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A QUASILINEAR DELAYED HYPERBOLIC NAVIER-STOKES
SYSTEM: GLOBAL SOLUTION, ASYMPTOTICS AND

RELAXATION LIMIT∗
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Abstract. We consider a hyperbolic quasilinear fluid model, that arises from a delayed version
for the constitutive law for the deformation tensor in the incompressible Navier-Stokes equation.
We prove global existence of small solutions and asymptotic results in R

3 and the half-space with
slip boundary conditions. Futhermore we show that this relaxed system is close to the classical
Navier-Stokes equation in the sense that for small times t the solutions converge in high Sobolev
norms to the solution of the incompressible Navier-Stokes equation.
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1. Introduction. Let n ≥ 2 and T, τ, µ > 0. In this note the fluid model

(1)

τutt − µ∆u+ ut +∇p+ τ∇pt

= −(u · ∇)u− (τut · ∇)u − (τu · ∇)ut

div u = 0

u(0, ·) = u0, ut(0, ·) = u1

in (0, T )× R
n,

in (0, T )× R
n,

in R
n

for the velocity field u = u(t, x) : (0, T ) × R
n → R

n and the pressure p = p(t, x) :
(0, T ) × R

n → R, where u0 and u1 are given initial data, will be considered. This
model arises from a delayed version for the constitutive law for the deformation tensor
in the incompressible Navier-Stokes equation (compare below).

First of all there will be given some well-posedness and asymptotic results to the
model above in R

3, that improve and complete known results due to Racke and Saal
from [11] and [12].

Furthermore, thanks to a reflection technique (cp. [15]), the equation in the
half-space R

n
+ with slip-boundary conditions can also be solved.

As another main result it will be shown, that the model above is closely related to
the incompressible Navier-Stokes equation, in the sense that for small times t the
solutions (uτ )τ of (1) corresponding to τ > 0 converge for τ → 0 in high Sobolev
norms to the solution of the incompressible Navier-Stokes equation.

The model can be derived from the incompressible Navier-Stokes equation as
follows.

The incompressible Navier-Stokes equation (in the following also referred to as
classical Navier-Stokes equation) is given by

(2)

ut + (u · ∇)u +∇p = div 2S

div u = 0

u|t=0 = u0

in (0, T )× Ω,

in (0, T )× Ω,

in Ω,
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where the deformation tensor S is determined by

(3) S =
µ

2
(∇u+ (∇u)′) .

Like the change from Fourier type law to Cattaneo in heat conduction (cp. [4]), this
law is replaced by a delayed version

(4) S + τSt =
µ

2
(∇u + (∇u)′) ,

for a small relaxation parameter τ > 0, where the left hand side is a formal first order
Taylor approximation of S(t+ τ). By the second line in (2) one gets

div 2(S + τSt) = µ∆u

and therefore (1) can be derived by differentiating the first line in (2) with respect to
t and after a multiplication with τ adding the resulting line to the original one. The
equation (1) will be refered to as hyperbolic Navier-Stokes equation.

This model was already derived in [2] and [3]. But in a mathematical rigorous
way, concerning well-posedness in high Sobolev norms, it has been treated first in [11]
an [12]. Further results have been established in the diploma thesis of the author [13],
which in parts will be presented in the following.

Paicu and Raugel considered in [9] another hyperbolic fluid model by just adding
a hyperbolic perturbation τutt to the classical Navier-Stokes equation, but this model
rather differs to the one above, because their model remains semilinear, which makes
it possible to carry over the proofs for the classical Navier-Stokes equation. For an
introduction to the Navier-Stokes equation we refer to [14] and [7].
Furthermore in [1] the model from [9] was examined for τ → 0 and it was shown,
that the solutions (uτ )τ corresponding to τ > 0 converge for τ → 0 to the solution of
the incompressible Navier-Stokes equation. However this result on an approximation
of the classical Navier-Stokes equation by relaxation cannot be compared to the The-
orem 3.1 in this note, because different systems on different domains are considered.
Formally, regarding the derivation of the hyperbolic Navier-Stokes equation, the
result on the approximation seems to be not so astonishing but one has to keep
in mind the works [5] and [6], where it was shown that delayed systems, that are
formally close together, can behave differently. For example in [6] it was shown,
that a equation, coming from a Cattaneo type law, might not be exponentially
stable, although the same system with a Fourier type law is. In [5] it is even shown,
that formal high taylor expansions of the delayed term, can lead to ill-posedness.
Altogether the result on the approximation feeds hope to gain new ideas for the
classical Navier-Stokes equation by examination of the hyperbolic Navier-Stokes
equation. Futhermore it makes the conjecture of Racke and Saal in [12], that the
hyperbolic Navier-Stokes equation has a blow-up for large data, even more interesting.

The paper is organized as follows. In section two well-posedness and asymptotic
results to the model (1) will be proven, where the whole space is treated in subsection
2.1 and the half-space in subsection 2.2.
In section three we will prove the result on the convergence to the classical Navier-
Stokes equation for τ → 0. In the first part of the section the boundedness in high
Sobolev norms of (uτ )τ for small times t in τ is proven, which makes it possible to
show in the second part the convergence to the solution of the classical Navier-Stokes
equation.
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2. Well-posedness and asymptotic results. In this section there will be
given some well-posedness and asymptotic results for (1), but first of all some re-
marks on the notation used in this note.

Let X be a general Banach space and Ω ⊆ R
n a set, then Cm(Ω, X) denotes the

space of m-times continuously differentiable functions with values in X . Analogously
Lp(Ω, X) with 1 ≤ p ≤ ∞ denotes the standard Lebesgue space of X-valued functions
with norm ‖ · ‖p. For the Hilbert space L2(Ω, X) we write 〈·, ·〉 for the scalar product.

As usual W k,p(Ω, X) denotes the Sobolev space of k-th order, with the norm

(5) ‖u‖Wm,p := ‖u‖m,p :=






(∑
0≤|α|≤m ‖∂αu‖pp

) 1
p

, for ≤ p < ∞,

max0≤|α|≤m ‖∂αu‖∞, for p = ∞,

where the multi-index notation is used, that means for α ∈ N
n
0 we set ∇α := ∂α :=

∂α1

1 · ... · ∂αn
n .

For a vector-valued function u : Ω ⊆ R
n → R

n, x 7→ u(x) = (u1(x), ..., un(x)) ui

denotes the i-th component.
The Helmholtz projection onto the space

(6) Lq
σ(Ω) := {u ∈ (C∞

0 (Ω))
n
: div u = 0}

‖·‖q

for Ω ∈ {Rn,Rn
+}

is denoted by P .

2.1. Whole space. In [11] the well-posedness in the whole space R
n has been

proven under a smallness condition on the initial data, where the existence time
depends on the highest norm of the initial data. One can improve this dependence to
the result

Theorem 2.1 (Local existence). Let n ≥ 2 and s ≥ m > n
2 . For all

(u0, u1) ∈
(
W s+2,2(Rn) ∩ L2

σ(R
n)
)
×
(
W s+1,2(Rn) ∩ L2

σ(R
n)
)

there exists a T > 0 and a unique solution (u, p) to (1) satisfying

u ∈ C
0([0, T ],W s+2,2(Rn) ∩ L

2
σ(R

n)) ∩ C
1([0, T ],W s+1,2(Rn)) ∩ C

2([0, T ],W s,2(Rn)),

∇(p+ τpt) ∈ C
0([0, T ],W s,2(Rn)).

The existence time T only depends on ‖u0‖m+2,2 and ‖u1‖m+1,2.

Hints on the proof. One has to check where in [11] the existence time is deter-
mined. The basic idea of the proof in [11] is to construct solutions to a linearized
system and then use Majda‘s fixed point iteration to treat the full system. To this
end the boundedness of the iteration sequence is needed, which can only been proven
with a restriction to the existence time (compare [11, Lemma 5.2]). Therefore one
has to find a better proof of [11, Lemma 5.2].

One approximates the initial data with smooth functions, then gets a smoother
iteration sequence, which justifies to carry over the first part of the calculations in [11,
Theorem 4.5 Step 2], and finally gets with the idea used in [10, Theorem 5.8] the de-
sired energy estimate with better dependence of the existence time. The convergence
of the iteration sequence to the solution can be proven like in [11].

In [12] the global existence in R
2 and R

3 was proven with a method by Klainerman
and Ponce, like it is for example described in [10]. The proof uses convergence rates
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coming from the damped wave equation, which in two dimensions are worse than
in three dimensions and therefore Racke and Saal focused on the two dimensional
case. Actually if one compares the equation with the damped wave equation, where
quadratic nonlinearties in R

2 touch the critical borderline, one would expect that
the two dimensional case is more complicated (compare [12, 1. Introduction]). The
remark in [12] that the result in R

3 can be improved has now been carried out in
detail and the following Theorem was proven.

Theorem 2.2 (Global solution). Let m ≥ 3, then there exists a δ > 0 such
that for initial data (u0, u1) ∈

(
Wm+3,2(R3) ∩ L2

σ(R
3)
)
×
(
Wm+2,2(R3) ∩ L2

σ(R
3)
)

satisfying

(7) ‖u0‖m+3,2 + ‖u1‖m+2,2 + ‖u0‖1 + ‖u1‖1 < δ,

there exists a unique global solution (u, p) to the hyperbolic Navier-Stokes equation (1)
with

(8)
u ∈ C0([0,∞),Wm+3,2(R3) ∩ L2

σ(R
3)) ∩ C1([0,∞),Wm+2,2(R3))

∩ C2([0,∞),Wm+1,2(R3)),

(9) ∇(p+ τpt) ∈ C0([0,∞),Wm+1,2(R3)).

Furthermore

(10)
‖u(t)‖m,2 = O

(
t−

3
4

)
, ‖ut(t)‖m,2 = O

(
t−

3
2

)
,

‖∇u(t)‖m,2 = O
(
t−

5
4

)
for t → ∞

holds.

Remark 2.3 (Improvements). Obviously the decay rates are better than in the
two dimensional case, but furthermore the conditions on the initial conditions were
weakened and the proof was shortened and therefore the Theorem is a interesting
result. Of course it is also possible to show ‖ · ‖m1,q- decay rates like in [12], but for
the proof of the global existence in R

3 this is not necessary.

Proof of Theorem 2.2. One applies the Helmholtz projection P to (1) and gets
for u ∈ L2

σ(R
3) the equation

(11)

τutt − µ∆u+ ut =− P ((u · ∇)u)− P ((τut · ∇)u)

− P ((τu · ∇)ut) ≡ N1 +N2 +N3

u(0, ·) = u0, ut(0, ·) = u1

in (0,∞)× R
3,

in R
3.

According to Theorem 2.1 let u be the local solution to (11). Then as usual the
proof consists of a high energy estimate and a weighted a priori estimate for u, which
together guarantee that the local existence theorem can be applied successively to
obtain a global solution.

The high energy estimate can be quoted from [12, Theorem 4.1].

Theorem 2.4 (High energy estimate). For

(12) Em(t) := Em (u(t)) :=
1

2

∑

|α|≤m+1

(τ‖∇αut‖22 + µ‖∇α∇u‖22 + ε2‖∇αu‖22)(t)
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with ε2 > 0 appropriate, there exists a c > 0 independent from T and the initial data
(u0, u1) ∈

(
Wm+2,2 ∩ L2

σ

)
×
(
Wm+1,2 ∩ L2

σ

)
such that for 0 ≤ t ≤ T and m > 3

2 + 1

(13) Em(t) ≤ cEm(0)ec
∫

t

0
(‖u‖2

∞+‖ut‖1,∞+‖∇u‖∞)(r)dr

holds.

The improvement in the proof of the global existence in the three dimensional
case to [12] lies in the weighted a priori estimate, that thanks to better decay rates,
can be formulated and proven easier (compare the following Theorem to [12, Theorem
5.3]).

Theorem 2.5 (Weighted a priori estimate). Let m > 3
2 + 1, then there exists a

δ1 > 0 such that for initial data (u0, u1) ∈
(
Wm+3,2 ∩ L2

σ

)
×
(
Wm+2,2 ∩ L2

σ

)
with

(14) ‖u0‖m+3,2 + ‖u1‖m+2,2 + ‖u0‖1 + ‖u1‖1 < δ1,

there exists a M0 > 0 independent from T , such that for the solution u of (1)

(15)
M(T ) : = sup

0≤t≤T

{
(1 + t)

3
4 ‖u(t)‖m,2 + (1 + t)

3
2 ‖ut(t)‖m,2 + (1 + t)

5
4 ‖∇u(t)‖m,2

}

≤ M0

holds.

Proof. We quote the representation formula [12, Lemma 5.2] for the solution u

Lemma 2.6 (Representation formula). Let w(t)g denote the solution to

τvtt − µ∆v + vt = 0

v(0, ·) = 0, vt(0, ·) = g

in (0,∞)× R
3,

in R
3.

Then u can be represented as

(16) u(t) = w(t)(u1 +
1

τ
u0) + ∂tw(t)u0 +

1

τ

∫ t

0

w(t − r)

3∑

j=1

Nj(r)dr.

which makes it possible two obtain convergence rates for the solution u from the
damped wave equation. In the case of R3 one only (compare to [12, Lemma 5.1])
needs the following convergence rates.

Lemma 2.7. Let v denote the solution to

τvtt − µ∆v + vt = 0

v(0, ·) = v0, vt(0, ·) = v1

in (0,∞)× R
3,

in R
3.

Then for all α ∈ N
3
0 and j ∈ N0

‖∇α∂
j
t v(t, ·)‖2 ≤ c(1 + t)−(

|α|
2

+j)‖(v0, v1)‖X2
,(17)

‖∇α∂
j
t v(t, ·)‖2 ≤ c(1 + t)−(

1
4
+ |α|

2
+j)‖(v0, v1)‖X 3

2

,(18)

‖∇α∂
j
t v(t, ·)‖2 ≤ c(1 + t)−(

3
4
+ |α|

2
+j)‖(v0, v1)‖X1

,(19)
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with

Xk :=

{
L2 × L2 ∩ Lk × Lk, for |α|+ j = 0

W |α|+j,2 ×W |α|+j−1,2 ∩ Lk × Lk, for |α|+ j ≥ 1.

holds.

Proof. Use [8, Lemma 1] with n = 3 and m = 2, m = 3
2 resp. m = 1.

Now one successively deals with each term of M(T ). In contrast to the two di-
mensional case one always uses the following derivative structure of the nonlinearities.
Because div u = 0, one can write

N1 = −P ((u · ∇)u) = −P (∇ · (u⊗ u)) ≡ P (∇ · Ñ1) = ∇ · PÑ1,

N2 = −P ((τut · ∇)u) = −P (∇ · (τut ⊗ u)) ≡ P (∇ · Ñ2) = ∇ · PÑ2,

N3 = −P ((τu · ∇)ut) = −P (∇ · (τu ⊗ ut)) ≡ P (∇ · Ñ3) = ∇ · PÑ3.

I. Estimate for ‖u(t)‖m,2

Using the representation formula from Lemma 2.6

u(t) = w(t)(u1 +
1

τ
u0) + ∂tw(t)u0 +

1

τ

∫ t

0

w(t− r)

3∑

j=1

Nj(r)dr ≡ v1(t) + v2(t) + v3(t)

one gets with (19) the estimates

‖v1(t)‖m,2 ≤ c(1 + t)−
3
4 (‖u0‖m−1,2 + ‖u1‖m−1,2 + ‖u0‖1 + ‖u1‖1) < cδ1(1 + t)−

3
4 ,

(20)

‖v2(t)‖m,2 ≤ c(1 + t)−( 3
4
+1)(‖u0‖m+1−1,2 + ‖u0‖1) < cδ1(1 + t)−( 3

4
+1).

(21)

To estimate v3 one uses the derivative structure of the nonlinearities and the continuity
of the Helmholtz projection together with (18) and gets

‖v3(t)‖m,2 ≤ c

∫ t

0

(1 + t− r)−( 1
4
+ 1

2
)

3∑

j=1

(‖Ñj(r)‖m+1−1,2 + ‖Ñj(r)‖ 3
2
)dr.(22)

Remark 2.8. The concerning the convergence rate better estimate (19) cannot
be used here, because the Helmholtz projection is not continuous on L1. Otherwise
the estimate (17) is not sufficient (this would avoid the ‖ · ‖ 3

2
terms), since then the

convergence rate of ‖u(t)‖m,2 would be too small (compare (32)).

With Theorem 4.1 and the Sobolev embedding theorem (m > 3
2 ) it follows

‖Ñ1(r)‖m,2 ≤ c‖u(r)‖∞‖u(r)‖m,2

≤ c‖u(r)‖m,2‖u(r)‖m,2

= c(1 + r)−
3
4

(
(1 + r)

3
4 ‖u(r)‖m,2

)
(1 + r)−

3
4

(
(1 + r)

3
4 ‖u(r)‖m,2

)

≤ c(1 + r)−
3
2M(T )2
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and

‖Ñ2(r)‖m,2 + ‖Ñ3(r)‖m,2 ≤ c(1 + r)−
3
4
− 3

2M(T )2.

Because of 1
3
2

= 1
2+

1
6 , one can use Hölder, which together with the Sobolev embedding

theorem implies

‖Ñ1(r)‖ 3
2
≤ c‖u(r)‖2‖u(r)‖6 ≤ c‖u(r)‖m,2‖u(r)‖m,2 ≤ c(1 + r)−

3
2M(T )2

and

‖Ñ2(r)‖ 3
2
+ ‖Ñ3(r)‖ 3

2
≤ c(1 + r)−

3
4
− 3

2M(T )2.

Plugging in all estimates for the Ñj(r) in (22), it follows

(23) ‖v3(t)‖m,2 ≤ cM(T )2(1 + t)−
3
4

∫ t

0

(1 + t− r)−( 1
4
+ 1

2
)(1 + r)−

3
2 (1 + t)

3
4dr.

Using Lemma 4.2, one finally gets

(24) ‖v3(t)‖m,2 ≤ cM(T )2(1 + t)−
3
4 .

Summing up (20), (21) and (24)

(25) (1 + t)
3
4 ‖u(t)‖m,2 < cδ1 + cM(T )2

is shown.

II. Now to the estimate for ‖ut(t)‖m,2

Differentiating the representation formula from Lemma 2.6 with respect to t yields

ut(t) = ∂tw(t)(u1 +
1

τ
u0) + ∂

2
tw(t)u0 + ∂t

1

τ

∫ t

0

w(t− r)
3∑

j=1

Nj(r)dr

= ∂tw(t)(u1 +
1

τ
u0) + ∂

2
tw(t)u0 +

1

τ
w(0)

3∑

j=1

Nj(t)

︸ ︷︷ ︸
=0

+
1

τ

∫ t

0

∂tw(t− r)
3∑

j=1

Nj(r)dr

≡ v1(t) + v2(t) + v3(t).

Analogous to I. it follows

‖v1(t)‖m,2 ≤ c(1 + t)−( 3
4
+1) (‖u0‖m+1−1,2 + ‖u1‖m+1−1,2 + ‖u0‖1 + ‖u1‖1)

< cδ1(1 + t)−( 3
4
+1),(26)

‖v2(t)‖m,2 ≤ c(1 + t)−( 3
4
+2)(‖u0‖m+2−1,2 + ‖u0‖1) < cδ1(1 + t)−( 3

4
+2).(27)

Like above, but with (17) one gets

(28) ‖v3(t)‖m,2 ≤ c

∫ t

0

(1 + t− r)−( 1
2
+1)

3∑

j=1

‖Ñj(r)‖m+1+1−1,2dr.
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Theorem 4.1 and the Sobolev embedding Theorem imply

‖Ñ1(r)‖m+1,2 ≤ c‖u(r)‖m,2‖u(r)‖m+1,2

≤ c‖u(r)‖m,2(‖u(r)‖m,2 + ‖∇m+1u(r)‖2),(29)

‖Ñ2(r)‖m+1,2 + ‖Ñ3(r)‖m+1,2 ≤ c(‖u(r)‖m,2‖ut(r)‖m+1,2 + ‖ut(r)‖m,2‖u(r)‖m+1,2)

≤ c
(
‖u(r)‖m,2(‖ut(r)‖m,2 + ‖∇m+1ut(r)‖2)
+ ‖ut(r)‖m,2(‖u(r)‖m,2 + ‖∇m+1u(r)‖2)

)
.(30)

The highest derivative can be estimated with the representation formula from Lemma
2.6 and (17) to

‖∇m+1
u(r)‖2 ≤c(1 + r)−

m+1
2 ‖u1 +

1

τ
u0‖m+1−1,2 + c(1 + r)−(m+1

2
+1)‖u0‖m+1+1−1,2

+ c

∫ r

0

(1 + r − λ)−(m+1
2

+ 1
2
)

3∑

j=1

‖PÑj(λ)‖m+1+1−1,2dλ,

‖∇m+1
ut(r)‖2 ≤c(1 + r)−(m+1

2
+1)‖u1 +

1

τ
u0‖m+1+1−1,2 + c(1 + r)−(m+1

2
+2)‖u0‖m+1+2−1,2

+ c

∫ r

0

(1 + r − λ)−(m+1
2

+ 1
2
+1)

3∑

j=1

‖PÑj(λ)‖m+1+1+1−1,2dλ.

The high norm ‖PÑj(λ)‖m+2,2 can be estimated by contiuity of the Helmholtz pro-
jection, Theorem 4.1 and the high energy estimate (Theorem 2.4) for m = m + 1
to

‖PÑj(λ)‖m+2,2 ≤ c(‖u(λ)‖∞ + ‖ut(λ)‖∞)(‖u(λ)‖m+2,2 + ‖ut(λ)‖m+2,2)

≤ c(‖u(λ)‖∞ + ‖ut(λ)‖∞)
√
Em+1(λ)

≤ c(‖u(λ)‖∞ + ‖ut(λ)‖∞)c
√
Em+1(0)e

c
∫

λ

0
(‖u‖2

∞+‖ut‖1,∞+‖∇u‖∞)(̺)d̺.

Using Sobolev (m > 3
2 + 1) and

√
Em+1(0) ≤ c‖(u0, u1)‖Wm+3,2×Wm+2,2 < cδ1 it

follows

(31) ‖PÑj(λ)‖m+2,2 ≤ cδ1(‖u(λ)‖m,2 + ‖ut(λ)‖m,2)e
c
∫

λ
0

(‖u‖2m,2+‖ut‖m,2+‖∇u‖m,2)(̺)d̺

and finally

(1 + r)
3
4

(
‖∇m+1u(r)‖2 + ‖∇m+1ut(r)‖2

)

≤c(1 + r)−
m+1

2
+ 3

4 ‖u1 +
1

τ
u0‖m+1,2 + c(1 + r)−(m+1

2
+1)+ 3

4 ‖u0‖m+2,2

+ cδ1

∫ r

0

(
(1 + r − λ)−(m+1

2
+ 1

2
)(1 + λ)−

3
4 (1 + r)

3
4

[
(1 + λ)

3
4 ‖u(λ)‖m,2

]

+ (1 + r − λ)−(m+1

2
+ 1

2
)(1 + λ)−

3
2 (1 + r)

3
4

[
(1 + λ)

3
2 ‖ut(λ)‖m,2

])

· e
c

λ
∫

0

(1+̺)−2· 3
4

[

(1+̺)
3
4 ‖u(̺)‖m,2

]2

+(1+̺)−
5
4

[

(1+̺)
5
4 (‖ut(̺)‖m,2+‖∇u(̺)‖m,2)

]

d̺
dλ.

Lemma 4.2 yields

sup
r≥0

∫ r

0

(1 + r − λ)−(m+1
2

+ 1
2
)(1 + λ)−

3
4 (1 + r)

3
4dλ < ∞,

sup
r≥0

∫ r

0

(1 + r − λ)−(m+1

2
+ 1

2
)(1 + λ)−

3
2 (1 + r)

3
4dλ < ∞.
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Obviously it holds

sup
λ≥0

λ∫

0

(1 + ̺)−
3
2 + (1 + ̺)−

5
4d̺ < ∞.(32)

Remark 2.9 (Comparison to the two dimensional case). This estimate is the
essential difference between the two and the three dimensional case. In R

2 it is not
possible to estimate the norms in the exponent of e against Wm,2-norms, because
the integral (32) would be divergent, since the convergence rates in R

2 are not good
enough. Therefore in [12] Wm1,q-estimates were used.

With these estimates and by definition of δ1 (14) and M(T ) (15) it follows

(1 + r)
3
4 ‖∇m+1u(r)‖2 + ‖∇m+1ut(r)‖2 ≤ cδ1

(
1 +M(T )ec(M(T )2+M(T ))

)
.

Plugging in in (29) resp. (30) yields

(1 + r)
3
2

3∑

j=1

‖Ñj(r)‖m+1,2

≤ c(1 + r)
3
4 ‖u(r)‖m,2

(
(1 + r)

3
4 ‖u(r)‖m,2 + (1 + r)

3
4 ‖∇m+1u(r)‖2

)

+ c

(
(1 + r)

3
4 ‖u(r)‖m,2

(
(1 + r)

3
4 ‖ut(r)‖m,2 + (1 + r)

3
4 ‖∇m+1ut(r)‖m,2

)

+ (1 + r)
3
4 ‖ut(r)‖m,2

(
(1 + r)

3
4 ‖u(r)‖m,2 + (1 + r)

3
4 ‖∇m+1u(r)‖m,2

))

≤ cM(T )
(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))
.

If one puts this in the estimate (28) for ‖v3(t)‖, it follows

(33)

‖v3(t)‖m,2 ≤cM(T )
(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))

· (1 + t)−
3
2

∫ t

0

(1 + t− r)−( 1
2
+1)(1 + r)−

3
2 (1 + t)

3
2 dr.

Again by an application of Lemma 4.2 one finally gets

(34) (1 + t)
3
2 ‖ut(t)‖m,2 < cδ1 + cM(T )

(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))
.

III. Estimate of ‖∇u(t)‖m,2

Differentiating the representation formula from Lemma 2.6 with respect to x yields

∇u(t) = ∇w(t)(u1 +
1

τ
u0) +∇∂tw(t)u0 +

1

τ

∫ t

0

∇w(t− r)

3∑

j=1

Nj(r)dr

≡ v1(t) + v2(t) + v3(t).
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Like above it follows

‖v1(t)‖m,2 ≤ c(1 + t)−( 3
4
+ 1

2
) (‖u0‖m+1−1,2 + ‖u1‖m+1−1,2 + ‖u0‖1 + ‖u1‖1)

< cδ1(1 + t)−
5
4 ,(35)

‖v2(t)‖m,2 ≤ c(1 + t)−( 3
4
+1+ 1

2
)(‖u0‖m+1+1−1,2 + ‖u0‖1) < cδ1(1 + t)−( 5

4
+1).(36)

Like in I. one gets with (18) the estimate

(37) ‖v3(t)‖m,2 ≤ c

∫ t

0

(1 + t− r)−( 1
4
+ 2

2
)

3∑

j=1

(‖Ñj(r)‖m+2−1,2 + ‖Ñj(r)‖ 3
2
)dr.

Now
∑3

j=1 ‖Ñj(r)‖m+1,2 can be estimated like in II., while
∑3

j=1(‖Ñj(r)‖ 3
2
can be

estimated like in I. such that

(1 + r)
3
2

3∑

j=1

(‖Ñj(r)‖m+1,2 + ‖Ñj(r)‖ 3
2
)

≤ cM(T )
(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))
(38)

follows.
Plugging in in (37), Lemma 4.2 and (35) and (36) yield

(39) (1+ t)
5
4 ‖∇u(t)‖m,2 < cδ1+cM(T )

(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))
.

IV. Summary of I.-III. and proof of the Theorem
Putting together (25), (34) and (39) it is shown

(1 + t)
3
4 ‖u(t)‖m,2 + (1 + t)

3
2 ‖ut(t)‖m,2 + (1 + t)

5
4 ‖∇u(t)‖m,2

< cδ1 + cM(T )2 + cδ1 + cM(T )
(
M(T ) + cδ1

(
1 +M(T )ec(M(T )2+M(T ))

))

≤ cδ1 + cM(T )2 + cδ1M(T )
(
1 +M(T )ec(M(T )2+M(T ))

)
.

By definition of M(T ) (15) one gets

(40) M(T ) ≤ cδ1 + cM(T )2 + cδ1M(T )
(
1 +M(T )ec(M(T )2+M(T ))

)

and therefore the claim follows by standard arguments (compare [12]).

Theorem 2.2 can now be followed as usual by applying the local existence Theorem
2.1 successively.

2.2. Half-space with slip boundary conditions. In this subsection the solv-
ability of the hyperbolic Navier-Stokes equation in the half-space with slip boundary
conditions is proven with a reflection technique. For simplicity we only deal with the
three dimensional case. To be precise, the equation

(41)

τutt − µ∆u+ ut +∇p+ τ∇pt

= −(u · ∇)u− (τut · ∇)u− (τu · ∇)ut

div u = 0

∂u1

∂~n
= 0,

∂u2

∂~n
= 0, u3 = 0

u(0, ·) = v, ut(0, ·) = w

in (0,∞)× R
3
+,

in (0,∞)× R
3
+,

in ∂R3
+,

in R
3
+.
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for u = u(t, x) : (0,∞) × R
3
+ → R

3 and p = p(t, x) : (0,∞) × R
3
+ → R with µ, τ > 0

and given initial conditions v and w is treated.
Assuming for the initial conditions v and w for m ∈ N and δ > 0

(V1(δ,m)) (v, w) ∈
(
Wm+3,2(R3

+) ∩ L2
σ(R

3
+)
)
×
(
Wm+2,2(R3

+) ∩ L2
σ(R

3
+)
)

with ‖v‖m+3,2 + ‖w‖m+2,2 + ‖v‖1 + ‖w‖1 < δ

(V2(m)) For all odd integers k ∈ [3,m+2] the partial derivatives satisfy
∂k
3 v1, ∂

k
3 v2 ∈ H1

0 (R
n
+). Analogously for all odd integers k ∈

[3,m+ 1], it holds ∂k
3w1, ∂

k
3w2 ∈ H1

0 (R
n
+) (vj denotes the j-th

component of the vector v).
Furthermore v and w satisfy the boundary condition.

the following Theorem can be proven.

Theorem 2.10 (Global solution in the half-space). Let m ≥ 3, then there exists a
δ > 0 such that if the initial conditions v and w satisfy (V1(δ,m)) and (V2(m)) then
there exists a unique global solution (u, p) to the hyperbolic Navier-Stokes equation
(41) with

(42)
u ∈ C0([0,∞),Wm+3,2(R3

+) ∩ L2
σ(R

3
+)) ∩ C1([0,∞),Wm+2,2(R3

+))

∩ C2([0,∞),Wm+1,2(R3
+)),

(43) ∇(p+ τpt) ∈ C0([0,∞),Wm+1,2(R3
+))

Furthermore

(44)
‖u(t)‖m,2 = O

(
t−

3
4

)
, ‖ut(t)‖m,2 = O

(
t−

3
2

)
,

‖∇u(t)‖m,2 = O
(
t−

5
4

)
for t → ∞

holds.

Hints on the proof. The basic idea is to reflect the initial data to functions in
the whole space, then apply the Theorem 2.2 for the whole space and finally check
that the restriction of this solution to the half-space solves (41). In [15] this idea was
described in a general context and applied for the classical Navier-Stokes equation.
Therefore one actually applies Theorems from [15].

The boundary conditions dictate how to reflect the initial conditions, which means
even extension of the first and second component of the vector and odd extension of
the last component.

(45) f̃(x1, x2, x3) :=





(
f1(x1,x2,x3)
f2(x1,x2,x3)
f3(x1,x2,x3)

)
, for x3 ≥ 0,

(
f1(x1,x2,−x3)
f2(x1,x2,−x3)
−f3(x1,x2,−x3)

)
, for x3 < 0

for f ∈ {v, w}.

The assumption (V 2(m)) guarantees thanks to [15, Theorem 5.1] that this extension
is smooth, which means

(46) (ṽ, w̃) ∈
(
Wm+3,2(R3) ∩ L2

σ(R
3)
)
×
(
Wm+2,2(R3) ∩ L2

σ(R
3)
)
.
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Choosing δ < δ̄
2 with δ̄ from Theorem 2.2 the assumption (V1(δ,m)) ensures that

Theorem 2.2 can be applied to the initial data (ṽ, w̃) which yields a solution (ũ, p̃) to
the whole space problem.

Now one only has to check that

(47) (u, p) := (ũ|R3
+
, p̃|R3

+
)

has the right boundary conditions. But this is clear because the equation preserves
the symmetry of the initial conditions (ṽ, w̃) (compare [15, Proposition 4.1]).

The claimed convergence rates follow by construction of the solution directly
from Theorem 2.2. The uniqueness of the solution can be proven with the multiplier
method (compare Section 3.2).

3. Relaxation parameter τ → 0. Looking at the derivation of the hyperbolic
Navier-Stokes equation one would expect that for vanishing relaxation parameter τ

the corresponding solutions uτ converge to the solution v of the classical Navier-Stokes
equation, but as mentioned in the introduction this is not clear.

It will be shown that in the whole space R
n with n = 2 or n = 3 for sufficiently

smooth initial data, T1 > 0 appropiate and m > n
2

(48)
sup

0≤t≤T1

‖uτ (t)− v(t)‖m+2,2 = O(τ) and sup
0≤t≤T1

‖uτ
t (t)− vt(t)‖m+1,2 = O(

√
τ )

for τ → 0 holds.
This will be proven with the multiplier method applied to an equation for the

difference w := uτ − v. Therefore one first needs an appropriate equation for w.
Differentiating the Helmholtz-projected Navier-Stokes equation for v ∈ L2

σ(R
n)

with respect to t yields

(49)
vt − µ∆v + P ((v · ∇)v) = 0

v(0, ·) = v0

in (0, T )× R
n,

in R
n.

This equation is now multiplied with τ and then added to the original equation and
hence

(50)

τvtt − µ∆v − τµ∆vt + vt

=− P ((v · ∇)v)− P ((τvt · ∇)v)

− P ((τv · ∇)vt)

v(0, ·) = v0, vt(0, ·) = µ∆v0 − P ((v0 · ∇)v0) =: v1

in (0, T )× R
n,

in R
n.

The initial condition for vt(0, ·) is a natural compability condition from (49). Subtrac-
tion of this equation from the Helmholtz-projected hyperbolic Navier-Stokes equation
for u ∈ L2

σ(R
n)

(51)

τutt − µ∆u+ ut =− P ((u · ∇)u)− P ((τut · ∇)u)

− P ((τu · ∇)ut) ≡ N1 +N2 +N3

u(0, ·) = v0, ut(0, ·) = v1

in (0, T )× R
n,

in R
n,

gives the desired equation for L2
σ(R

n) ∋ w := u− v

(52)
τwtt − µ∆w + wt + τµ∆vt =

6∑

j=1

Mj in (0, T )× R
n,

w(0, ·) = 0, wt(0, ·) = 0 in R
n.
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Where the Mj are determined by

− P (u · ∇)u + P (v · ∇)v = −P (u · ∇)(u − v)− P (u · ∇)v + P (v · ∇)v

= −P (u · ∇)(u − v)− P ((u− v) · ∇) v = −P (u · ∇)w − P (w · ∇) v ≡ M1 +M2,

resp.

− τP (ut · ∇)u− τP (u · ∇)ut + τP (vt · ∇)v + τP (v · ∇)vt

= −τP (ut · ∇)w − τP (wt · ∇) v − τP (u · ∇)wt − τP (w · ∇) vt

≡ M3 +M4 +M5 +M6.

The following energy estimate is similar to the methods used to proof the high
energy estimate [12, Theorem 4.1], but first we have to specify the regularity of the
solutions u and v. Actually the solutions should be just as good as that the following
calculation works, which can surely be achieved if v0 is smooth enough and m > n

2 .
To be precise Theorem 2.1 gives a solution

(53)
uτ ∈ C0([0, T τ ],Wm+3,2(Rn) ∩ L2

σ(R
n)) ∩C1([0, T τ ],Wm+2,2(Rn))

∩C2([0, T τ ],Wm+1,2(Rn))

to the hyperbolic Navier-Stokes equation and for example with [14] one can derive a
solution

(54) v ∈ C1([0, Tv],W
m+3,2(Rn) ∩ L2

σ(R
n)) ∩ C2([0, Tv],W

m+1,2(Rn))

to the classical Navier-Stokes equation.

It will be shown that T1 > 0 can be chosen independent from τ such that all
solutions exist on a common interval [0, T1]. Therefore the following definition and
the subsequent calculation makes sense for t ∈ [0, T1].

One defines the energies by
(55)

Em(ϕ(t)) :=
1

2

∑

|α|≤m+1

(τ‖∇αϕt‖22 + µ‖∇α∇ϕ‖22 + ‖∇αϕ‖22)(t) for ϕ ∈ {u, v, w}

and corresponding Lyapunov functionals by

(56) Ẽm(ϕ(t)) := Em(ϕ(t)) + τ
∑

|α|≤m+1

〈∇αϕt,∇αϕ〉(t) for ϕ ∈ {u,w}.

For τ ≤ 1
2 it holds

(57)
1

4
Em(ϕ(t)) ≤ Ẽm(ϕ(t)) ≤ 7

4
Em(ϕ(t)).

In subsection 3.2 it will be shown that for R > 0 appropriate and τ small enough the
estimate
(58)
Em(w(t))

≤

∫ t

0

cτ
2
Rdr · exp


c

∫ t

0

(Em(u(r)) +Em+1(v(r)) + Em(u(r))
1
2 + Em+1(v(r))

1
2 + 1)︸ ︷︷ ︸

=:E(r)

dr
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holds, where c is a constant independent from τ (this shall hold for the whole section).
Since in subsection 3.1 for T1 > 0 appropriate the boundedness of Em(u(t)) in τ for
t ∈ [0, T1] is shown, E(t) stays bounded in τ for t ∈ [0, T1] and the following Theorem
is proven.

Theorem 3.1. For m > n
2 and v0 sufficiently smooth there exists a T1 > 0 such

that

(59) sup
0≤t≤T1

Em(w(t)) = O(τ2) for τ → 0.

Especially
(60)

sup
0≤t≤T1

‖uτ(t)− v(t)‖m+2,2 = O(τ) and sup
0≤t≤T1

‖uτ
t (t)− vt(t)‖m+1,2 = O(

√
τ),

holds. This means that the solutions uτ of the hyperbolic Navier-Stokes equation
converge for τ → 0 to the solution v of the classical Navier-Stokes equation.

3.1. Boundedness of uτ in τ .

Theorem 3.2. There exists a T1 > 0 such that for m > n
2 and v0 ∈ Wm+4,2(Rn)

(61) sup
0≤t≤T1

Em(u(t)) = O(1) for τ → 0.

Proof. Under the assumption that the solutions (uτ )τ exist on a common interval
[0, T ] with T independent from τ , for small τ the a priori estimate

(62) Ẽm(u(t)) ≤ Ẽm(u(0)) + c

∫ t

0

(Ẽm(u(r)) + 1)2dr,

will be shown. Then one can apply a nonlinear version of the Lemma from Gronwall
4.3 and gets the claim.

For reasons of clarity the argument (t) is dropped.
Let |α| ≤ m + 1. Applying ∇α to (51) and multiplication with ∇αut in L2(Rn)

yields

(63)
τ

2

d

dt
‖∇αut‖22 +

µ

2

d

dt
‖∇α∇u‖22 + ‖∇αut‖22 =

3∑

j=1

〈∇αNj ,∇αut〉.

Now one has to estimate the nonlinear terms. In doing so, one has to observe that
terms like ‖∇αut‖22 can only be estimated τ -independent against Em(u) if they have
a prefactor τ . If τ appears in front of other terms like τ‖∇αu‖22, one can estimate
them τ -independent, if one assumes without restriction τ < 1.

With the continuity of the Helmholtz projection and Theorem 4.1 one gets

(64) |〈∇αN1,∇αut〉| ≤ c
(
‖u‖∞‖∇m+1∇u‖2 + ‖∇u‖∞‖∇m+1u‖2

)
‖∇αut‖2.

Using Young’s inequality and Sobolev yields

|〈∇αN1,∇αut〉| ≤ c
(
‖u‖2m,2‖∇m+1∇u‖22 + ‖∇u‖2m,2‖∇m+1u‖22

)
+ 1

2‖∇
αut‖22

≤ cEm(u)2 + 1
2‖∇

αut‖22.(65)
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Analogously

|〈∇αN2,∇αut〉| ≤ cτ
(
‖ut‖2m,2‖∇m+1∇u‖22 + ‖∇u‖2m,2‖∇m+1ut‖22

)
+ cτ‖∇αut‖22

≤ cEm(u)2 + c(Em(u) + 1)2.(66)

The last term can be rearranged to

〈∇αN3,∇αut〉 = −τ〈(u · ∇∇α) ut,∇αut〉 − τ〈∇α ((u · ∇)ut)− (u · ∇α∇)ut,∇αut〉
≡ R1 +R2.

With integration by parts one gets

R1 = −τ〈uj∂j∂
α∂tur, ∂

α∂tur〉 div u=0
= −τ〈∂juj∂

α∂tur, ∂
α∂tur〉

= τ〈uj∂
α∂tur, ∂j∂

α∂tur〉 = τ〈∂α∂tur, uj∂j∂
α∂tur〉 = −R1,

and therefore R1 = 0.
The term R2 can be estimated with Theorem 4.1(ii) to

|R2| ≤ cτ‖∇α ((u · ∇)ut)− (u · ∇α∇)ut‖2‖∇αut‖2
≤ cτ

(
‖∇u‖∞‖∇m∇ut‖2 + ‖∇ut‖∞‖∇m+1u‖2

)
‖∇αut‖2

≤ cτ
(
‖∇u‖2m,2‖∇m∇ut‖22 + ‖∇ut‖2m,2‖∇m+1u‖22

)
+ cτ‖∇αut‖22

≤ cEm(u)2 + c(Em(u) + 1)2.(67)

Now one again applies for all |α| ≤ m + 1 the operator ∇α to (51) but this time
multiplies with ∇αu in L2(Rn) to the end

(68) τ
d

dt
〈∇αut,∇αu〉 − τ‖∇αut‖22 + µ‖∇α∇u‖22 +

d

dt

1

2
‖∇αu‖22 =

3∑

j=1

〈∇αNj,∇αu〉.

As above one gets

|〈∇αN1,∇αu〉|+ |〈∇αN2,∇αu〉| ≤ cEm(u)2 + c(Em(u) + 1)2.(69)

For the last term one distinguishes between |α| = 0 and |α| 6= 0. For |α| = 0

|〈N3, u〉| ≤ cτ‖(u · ∇)ut‖2‖u‖2 ≤ cτ‖∇ut‖∞‖u‖22
≤ cτ‖∇ut‖2m,2 + cτ‖u‖42 ≤ c(Em(u) + 1)2 + cEm(u)2(70)

holds, while for |α| 6= 0 there exists a 1 ≤ k ≤ n with αk 6= 0 and therefore

|〈∇αN3,∇αu〉| ≤ cτ (‖u‖∞‖∇m∇ut‖2 + ‖∇ut‖∞‖∇mu‖2) ‖∇α+eku‖2
≤ cτ

(
‖u‖2m,2‖∇m∇ut‖22 + ‖∇ut‖2m,2‖∇mu‖22

)
+ cτ‖∇α+eku‖22

≤ cEm(u)2 + c(Em(u) + 1)2.(71)

Adding (63) and (68), summing up over |α| ≤ m+ 1 and using the estimates for the
nonlinearities (65), (66), (67) and (69), (70) resp. (71) yields

d

dt
Ẽm(u)+

∑

|α|≤m+1

(
‖∇αut‖22 − τ‖∇αut‖22 + µ‖∇α∇u‖22

)

≤ cEm(u)2 + c(Em(u) + 1)2 +
∑

|α|≤m+1

1

2
‖∇αut‖22.
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Without loss of generality one sets τ ≤ 1
2 and obtains

(72)
d

dt
Ẽm(u) ≤ cEm(u)2 + c(Em(u) + 1)2 ≤ c(Em(u) + 1)2.

If one integrates in time from 0 to t and uses (57), the estimate (62) is proven. To
apply the nonlinear version of the Lemma from Gronwall 4.3 one has to look at the
differential equation

ḣ(t) = c(h(t) + 1)2

h(0) =
7

4
Em(u(0)) =: h0,

which clearly has the solution

(73) h(t) =
h0 + 1

1− tc(h0 + 1)
− 1 for t ∈ [0, 1

c(h0+1) ).

The existence interval of h gets larger for τ → 0. Setting δ equal to the value of
7
4Em(u(0)) for τ = 1

2 and T1 as 0 < T1 < 1
c(δ+1) , then the continuous function

h = h(t, τ) : [0, T1]× [0, 1
2 ] → R has a maximum M and therefore

(74) sup
0≤t≤T1

Em(u(t)) ≤ sup
0≤t≤T1

h(t) ≤ M for τ ∈ [0, 12 ].

It remains to show, that (uτ )τ for τ ∈ [0, 12 ] arbitrary exist on the common interval
[0, T1].

Let τ ∈ [0, 12 ]. Then uτ exists on [0, T τ ], where T τ = T τ(‖u0‖m+2, ‖u1‖m+1, τ).
If T τ ≥ T1 nothing is to prove and therefore let T τ < T1. From the estimate above
one gets Em (uτ (T τ )) ≤ M . Now the local existence theorem can be applied to the

initial data uτ (T τ ) and uτ
t (T

τ) and therefore one gets a solution on [T τ , T̃ τ ] with

T̃ τ = T̃ τ(M, M
τ
, τ). If T̃ τ < T1 again Em(uτ (T̃ τ )) ≤ M holds and hence one can

argument successively.

Remark 3.3 (Dependences on T1 and M). T1 is defined by the existence time of
h (cp. (73)) and therefore depends on the norm of the initial data and on the constant
c that comes from the estimate above. To be more precise c depends on the constant
coming from the Moser inequalities, on µ and so on but most important c and T1 do
not depend on τ . M is by definition the maximum of h and so depends on the same
quantities as c and T1.

3.2. Convergence for τ → 0. Now we want to proof Theorem 3.1.
The estimate is very similiar to the one of the previous subsection, especially

one again has to observe that terms with time derivative must have a prefactor τ

to estimate them against the energy. Of course for terms like ‖vt‖m,2 this is not
necessary, but for clarity and uniformity we do so. Without restriction let T1 ≤ Tv.

For a suitable R > 0 and τ small enough we prove with the multiplier method
the estimate

(75)

d

dt
Ẽm(w(t))

≤ cτ2R+ c

(
Em(u(t)) + Em+1(v(t)) + Em(u(t))

1
2 + Em+1(v(t))

1
2 + 1

)
Ẽm(w(t)),
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from which one easily obtains (58) and the claim.
As above one gets
(76)

τ

2

d

dt
‖∇αwt‖22+

µ

2

d

dt
‖∇α∇w‖22+‖∇αwt‖22 = −〈µτ∇α∆vt,∇αwt〉+

6∑

j=1

〈∇αMj ,∇αwt〉.

Without restriction let again τ < 1 hold. Analogously to the previous section one
gets

|〈∇αM1,∇αwt〉| ≤ c
(
‖u‖∞‖∇m+1∇w‖2 + ‖∇w‖∞‖∇m+1u‖2

)
‖∇αwt‖2

≤ c(‖u‖2m,2 + ‖∇m+1u‖22)(‖∇m+1∇w‖22 + ‖∇w‖2m,2) +
1
6‖∇

αwt‖22
≤ cEm(u)Em(w) + 1

6‖∇
αwt‖22(77)

and

|〈∇αM2,∇αwt〉| ≤ c
(
‖w‖∞‖∇m+1∇v‖2 + ‖∇v‖∞‖∇m+1w‖2

)
‖∇αwt‖2

≤ cEm(v)Em(w) + 1
6‖∇

αwt‖22.(78)

Furthermore it holds

|〈∇α
M3,∇

α
wt〉| ≤ cτ

(
‖ut‖∞‖∇m+1∇w‖2 + ‖∇w‖∞‖∇m+1

ut‖2
)
‖∇α

wt‖2

≤ cτ
2(‖ut‖

2
m,2 + ‖∇m+1

ut‖
2
2)(‖∇

m+1∇w‖22 + ‖∇w‖2m,2) +
1
6
‖∇α

wt‖
2
2

≤ cτEm(u)Em(w) + 1
6
‖∇α

wt‖
2
2.(79)

and

|〈∇αM4,∇αwt〉| ≤ cτ
(
‖wt‖∞‖∇m+1∇v‖2 + ‖∇v‖∞‖∇m+1wt‖2

)
‖∇αwt‖2

≤ cτ(‖∇m+1∇v‖2 + ‖∇v‖∞)(‖wt‖2∞ + ‖∇m+1wt‖22 + ‖∇αwt‖22)

≤ cEm(v)
1
2Em(w).(80)

The term |〈∇αM5,∇αwt〉| is rearranged to

〈∇αM5,∇αwt〉 = −τ〈(u · ∇∇α)wt,∇αwt〉 − τ〈∇α ((u · ∇)wt)− (u · ∇α∇)wt,∇αwt〉
≡ R1 +R2

and like above R1 = 0 follows.
Moreover one obtains

|R2| ≤ cτ‖∇α ((u · ∇)wt)− (u · ∇α∇)wt‖2‖∇αwt‖2
≤ cτ

(
‖∇u‖∞‖∇m∇wt‖2 + ‖∇wt‖∞‖∇m+1u‖2

)
‖∇αwt‖2

≤ cτ(‖∇u‖∞ + ‖∇m+1u‖2)(‖∇m∇wt‖22 + ‖∇wt‖2∞ + ‖∇αwt‖22)

≤ cEm(u)
1
2Em(w).(81)

The last term |〈∇αM6,∇αwt〉| can be estimated by

|〈∇α
M6,∇

α
wt〉| ≤ cτ

(
‖w‖∞‖∇m+1∇vt‖2 + ‖∇vt‖∞‖∇m+1

w‖2
)
‖∇α

wt‖2

≤ cτ
2(‖∇m+1∇vt‖

2
2 + ‖∇vt‖

2
m,2)(‖w‖2m,2 + ‖∇m+1

w‖22) +
1
6
‖∇α

wt‖
2
2

≤ cτEm+1(v)Em(w) + 1
6
‖∇α

wt‖
2
2.(82)
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Now one applies for all |α| ≤ m+ 1 the operator ∇α to (52), but this time multiplies
with ∇αw in L2(Rn) to the end

(83)

τ
d

dt
〈∇αwt,∇αw〉 − τ‖∇αwt‖22 + µ‖∇α∇w‖22 +

d

dt

1

2
‖∇αw‖22

= −〈µτ∇α∆vt,∇αw〉+
6∑

j=1

〈∇αMj,∇αw〉.

With the same estimates as above one obtains

|〈∇αM1,∇αw〉| ≤ cEm(u)
1
2Em(w),(84)

|〈∇αM2,∇αw〉| ≤ cEm(v)
1
2Em(w),(85)

|〈∇αM3,∇αw〉| ≤ c
√
τEm(u)

1
2Em(w),(86)

|〈∇αM4,∇αw〉| ≤ cEm(v)
1
2Em(w).(87)

For the term |〈∇αM5,∇αw〉| one distinguishes between α = 0 and α 6= 0.
For |α| = 0 it holds

|〈M5, w〉| ≤ cτ‖(u · ∇)wt‖2‖w‖2 ≤ cτ‖u‖∞‖∇wt‖2‖w‖2 ≤ cEm(u)
1
2Em(w),(88)

while for |α| 6= 0 one obtains as above

|〈∇αM5,∇αw〉| ≤ cτ (‖u‖∞‖∇m∇wt‖2 + ‖∇wt‖∞‖∇mu‖2) ‖∇α+ekw‖2

≤ cEm(u)
1
2Em(w).(89)

The last term can be estimated to

|〈∇αM6,∇αw〉| ≤ cτ
(
‖w‖∞‖∇m+1∇vt‖2 + ‖∇vt‖∞‖∇m+1w‖2

)
‖∇αw‖2

≤ c
√
τEm+1(v)

1
2Em(w).(90)

Now one adds (76) and (83), sums up over |α| ≤ m+1 and uses the estimates for the
nonlinearities (77), (78), (79), (80), (81), (82) and (84), (85), (86), (87), (88) resp.
(89), (90) and ends up with

d

dt
Ẽm(w)+

∑

|α|≤m+1

(
‖∇αwt‖22 − τ‖∇αwt‖22 + µ‖∇α∇w‖22

)

≤ c(Em(u) + Em+1(v) + Em(u)
1
2 + Em+1(v)

1
2 )Em(w)

+
∑

|α|≤m+1

(
4

6
‖∇αwt‖22 + |〈µτ∇α∆vt,∇αwt〉|+ |〈µτ∇α∆vt,∇αw〉|

)
.

The scalarproducts are estimated by

|〈µτ∇α∆vt,∇αwt〉|+ |〈µτ∇α∆vt,∇αw〉|
≤ µ(3µ2 τ2‖∇α∆vt‖22 + 1

6µ‖∇
αwt‖22) + µ( τ

2

2 ‖∇α∆vt‖22 + 1
2‖∇

αw‖22)
≤ cτ2‖∇α∆vt‖22 + 1

6‖∇
αwt‖22 + cEm(w).(91)
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Plugging this in and settig without restriction τ ≤ 1
6 one finally obtains

d

dt
Ẽm(w) ≤ c(Em(u) + Em+1(v) + Em(u)

1
2 + Em+1(v)

1
2 + 1)Em(w)

+ cτ2
∑

|α|≤m+1

‖∇α∆vt‖22.(92)

Now one defines R :=
∑

|α|≤m+1 ‖∇α∆vt‖22 and uses (57) what yields (75).

4. Appendix.

Theorem 4.1 (Moser-Inequalities). Let m ∈ N. Then there is a constant c =
c(m,n) > 0 such that for all f, g ∈ Wm,2(Rn) ∩ L∞(Rn) and α ∈ N

n
0 , |α| ≤ m, the

following inequalities hold:

‖∇α(fg)‖2 ≤ c(‖f‖∞‖∇mg‖2 + ‖∇mf‖2‖g‖∞),(93)

‖∇α(fg)− f∇αg‖2 ≤ c(‖∇f‖∞‖∇m−1g‖2 + ‖∇mf‖2‖g‖∞)(94)

Proof. see [10, Lemma 4.9].

Lemma 4.2. Let α, β, γ ≥ 0. Then

sup
t≥0

∫ t

0

(1 + t− r)−α(1 + r)−β(1 + t)γdr < ∞

if and only if
(i) α+ β − γ ≥ 1,
(ii) α ≥ γ and β ≥ γ,
(iii) (if β = 1 then α > γ) and (if α = 1 then β > γ),
are satisfied.

Proof. see [10, Lemma 7.4].

Lemma 4.3 (Nonlinear version of the Lemma from Gronwall). Let v, w, g ∈
C0([0, T ],R)
(i) Let k ∈ C0([0, T ]× [0, T ]× R,R), k(t, s, ·) be monotone increasing for all s, t ∈

[0, T ] and let

(95)

v(t) ≤ g(t) +

∫ t

0

k(t, s, v(s))ds,

w(t) ≥ g(t) +

∫ t

0

k(t, s, w(s))ds for all t ∈ [0, T ],

hold, then

(96) v(t) ≤ w(t) for all t ∈ [0, T ].

holds.
(ii) Let g ∈ C1([0, T ],R), k ∈ C1([0, T ] × R,R), k(t, ·) be monotone increasing for

all t ∈ [0, T ] and let h be the local solution of

(97)
ḣ(t) = ġ(t) + k(t, h(t)),

h(0) = g(0).
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Then for all v ∈ C0([0, T ],R) with

(98) v(t) ≤ g(t) +

∫ t

0

k(s, v(s))ds,

the estimate

(99) v(t) ≤ h(t)

holds within the existence time of h.

Proof. (i) see [16, Theorem I.1.II].
(ii) cp. [16, I.5.IX]. It is well known that h is well defined and h(t) = g(t) +∫ t

0
k(s, h(s))ds holds. Therefore part (i) with w := h applies.

The standard Lemma from Gronwall is included in this lemma (cp. [16, I.1.III]).
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