖∆−1[∆−1(f(u))f ′(u)]‖W 1,∞(Ω) ≤ ‖∆−1[∆−1(f(u))f ′(u)]‖C1,α(Ω) ≤ C

for some C > 0. Also, ‖u‖ and ‖N(u)‖ are uniformly bounded below in BR(w)
by a positive constant. Adapting the arguments in Lemma 5 we may consider F :
BR(w) ∩W

1,∞
0 (Ω) →W 1,∞

0 (Ω) such that

Πη(∇θη) = F (η) , ∀η ∈ BR(w) ∩W
1,∞
0 (Ω) ∩ N

and, for some KB > 0,

|F (w1)− F (w2)|W 1,∞ ≤ KB|w1 − w2|W 1,∞ , ∀w1, w2 ∈ BR(w) ∩W
1,∞
0 (Ω) .

Then there exists a constant ǫ such that, for any w′ ∈ BR/2(w) ∩ W 1,∞
0 (Ω), the

maximal domain of definition in W 1,∞
0 (Ω) of η(w′, t) contains [0, ǫ[. This implies that

the maximal domain of η(t, u0) contains [0, τ0 + ǫ[, contradicting our assumption on
τ0.

Remark 9. In case Ω is a bounded regular domain in R
2, similar estimates to

the ones in Lemmas 4–5 (with W 1,∞
0 (Ω) replaced by H1

0 (Ω)) allow us to prove the
existence and uniqueness of the solution to (4.6) when u0 ∈ N .



A GEOMETRICAL VIEW OF THE NEHARI MANIFOLD 203

In the next proposition we prove some essential facts allowing us a clearer under-
standing of the angle decreasing flow.

Proposition 5. Let η(t, u0) be the flow defined in (4.6).
(i) For 0 < t1 < t2 < τ0

(4.10) −1 ≤ θ(η(t2, u0)) ≤ θ(η(t1, u0)) < 0 .

(ii) Let t0 ∈ [0, τ0[ and denote η = η(t0, u0). Then
(4.11)

d

dt

(

1

2
‖Πηη‖

2

)

(t0) =

∞
∑

i=1

(

ki(η)−
θη
‖η‖

)(

θηki(η)−
1

‖η‖

)

〈η, vi(η)〉
2 +K1‖Π

0
η(η)‖

2 .

where K1 = (2/‖N(η)‖ − θη‖η‖
−1)(2θη/‖N(η)‖ − ‖η‖−1) and

(4.12)
d

dt

(

1

2
〈η(t), n(η(t))〉2

)

(t0) =
∞
∑

i=1

θηki(η)

(

−ki(η) +
θη
‖η‖

)

〈η, vi(η)〉
2+K2‖Π

0
η(η)‖

2 .

where K2 = 2θη/‖N(η)‖ (−2/‖N(η)‖+ θη/‖η‖).

(iii) Denote η⊤ = Πηη and η⊥ = η − η⊤ . Then

Ku ∩
]

(θu‖u‖)
−1, θu‖u‖

−1
[

= ∅ ⇒
d

dt
‖η⊤‖η=u ≤ 0 ,

and

Ku∩]θu/‖u‖, 0[ = ∅ ⇒
d

dt
‖η⊥‖η=u ≥ 0 .

Proof. Assertion (i) follows trivially from (4.6) and the formula

d

dt
θ(η(t, u0)) = 〈∇θ(η(t)), η′(t)〉 .

As η([0, τ0[) ⊂ N ∩W 1,∞
0 (Ω), for any u ∈ η([0, τ0[) we may provide an orthonormal

basis of Tu consisting of eigenvectors of Lu. Let us study how the norm of the
projection Πη(η) and of the normal component 〈η, n〉 ·n evolve along the flow defined
in (4.6). For simplicity of notation, we assume Ker(Tu) = {0} although minor changes
provide the more general case.

d

dt

(

1

2
‖Πη(t)η(t)‖

2

)

=

〈

DΠη(t)(η
′(t), η(t)),Πη(t)(η(t))

〉

+
〈

Πη(t)(η
′(t)),Πη(t)(η(t))

〉

(4.13)

Denoting η(t) = u and n(u) = n, we have, by (4.4),

〈

Πη(t)(η
′(t)),Πη(t)(η(t))

〉

= 〈−Πu(∇θu), u〉 =
1

‖u‖

∞
∑

i=1

(

−ki +
θu
‖u‖

)

〈vi, u〉
2 .(4.14)

Also

〈

DΠη(t)(η
′(t), η(t)),Πη(t)(η(t))

〉

= 〈DΠu(−Πu(∇θu), u),Πu(u)〉 .(4.15)
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We decompose

DΠu(−Πu(∇θu), u) = DΠu(−Πu(∇θu),Πu(u) + 〈u, n〉n) =

DΠu(−Πu(∇θu),Πu(u)) + 〈u, n〉DΠu(−Πu(∇θu), n)

and observe that

DΠu(−Πu(∇θu),Πu(u)) ∈ T
⊥
u

(since it is the second fundamental form of N at u). Then, by (3.3), we may re-write
(4.15)

〈DΠu(−Πu(∇θu), u),Πu(u)〉 =〈u, n〉〈Dn(u)[Πu(∇θu)], u〉 =
∞
∑

i=1

θuki

(

ki −
θu
‖u‖

)

〈u, vi〉
2 .(4.16)

Combining (4.13), (4.14) and (4.16) we obtain, for u = η(t),

(4.17)
d

dt

(

1

2
‖Πηη‖

2

)

=

∞
∑

i=1

(

ki(η) −
θη
‖η‖

)(

θηki(η)−
1

‖η‖

)

〈η, vi(η)〉
2 .

Let us turn to the study of the normal component 〈η, n〉n. Differentiating in t,
assuming η(t) = u, we obtain

d

dt

(

1

2
〈η(t), n(η(t))〉2

)

= 〈u, n〉 (〈u,Dnu(−Πu(∇θu))〉+ 〈−Πu(∇θu), n〉) .

Noting that 〈−Πu(∇θu), n〉 = 0 , we may write, for u = η(t),

(4.18)
d

dt

(

1

2
〈η(t), n(η(t))〉2

)

=

∞
∑

i=1

θηki(η)

(

−ki(η) +
θη
‖η‖

)

〈η, vi(η)〉
2 .

In case Ker(Tu) 6= {0}, formulas (4.11)–(4.12) are trivially obtained from formulas
(4.17)–(4.18) by adding to their right hand-side a term corresponding to the projection
on Ker(Tu): K1 and K2 are obtained by plugging k0 = 2/‖N(u)‖ on

(

ki(η) −
θη
‖η‖

)(

θηki(η)−
1

‖η‖

)

and

ki(η)

(

−ki(η) +
θη
‖η‖

)

.

This proves (ii). Finally, assertion (iii) follows by a simple evaluation of the above
quadratic terms on the variable ki(η), recalling that θη < 0.

We will now study the convergence of the angle decreasing flow η(t, u0) to a
critical point of the distance functional on N –i.e. a solution of (1.1)– when Ω is a
bounded regular domain in R

2. Note that, by Remark 3, the principal curvatures of
the Nehari manifold are defined for all u ∈ N and therefore we may provide a basis
of the tangent space Tu composed by eigenvectors of the Weingarten Map Lu.
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Let ρ > 0, u ∈ N . We define

Kρ,u =

{

ki ∈ Ku : ki ∈

]

1

θ(u)‖u‖
− ρ,

θ(u)

‖u‖
+ ρ

[}

,

K′
ρ,u := Ku\Kρ,u and the subspace

Eρ,u = {v ∈ Tu : v ∈ span{vk : k ∈ Kρ,u}} .

Note that, in case ρ < (2/‖N(u)‖ − θ(u)/‖u‖), Eρ,u is finite dimensional. We shall
denote by Πρ,u the projection on Eρ,u and by Π′

ρ,u := Πu −Πρ,u.

Proposition 6. Let Ω ⊂ R
2 be a bounded regular domain and f defined by

(4.1). Let u0 ∈ N , θ0 = θ(u0). Assume there exist 0 < R ≤ R0 < ‖u0‖, δ > 0, ρ > 0
and C0 ≥ 0, such that, for all u ∈ N ∩B(u0, R) we have

(i)

(4.19) ‖Πρ,u(u)‖
2 ≤ C0‖Π

′
ρ,u(u)‖

2

where

(4.20) C0 ≤
δ + |θ0|ρ2

(θ0/2− (2θ0)−1)2

(ii)

(4.21) 2aK
‖u⊤0 ‖

‖u0‖ −R
exp(b‖u⊤0 ‖

2) < R

where |ki(u)| ≤ K for all u ∈ N ∩ B(u0, R0), a = ‖u0‖2(1 + C0)/(2δ) and

b = K
2
(1 + C0)/(2δ).

Then η(t, u0) defined by (4.6) converges in H1-norm to a critical point u∗ ∈
B(u0, R)∩N of the distance functional –i.e a solution to (1.1). Moreover, ‖η⊤(t, u0)‖
is decreasing in t.

Remark 10. Note that the existence of K verifying

|ki(u)| ≤ K for all u ∈ N ∩B(u0, R0)

with R0 < ‖u0‖ is a simple consequence of Lemma 2.

Proof. By Proposition 4, in view of Remark 9, η(t, u0) is defined for all u0 ∈ N
and t ∈ [0,+∞[. For simplicity, we denote η(t) := η(t, u0) and assume Ker(Tη) = {0}
since the calculations remain essentially unchanged.

Step 1: Decreasing of ‖η⊤(t)‖ as η ∈ B(u0, R).

We write

d

dt

1

2
‖η⊤(t, u1)‖

2 =

∑

i∈K′

ρ,η

(

ki −
θη
‖η‖

)(

θηki −
1

‖η‖

)

〈η, vi〉
2 +

∑

i∈Kρ,η

(

ki −
θη
‖η‖

)(

θηki −
1

‖η‖

)

〈η, vi〉
2 .
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By (i), estimating the quadratic term in ki, recalling that θη ≤ θ0 < 0,

(4.22)
∑

i∈K′

ρ,η

(

ki −
θη
‖η‖

)(

θηki −
1

‖η‖

)

〈η, vi〉
2 ≤ −

|θ0|ρ2

‖η‖2
‖Π′

ρ,η(η)‖
2 .

Similarly,

(4.23)
∑

i∈Kρ,η

(

ki −
θη
‖η‖

)(

θηki −
1

‖η‖

)

〈η, vi〉
2 ≤

1

‖η‖2

(

θ0
2

−
1

2θ0

)2

‖Πρ,η(η)‖
2 .

Therefore, by (i), (4.22)–(4.23),

(4.24)
d

dt

1

2
‖η⊤(t)‖2 ≤ −

δ

‖η(t)‖2
‖Π′

ρ,η(η)‖
2 .

Step 2: Convergence of η(t) to a global minimum of θ

By the previous step, we have

(4.25)
d

dt
‖η‖2 =

d

dt
‖η⊥‖2 +

d

dt
‖η⊤‖2 ≤

d

dt
‖η⊥‖2 .

Also, by a simple estimate

(4.26)
d

dt
‖η⊥‖2 ≤ K

2
‖η⊤‖2 .

We conclude from (4.25)–(4.26)

d

dt
‖η‖2 ≤ K

2
‖η⊤‖2 ,

or

‖η‖2(t) ≤ ‖η‖2(0) +K
2
∫ t

0

‖η⊤‖2(s) ds .

Then, by (4.19) and (4.24), as ‖η⊤‖2 = ‖Πρ,ηη‖2 + ‖Π′
ρ,ηη‖

2,

d

dt
‖η⊤(t)‖2 ≤ −

2δ(1 + C0)
−1‖η⊤(t)‖2

‖η(0)‖2 +K
2 ∫ t

0
‖η⊤‖2(s) ds

.

By Lemma 7 (Appendix), we conclude that, for any T such that η([0, T ]) ⊂ B(u0, R)

(4.27)

∫ T

0

‖η⊤‖(t) dt ≤ 2a exp(b‖u⊤0 ‖
2) ‖u⊤0 ‖ .

where a = ‖u0‖2(1 + C0)/(2δ) and b = K
2
(1 + C0)/(2δ). As

‖η(t)‖ ≥ ‖u0‖ −R > 0 ,



A GEOMETRICAL VIEW OF THE NEHARI MANIFOLD 207

we conclude, by (4.4),

(4.28)

∥

∥

∥

∥

dη

dt

∥

∥

∥

∥

= ‖Πη(∇θη)‖ ≤
K

‖η‖
‖η⊤‖ ≤

K

‖u(0)‖ −R
‖η⊤‖ .

Then (4.27) implies

∫ T

0

∥

∥

∥

∥

dη

dt
(t)

∥

∥

∥

∥

dt ≤ 2aK
‖u⊤0 ‖

‖u0‖ −R
exp(b‖u⊤0 ‖

2) ,

for all T > 0 such that η([0, T ]) ⊂ B(u0, R). By (4.21), the flow η(t) necessarily
converges in H1-norm to u∗ ∈ B(u0, R) ∩ N . By (i), using a simple approximation
argument, one concludes that Πu∗(u∗) = 0. Then θ(u∗) = −1, u∗ is a critical point
of the distance functional on the Nehari Manifold and a solution to (1.1).

Remark 11. In the conditions of Proposition 6, if u∗ is a nontrivial solution
of (1.1) such that − 1

‖u∗‖ /∈ Ku∗ , there exists a H1-ball B(u∗, R∗) such that, for all

u0 ∈ B(u∗, R∗) ∩ N , η(t, u0) converges to a solution ũ of (1.1) (in H1-norm) as t
tends to infinity. In fact, by a simple continuity argument, we may choose ρ > 0 and
R∗ > 0 such that, for all u ∈ B(u∗, R∗) ∩ N ,

Ku ∩

]

1

θu‖u‖
− ρ,

θu
‖u‖

+ ρ

[

= ∅ .

Moreover, fixing δ = 1 and C0 = 0 (considering an eventually smaller value for R∗)
conditions (i)–(ii) of Proposition 6 are verified for all u0 ∈ B(u∗, R∗)∩N . Of course,
in case u∗ is an isolated critical point of the distance functional, we may insure η(t, u0)
will converge to u∗ provided ‖u0 − u∗‖ is sufficiently small.

5. Appendix.

5.1. A suitable basis of H1
0 (Ω). Let F ∈ C(R,R) be such that F (0) = 0,

F (u) > 0 if u 6= 0. Moreover, assume

(5.1) lim
u→±∞

F (u) = +∞ ,

and

(5.2) lim
u→±∞

F (u)

|u|q
= 0 ,

for some 1 ≤ q < 2∗.
We define by recurrence a family of orthogonal vectors. Consider the following

minimization problem:

(5.3) min

{
∫

Ω

|∇u|2(x) dx : u ∈ H1
0 (Ω),

∫

Ω

F (u)(x) dx = 1

}

.

By (5.1)–(5.2), a minimizer exists, that we shall denote by e1. More generally, we
define en to be a minimizer of the Dirichlet integral

∫

Ω
|∇u|2(x) dx over the weakly

closed set
{

u ∈ H1
0 (Ω) :

∫

Ω

F (u)(x) dx = 1 and u ∈ 〈e1, ..., en−1〉
⊥

}

.
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Lemma 6. The sequence (en) is an orthogonal basis of H1
0 (Ω). Also (‖en‖) is

non-decreasing and

lim
n→∞

‖en‖ = ∞.

Proof. Trivially, the sequence (‖en‖) is non-decreasing. We assert that

lim
n→∞

‖en‖ = ∞ .

Suppose, in view of a contradiction, the existence of C > 0 such that ‖en‖ ≤ C for
all n ∈ N. Passing to a weakly convergent subsequence, denoted by (enj

), we have

(5.4) enj
⇀ v and

∫

Ω

F (v)(x) dx = 1 .

Let nj ∈ N be fixed. We have

〈v, enj
〉 = lim

k→∞
〈enk

, enj
〉 = 0 .

Now letting nj → ∞ we conclude ‖v‖ = 0 and contradict (5.4). The assertion is
proved.

Let w ∈ H1
0 (Ω) be such that

(5.5) 〈w, ei〉 = 0 for all i ∈ N .

If w 6= 0 assume (without loss of generality)

∫

Ω

F (w)(x) dx = 1 .

The previous assertion, together with (5.5), imply that there exists n ∈ N such that
‖en−1‖ ≤ ‖w‖ < ‖en‖. This, contradicts the definition of the function en. Then
w = 0 and the proof is complete.

5.2. A Gronwall type estimate.

Lemma 7. Let f ∈ C1([0,+∞[,R+) be such that

(5.6) f ′(t) ≤ −
f(t)

a+ b
∫ t

0
f(u) du

for some a, b > 0. Then

(5.7)

∫ ∞

0

√

f(u) du ≤ 2a ebf(0)
√

f(0) .

Proof. Integrating equation (5.6),

f(t)− f(0) ≤ −
1

b

[

ln

(

a+ b

∫ s

0

f(u)du

)]t

0

,
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or

f(t) +
1

b
ln

(

a+ b

∫ t

0

f(u) du

)

≤ f(0) +
ln(a)

b

and, as f(t) ≥ 0, we conclude, by passing to the limit in t,

ln

(

a+ b

∫ +∞

0

f(u) du

)

≤ bf(0) + ln(a)

or

(5.8)

∫ +∞

0

f(u) du ≤ C

where C = (aebf(0) − a)/b. Writing f(t) = h2(t) with h(t) > 0, inequality (5.6)
becomes

2h(t)h′(t) ≤ −
h2(t)

a+ b
∫ t

0 f(u) du
.

By (5.6)–(5.8), we conclude

h′(t) ≤ −
h(t)

2(a+ bC)
= −

1

2a
e−bf(0)h(t) ,

or

0 ≤ h(t) ≤
√

f(0)e−C2t ,

where C2 = 1
2ae

−bf(0). A simple integral comparison proves the lemma.
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