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ON THE EXISTENCE OF SMOOTH SOLUTIONS FOR FULLY

NONLINEAR ELLIPTIC EQUATIONS WITH MEASURABLE

“COEFFICIENTS” WITHOUT CONVEXITY ASSUMPTIONS∗

NICOLAI V. KRYLOV†

Abstract. We show that for any uniformly elliptic fully nonlinear second-order equation with
bounded measurable “coefficients” and bounded “free” term one can find an approximating equation
which has a unique continuous and having the second derivatives locally bounded solution in a given
smooth domain with smooth boundary data. The approximating equation is constructed in such a
way that it modifies the original one only for large values of the unknown function and its derivatives.
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1. Introduction and main result. In this article, we consider elliptic equa-
tions

(1.1) H [v](x) := H(v(x), Dv(x), D2v(x), x) = 0

in subdomains of Rd, where

R
d = {x = (x1, ..., xd) : x1, ..., xd ∈ R = (−∞,∞)}.

Here

D2u = (Diju), Du = (Diu), Di =
∂

∂xi
, Dij = DiDj .

We introduce S as the set of symmetric d× d matrices, fix a constant δ ∈ (0, 1], and
set

Sδ = {a ∈ S : δ|ξ|2 ≤ aijξiξj ≤ δ−1|ξ|2, ∀ξ ∈ R
d},

where and everywhere in the article the summation convention is enforced unless
specifically stated otherwise.

Recall that Lipschitz continuous functions are almost everywhere differentiable.

Assumption 1.1. (i) The function H(u, x), u = (u′, u′′),

u′ = (u′0, u
′
1, ..., u

′
d) ∈ R

d+1, u′′ ∈ S, x ∈ R
d,

is measurable with respect to x for any u, and Lipschitz continuous in u for every
x ∈ R

d.
(ii) For any x, at all points of differentiability of H(u, x) with respect to u, we

have

(Hu′′

ij
) ∈ Sδ, |Hu′

k
| ≤ δ−1, k = 1, ..., d, 0 ≤ −Hu′

0
≤ δ−1.
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(iii) Finally,

H̄ := sup
x∈Rd

|H(0, x)| <∞.

Let Ω be an open bounded subset of Rd with C2 boundary and take a function
g ∈ C1,1(Ω̄). Here is our main result, in which K ≥ 0 is a fixed constant.

Theorem 1.1. There is a constant δ̂ ∈ (0, δ] depending only on δ and d and

there exists a function P (u) (independent of x), satisfying Assumption 1.1 with δ̂ in
place of δ, such that the equation

(1.2) max(H [v], P [v]−K) = 0

in Ω (a.e.) with boundary condition v = g on ∂Ω has a unique solution v ∈ C0,1(Ω̄)∩
C1,1

loc (Ω). In addition, for all i, j, and p ∈ (d,∞),

(1.3) |v|, |Div|, ρ|Dijv| ≤ N(H̄ +K + ‖g‖C1,1(Ω)) in Ω (a.e.),

(1.4) ‖v‖W 2
p (Ω) ≤ Np(H̄ +K + ‖g‖W 2

p (Ω)),

(1.5) ‖v‖Cα(Ω) ≤ N(‖H [0]‖Ld(Ω) + ‖g‖Cα(Ω)),

where

ρ(x) = dist (x,Rd \ Ω),

α ∈ (0, 1) is a constant depending only on d and δ, N is a constant depending only
on Ω and δ, whereas Np only depends on the same objects and p.

Finally, P (u) is constructed on the sole basis of δ and d, it is positive homogeneous
of degree one and convex in u.

Remark 1.1. If we drop (1.4) and replace C1,1 in (1.3) with C1,α, α ∈ (0, 1], the
assumptions of Theorem 1.1 about smoothness of Ω and g can be somewhat relaxed. It
is sufficient to have the exterior ball condition on Ω and g ∈ C1,α(Ω). Furthermore, if
we multiply the derivatives in (1.3) by one more ρ, then one can deal with Ω such that,
for each boundary point x0 and all r > 0 small enough with the smallness independent
of x0, there is a ball of radius εr at the distance r from x0 lying outside Ω. Here ε > 0
is a fixed constant. Of course, in that case the asserted regularity should be changed
to v ∈ C0,β(Ω̄) ∩ C1,1

loc (Ω), where β ∈ (0, 1] is determined by other parameters of the
problem. All these and other possible extensions and generalizations are left to the
interested reader.

To the best of the author’s knowledge Theorem 1.1 is the first uniqueness and ex-
istence result for general fully nonlinear elliptic equations with measurable coefficients
without convexity assumptions. In case H is Lipschitz continuous in x the theory of
viscosity solutions provides the existence and uniqueness. Generally, one only knows
that such solutions are in C1+α (see Trudinger [15]). N. Nadirashvili and S. Vlǎdut
[14] found an example in which viscosity solutions even for H independent of x do
not have bounded second-order derivatives.
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It is also worth mentioning that M. G. Crandall, M. Kocan, and A. Świȩch [4]
developed a theory of Lp-viscosity solutions for equations with measurable coefficients
(see also the references therein).

As far as a priori estimates in Sobolev spaces are concerned, L. Caffarelli was
the first author who derived interior W 2

p estimates under an assumption that certain
estimates hold for equations with zero “free” term, which are known to hold only for
H that are either convex or concave with respect to v,Dv,D2v (see [1] and [2]). A
particular case of C2+α a priori estimates without this assumption is presented in [3].
Another case is found in [7].

The activity which started in [1] was continued by L. Wang in [16] who obtained
similar interior a priori estimates for parabolic equations, by M. G. Crandall, M.
Kocan, and A. Świȩch [4] who established the solvability in local Sobolev spaces of
the boundary-value problems for fully nonlinear parabolic equations, and by N. Winter
[17] who established the solvability in the globalW 2

p -space of the associated boundary-
value problem in the elliptic case. In the existence parts in [4] and [17] the function
H is supposed to be convex with respect to D2v and continuous in x (concerning the
latter assumption see [17, Remark 2.3], [9], and [4, Example 8.3]). However, in the
above references the authors consider equations like (1.1) with the right-hand side
which is not zero but rather a function from an Lp-space. In our setting we can only
treat bounded right-hand sides.

Recently a new method, very different from the methods in the above cited refer-
ences, emerged in [5] for treating fully nonlinear elliptic and parabolic equations with
VMO “coefficients”. Still the convexity of H with respect to D2v is required in [5]
while proving the existence result.

In our Theorem 1.1 we do not impose any convexity assumption on H and allow
it to be just measurable in x. By the way, this theorem is obviously applicable to
linear equations. Yet we approximate them with nonlinear ones.

The methods of the present article are quite elementary and, apart from what is
related to (1.4) and (1.5) and uniqueness, are not using anything from any existing
theory of partial differential equations in the main case where H depends only on
pure second-order derivatives and is continuous in x. Our main tool is finite-difference
approximations, best demonstrated in Sections 5 and 6, which the reader may like to
read first.

Remark 1.2. It is almost obvious that Assumption 1.1 (ii) is equivalent to the
requirement that, for any u ∈ R

d+1×S, x, ξ ∈ R
d, η ∈ {±e1, ...,±ed}, where e1, ..., ed

is the set of standard basis vectors in R
d, and r ≥ 0, we have

δ|ξ|2 ≤ H(u′, u′′ + ξξ∗, x)−H(u′, u′′, x) ≤ δ−1|ξ|2,

|H(u′ + r(0, η), u′′, x)−H(u′, u′′, x)| ≤ δ−1r,

H(u′, u′′, x)− δ−1r ≤ H(u′ + r(1, 0), u′′, x) ≤ H(u′, u′′, x),

where (0, η) = (0, η1, ..., ηd) and (1, 0) = (1, 0, ..., 0).

Remark 1.3. Estimate (1.5) follows from other assertions of Theorem 1.1 and the
classical results about linear equations with measurable coefficients (see, for instance,
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Section 9.9 of [6]). Indeed, as is easy to see for v ∈ W 2
p (Ω) satisfying (1.2) we have

that

−max(H [0], P [0]−K) = max(H [v], P [v]−K)−max(H [0], P [0]−K)

= aijDijv + biDiv − cv

with some functions a = (aij) ∈ Sδ̂, |bi| ≤ δ̂−1, 0 ≤ c ≤ δ̂−1 (cf. the proof of Lemma
2.2). Furthermore, |max(H [0], P [0]−K)| ≤ |H [0]|.

The assertion of Theorem 1.1 concerning uniqueness in our class of functions is
also a classical result derived from the Alexandrov estimate.

Here is an almost trivial generalization of Theorem 1.1 which may be useful in
some applications.

Theorem 1.2. Let φ ∈ C2(Ω̄) be a strictly positive function. Then there is a

constant δ̂ ∈ (0, δ] depending only on δ, φ, and d and there exists a function P (u)

(independent of x), satisfying Assumption 1.1 with δ̂ in place of δ, such that all
assertions of Theorem 1.1 hold true if we replace P [u] with P [φu] and allow the
constants to also depend on φ.

This result is obtained from Theorem 1.1 just by replacing there u and g with φu
and φg, respectively.

Here is a version of Theorem 1.1 which is obtained by just replacing H(u, x) with
−H(−u, x).

Theorem 1.3. With P from Theorem 1.1 the equation

min(H [v],−P [−v] +K) = 0

in Ω (a.e.) with boundary condition v = g on ∂Ω has a unique solution v ∈ C0,1(Ω̄)∩
C1,1

loc (Ω). In addition, for all i, j, and p ∈ (d,∞),

|v|, |Div|, ρ|Dijv| ≤ N(H̄ +K + ‖g‖C1,1(Ω)) in Ω (a.e.),

‖v‖W 2
p (Ω) ≤ Np(H̄ +K + ‖g‖W 2

p (Ω)),

‖v‖Cα(Ω) ≤ N(‖H [0]‖Ld(Ω) + ‖g‖Cα(Ω)),

where α, N , and Np are the constants from Theorem 1.1.

It is an interesting issue as to what is happening to v = vK as K → ∞, where vK
is taken from Theorem 1.1. We have the following

Conjecture. Assume that H(u, x) is Lipschitz continuous with respect to x with
Lipschitz constant equal to a constant times 1 + |u|. Let w be a unique viscosity
solution of equation (1.1) in Ω ∈ C3 with boundary condition g ∈ C3. Then |w−vK | ≤
N/K where N is a constant.

To conclude our comments about Theorem 1.1 we show how P is constructed.
By Theorems 3.1 of [10] there exists a set

{l1, ..., lm} ⊂ Z
d,
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m = m(δ, d) ≥ d, chosen on the sole basis of knowing δ and d and there exists a
constant

δ̂ = δ̂(δ, d) ∈ (0, δ/4]

such that:
(i) We have

ei, ei ± ej ∈ {l1, ..., lm} = {−l1, ...,−lm}

for all i, j = 1, ..., d (recall that e1, ..., ed is the standard orthonormal basis of Rd);
(ii) There exist real-analytic functions λ1(a), ..., λm(a) on Sδ/4 such that for any

a ∈ Sδ/4

(1.6) a ≡
m
∑

k=1

λk(a)lkl
∗
k, δ̂−1 ≥ λk(a) ≥ δ̂, ∀k.

Now introduce

P(z) = max
δ̂/2≤ak≤2δ̂−1

k=1,...,m

max
|bk|≤2δ̂−1

k=1,...,d1

max
δ̂/2≤c≤2δ̂−1

[

m
∑

k=1

akz
′′
k +

d
∑

k=1

bkz
′
k − cz′0

]

,

and for u = (u′, u′′) ∈ R
d+1 × S define

P (u′, u′′) = P(u′, 〈u′′l1, l1〉, ..., 〈u
′′lm, lm〉),

where 〈·, ·〉 is the scalar product in R
d.

The rest of the article is organized as follows. In Section 2 we show that one
may safely impose an additional assumption while proving Theorem 1.1. In Section 3
Theorem 1.1 is deduced from Theorem 3.2 in which even more additional assumptions
are made. Then in Section 4 the function H is rewritten in terms of pure second-order
derivatives along certain directions.

In a quite long Section 5 we consider finite-difference approximations for equa-
tions with “constant” coefficients and prove interior estimates for the second-order
differences of solutions. In Section 6 we use the results of the previous section in
order to prove an analog of Theorem 1.1 for H , that include only pure second-order
derivatives. Here the reader will see the main underlying idea of the paper, which
roughly speaking is that on the set, say Γ, where the second-order derivatives of v are
large we have P [v] = K and estimates similar to the ones from Section 5 show that
the second order derivative on Γ are controlled by their values on the boundary of Γ,
where they are under control by the definition of Γ. Of course, the implementation
of this idea requires first proving that there are sufficiently regular solutions of (1.2).
Since we do not know how to do that, we apply the above idea at the level of finite
differences.

In the final short Section 7 we prove Theorem 3.2.
In the proofs of various results in this article we use the symbol N sometimes

with indices to denote constants which may change from one occurrence to another
and we do not always specify on which data these constants depend. In these cases
the reader should remember that, if in the statement of a result there are constants
called N which claimed to depend only on certain parameters, then in the proof of the
result the constants N also depend only on the same parameters unless specifically
stated otherwise.
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2. Reducing Theorem 1.1 to a particular case where −Hu′

0
≥ δ. Suppose

that Theorem 1.1 is true under the additional assumption that

(2.1) −Hu′

0
≥ δ

at all points of differentiability of H(u, x) with respect to u. Then we are going to
prove it in the original form. Take an H satisfying only Assumption 1.1, take n > 0,
and consider the mapping Tn : w → v defined for any w ∈ C(Ω̄) and mapping it into
a unique solution of

(2.2) max(H [v]− v + nχ(w/n), P [v]−K) = 0

in Ω (a.e.) with boundary condition v = g, where

χ(t) = (−1) ∨ t ∧ 1.

By assumption v is well defined and v = Tnw ∈ C0,1(Ω̄) ∩C1,1
loc (Ω) and

|v|, |Div|, ρ|Dijv| ≤ N(H̄ + n+K + ‖g‖C1,1(Ω)) in Ω (a.e.),

‖v‖W 2
p (Ω) ≤ Np(H̄ + n+K + ‖g‖W 2

p (Ω))

if p > d. It follows that, for each n, Tn maps C(Ω̄) into its compact subset.

Lemma 2.1. For each n, the mapping Tn is continuous in C(Ω̄).

Proof. Let w,wm ∈ C(Ω̄), m = 1, 2, ..., and assume that ‖w − wm‖0,Ω → 0 as
m→ ∞, where ‖ · ‖0,Ω is the sup norm in C(Ω̄). In light of uniqueness of solutions of
(2.2) with boundary condition v = g, to prove the lemma, it suffices to show that, at
least along a subsequence, ‖Tnw − vm‖0,Ω → 0, where vm = Tnwm. Since TnC(Ω̄) is
a compact set, there is a subsequence and a v ∈ C(Ω̄) such that ‖v− vm‖0,Ω → 0 and
v = g on ∂Ω. Without losing generality we may assume that the above convergence
holds along the original sequence. Now we need only show that v = Tnw.

Observe that for m ≥ r we have

max(H [vm]− vm + n sup
k≥r

χ(wk/n), P [vm]−K) ≥ 0

in Ω (a.e.). Since the norms ‖vm‖W 2

d (Ω) are bounded, by Theorems 3.5.9 and 3.5.15

of [8], whose conditions are easily checked on the basis of Remark 1.2, we have (a.e.)

max(H [v]− v + n sup
k≥r

χ(wk/n), P [v]−K) ≥ 0.

By letting r → ∞ we get (a.e.)

max(H [v]− v + nχ(w/n), P [v]−K) ≥ 0.

One obtains the opposite inequality starting with

max(H [vm]− vm + n inf
k≥r

χ(wk/n), P [vm]−K) ≤ 0.

It follows that v = Tnw indeed and the lemma is proved.
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Now by Tikhonov’s theorem we conclude that, for each n, there exists vn ∈ C(Ω̄)
such that vn = Tnv

n. By assumption vn ∈ C0,1(Ω̄) ∩ C1,1
loc (Ω) and

|Div
n|, ρ|Dijv

n| ≤ N(H̄ + ‖vn‖0,Ω +K + ‖g‖C1,1(Ω)) in Ω (a.e.),

(2.3) ‖vn‖W 2
p (Ω) ≤ Np(H̄ + ‖vn‖0,Ω +K + ‖g‖W 2

p (Ω)).

Lemma 2.2. There is a constant N depending only on the diameter of Ω and δ
such that

‖vn‖0,Ω ≤ N(H̄ +K + ‖g‖C(Ω)).

Proof. Introduce

Hn
K(u, x) = max(H(u, x)− u′0 + nχ(u′0/n), P (u)−K)

and observe that Hn
Ku′

0

≤ 0 and by Hadamard’s formula

Hn
K(u′, u′′, x)−Hn

K(0, x) = u′′ij

∫ 1

0

Hn
Ku′′

ij
(tu′, tu′′, x) dt

+
∑

i≥1

u′i

∫ 1

0

Hn
Ku′

i
(tu′, tu′′, x) dt+ u′0

∫ 1

0

Hn
Ku′

0

(tu′, tu′′, x) dt(2.4)

provided that Hn(u, x) is differentiable with respect to u at (tu, x) for almost all
t ∈ [0, 1]. Since this happens to be the case for almost all u, we see that, for each n,
there exist Sδ-valued function a and real-valued functions b1, ..., bd, c, and f satisfying
|bi| ≤ δ−1, c ≥ 0, |f | ≤ H̄ +K such that in Ω (a.e.)

aijDijv
n + biDiv

n − cvn = f.

Now our result follows by the Alexandrov maximum principle (see, for instance, Sec-
tion 3.3 of [8]). The lemma is proved.

Due to this lemma one can drop ‖vn‖0,Ω in the right-hand sides of estimates (2.3).
After that it only remains to observe that for n ≥ ‖vn‖0,Ω, the function vn satisfies
(1.2) since χ(vn/n) = vn/n and Theorem 1.1 holds in its original form.

Hence, in the rest of the article we suppose that (2.1) holds at all points of
differentiability of H with respect to u.

3. Further reductions of Theorem 1.1.

1. First, we show that we may additionally assume that for any x, y ∈ R
d and

u = (u′, u′′)

(3.1) |H(u, x)−H(u, y)| ≤ N |x− y|(1 + |u|),

where N is independent of x, y, u.
Indeed, if Theorem 1.1 is true in this particular case, take a nonnegative ζ ∈

C∞
0 (Rd), which integrates to one, set ζn(x) = ndζ(nx), and introduce Hn(u, x) as the

convolution of H(u, x) and ζn performed with respect to x. Observe that Hn satisfies
(2.1) and Assumption 1.1 with the same constant δ, whereas

|Hn(u, x)−Hn(u, y)| ≤ n|x− y| sup
z

|H(u, z)| sup |Dζ|
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and (3.1) is satisfied since |H(u, z)| ≤ |H(0, z)| + N(d)δ−1|u|. Then assuming that
the assertions of Theorem 1.1 are true under our additional assumption, we conclude
that there exist solutions vn ∈ C0,1(Ω̄) ∩ C1,1

loc (Ω) of

(3.2) max(Hn[vn], P [vn]−K) = 0

in Ω (a.e.) with boundary condition vn = g, for which estimates (1.3) and (1.4) hold
with vn in place of v with the constants N and Np from Theorem 1.1 and with

Hn = sup
x∈Rd

|Hn(0, x)| (≤ H̄)

in place of H̄. In particular,

(3.3) Ȟn
K [vm] ≥ 0

in Ω (a.e.) for all m ≥ n, where

Ȟn
K(u, x) := sup

k≥n
max(Hk(u, x), P (u)−K).

Furthermore, being uniformly bounded and uniformly continuous, the sequence
{vn} has a subsequence uniformly converging to a function v, for which (1.3) and (1.4),
of course, hold and v ∈ C0,1(Ω̄)∩C1,1

loc (Ω). In light of (3.3) and the fact that the norms
‖vn‖W 2

p (Ω) are bounded, by Theorems 3.5.9 and 3.5.15 of [8] (the applicability of which

is shown by an argument similar to the one in Remark 1.3) we have

(3.4) Ȟn
K [v] ≥ 0

in Ω (a.e.).
Then we notice that by the Lebesgue differentiation theorem for any u

(3.5) lim
n→∞

Ȟn
K(u, x) = max(H(u, x), P (u)−K)

for almost all x. Since Ȟn
K(u, x) are Lipschitz continuous in u with a constant inde-

pendent of x and n, there exists a subset of Ω of full measure such that (3.5) holds
on this subset for all u.

We conclude that in Ω (a.e.)

(3.6) max(H [v], P [v]−K) ≥ 0.

The opposite inequality is obtained by considering

inf
k≥n

max(Hk(u, x), P (u)−K).

2. Next, we show that one may assume that H is boundedly inhomogeneous with
respect to u. Introduce

P0(u) = max
a∈Sδ/2

max
|bi|≤2δ−1

i=1,...,d

max
c∈[δ/2,2δ−1]

(aiju
′′
ij + biu

′
i − cu′0),

where the summations are performed before the maximum is taken. It is easy to see
that P0[u] is a kind of Pucci’s operator:

P0(u) = −(δ/2)
d

∑

k=1

λ−k (u
′′)+2δ−1

d
∑

k=1

λ+k (u
′′)+2δ−1

d
∑

k=1

|u′k|−(δ/2)(u′0)
++2δ−1(u′0)

−,
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where λ1(u
′′), ..., λd(u

′′) are the eigenvalues of u′′ and a± = (1/2)(|a| ± a).
Recall that the function P is introduced in the end of Section 1 and observe that

P (u) = max
δ̂/2≤ak≤2δ̂−1

k=1,...,m

max
|bi|≤2δ̂−1

i=1,...,d

max
δ̂/2≤c≤2δ̂−1

[

d
∑

i,j=1

m
∑

k=1

aklkilkju
′′
ij +

d
∑

i=1

biu
′
i − cu′0

]

.

Moreover, owing to property (ii) in the end of Section 1, the collection of matrices

m
∑

k=1

aklkl
∗
k

such that δ̂ ≤ ak ≤ δ̂−1, k = 1, ...,m, covers Sδ/4. By combining this with the fact

that δ̂ ≤ δ/2 (actually, δ̂ ≤ δ/4, which will be used much later) we see that

P (u) ≥ −(δ/4)

d
∑

k=1

λ−k (u
′′) + 4δ−1

d
∑

k=1

λ+k (u
′′)

+4δ−1
d

∑

k=1

|u′k| − (δ/4)(u′0)
+ + 4δ−1(u′0)

−

≥ P0(u) + (δ/4)

d
∑

k=1

|λk(u
′′)|+ (δ/4)

d
∑

k=0

|u′k|.(3.7)

In particular, P0 ≤ P and therefore,

max(H,P −K) = max(HK , P −K),

where HK = max(H,P0 − K). It is easy to see that the function HK satisfies As-
sumption 1.1 and (2.1) with δ/2 in place of δ. It also satisfies (3.1) with the same
constant N .

Furthermore, we have the following.

Lemma 3.1. There is a constant κ > 0 depending only on δ and d such that for
all x ∈ Ω and u = (u′, u′′)

(3.8) H ≤ P0 − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+H(0, x),

(3.9) HK ≤ P − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ H+(0, x).

Furthermore,

H(u, x) ≤ N
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+H(0, x),

|H(u, x)| ≤ N
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ |H(0, x)|,

where the constant N depends only on δ.
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Proof. Observe that if a number p ∈ (a, b), a < b, and y ∈ R, then

yp ≤ y+b− y−a.

Then from Hadamard’s formula

H(u′, u′′, x) −H(0, 0, x) = u′′ij

∫ 1

0

Hu′′

ij
(tu′, tu′′, x) dt

+
∑

i≥1

u′i

∫ 1

0

Hu′

i
(tu′, tu′′, x) dt+ u′0

∫ 1

0

Hu′

0
(tu′, tu′′, x) dt

we obtain (see our comments regarding (2.4))

H(u′, u′′, x)−H(0, 0, x) ≤ δ−1
∑

k

λ+k (u
′′)− δ

∑

k

λ−k (u
′′) + δ−1

∑

i≥1

|u′i|

−δ(u′0)
+ + δ−1(u′0)

−

= P0(u
′, u′′)− δ−1

∑

k

λ+k (u
′′)− (δ/2)

∑

k

λ−k (u
′′)

−δ−1
∑

i≥1

|u′k| − δ−1(u′0)
− − (δ/2)(u′0)

+

and (3.8) follows since

[

∑

k

(λ+k (u
′′) + λ−k (u

′′))
]2

=
(

∑

k

|λk(u
′′)|

)2

≥
∑

k

|λk(u
′′)|2 =

∑

i,j

|u′′ij |
2 ≥ d−2

(

∑

i,j

|u′′ij |
)2
.

Estimate (3.9) follows from (3.8) and (3.7). Finally, the second assertion of the
lemma follows directly from the above Hadamard’s formula. The lemma is proved.

In addition, HK is boundedly inhomogeneous with respect to u in the sense that
at all points of differentiability of HK(u, x) with respect to u

(3.10) |HK(u, x)−HKu′′

ij
(u, x)u′′ij −HKu′

r
(u, x)u′r| ≤ N(|HK(0, x)|+K),

where N depends only on δ and d.
Indeed, if

(3.11) κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

≥ H+(0, x) +K,

then by Lemma 3.1

H(u, x) ≤ P0(u)− κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+H+(0, x) ≤ P0(u)−K,

so that HK(u, x) = P0(u) − K and the left-hand side of (3.10) is just K owing to
the fact that P0 is positive homogeneous of degree one. On the other hand, if the
opposite inequality holds in (3.11), then again in light of Lemma 3.1 the left-hand
side of (3.10) is dominated by

N
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ |HK(0, x)| ≤ N(|HK(0, x)|+H+(0, x) +K),
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where

H(0, x) ≤ max(H(0, x),−K) = HK(0, x), H+(0, x) ≤ |HK(0, x)|.

Furthermore, as we have noticed above HK satisfies Assumption 1.1 and (2.1)
(with δ/2 in place of δ) and as is easy to see |HK [0]| ≤ |H [0]|+K, which shows that
in the rest of the article we may (and will) assume that not only Assumption 1.1 and
(2.1) are satisfied with δ/2 in place of δ and (3.1) holds with a constant N , but also
at all points of differentiability of H with respect to u

(3.12) |H(u, x)−Hu′′

ij
(u, x)u′′ij −Hu′

r
(u, x)u′r| ≤ N0,

where N0 is a constant and

(3.13) H ≤ P − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ |H(0, ·)|,

where κ is the constant from Lemma 3.1. By the way we keep track of the value of δ
in Assumption 1.1 and (2.1) because P (u) is already fixed and defined by d and δ.
3. Finally, we show that we may assume that,

(3.14) H(u, x) = tr u′′ − u′0 for all u if x is in a neighborhood of ∂Ω,

that is, for an ε > 0, we have H(u, x) = tr u′′ − u′0 if ρ(x) ≤ ε. Indeed, take a
continuous function ζ(t), t ≥ 0 such that ζ(t) = 1 for t ∈ [0, 1], ζ(t) = 0 for t ≥ 2, and
0 ≤ ζ ≤ 1. Introduce

H1/ε(u, x) = (1− ζ(ρ(x)/ε))H(u, x) + ζ(ρ(x)/ε)(tr u′′ − u′0).

Notice that H1/ε satisfies Assumption 1.1 and (2.1) with δ/2 in place of δ, satisfies
(3.1) with a constant N depending on ε but independent of x, y, u, and satisfies (3.12)
with the same constant N0. As long as (3.13) is concerned, observe that by Lemma
3.1 applied to H = tr u′′ − u′0 and by the inequality P0 ≤ P we have

tr u′′ − u′0 ≤ P − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

.

Then owing to (3.13)

H1/ε ≤ P − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ |(1− ζ(ρ/ε))H(0, ·)|

= P − κ
(

∑

i,j

|u′′ij |+
∑

i

|u′i|
)

+ |H1/ε(0, ·)|.

Therefore, if the assertions of Theorem 1.1 hold under the above additional as-
sumptions, then we have a sequence of functions vn ∈ C0,1(Ω̄) ∩ C1,1

loc (Ω) satisfying
(3.2) (with new Hn = H1/ε for ε = 1/n).

After that by repeating literally the argument in no. 1 we come to (3.4) and since,
obviously, H1/ε(u, x) → H(u, x) as ε ↓ 0 for any x ∈ Ω, we conclude that equation
(3.6) holds (a.e.) and we finish the argument as in no. 1.

As a result of the above arguments we see that to prove Theorem 1.1 it suffices
to prove the following.
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Theorem 3.2. Suppose that Assumption 1.1 is satisfied with δ/2 in place of δ.
Also assume that (3.13) and (3.14) hold. Finally, assume that estimate (3.1) holds
for any x, y ∈ R

d and u = (u′, u′′) with a constant N and (2.1) and (3.12) hold at all
points of differentiability of H(u, x) with respect to u.

Then the assertions of Theorem 1.1 hold true with P introduced in the end of
Section 1.

Remark 3.1. One may wonder why we need (3.12) with a constant which does
not enter the assertions of Theorem 3.2 in any way. The only reason to reduce general
H to boundedly inhomogeneous ones is that for those we can rewrite H [u] in such a
way that only pure second-order derivatives of u(t, x) with respect to x enter. Then
the whole operator max(H [u], P [u]−K) also has this form.

Another possible question is: Why don’t we start with max(H,P −K), which is
already boundedly inhomogeneous by the above? The point is that our way to trans-
form boundedly inhomogeneous operators does not preserve the particular structure
of max(H,P −K).

4. Writing H in Theorem 3.2 in a special form. Here we suppose that the
assumptions of Theorem 3.2 are satisfied and take the objects introduced in the end
of Section 1. Owing to the the assumptions of Theorem 3.2 by Theorem 7.1 of [10]
(see the beginning of its proof in [10]) there exists a function H(z, x) defined for

z = (z′, z′′), z′ = (z′0, ..., z
′
d) ∈ R

d+1, z′′ ∈ R
m, x ∈ R

d

such that:
(i) The function H is Lipschitz continuous in z with Lipschitz constant δ̂−1 and

there exists a constant N ′ such that

|H(z, x)−H(z, y)| ≤ N ′|x− y|(1 + |z|)

for all x, y ∈ R
d and z.

(ii) We have H(z, x) = H(u, x) if z′ = u′ and for all j = 1, ...,m

z′′j = 〈u′′lj , lj〉.

In particular, H(0, x) = H(0, x) and if v(x) is a real-valued function which is twice
differentiable at a point x ∈ R

d, at this point we have

H [v](x) = H[v](x)

where

H[v](x) = H(v(x), Dv(x), D2
l1v(x), ..., D

2
lmv(x), x), D2

l v = vxixj lilj .

(iii) At all points (z, x) at which H(z, x) is differentiable with respect to z we
have

(4.1) |Hz′

i
(z, x)| ≤ 4δ−1, i = 1, ..., d,

(4.2) δ/4 ≤ −Hz′

0
(z, x) ≤ 4δ−1, δ̂−1 ≥ Hz′′

j
(z, x) ≥ δ̂, j = 1, ...,m.
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The proofs in [10] use the fact that (3.12) holds and yield the function H such
that, in addition, at all points (z, x) at which H(z, x) is differentiable with respect to
z we also have

|H(z, x)− 〈z,DzH(z, x)〉| ≤ 2N0.

However, the latter property of H will not be used in the future, so that we only used
assumption (3.12) to be sure that H with the properties (i)-(iii) exists.

5. An auxiliary equation. Some notation in this section are different from the
previous ones. Fix an h ∈ (0, 1] and for ξ ∈ R

d and any function φ on R
d introduce

Tξφ(x) = φ(x+ hξ), δξ = h−1(Tξ − 1), ∆ξ = h−2(Tξ − 2 + T−ξ).

Notice that h enters the definition of Tξ and δξ and ∆ξ are usual approximations for
the first and second-order derivatives along ξ.

Let m ≥ 1 be an integer and let ℓ−m, ..., ℓ−1, ℓ1, ..., ℓm be some fixed vectors in
R

d such that

ℓ−k = −ℓk.

Next denote Λ = {ℓk : k = ±1, ...,±m},

Λ1 = Λ, Λn+1 = Λn + Λ, n ≥ 1, Λ∞ =
⋃

n

Λn .

Let m′ ≥ 0 be an integer ≤ m and let A = {α = (a, b, c)} be a closed bounded
set in R

2m × R
m′

× R, so that

a = (a−m, a−m+1, ..., a−1, a1, ..., am) ∈ R
2m,

b = (b1, ..., bm′) ∈ R
m′

,

and c ∈ R. Also let f(α, x) be a real-valued function defined for α ∈ A, x ∈ R
d.

Fix an r ∈ {1, ...,m} and for k = ±1, ...,±m set

δh,k = δk = δℓk , ∆h,k = ∆k = ∆ℓk .

Assumption 5.1. There are constants δ > 0 and K1,K2 ∈ [0,∞) such that
(i) For any (a, b, c) ∈ A and all k we have

ak = a−k, δ ≤ ak ≤ δ−1, |bk| ≤ δ−1, hb−k ≤ ak, c ≥ 0;

(ii) The function f is continuous in α for any x and |δrf | ≤ K1, ∆rf ≥ −K2 on
R

d.

For u = (u′, u′′) with

u′ = (u′0, u
′
1, ..., u

′
m′), u′′ = (u′′−m, ..., u

′′
−1, u

′′
1 , ..., u

′′
m),

introduce

P(u, x) = max
α=(a,b,c)∈A

(

m
∑

|k|=1

aku
′′
k +

m′

∑

k=1

bku
′
k − cu′0 + f(α, x)

)

.
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For any function u on R
d define

P [u](x) = P(u(x), δu(x), δ2u(x), x),

where

δu = (δ1u, ..., δm′u),

δ2u = (∆−mu, ...,∆−1u,∆1u, ...,∆mu).

In connection with this notation a natural question arises as to why use ℓk along with
ℓ−k = −ℓk since ∆k = ∆−k and

ak∆k = 2
∑

k≥1

ak∆k

owing to the assumption that ak = a−k. This is done for the sake of convenience of
computations. For instance,

∆k(uv) = u∆kv + v∆ku+ (δku)(δkv) + (δ−ku)(δ−kv)

(no summation in k). At the same time

ak∆k(uv) = uak∆kv + vak∆ku+ 2ak(δku)(δkv)

as if we were dealing with usual partial derivatives.
Fix a nonempty finite set Qo ⊂ hΛ∞ and let

Q := Qo ∪ {x+ hΛ : x ∈ Qo}.

Next take a function η ∈ C∞(Rd) with bounded derivatives, such that |η| ≤ 1 and set
ζ = η2,

|η′(x)| = |η′(x)|h = sup
k

|δkη(x)|, |η′′(x)| = |η′′(x)|h = sup
k

|∆kη(x)|,

‖η′‖ = ‖η′‖h = sup
hΛ∞

|η′|h, ‖η′′‖ = ‖η′′‖h = sup
hΛ∞

|η′′|h.

Finally, let u be a function on R
d such that in Qo

(5.1) P [u] = 0

and P [u] ≤ 0 on Q \Qo.

Theorem 5.1. There exist constants N = N(m, δ) ≥ 1 and N∗ = N∗(m, δ) such
that for any constant ν satisfying

ν ≥ N∗‖η′‖+N(‖η′′‖+ ‖η′‖2),

we have in Q that (recall that a± = (1/2)(|a| ± a))

(5.2) ζ2[(∆ru)
−]2 ≤ max

Q\Qo
ζ2[(∆ru)

−]2 + (Nν +N∗)W̄r +Nν−2K2
2 + ν−1K2

1 ,
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where

W̄r = max
Q

(|δru|
2 + |δ−ru|

2).

Furthermore, N∗ = 0 if b ≡ 0.

Remark 5.1. Theorem 5.1 looks very much like Theorem 1.1 of [11]. However, in
the latter the boundary of Qo is “twice fatter” and all mixed second-order differences
are present under the maximum sign in the corresponding counterpart of (5.2). Our
idea is to apply Theorem 5.1 to regions where at least one of pure second-order
differences is large. Then outside the region all of them will be under control. Yet
this does not provide any control of mixed differences on the boundary of the region
and makes it impossible to apply Theorem 1.1 of [11], where the driving goal was
to obtain estimates for equations with variable coefficients and estimating all mixed
second-order finite differences was necessary.

In the following arguments no summation with respect to r is done. The number
r is fixed in the beginning of the section. For simplicity of notation set

urr = ∆ru, ur = δru, ukr = −δ−kδru.

Notice that in the above line the last notation when k = r is consistent with the first
one.

In the following two lemmas the fact that u is a solution of (5.1) is not used and

u−rr = (urr)
−.

Lemma 5.2. There exists N = N(m, δ) and N∗ = N∗(m, δ) such that, if N∗h ≤
1, on Qo for any α = (a, b, c) ∈ A we have

−2ζ2u−rr[ak∆k + bkδk]u
−
rr ≥ −[ak∆k + bkδk](ζ

2(u−rr)
2)

−N∗|η′|ζaku
2
kr −N(|η′′|+ |η′|2)ζ(u−rr)

2 − (N∗|η′|2 +N |η′|4)W̄r ,(5.3)

−2ζur[ak∆k + bkδk]ur ≥ −[ak∆k + bkδk](ζu
2
r)

+ζaku
2
kr −N(|η′′|+ |η′|2)W̄r −N∗|η′|W̄r .(5.4)

Furthermore, N∗ = 0 if b ≡ 0.

Proof. Here is the result of simple computations, which can be found, for instance,
in the proof of Lemma 5.1 of [11]. For any α ∈ A we have

ak∆k(ζ
2(u−rr)

2) = 2ζ2u−rrak∆ku
−
rr + 2ak[δk(ζu

−
rr)]

2 + 4aku
−
rr(δkζ)δk(ζu

−
rr)

+2ak(u
−
rr)

2[ζ∆kζ − 2(δkζ)
2]− 4hu−rrak(δkζ)

2δku
−
rr.(5.5)

We also know from Lemma 4.3 of [11] that

|∆kζ| ≤ 2(|η′′|+ |η′|2), (δkζ)
2 ≤ N |η′|2ζ +Nh2|η′|4 ≤ N |η′|2.

It follows that, for any ε > 0,
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|4aku
−
rr(δkζ)δk(ζu

−
rr)| ≤ εak[δk(ζu

−
rr)]

2 +Nε−1(u−rr)
2(|η′|2ζ + h2|η′|4),

where

(5.6) (u−rr)
2h2 ≤ |hurr|

2 = |(Tℓr − 1)u−r|
2,

so that |η′|4(u−rr)
2h2 ≤ 4|η′|4W̄r in Qo. Therefore, in Qo

|4aku
−
rr(δkζ)δk(ζu

−
rr)| ≤ εak[δk(ζu

−
rr)]

2 +Nε−1|η′|2ζ(u−rr)
2 +Nε−1W̄r |η

′|4.

Similarly

|2ak(u
−
rr)

2[ζ∆kζ − 2(δkζ)
2]| ≤ N(|η′′|+ |η′|2)ζ(u−rr)

2 +NW̄r|η
′|4.

By Lemma 4.3 of [11] for any ε ∈ (0, 1]

h(δkζ)
2|u−rrδiu

−
rr| ≤ ε|δi(ζu

−
rr)|

2 + ε|η′|2ζ(u−rr)
2 +Nε−1|η′|4[(hu−rr)

2 + (h2δiu
−
rr)

2].

Estimate (5.6) leads to

h(δkζ)
2|u−rrδiu

−
rr| ≤ ε|δi(ζu

−
rr)|

2 + |η′|2ζ(u−rr)
2 +Nε−1W̄r |η

′|4 +Nε−1|η′|4(h2δiu
−
rr)

2

on Qo, where the last term is estimated by using the fact that |δiψ−| ≤ |δiψ| for any
function ψ implying that

|η′|4(h2δiu
−
rr)

2 ≤ |η′|4|hδi(ur + u−r)|
2 = |η′|4|(Tℓi − 1)(ur + u−r)|

2 ≤ N |η′|4W̄r .

Hence on Qo

h(δkζ)
2|u−rrδiu

−
rr| ≤ ε|δi(ζu

−
rr)|

2 + |η′|2ζ(u−rr)
2 +Nε−1W̄r|η

′|4.

Upon combining these estimates, choosing ε appropriately, and coming back to (5.5),
we find on Qo that

−2ζ2u−rrak∆ku
−
rr ≥ −ak∆k(ζ

2(u−rr)
2) + ak[δk(ζu

−
rr)]

2

−N(|η′′|+ |η′|2)ζ(u−rr)
2 −NW̄r|η

′|4.(5.7)

Next,

bkδk(ζ
2(u−rr)

2)) = 2ζu−rrbkδk(ζu
−
rr) + bkh[δk(ζu

−
rr)]

2

= 2ζ2u−rrbkδku
−
rr + 2ζ(u−rr)

2bkδkζ

+2hbku
−
rrζ(δkζ)δku

−
rr + bkh[δk(ζu

−
rr)]

2.

Here |δkζ| ≤ 2|η′|, since |η| ≤ 1. Also ak ≥ δ, so that

|2ζ(u−rr)
2bkδkζ| ≤ N∗|η′|ζaku

2
kr.
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Furthermore, hTℓku
−
rr = Tℓk(ur + u−r)

−, implying that on Qo

|2hbku
−
rrζ(δkζ)δku

−
rr| = |2hbku

−
rr(δkζ)[δk(ζu

−
rr)− (δkζ)Tℓku

−
rr]|

≤ N∗|η′|W̄ 1/2
r a

1/2
k |δk(ζu

−
rr)|+N∗u−rr

∑

k

(δkζ)
2W̄ 1/2

r ,

where, owing to the inequality h|η′| ≤ 2, the last term is dominated by

N∗W̄ 1/2
r u−rr(ζ|η

′|2 + h2|η′|4) ≤ (N∗ζ1/2|η′|3/2W̄ 1/2
r )(|η′|1/2ζ1/2u−rr)

+N∗|η′|3W̄r ≤ N∗|η′|ζaku
2
kr +N∗|η′|3W̄r.

Hence, in Qo

−2ζ2u−rrbkδku
−
rr ≥ −bkδk(ζ

2(u−rr)
2))−N∗|η′|ζaku

2
kr

−(N∗h+ 1/2)ak[δk(ζu
−
rr)]

2 −N∗(|η′|2 + |η′|3)W̄r .(5.8)

For N∗h ≤ 1/2 estimates (5.7) and (5.8) and the fact that |η′|3 ≤ |η′|2 + |η′|4 lead to
(5.3).

To prove (5.4) observe that (recall that δkur = −u−kr and a−k = ak)

ak∆k(ζu
2
r) = akζ[2ur∆kur + 2u2kr] + aku

2
r∆kζ + 2ak(δkζ)(hu

2
−kr − 2uru−kr),

where

u2r|∆kζ| ≤ N(|η′′|+ |η′|2)W̄r,

and owing to (5.6)

|2ak(δkζ)(hu
2
−kr − 2uru−kr)| ≤ Nak(|η

′|ζ1/2 + h|η′|2)(|urukr|+ hu2kr)

≤ Nak|ukr|(|η
′|ζ1/2 + h|η′|2)W̄ 1/2

r

≤ Nak|ukr||η
′|ζ1/2W̄ 1/2

r +N |η′|2W̄r

≤ (1/2)ζaku
2
kr +N |η′|2W̄r.

It follows that in Qo

(5.9) −2ζakur∆kur ≥ −ak∆k(ζu
2
r) + (3/2)ζaku

2
kr −N(|η′′|+ |η′|2)W̄r.

Also

bkδk(ζu
2
r) = 2ζurbkδkur + ζbkhu

2
−kr + u2rbkδkζ + hbk(δkζ)[hu

2
−kr − 2uru−kr].

Here in Qo

|u2rbkδkζ| ≤ N∗|η′|Wr, |hbk(δkζ)[hu
2
−kr − 2uru−kr] ≤ N∗|η′|W̄r ,

where the last estimate follows from an equality similar to (5.6). Furthermore,
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|ζbkhu
2
−kr| ≤ (1/2)ζaku

2
kr

if N∗h ≤ 1 and N∗ is chosen appropriately.
Upon combining this estimates with (5.9) we come to (5.4) and the lemma is

proved.
For a constant ν ≥ 0 introduce an operator (recall that r is fixed)

Lνφ = ζ2u−rr∆rφ− νζurδrφ.

Observe that

(5.10) Lνu = −ζ2(u−rr)
2 − νζu2r =: −Vν .

Lemma 5.3. There exists N = N(m, δ) ≥ 1 and N∗ = N∗(m, δ) such that if

(5.11) ν ≥ N∗‖η′‖+N(‖η′′‖+ ‖η′‖2)

and N∗h ≤ 1, then on Qo for any α = (a, b, c) ∈ A we have

(5.12) 2Lν[ak∆k + bkδk]u ≥ −[ak∆k + bkδk]Vν − (Nν2 +N∗ν)W̄r + (ν/2)ζaku
2
kr.

Furthermore, N∗ = 0 if b ≡ 0.

Proof. Since, for each k, the operators ak∆k+bkδk respect the maximum principle,
it follows by Lemma 4.2 of [11] that

u−rr(ak∆k + bkδk)urr ≥ −u−rr[ak∆k + bkδk]u
−
rr.

Hence,

I := ζ2u−rr∆r[ak∆k + bkδk]u = ζ2u−rr[ak∆k + bkδk]urr ≥ −ζ2u−rr[ak∆k + bkδk]u
−
rr,

which by Lemma 5.2 and the observation that

ζ(u−rr)
2 ≤ Nζaku

2
kr,

for N∗h ≤ 1 yields

2I ≥ −[ak∆k + bkδk](ζ
2(u−rr)

2)−N(N∗|η′|+ |η′′|+ |η′|2)ζaku
2
kr

−(N∗|η′|2 +N |η′|4)W̄r.(5.13)

Furthermore, by Lemma 5.2

−2νζurδr[ak∆k + bkδk]u = −2νζur[ak∆k + bkδk]ur

≥ −[ak∆k + bkδk](νζu
2
r) + νζaku

2
kr

−Nν(|η′′|+ |η′|2 +N∗|η′|)W̄r.
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By combining this with (5.13) and recalling (5.10) we find

2Lν[ak∆k + bkδk]u ≥ −[ak∆k + bkδk]Vν

+(ν −N∗
1 |η

′| −N1|η
′′| −N1|η

′|2)ζaku
2
kr

−[N∗(|η′|2 + ν|η′|) +N(|η′|4 + ν|η′′|+ ν|η′|2)]W̄r.(5.14)

We may assume that N1 ≥ 1 and then, if

ν ≥ 2N∗
1 |η

′|+ 2N1(|η
′′|+ |η′|2),

we have that |η′|2 ≤ ν, |η′′| ≤ ν, and

|η′|4 + ν|η′′|+ ν|η′|2 ≤ 3ν2.

Also

N∗(|η′|2 + ν|η′|) ≤ N∗(ν + ν3/2) ≤ N∗(ν + ν2) ≤ N∗ν +Nν2.

After that (5.14) clearly yields (5.12) and the lemma is proved.

Proof of Theorem 5.1. Denote by N0 and N∗
0 the constants N and N∗ in Lemma

5.3 and take and fix a ν satisfying (5.11) (with N0 and N∗
0 in place of N and N∗).

Observe that (5.2) obviously holds on Q \Qo and we only need to prove it on Qo.
Also notice that

|urr| = h−1|ur + u−r| ≤ 2h−1W̄ 1/2
r ,

which shows that (5.2) holds if h ≥ ν−1/2 or if N∗
0h ≥ 1. Therefore below we assume

that

(5.15) h ≤ ν−1/2, N∗
0h ≤ 1.

Introduce

Do = {x ∈ Qo : ζ(x)u−rr(x) ≥ νhur(x)}.

If x ∈ Qo \ Do, then ζ(x)u−rr(x) ≤ νhur(x) and (5.2) holds at x in light of (5.15).
Therefore, in the remaining part of the proof we concentrate on establishing (5.2) for
x ∈ Do, assuming, of course, that Do 6= ∅.

Denote

D = Do ∪ {x+ hΛ : x ∈ Do} (⊂ Q).

If Vν in Do is less than its maximum over D \Do, then in Do

ζ2[u−rr]
2 ≤ Vν ≤ max[max

Q\Qo
ζ2[u−rr]

2, max
Qo\Do

ζ2[u−rr]
2] + νW̄r,

where the maximums are less than the right-hand side of (5.2) by the above. Hence, in
the rest of the proof we consider the case that the maximum over D of Vν is attained
at a point x0 ∈ Do.
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Notice that if a function φ(x) is such that φ(x) ≤ φ(x0) for x ∈ x0 + hΛ, then at
x0

h2Lνφ(x0) = ζ[φ(x0 + hℓr)(ζu
−
rr − νhur) + φ(x0 − hℓr)ζu

−
rr]− ζ[2ζu−rr − νhur]φ

≤ ζ[(ζu−rr − νhur)φ+ ζu−rrφ]− ζ[2ζu−rr − νhur]φ,

where the last expression is zero. Thus

Lνφ(x0) ≤ 0,

which in the terminology from [11] means that Lν respects the maximum principle.
Next, we can find an ᾱ = (ā, b̄, c̄) ∈ A such that

āk∆ku(x0) + b̄kδku(x0)− c̄u(x0) + f(ᾱ, x0) = P [u](x0) = 0.

Since P [u] ≤ 0 in Q, we have that

φ(x) := āk∆ku(x) + b̄kδku(x)− c̄u(x) + f(ᾱ, x) ≤ 0

for x ∈ x0 + hΛ. Hence,

0 ≥ 2Lνφ(x0) = āk2Lν∆ku(x0) + b̄k2Lνδku(x0)− c̄2Lνu(x0) + 2Lνf(ᾱ, ·)(x0),

which owing to (5.10) and (5.12) yields

0 ≤ [āk∆k + b̄kδk − 2c̄]Vν(x0)− (ν/2)ζāku
2
kr(x0) + (Nν2 +N∗ν)W̄r − 2Lνf(ᾱ, ·)(x0).

Here the last term is dominated by

K2ζ
2u−rr(x0) + ν|ur(x0)|K1 ≤ Nν−1K2

2 + (ν/4)ζāku
2
kr(x0) +K2

1 + ν2W̄r.

Furthermore, by the maximum principle

[āk∆k + b̄kδk − 2c̄]Vν(x0) ≤ 0,

since Vν ≥ 0 attains its maximum at x0.
We now conclude that

(ν/4)ζāku
2
kr(x0) ≤ (Nν2 +N∗ν)W̄r +Nν−1K2

2 +K2
1 ,

which implies that in Do

ζ2(u−rr)
2 ≤ Vν(x0) ≤ Nζāku

2
kr(x0) + νW̄r ≤ (Nν +N∗)W̄r +Nν−2K2

2 + ν−1K2
1 .

Thus, estimate (5.2) holds on Do as well and this proves the theorem.

6. A model cut-off equation. We will work in the setting of Section 5. How-
ever now h > 0 is not fixed. Take a function H(u, x), where x ∈ R

d, u = (u′, u′′) ∈
R

1+m′+2m.

Assumption 6.1. (i) The function H is Lipschitz continuous in u for every x,
and at all points of differentiability of H with respect to u we have

δ ≤ Hu′′

k
≤ δ−1, k = ±1, ...,±m, δ ≤ −Hu′

0
≤ δ−1,
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|Hu′

k
| ≤ δ−1, k = 1, ...,m′;

(ii) The number H̄ = supx |H(0, 0, x)| is finite;
(iii) The function H is locally Lipschitz continuous in x for every u and there

exists a constant N ′ such that at all points of differentiability of H with respect to x
we have

|Hxi(u, x)| ≤ N ′(1 + |u|), ∀i;

(iv) We have Span (ℓ1, ..., ℓm) = R
d.

Define

P(u′, u′′, x) = P(u′, u′′)

= 2δ−1
∑

k

(u′′k)
+ − (δ/2)

∑

k

(u′′k)
−

+2δ−1
∑

k≥1

|u′k| − (δ/2)(u′0)
+ + 2δ−1(u′0)

−

= max
δ/2≤ak≤2/δ
|k|=1,...,m

max
|bk|≤2/δ

|k|=1,...,m′

max
δ/2≤c≤2/δ

[

m
∑

|i|=1

aiu
′′
i +

m′

∑

i=1

biu
′
i − cu′0

]

.(6.1)

For functions v(x) introduce

H [v](x) = H(v(x), ∂v(x), ∂2v(x), x)

whenever and wherever it makes sense, where

∂v = (v(ℓ1), ..., v(ℓm′ )),

∂2v = (v(ℓ−m)(ℓ−m), ..., v(ℓ−1)(ℓ−1), v(ℓ1)(ℓ1), ..., v(ℓm)(ℓm)),

and v(ℓ) = ℓivxi , v(ℓ)(ℓ) = ℓiℓjvxixj . Similarly,

P [v](x) = P(v(x), ∂v(x), ∂2v(x)).

Let Ω be a bounded C2 domain in R
d, g be a bounded function on R

d such that
g ∈ C1,1(Ω̄), and let K ≥ 0 be a finite number.

Theorem 6.1. In addition to Assumption 6.1 suppose that ±ei,±(ei + ej), ei −
ej ∈ Λ, i, j = 1, .., d, were e1, ..., ed is the standard orthonormal basis in R

d and
assume that all vectors in Λ have rational coordinates. Then there exists a unique
v ∈ C0,1(Ω̄) ∩ C1,1

loc (Ω) such that v = g on ∂Ω and

(6.2) HK [v] = 0

(a.e.) in Ω, where

HK [v] = max(H [v], P [v]−K).

Furthermore,

(6.3) |v|, |Div|, ρ|Dijv| ≤ N(H̄ +K + ‖g‖C1,1(Ω))
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in Ω (a.e.) for all i, j, where N is a constant depending only on Ω, {ℓ1, ..., ℓm}, d,
and δ (but not on N ′).

To prove the theorem, we are going to use finite-difference approximations of the
operators H [v] and P [v]. For h > 0 introduce

Ph[v](x) = P(v(x), δhv(x), δ
2
hv(x)),

where naturally

δhu = (δh,1u, ..., δh,m′u),

δ2hu = (∆h,−mu, ...,∆h,−1u,∆h,1u, ...,∆h,mu).

Similarly we introduce Hh and HK,h.

Lemma 6.2. Under Assumptions 6.1 (i), (ii)

(6.4) H ≤ P − (δ/2)
(

∑

k

|u′′k|+
∑

k

|u′k|
)

+ H̄.

Proof. Basically, we just repeat part of the proof of Lemma 3.1. From Hadamard’s
formula

H(u′, u′′, x)−H(0, 0, x) = u′′k

∫ 1

0

Hu′′

k
(tu′, tu′′, x) dt

+
∑

k≥1

u′k

∫ 1

0

Hu′

k
(tu′, tu′′, x) dt+ u′0

∫ 1

0

Hu′

0
(tu′, tu′′, x) dt

we obtain

H(u′, u′′, x)−H(0, 0, x) ≤ δ−1
∑

k

(u′′k)
+ − δ

∑

k

(u′′k)
− + δ−1

∑

k≥1

|u′k|

−δ(u′0)
+ + δ−1(u′0)

−

= P(u′, u′′)− δ−1
∑

k

(u′′k)
+ − (δ/2)

∑

k

(u′′k)
− − δ−1

∑

k≥1

|u′k|

−(δ/2)(u′0)
+ − δ−1(u′0)

−

and (6.4) follows. The lemma is proved.
Introduce B as the smallest closed ball containing Λ and set

Ωh = {x ∈ Ω : x+ hB ⊂ Ω} = {x : ρ(x) > λh},

where λ is the radius of B.
Consider the equation

(6.5) HK,h[v] = 0 in Ωh

with boundary condition

(6.6) v = g on R
d \ Ωh.
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It is a rather simple fact that for sufficiently small h > 0 there exists a unique
bounded solution v = vh of (6.5)–(6.6) (see, for instance, [13] or Theorem 8.2 in [10]
or else Theorem 2.2 in [12]). By the way, we do not include K in the notation vh
since K is a fixed number.

Below by h0 and N with occasional indices we denote various (finite) constants
depending only on Ω, {ℓ1, ..., ℓm}, d, and δ.

In the following lemma the additional assumption of Theorem 6.1 concerning the
ei’s and the ℓk’s is not used.

Lemma 6.3. Under Assumptions 6.1 (i), (ii), (iv) there are constants h0 > 0
and N such that for all h ∈ (0, h0] and |r| = 1, ...,m

(6.7) |vh − g| ≤ N(H̄+K + ‖g‖C1,1(Ω))ρ,

(6.8) |δh,rvh| ≤ N(H̄ +K + ‖g‖C1,1(Ω))

on Ωh.

Proof. Introduce

HK = max(H,P −K).

Clearly, HK satisfies Assumption 6.1 with δ/2 in place of δ. Therefore, by Hadamard’s
formula there exist functions ak, bk, k = ±1, ...,±m, and c such that

(6.9) δ/2 ≤ ak ≤ 2δ−1, |bk| ≤ 2δ−1, δ/2 ≤ c ≤ 2δ−1

and in Ωh we have

−HK [0] = HK,h[vh]−HK [0]

= ak∆h,kvh + bkδh,kvh − cvh

= ak∆h,k(vh − g) + bkδh,k(vh − g)− c(vh − g) + f,

where

f = ak∆h,kg + bkδh,kg − cg.

After that (6.7) is proved by using the barrier function Φ from Lemma 2.4 of [12] (cf.
Lemma 2.5 in [12]). It implies that

(6.10) |vh − g| ≤ N1(H̄ +K + ‖g‖C1,1(Ω))h on Ω \ Ω3h.

To prove (6.8), fix an r and define

Qo = {x ∈ Ω2h : (δ/2)|δh,rvh| ≥ H̄ +K}.

If Qo = ∅, then (δ/2)|δh,rvh| ≤ H̄+K in Ω2h, and by virtue of (6.10),

|δh,r(vh − g)| ≤ 2N1(H̄ +K + ‖g‖C1,1(Ω))

in Ωh \ Ω2h. In that case (6.8) obviously holds.
Therefore, we assume that Qo 6= ∅ and owing to Lemma 6.2 conclude that

(6.11) Ph[vh] = K
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in Qo. Furthermore, (6.5) implies that

(6.12) Ph[vh] ≤ K

in Ωh.
Now use again the mean value theorem to conclude that

δh,rPh[vh] = ak∆h,k(δh,rvh) + bkδh,k(δh,rvh)− c(δh,rvh)

for some functions ak(x), bk(x), c(x) satisfying (6.9). In addition, δh,rPh[vh] ≤ 0 in
Qo owing to (6.11) and (6.12), that is in Qo

ak∆h,k(δh,rvh) + bkδh,k(δh,rvh)− c(δh,rvh) ≤ 0.

For small enough h0 the operator ak∆h,k + bkδh,k − c with h ∈ (0, h0] respects
the maximum principle and therefore in Qo (see Theorem 2.2 in [12])

(6.13) (δh,rvh)
− ≤ sup

Ωh\Qo

(δh,rvh)
−.

While estimating the right-hand side of (6.13), notice that if x ∈ Ωh \Qo, then either
x 6∈ Ω2h, in which case (6.8) holds by the above, or else x ∈ Ω2h but (δ/2)|δh,rvh| ≤
H̄ +K. It follows that the right-hand side of (6.13) is dominated by the right-hand
side of (6.8), if h ∈ (0, h0] and h0 > 0 is sufficiently small.

Thus, in all cases

(δh,rvh)
− ≤ N(H̄ +K + ‖g‖C1,1(Ω))

on Ωh. Upon replacing here r with −r, we get

Th,−ℓr(δh,rvh)
+ ≤ N(H̄ +K + ‖g‖C1,1(Ω))

in Ωh, which after being combined with the previous estimate proves (6.8) in Ω2h. In
Ωh \ Ω2h estimate (6.8) has been established above. The lemma is proved.

Lemma 6.4. Suppose that Assumptions 6.1 (i), (ii), (iv) are satisfied. Assume
also that all vectors in Λ have rational coordinates. Then there are constants h0 > 0
and N such that for all h ∈ (0, h0] and |r| = 1, ...,m

(6.14) (ρ− 6λh)|∆h,rvh| ≤ N(H̄+K + ‖g‖C1,1(Ω))

on R
d (we remind the reader that λ is the radius of B).

Proof. Clearly, the assertion of the lemma would follow if we can prove that (6.14)
holds on y+hΛ∞ for any y ∈ R

d with a constant N independent of h and y. Without
losing generality we concentrate on y = 0. Then for a fixed r define

Qo := {x ∈ (hΛ∞) ∩ Ω3h : (δ/2)|∆h,rvh(x)| ≥ H̄ +K}.

If x ∈ hΛ∞ is such that x 6∈ Qo, then either x 6∈ Ω3h, so that ρ(x) ≤ 3λh and (6.14)
holds, or else x ∈ Ω3h but (δ/2)|∆h,rvh(x)| ≤ H̄+K, in which case (6.14) holds again.

Thus we need only prove (6.14) on Qo assuming, of course, that Qo 6= ∅. Then
define

Q = {x+ hΛ : x ∈ Qo}.
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Observe that Q is a finite set since ℓk have rational coordinates and there is a number
M such that the coordinates of all points in MΛ1,∞ are integers and the number of
points with integral coordinates lying in a bounded domain is finite.

Next by Lemma 6.2 we have that (6.11) holds in Qo and (6.12) holds in Q \Qo.
To proceed further observe a standard fact that there are constants µ0 > 0 and

N ∈ [0,∞) depending only on Ω such that for any µ ∈ (0, µ0] there exists an ηµ ∈
C∞

0 (Ω) satisfying

ηµ = 1 on Ω2µ, ηµ = 0 outside Ωµ,

(6.15) |ηµ| ≤ 1, |Dηµ| ≤ N/µ, |D2ηµ| ≤ N/µ2.

By Theorem 5.1 and Lemma 6.3 there are constants N and h0 > 0 such that, for any
number ν satisfying

ν ≥ N(‖η′µ‖h + ‖η′µ‖
2
h + ‖η′′µ‖h),

we have in Qo that

η4µ[(∆rvh)
−]2 ≤ max

Q\Qo
η4µ[(∆rvh)

−]2 +N(ν + 1)(H̄ +K + ‖g‖C1,1(Ω))
2

if h ∈ (0, h0]. In light of (6.15) one can take ν = Nµ−2 for an appropriate N and
then

η4µ[(∆rvh(x))
−]2 ≤ max

y∈Q\Qo
η4µ[(∆rvh(y))

−]2 +Nµ−2(H̄ +K + ‖g‖C1,1(Ω))
2

for x ∈ Qo. We will only concentrate on µ ≥ 3h, when ηµ = 0 outside Ω3h. In that
case, for any y ∈ Q \Qo, either y 6∈ Ω3h implying that

η4µ[(∆rvh)
−]2(y) = 0

or else y ∈ Ω3h ∩ (hΛ∞) but

(δ/2)|∆h,rvh(y)| ≤ H̄+K.

It follows that as long as h ∈ (0, h0], x ∈ Qo, and µ ≥ 3h we have

(6.16) η4µ[(∆rvh)
−(x)]2 ≤ Nµ−2(H̄ +K + ‖g‖C1,1(Ω))

2.

If x is such that ρ(x) ≥ 6λh, take µ = µ0 ∧ (ρ(x)/(2λ)), which is bigger than 3h
provided that h ≤ µ0/3. In that case also

ρ(x) = 2λ[ρ(x)/(2λ)] ≥ 2λµ,

so that ηµ(x) = 1 and we conclude from (6.16) that

ρ(x)(∆rvh)
−(x) ≤ N(H̄ +K + ‖g‖C1,1(Ω)),

(6.17) (ρ(x) − 6λh)(∆rvh)
−(x) ≤ N(H̄+K + ‖g‖C1,1(Ω))

for x ∈ Qo such that ρ(x) ≥ 6λh. However, the second relation in (6.17) is obvious
for ρ(x) ≤ 6λh.
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As a result of all the above arguments we see that (6.17) holds in hΛ∞ for any r
whenever h ∈ (0, h0].

Finally, since Ph[vh] ≤ K in Ωh we have that

2δ−1
∑

r

(∆rvh)+ ≤ (δ/2)
∑

r

(∆rvh)−

−2δ−1
∑

r≥1

|δrvh|+ (δ/2)(vh)+ − 2δ−1(vh)− +K,

which after being multiplied by ρ − 6h along with (6.17) and Lemma 6.3 leads to
(6.14) on hΛ∞. As is explained in the beginning of the proof, this finishes proving
the lemma.

Proof of Theorem 6.1. Owing to Assumption 6.1 (iii), by Corollary 2.7 of [12],
which is applicable in light of Lemmas 6.3 and 6.4, there exists a constant M such
that for all sufficiently small h and x, y ∈ R

d we have

|vh(x)− vh(y)| ≤M(|x− y|+ h).

Here Assumptions 6.1(iii) plays a crucial role.
After that our theorem is proved in exactly the same way as Theorem 8.7 of

[10] on the basis of Lemmas 6.3 and 6.4 and the fact that the derivatives of v are
weak limits of finite differences of vh as h ↓ 0 (see the proof of Theorem 8.7 of [10]).
One also uses the fact that there are sufficiently many pure second order derivatives
in directions of the li’s to conclude from their boundedness that the Hessian of v is
bounded. The theorem is proved.

7. Proof of Theorem 3.2. The functions H from Section 4 and P from Section
1 are instances of H and P from Section 6. To see this, of course, one has to change
the constant δ in Section 6 and renumber the li’s in Section 1. We also take into
account that δ̂ ≤ δ/4 which allows us to match (4.1) and (4.2) with the requirements
of Assumption 6.1 (i). Furthermore, H̄ = H̄. Therefore, Theorem 6.1 is applicable
and yields a unique v ∈ C0,1(Ω̄) ∩ C1,1

loc (Ω) such that v = g on ∂Ω, estimates (6.3),
that is (1.3), hold true, and

max[H(v,Dv, v(l1)(l1), ..., v(lm)(lm), x),P(v,Dv, v(l1)(l1), ..., v(lm)(lm))−K] = 0

in Ω (a.s.). In light of the construction of H and F in Section 4 this equation coincides
with (1.2), so that the only remaining assertions of Theorem 3.2 to prove are that for
p > d

(7.1) ‖v‖W 2
p (Ω) ≤ Np(H̄ +K + ‖g‖W 2

p (Ω))

and estimate (1.5) holds. The latter follows from other assertions of Theorem 3.2 by
Remark 1.3, so that we may concentrate on (7.1).

Observe that

max(H(u, x), P (u)−K) = P (u) +G(u, x),

where G(u, x) = (H(u, x)−P (u)+K)+−K and, owing to condition (3.13), G(u, x) =
−K if

κ
(

∑

i,j

|uij |+
∑

i

|ui|
)

≥ H̄ +K.
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If the opposite inequality holds, then

(7.2) |G(u, x)| ≤ |H(u, x)−H(0, x)|+ |P (u)|+ H̄ +K ≤ N(H̄ +K),

where N depends only on δ and d. It follows that the inequality between the extreme
terms in (7.2) holds for all u and x. This allows us to apply Theorem 1.2 of [5] and
shows that (7.1) holds if v ∈ W 2

p (Ω) or if w := v − g ∈ W 2
p (Ω). In light of (1.3) it

suffices to show that w ∈W 2
p (D ∩ Ω), where D is a neighborhood of ∂Ω.

To prove the latter we use the fact that, according to (3.14), in a neighborhood
D of ∂Ω intersected with Ω the function w satisfies the equation

(7.3) max(∆u− u+∆g − g, P [u+ g]−K) = 0,

in which the left-hand side is given by a convex function of u and its derivatives. We
may certainly assume that D ∈ C2 and then, by relying on (1.3), find a ζ ∈ C∞

0 (Ω)
such that ζw = w on ∂(D∩Ω) and ζw ∈ W 2

p (D∩Ω). Then due to Theorem 1.2 of [5]

equation (7.3) with boundary condition u− ζw ∈
0

W 2
p(D ∩Ω) has a (unique) solution

u ∈W 2
p (D ∩ Ω).

By uniqueness ofW 2
d,loc(D∩Ω)∩C(D ∩ Ω)-solutions we obtain w = u ∈W 2

p (D∩Ω)
and the theorem is proved.
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